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ABSTRACT

A number of crop wild relatives can tolerate extreme stressed to a degree outside the range observed
in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms
employed by these species can be translated to domesticated crops. Paspalum Paspalum vaginatum is
a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here we describe the
sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P vaginatum.
Phylogenetic analysis based on 6,151 single-copy syntenic orthologous conserved in 6 related grass
species placed paspalum as an outgroup of the maize-sorghum clade demonstrating paspalum as
their closest sequenced wild relative. In parallel metabolic experiments, paspalum, but neither maize
nor sorghum, exhibited significant increases in trehalose when grown under nutrient-deficit conditions.
Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, resulting in
autophagy dependent increases in biomass accumulation.

Running title: Paspalum shows role for trehalose in resilience

Introduction

Domesticated crops from the grass family provide, directly or indirectly, the majority of total calories
consumed by humans around the globe. Among the domesticated grasses the yields of three crops
dramatically increased as part of the green revolution: rice, wheat and maize. These yield increases
resulted from both breeding and greater availability and application of fertilizer. From 1960 to 2014, the
amount of nitrogen (N) and phosphorus (P) fertilizer applied worldwide increased nine-fold and five-fold
respectively! . Today these three crops account for approximately one half of total harvested staple
crop area and total global calorie production as well as greater than one half of total global fertilizer
consumption. Manufacturing N fertilizer is an energy intensive process* and the production of P from
mineral sources may peak as early as 2030°. Fertilizer costs are often the second largest variable input
after seed in rain fed agricultural systems. In the United States Corn Belt alone, 5.6 million tons of N
and 2.0 million tons of P have been applied annually to maize (Zea mays) fields since 2010°. In the 2015
growing season, these fertilizers accounted for an estimated $5 billion in input costs’-3. Fertilizer runoff
resulting from inefficient uptake or over application can result in damage to both aquatic ecosystems and
drinking water quality®~'2.

Improving the productivity of crop plants per unit of fertilizer applied would increase the profitability
of agriculture while decreasing its environmental impact'3~1>. A significant portion of the overall increase
in maize yields appears to be explained by selection for increased stress tolerance and yield stability in
the decades since the 1930s'%!7. The observations from maize suggest it may be possible to increase
the stress tolerance and resource-use efficiency of crops in a manner that is either neutral or beneficial to
overall yield potential. Some crop wild relatives exhibit degrees of stress tolerance well outside the range
observed in their domesticated relatives, and therefore may employ mechanisms not present in the primary
germplasm of crops'*.

Paspalum vaginatum (seashore paspalum — or simply paspalum) is a relative of maize (Zea mays)
and sorghum (Sorghum bicolor). It is currently found on saltwater beaches and in other regions of high
salinity around the globe'®1°. Reports suggest that paspalum is tolerant of drought>%-3, cold stress>*2°,
low light?’, and crude oil contamination”®. Paspalum grows primarily in the wild, but breeding efforts
have led to the development of turfgrass cultivars for use in areas with high soil salinity, limited access
to freshwater, or where turf is irrigated with wastewater>”-2°. Paspalum requires less N to maintain
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visible health than other grasses employed as turfgrasses in environments where paspalum thrives®.

Historically few genetic resources have been available for this species, although a set of genetic maps
were recently published®’. The paucity of genetic and genomic investigations may in part result from the
challenging reproductive biology of this species; paspalum is self-incompatible and is primarily propagated
as heterozygous vegetative clones>”3!.

Here, we generate a pseudomolecule level genome assembly for a reference genotype of paspalum (PI
509022), enabling comparative transcriptomic and genomics analysis. Phylogenetic analyses employing
syntenic gene copies confirmed paspalum’s placement as a close outgroup to maize and sorghum and
the paspalum genome exhibits a high degree of conserved collinearity with that of sorghum. The genes
involved in telomere maintenance and DNA repair have experience significant copy number expansion
in the paspalum lineage as do several gene families which transcriptionally respond to nitrogen or
phosphorous deficit stress. Changes in trehalose accumulation and the expression of genes involved
in trehalose metabolism were observed in response to multiple nutrient-deficit stresses were observed
in paspalum, but not in paired datasets collected from sorghum and maize under identical conditions.
Replicating the pattern of trehalose metabolism observed in wild-type paspalum by inhibiting the enzyme
responsible for degrading trehalose increased trehalose accumulation, biomass accumulation and shoot-
to-root ratios in maize under nutrient-optimal and -deficient conditions. The induced accumulation of
trehalose in maize was associated with lipidation of AUTOPHAGY-RELATEDS (ATGS) a marker for
autophagy activity. Treatment with a chemical inhibitor for autophagy abolished the increased biomass
accumulation observed in maize plants accumulating additional trehalose, suggesting that increased
autophagy as a potential mechanism for the observed increased productivity observed in maize plants
accumulating additional trehalose.

Results

Characteristics of the paspalum genome

We generated 5,021,142 PacBio reads with a median length of 9,523 bp from genomic DNA isolated from
dark-treated tissue of the heterozygous paspalum clone PI 509022. The reads were assembled into 1,903
main genome scaffolds with an N50 of 44.5 Mbp and a total length of 651.0 Mbp (Table S1). This is
modestly larger than the estimated haploid gene size of the paspalum genome of 593 Mbp (See Methods
and Supplementary Note 1)*?. Flow cytometry carried out within this study confirmed that the genome
size of the paspalum clone employed in this study was approximately 590 Mbp (Figure S1A & B). This
modest over-assembly may represent haplotype-specific sequences which is supported by the binomial
distribution of read coverage mapped to the current genome assembly (Figure S1C). We used published
sequence data from markers genetically mapped in an F1 population generated from a cross between two
heterozygous paspalum individuals®” to integrate a set of 347 scaffolds into ten pseudomolecules spanning
>82% of the estimated total haploid paspalum genome (Supplementary Note 2). Scaffolds that were not
anchored in a chromosome were classified into bins depending on sequence content. Contamination was
identified using BLASTN against the NCBI nucleotide collection (NR/NT) and BLASTX using a set of
known microbial proteins. Additional scaffolds were classified as repetitive (>95% masked with 24 mers
that occur more than 4 times in the genome) (197 scaffolds, 12.4 Mb), alternative haplotypes (unanchored
sequence with >95% identity and >95% coverage within a chromosome) (3,276 scaffolds, 187.9 Mb),
and low quality (>50% unpolished bases, post polishing) (9 scaffolds, 204.5 Kb) (Table S1). A set of
45,843 gene models were identified and annotated using a combination of approaches (See Methods).
A total of 22,148 syntenic orthologous gene pairs were identified between the paspalum and sorghum
genomes (Figure S2A & B). The large inversions observed on chromosome 4 and chromosome 7 were
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Figure 1. Paspalum (Paspalum vaginatum) genome and evolution. (A) Circos plot for the paspalum genome. a: TE
coverage per 100 Kb, b:GC content per 10 kb region, c: gene density (generic region coverage) per 1 Mb, d: transcription
represented by log, (TPM) per 100 kb and e: inter- and intra- chromosomal synteny. (B) Phylogeny and estimated divergence
times among maize (Zea mays), sorghum, paspalum, foxtail millet (Setaria italica), Oropetium (Oropetium thomaeum),
Brachypodium (Brachypodium distachyon), and rice (Oryza sativa). Numbers in black indicate the estimated divergence time
(in millions of years before present) for each node. Numbers in blue and red indicate the number of gene families predicted to
have experienced copy number expansion or contraction along each branch of the phylogeny, respectively. (C) Distribution of
the estimated lineage-specific synonymous substitution rates for syntenically conserved genes in each of the seven species
shown in panel A (see Methods) (D) Distribution of the estimated lineage-specific ratios of nonsynonymous substitution rates
to synonymous substitution rates for syntenically conserved genes among each of the seven species shown in panel A.

previously validated by a study a genetic map was constructed using GBS genotyping technology>’. Small
translocations were also observed between chromosome 8 and chromosome 4 (Figure S2 A& B). The
predicted protein sequences of annotated paspalum genes tended to cover the full length of the most
closely related protein in sorghum, and vice versa, indicating most annotated gene models in the paspalum
genome assembly are likely full length (Figure S2C). On a macro level, the paspalum genome displays
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many features common to other grass genomes: a higher gene density in the distal chromosome regions
than pericentromeric regions and, conversely, a higher frequency of transposable elements and other
repetitive sequences in pericentromeric regions than distal chromosome regions, and syntenic evidence of
the pre-grass (rho) whole genome duplication (Figure 1 A).

Comparative genomics analysis of paspalum and its relatives

Paspalum belongs to the grass tribe Paspaleae, a group which, together with the Andropogoneae (which
includes maize and sorghum) — and the Arundinelleae, forms a clade sister to the Paniceae — which
includes foxtail millet (Setaria italica). Paspaleae,Andropogoneae and Paniceae are all members of the
grass subfamily Panicoideae, while Oropetium belongs to the grass clade Cynodonteae’®. We constructed
phylogenic trees using DNA alignments for 6,151 single-copy syntenic orthologous genes present in
Zea mays, Sorghum bicolor, Setaria italica, Oropetium thomaeum, Brachypodium distachyon, Oryza
sativa, and Paspalum vaginatum. A total of 5,859 trees representing 49 unique topologies and placing B.
distachyon and O. sativa in a monophyletic outgroup survived quality filtering (see Methods for filtering
criteria). The most common topology among these trees — represented by 4,265 individual gene trees
(73%) — was consistent with the previous consensus placement of paspalum (Figure S3A & Figure 1B).
The second most common topology, represented by 762 individual gene trees (13%), placed paspalum
sister to foxtail millet (Figure S3A).

Dating placed the split of the Chloridoideae (represented by Oropetium thomaeum) from the Pani-
coideae at 50 million years before present and indicated that, within the Panicoideae, the Paniceae shared
a common ancestor with the Andropogoneae/Paspaleae clade (represented by paspalum, sorghum, and
maize) at 33 million years (Myr) before present, a date modestly earlier than previous estimates ( 26
Myr ago)**3 (Figure 1B). The divergence of the lineage leading to paspalum from that leading to maize
and sorghum — (the split between the Andropogoneae and Paspaleae) — was estimated to have occurred
approximately 28 million years before present. We calculated branch specific synonymous (Ks) and
nonsynonymous (Ka) nucleotide substitution rates for syntenic orthologous gene groups based on known
species relationships (Figure 1C; Supplementary note 3). Consistent with previous reports, maize exhibited
greater modal synonymous substitution rates than sorghum, even though these are sister lineages in the
phylogeny?® (Figure 1C). The modal synonymous substitution rates in paspalum were modestly higher
than those observed in foxtail millet (Figure 1D).

Annotated protein sequences for sorghum, foxtail millet, Oropetium, Brachypodium (Brachypodium
distachyon), and paspalum were grouped into 25,675 gene families. Of these families 16,038 were
represented by at least one gene copy in each of the five species, with the remainder being present in 1-4
species (Figure S3B). A set of 721 gene families were unique to paspalum. This number was modestly
less than the number of species-specific gene families identified in brachypodium and modestly more
than the number of species-specific gene families observed in sorghum and foxtail millet (Figure S3B).
Of the 21,091 gene families present in paspalum, 75% (15,769) were represented by only a single copy
in the paspalum genome and 17 % (3,524) were represented by two copies. These values are similar to
those observed in sorghum and foxtail millet which shared the same most recent common pre-grass (rho)
whole genome duplication (Figure S3C). A set of 149 gene families were identified as undergoing copy
number expansion with a significantly different evolution rate (lambda) in the paspalum lineage. These
included families of genes annotated with gene ontology (GO) terms related to homeostatic processes
such as telomere maintenance and DNA repair, protein modification, stress response, nutrient reservoir
activity and oxidation-reduction process (Supplementary note 4).
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Figure 2. Responses of maize (Zea mays), sorghum (Sorghum bicolor), and paspalum (Paspalum vaginatum) to
nutrient-deficit stress. (A) Representative images of above and below ground organs of maize , sorghum seedlings, and
paspalum ramets at 21 days after panting (dap) under optimal (Full) , nitrogen-deficit (-N), or phosphorus-deficit conditions
(-P). (B) Change in fresh biomass accumulation under -N or -P conditions in maize, sorghum, and paspalum at 21 dap. (C)
Changes in root length relative to Full at 21 daf under -N or -P conditions in maize, sorghum, and paspalum. (B-C) (* =p
<0.05; *** = p <0.0005;**** = p <0.00005; t-test). (D-E) Abundance (D) and reduction (E) of N as a proportion of total dry
biomass in the shoots of maize, sorghum seedlings, and paspalum ramets at 21 dap. (F-G) Abundance (F) and reduction (G)of
P as a proportion of total dry biomass in the shoots of maize, sorghum seedlings, and paspalum ramets at 21 dap. (H) Change in
the observed mRNA expression of the conserved and expressed paspalum orthologs of maize genes known to encode starch
synthase (GSSSIB) and starch debranching enzymes (ISO3 and ZPU1) in shoots under N-deficient or control conditions.

General and paspalum-specific physiological responses to nutrient-deficit stress

Paspalum requires little fertilizer in order to remain visibly healthy, however it was unclear whether
paspalum is actually more efficient at producing biomass under nitrogen limited conditions. A comparison
was conducted of growth of paspalum, sorghum, and maize plants under ideal, nitrogen limited and
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phosphorous limited conditions. Visible effects were apparent in maize and sorghum seedlings under
N- or P-deficient conditions but not in clonally propagated paspalum plants (ramets) three weeks after
planting (Figure 2A). Both maize and sorghum exhibited significant decreases in above ground fresh
biomass accumulation when grown under N- or P- deficient conditions whereas paspalum did not (Figure
2B). This result should be interpreted with the caveat that paspalum accumulated the least biomass per
plant of the three species under nutrient-optimal conditions. In both maize and sorghum, N-deficit was
associated with significant increases in root length. However, a statistically significant increase in root
length in response to P-deficit stress was only observed for sorghum (Figure 2C). Paspalum ramets grown
under N-deficient conditions showed a modest but statistically significant increase in root length compared
to optimal nutrient conditions, while P-deficit stress did not produce any statistically significant increase
in root length in this species (Figure 2C).

One potential explanation for the relative lack of plasticity observed in paspalum in response to
N-deficit or P-deficit stress is that paspalum has limited potential to utilize N under optimal conditions
and hence did not experience substantial internal declines in N availability in response to N-deficient
conditions. We therefore measured the contents of N and P in plants of all three species included in this
study. Substantial decreases in N as a proportion of total biomass were observed in all three species
grown under N-deficient conditions relative to the full nutrient controls (Figure 2 D & E). P-deficient
treatments produced significant declines in P as a proportion of dry biomass for all three species (Figure 2
F), although the decline in P abundance for paspalum was notably smaller in magnitude than the declines
in maize and sorghum, with sorghum exhibiting the greatest reduction in P content (43%), followed by
maize (36%) and paspalum (15%; Figure 2 G). N-deficient treatment produced significant increases in P as
a proportion of dry biomass in maize and sorghum (Figure 2 F), which is consistent with previous reports
of enhanced P uptake in plants grown under N-deficient conditions®’. N deficit stress is also associated
with increased starch accumulation in maize*®3°. In shoot tissues of paspalum seedlings grown under
N-deficit conditions, the expression of the syntenically conserved gene GBSSIB (encoding granule-bound
starch synthase 1)** increased and the expression of ISO3 and ZPUI(encoding starch debranching enzyme
involved in starch degradation) decreased*! relative to nutrient optimal conditions (Figure 2 H). Taken as a
whole, these results indicate that the external N-deficient treatment protocol employed here was sufficient
to produce declines in internal N levels and N-deficit stress in paspalum.

Comparisons of primary metabolic responses to nutrient-deficit stress

Numerous metabolic changes were observed between plants grown under nutrient-replete and nutrient-
deficient conditions, with more metabolites exhibiting significant changes in abundance in response to N-
or P-deficit stress in maize and sorghum than in paspalum (Figure 3A & B, Supplementary note 5). Twelve
metabolites showed significant decreases in abundance in response to N-deficit stress in both sorghum and
maize, and four metabolites showed significantly increased abundance in response to N-deficit stress (18
of the 32 metabolic responses were shared between the two species) (Figure 3A). A smaller number of
statistically significant metabolic changes were observed in response to P-deficit stress, which is consistent
with the less severe phenotype observed for P deficiency in the experimental design employed (Figure
3 B; Figure 2 A). A number of metabolic changes were again shared between maize and sorghum, with
the levels of five tested metabolites decreasing in both species in response to P-deficit stress and one
increasing (6 of the 16 metabolic responses were shared) (Figure 3B). All metabolic changes associated
with N-deficit stress in paspalum were either species specific or shared with both maize and sorghum
while all metabolic changes associated with P-deficit stress in paspalum were species specific (Figure 3 A
& B). Metabolic changes associated with N-deficit stress shared by maize and sorghum but not paspalum
included decreases in the abundance of many amino acids, including L-asparagin, L-glutamine, L-alanine
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Figure 3. Primary metabolic and transcriptomic responses of maize (Zea mays), sorghum (Sorghum bicolor), and
paspalum (Paspalum vaginatum) to nutrient-deficit stress. (A-B) Changes in the abundance of metabolites in the roots of
maize, sorghum seedlings, and paspalum ramets grown under -N conditions (A) and -P condition (B) at 21 dap relative to
plants grown under Full condition. Only the metabolites with a statistically significance change in abundance (p <0.05; t-test)
and an absolute fold change >2 in at least one of the three species evaluated are shown. Cell marked in gray were not
significantly different between conditions and/or exhibited an absolute fold change less than 2.
13,5-dimethoxy-4-hydroxycinnamic acid; 2Gamma-aminobutyric acid. Raw data for fold change and t-test results are shown in
Supplemental Document 2. (C-D) Change in trehalose abundance in the roots of 3-week-old maize, sorghum seedlings, and
paspalum ramets under -N condition (C) and -P condition (D) relative to plants grown under Full condition. Statistically
significant changes are indicated in purple (t-test), and non-statistically significant changes are indicated in gray. (E) Number of
significantly differentially expressed genes in paspalum (Pv), maize (Zm) and sorghum (Sb) identified in comparisons between
roots of 3-week old plants grown under either -N or -P conditions and Full condition. Shading indicates the proportion of
differentially expressed genes (DEGs) in each species that are syntenically conserved across species, or present at a unique
location in the genome of the individual species evaluated. (F-G) Number of syntenically conserved orthologous triplets
exhibiting shared or species-specific differential expression in response to -N and -P conditions (G) in maize (Z. mays),
sorghum (S. bicolor), and paspalum (P. vaginatum). (H) Simplified diagram for trehalose metabolic pathway. (I) Expression
levels of trehalase-encoding genes in paspalum (Pv), maize (Zm) and sorghum (Sb) in roots of 3-week-old plants grown in
nutrient optimal (Full), N-deficient (-N) and P-deficient (-P) conditions.

172 and L-threonine (Figure 3A). This observation is consistent with the decreases in amino acid metabolism
173 observed under N-limited conditions*>*3. A conserved increase in the abundance of caffeic acid was
174 detected in both maize and sorghum in response to N-deficit conditions, which is consistent with previous
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reports from rice grown under similar N-limited conditions** (Figure 3A).

All three species exhibited decreases in 1,3-diaminopropane and allantoin levels under N-deficit
conditions (Figure 3A). Allantoin acts as a pool of relocalizable N that can be catabolized into ammonia
for N assimilation and amino acid biogenesis* . In addition, the abundance of both succinic acid and maleic
acid (MaA) increased in all three species in response to N-deficit stress (Figure 3B). Maleic acid produced
and secreted in response to another abiotic stress (drought) in holm oak (Quercus ilex)*®. As we examined
internal metabolite abundance but did not profile root exudates in the current study, it is not possible to
determine whether the internal accumulation of maleic acid resulted in additional secretion in these three
grass species. Succinate, the anion of succinic acid, forms part of the tricarboxylic acid (TCA) cycle. The
increase in succinic acid levels, combined with the decreased abundance of gamma-aminobutyric acid
(GABA), is consistent with these species employing the GABA shunt pathway, which was proposed to act
as an additional energy source to support cellular metabolism under stress conditions*’ 7.

We observed changes in metabolite abundance in maize and sorghum grown under P-deficient condi-
tions relative to the nutrient optimal conditions, including L-asparagine, GABA, L-glutamine, L-alanine,
capric acid, D-glucose-6-phosphate and glycerol-1-phosphate. However, none of these metabolites ex-
hibited significant changes in abundance in paspalum plants grown under P-deficient and vs. nutrient
optimal conditions (Figure 3 B). The abundance of D-glucose-6-phosphate (D-G6P), the primary entry
molecule for glycolysis was significantly lower in maize and sorghum plants grown under P-deficient
conditions vs. those grown under nutrient optimal conditions (Figure 3A). The reduction in D-G6P
levels might reflect the lack of free phosphate available to produce adenosine triphosphate (ATP) to drive
the phosphorylation of glucose, as P is a major component of ATP. The abundance of D-G6P did not
decrease in paspalum plants grown under P-deficient conditions (Figure 3 B). None of the metabolites
that exhibited significant changes in abundance in paspalum between nutrient optimal and P-deficient
conditions, including tryptophan, xylose, glyceric acid, and trehalose exhibited changes in abundance
in maize or sorghum (Figure 3 A-D). The abundance of trehalose, a di-saccharide that predominantly
functions as a signaling molecule in plants in response to abiotic stresses, was significantly higher in
paspalum plants grown under N-deficient or P-deficient conditions vs. the nutrient optimal conditions, but
this difference was not observed in maize or sorghum (Figure 3 C & D).

Conserved and differential transcriptomic responses of paspalum to nutrient-deficit con-
ditions

The sequencing, assembly, and annotation of the paspalum genome provided the opportunity to quantify
differences and commonalities in how maize, sorghum, and paspalum transcriptionally respond to nutrient-
deficit stress. We collected RNA from the root tissues of three biological replicates of each species and
used it to generate an average of approximately 40 million high-quality reads per sample. Principal
component analysis based on the transcriptomes of each sample showed a clear separation based on growth
conditions in maize (Figure S4 A), sorghum (Figure S4 B) and paspalum (Figure S4 C). We identified
3,057, 3,144 and 2,723 genes with significantly differential expression levels between nutrient optimal
and N-deficit stress conditions in maize, paspalum, and sorghum, respectively. In addition, 591, 2,318
and 1,698 genes showed significantly differential expression levels between nutrient optimal and P-deficit
stress conditions in maize, paspalum, and sorghum, respectively (Figure 3 E).

Most differentially expressed genes (DEGs) identified for each treatment in each species were them-
selves syntenically conserved (Figure 3 E). Members of a number of paspalum specific expanded gene
families showed significant transcriptional responses to N-deficit stress (Figure S5A) and/or P-deficit
stress (Figure S5B). However, consistent with a previous study of transcriptional responses to abiotic
stress ", the conservation of transcriptional responses was much less common than the conservation of
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the genes themselves; syntenic genes that showed significant fold changes varied across the three species
under N-deficient and P-deficient conditions (Figure 3 F & G).

The set of 220 syntenically conserved orthologous gene groups that responded transcriptionally to
N-deficit stress in a consistent fashion among maize, sorghum, and paspalum was disproportionately
enriched in GO terms related to response to nutrient levels, nitrate assimilation, metal ion transporter
activities and divalent inorganic cation transmembrane transporter activity (Figure 3F; Figure S6A). The
set of 37 syntenically conserved orthologous gene groups that responded transcriptionally to P-deficit
stress in a consistent fashion among the three grasses was disproportionately enriched in GO terms related
to lipid metabolic process, phosphate ion transport, response to nutrient levels and cell communication
(Figure 3G; Figure S6A). Syntenically conserved orthologous gene groups where a transcriptional response
to N-deficit stress was unique to paspalum where enriched in genes involved in proton transport, glycoside
biosynthetic process and serine family amino acid metabolic process (Figure 3 F; Figure S6 B)). By
contrast, the syntenically conserved orthologous gene groups that were uniquely differentially expressed in
paspalum in response to P-deficit stress were involved in processes related to antioxidation, gene regulation
and primary metabolism (Figure 3 G; Figure S6 B).

The significant accumulation of trehalose in paspalum in response to nitrogen deficient conditions
motivated us to examine the expression of genes involved in the trehalose metabolic pathway including
the genes encoding enzymes that catalyze three steps in trehalose metabolism: trehalose-6-phosphate
synthase, trehalose-6-phosphate phosphatase, and trehalase (Figure 3 H). Two maize genes encoding
trehalose-6-phosphate synthase 1 and 12 are syntenic homeologs resulting from the maize whole-genome
duplication and are co-orthologous to single gene copies in sorghum and paspalum. These genes formed
a clade sister to the well characterized Arabidopsis thaliana gene AtTPSI°! which is consistent with
the previous study that characterized ZmTPSI°% (Figure S7 A; Supplementary Note 6). Copies of this
gene in both sorghum and paspalum showed a significant increase in mRNA abundance in response to
N-deficient treatment, as did the maize gene encoding trehalose-6-phosphate synthase 1 (ZmTPSI), which
possesses all catalytic domains of TPS (Figure S7 B). Plots of the detectable transcriptional responses of
other trehalose-6-phosphate synthase encoding homologs are shown in Figure S7 C - I. Genes annotated
as encoding trehalose-6-phosphate phosphatase 6 (ZmTPP6) and trehalose-6-phosphate phosphatase 11
(ZmTPP11) were phylogenetically clustered with Arabidopsis AtTPPA (Figure S8 A-C; Supplementary
Note 7), and both tended to be differentially expressed between control and stress conditions in all three
species. Similar transcriptional responses of homologs encoding other trehalose-6-phosphate phosphatases
were observed across all three species (Figure S8 D-I). Trehalase, an enzyme that breaks trehalose down
into two molecules of glucose, is encoded by a single gene copy in maize, with conserved syntenic
orthologs in sorghum and paspalum. Lower levels of mRNA abundance were associated with the trehalase
encoding gene in paspalum than its syntenic orthologs in sorghum or maize (Figure 3 I).

Inhibiting trehalase activity in maize and sorghum recapitulates the paspalum phenotype
As shown above, paspalum exhibited a significant accumulation of trehalose in response to the two types
of nutrient-deficit stresses while maize and sorghum did not (Figure 3 C & D). However, as equivalent
P-deficient treatments introduced notably smaller changes in P abundance in paspalum relative to maize
and sorghum, we elected to focus exclusively on N-deficit stress in all subsequent experiments.

In an attempt to phenocopy the reduced plasticity in response to N-deficient treatment originally ob-

served in paspalum, we treated maize and sorghum plants with validamycin A (f3-d-glucopyranosilvalidoxylamine,

ValA) — a specific inhibitor of trehalase activity>>—>. Visibly better growth under both optimal and nitro-
gen deficient conditions was observed in maize (Figure4A) and a slightly better growth under nitrogen
deficient condition was observe in sorghum but no obvious changes in growth under both conditions was
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Figure 4. Validamycin A treatment is associated with increased trehalose accumulation and greater biomass
production in maize. (A) Representative images showing maize seedlings at 21 dap grown under Full and -N conditions with
(ValA) or without (Control) validamycin A treatment. (B) Changes in observed trehalose abundance — normalized relative to an
internal reference (ribitol) — in response to validamycin A (ValA) under Full and -N in maize root tissue from seedlings at 21
dap. (C) Changes in the above ground dry weight of maize seedlings at 21 dap in response to validamycin A (ValA) treatment
under Full or -N conditions. (D) Ratio of shoot-to-root dry biomass in 3-week-old maize seedlings grown under Full and -N
conditions with (ValA) or without (Control) validamycin A treatment. (E) Statistically significant increases in biomass
accumulation observed in late vegetative stage (63 dap) validamycin A (ValA) treated maize relative to control (untreated)
plants under Full condition. (** = p <0.005; *** = p <0.0005; t-test)

observed in paspalum (Figure S9A & E). Metabolic profiling of treated and untreated plants confirmed
that a treatment with 30 uM ValA significantly increased the accumulation of trehalose under both optimal
and N-deficient nutrient conditions in maize and sorghum (Figure 4B; Figure S9B) but failed to increase
trehalose accumulation in paspalum (Figure SOF). ValA treatment produced significant increases in dry
biomass accumulation in maize under both control and N-deficient treatment (Figure 4 C) and in sorghum
only under N-deficient treatment (Figure S9 C). ValA treatment did not significantly alter biomass accu-
mulation in paspalum under either treatment condition (Figure S9 G). Nutrient-deficit stress is known
to alter shoot-to-root biomass ratios, increasing root biomass as a percentage of the total biomass>®>7.
Root biomass made up a smaller proportion of the total biomass for both maize and sorghum seedlings
treated with ValA than untreated seedlings under both full-nutrient and N-deficient conditions (Figure 4 D;
Figure S9 D). However, no significant changes in shoot-to-root ratio were observed in paspalum upon
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ValA treatment irrespective of nutrient conditions(Figure S9 H).

To extend our observations beyond the late seedling stage, we grew a cohort of maize plants for for
63 days (until the late vegetative stage) under either control or ValA treated conditions. ValA treated
plants accumulated significantly more biomass than control plants grown as part of the same experiment
(control mean = 65.6 grams/plant, ValA mean = 87.3 grams/plant; p = 0.002; t-test) (Figure 4 E). In
a preliminary experiment, a smaller number of maize plants were grown under either control or ValA
treated conditions to reproductive stage (Figure S10 A & B). ValA treated plants flowered earlier (Figure
S10 C) and produced larger tassels (Figure S10 B & D) and leaves than their untreated siblings (Figure
S10 E). In previous studies, genetically modifying trehalose metabolic pathway altered photosynthesis
and nutrient partitioning in maize reproductive tissues, thereby affecting yields, via its effect on SnRK1
activity>®>°. However, in the current smaller experiment, ValA induced differences in above ground
biomass accumulation, including both tassels and ear shoots as well as vegetative tissues at the reproductive
stage, were not statistically significant (Figure S10 F). Perhaps this was due to an earlier transition to
reproductive development in ValA treated plants, or perhaps because of low statistical power, we failed
to detect differences between such small numbers of plants. A set of 27 genes associated with trehalose
metabolism exhibited significantly more rapid rates of protein sequence evolution in paspalum than did
the orthologs of these same genes in foxtail millet (S. italica, p = 0.002), sorghum (S. bicolor, p = 0.014)
and Oropetium (O. thomaeum, p = 0.025) (Figure 4 E). These data are consistent with, but not conclusive
evidence for, a role for trehalose metabolism in the reduced phenotypic plasticity paspalum exhibits in
response to a range of abiotic stresses such as salinity®?.

ValA treatment is associated with increased autophagy in maize

A number of potential mechanisms could explain the association between the ValA associated increases
in trehalose accumulation and increased growth under nutrient deficient conditions. Relative to other
disaccharides, trehalose accumulates to only low levels and is thought to act as a signal rather than a
carbon source®®®7. The precursor to trehalose, trehalose-6-phosphate, has been shown to regulate cell
growth by inhibiting SNRK1 activity®®-’!. Hence, one potential model to explain the observed result is
that treatment with ValA, which inhibits trehalase activity and increases trehalose accumulation’?, might
also increase the abundance of trehalose-6-phosphate, one step earlier in the pathway®® 72, Consistent with
this model, the maize ortholog of the Arabidopsis gene encoding trehalose-6-phosphate phosphatase A
was significantly downregulated in ValA treated plants relative to control samples under both full-nutrient
and N-deficient treatment conditions (Figure 5 A; Figure S8 A; Supplementary Note 6). The trehalose-
6-phosphate synthase encoding maize gene ZmTPS1°? also exhibited significant declines in expression
in response to ValA treatment under both full-nutrient and N-deficient treatment conditions (Figure 5 B;
Supplementary Note 7). Expression change of the genes encoding other redundant TPSs and TPPs did not
show specific patterns (Figure S11 A). Furthermore, the maize gene encoding the SNRK1 alpha subunit A
(Zm00001d038745)%* was upregulated in response to ValA treatment under both Full and -N conditions
(Figure 5 C). In addition, the known SNRKI1 induced gene in maize ZmAKINI11 (Zm00001d028733)
(Figure S11 B) was significantly up-regulated, the known SNRKI1 repressed genes in maize ZmMDH3
(Zm00001d044042) (Figure S11 C), ZmMDH6 (Zm00001d031899) (Figure S11 D) and (ZmBZIP11)
(Figure S11 E)’>7% were significantly down-regulated. While abundance of trehalose-6-phosphate was
not directly assayed, these transcriptional changes observed in current study were consistent with an
increased SNRKI activity in ValA treated plants and, hence, inconsistent with increases in the abundance
of trehalose-6-phosphate which inhibits SNRK 1 activity®:6°. The expression of a number of ammonium
and nitrate transporters in root tissues from maize seedlings treated with ValA were upregulated relative to
untreated seedlings whether grown under Full and -N treatment conditions (Figure 5D).

12/44


https://doi.org/10.1101/2021.08.18.456832
http://creativecommons.org/licenses/by/4.0/

321

322

323

324

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456832; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ZmTPP B ZmTPS ZmSNRK1A1 o
A oo & 0.00 C 1.0 D 2 AMT1 - 2
S ~ 2
] i} o ol [} T AMT2-
=) 0.5 = o -0.25 o} 2_ 08 &L
5< i < N S @ o AMT3- 1
5o 1 £ o = £ ; 2
S . S8 -0.50{|=]| | EES g S AMT6- -
gi_l'o' = ¢ 075 3| = %50'6' < 5 AMT7 - 08
9 b Lo - 1|0 e Il © -
<3 _1s]l4 e il C104_ v g AMT8 s
= : — G 1 o8 e M L AMTO-
n a ™ —1,00 7N
0 o ] 0 o o 0 o <
£8 . lle 88 %] 88 o wers -1
& el g -1.251 Fo o NPF5-
w w w E
2.5 lgerr - 0.0 g 10P2037 - "RElL _,
Full -N Full -N Full -N o\ N
E Full N F Full G
— + — + = ValA > - + 1-week-old root

Control

< ATG8 > --

-« ATG8-PE >

--&“.

2 Tottal' 5
E— protein
8 g ]
el
L hel
g °
[} v
Q [
= H
0 —
Hs ., I 0.4 J, 1.09; K=Z 7psi- 3
o ook 9 = Z TPs2 PP -
3 = g 0.89 1 sokokok :'; TPS4 - 7pp2 - . 2
= 15 2 0.3g 1 2 Y TPS5 - ]
= a TPP4
3 > ns 2 0.69 | 5 156" TPP6 - 1 o
S - 5 — 5 0.6g S TPS7- P71 Q
210 i 2 0.29 T < TPS9- o N
£ = 1 % 5 0.49 Sresiol  _TPre- M a
3 : ) o —= TPS11 - TPP11 - 1
X = - ol
2 5. o 0.1g 2 0.2 S TPS12 - W
< 2 3 Yed @ TPS13 - 0>
o o S 4] ’0 -2
15 2 2 g 1pPs14 -
g 0.0g 15 0.0g == 2 7ps15 M
co““o NEl c,o““o Jah Coﬂmo\,a\ha_w\lk)(a‘w\b\ @ 7) -3
Ja a&Q«’

Figure 5. Evidence for increased autophagy in maize seedlings treated with validamycin A (A-B) Decrease in the
expression of the trehalose-6-phosphate synthase encoding gene ZmTPS1 (A)? and the trehalose-6-phosphate phosphatase
enconding maize gene ZmTRPP6°%-%1-92 (B) in root tissues from ValA treated maize seedlings relative to control seedlings
under both Full and -N conditions at 21 dap. (C) Increase in the expression of the SNRK1 alpha subunit enconding maize gene
SNRK1A19%-%% in roots from three week old ValA treated maize seedlings relative to control seedlings under both full nutrient
and N-deficient treatment conditions. (D) Uniform upregulation of genes encoding ammonium and nitrate transporters. (E-F)
Immunoblot measuring the abundance of both free ATG8 (upper band) and the ATGS8-PE conjugate (lower band) in root
samples collected from 3-week-old maize seedlings grown under Full and -N conditions with or without ValA treatment and
1-week-old maize seedlings grown under Full conditions with or without ValA treatment. Total protein loading control is
shown in the lower panel. (G-H) Microscopy images (G) and counts (H) of autophagosomes stained by 40 um MDC
(monodansylcadaverine) in root tips of 1-week-old maize seedlings grown under Full condition with or without ValA treatment
(*¥*F** = p <0.00005, t-test). (I) Above around dry biomass accumulated in 1-week-old maize seedling grown under Full
condition with or without ValA treatment (ns = p >0.05, t-test) (J) Accumulation of above ground dry biomass for 3-week-old
control seedlings, seedlings treated with 3 mM 3-MA (3-methyladenine), 30 uM ValA or both 3 mM 3-MA and 30 um ValA. (*
=p <0.05; **** = p <0.00005; ns = No significance; t-test) (K) Detectable changes in the expression levels of annotated maize
genes encoding trehalose-6-phosphate synthase (TPS) or trehalose-6-phosphate phosphatase (TPP) in response to nitrogen
deficient treatment in both the wild type and arg/2-1 mutant backgrounds®

SNRKI1 is an upstream promoter of autophagy®!-9>73-77 and more rapid turnover of damaged or
unneeded cellular components and proteins allows for more growth with a fixed quantity of N supply
(Figure (S11F)). During autophagy, the protein ATG8 becomes conjugated to phosphatidylethanolamine
(PE). Increases in the abundance of both free ATG8 and ATGS8-PE are associated with autophagy acti-
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vation’®-80_ In maize, N-deficit stress did not produce any obvious change in the accumulation of either
free ATG8 or ATGS8-PE; however, under both control and N-deficit stress conditions, two independently
replicated plants treated with ValA accumulated more free ATG8 and more ATGS8-PE (Figure SE & Figure
S11G). Similar results were observed in two independently replicated one week-old-seedlings (Figure
S5F & Figure S11H). Consistent to an increased autophagy activity, the abundance of autophagosomes
stained by Monodansylcadaverine (MDC) in root tip cells from ValA treated plants was approximately
twice as high as the untreated plants (Figure 5G & H). At this stage of growth, no differences in growth
could be observed (Figure 51) as the seedlings were still utilizing the nutrients stored in the cotyledon and
therefore the increase in autophagy under nutrient optimal conditions did not result from possible nutrient
deficiency stress caused by higher nutrient consumption in faster growing ValA-treated plants, instead,
was due to ValA treatment.

We treated seedlings grown under optimal nutrient conditions with 3-methyladenine (3-MA, a phos-
phatidylinositol 3-kinase (PI3K) inhibitor) that prevents autophagosome formation®”-8!, ValA, or both.
Treatment with 3-MA alone slightly reduced seedling growth. As previously observed, treatment with
ValA alone produced significant increases in biomass accumulation. However, in the presence of 3-MA,
no significant change in biomass accumulation was observed in response to ValA treatment (Figure 5
J). In an atgl2-1 mutant background, maize genes encoding TPS were predominately down-regulated
in response to N-deficient treatment, while in wild-type controls, several of the same genes exhibited
increased expression in response to N-deficient treatment (Figure 5 K)®. In data taken from the same
experiment, maize genes encoding TPP showed varying responses to both N-deficit stress and genetic
background (Figure 5 K)®°.

Discussion

In paspalum, a crop wild relative that is resilient to numerous abiotic stresses, nutrient-deficit stress was
associated with substantial accumulation of trehalose. The sequencing of a reference genome for this
species allowed us to perform comparative evolutionary analyses, which identified accelerated protein
sequence evolution of genes involved in trehalose metabolism in paspalum (Figure 4 J). Treating maize
and sorghum exposed to N-deficit stress with a specific inhibitor of trehalase resulted in higher internal
trehalose accumulation and recapitulated a number of paspalum phenotypes including reduced decreases
in biomass accumulation in response to N-deficit stress, and increased allocation of biomass to shoots
under N-deficit stress (Figure 4; Figure S9).

Imposing equivalent stress treatment protocols across species presents numerous challenges. One
potential concern with the initial finding that paspalum is less phenotypically plastic in response to nutrient-
deficient treatment than maize is that the slower baseline accumulation of biomass in paspalum may
deplete the modest reserves of nitrate and phosphate in soil more slowly than they would be used by maize.
Here comparison of paspalum to sorghum may be more informative than comparison of paspalum to maize.
Under nutrient replete conditions, individual paspalum ramets accumulated approximately equivalent
amounts of biomass to sorghum seedlings, while sorghum exhibited greater phenotypic plasticity in
response to nutrient deficit stress. In addition, several lines of evidence indicate that the three species
experienced nutrient deficit stress in response to the nutrient deficient treatment protocols employed in
this study: the depletion of the nitrate storage compound allantoin under the N-deficit conditions as well
as other metabolic changes (Figure 3 A & B); transcriptional evidence of increased starch biosynthesis in
paspalum shoots (Figure 2 H); and significant declines in the abundance of N and P in the above-ground
tissue all three species when grown under N- and P-deficient conditions (Figure 2 E & G).

In many flowering plant species, the abundance of trehalose is quite low3?. In Arabidopsis thaliana,
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trehalose accumulation was observed under high and low temperature stress®>8*, high light intensity®>,
high cadmium levels®® and dehydration®”, but no increase was observed under N-deficient conditions®? 38,
A non-targeted metabolic profiling of six legume plants in the Lofus genus under drought conditions
revealed a significant increase in trehalose abundance across all species tested®®. In maize, external
trehalose treatment enhanced antioxidant activities under high salinity and P-deficient conditions, thus
achieving better seedling growth””. Genetically modified rice plants that over-expressed a fusion gene
encoding both Escherichia coli Trehalose-6-phosphate synthase and Trehalose-6-phosphate phosphatase,
which are responsible for trehalose biosynthesis, exhibited 200-fold greater accumulation of trehalose
and significantly higher tolerance to drought, salinity, and cold stress”!'. Associations between trehalose
and nutrient-deficit stress appear to have been largely uninvestigated, although one study found that the
exogenous application of trehalose to Nicotianan benthamiana leaves partially rescued the N-deficiency
phenotypes under N-limited conditions®>. The transgenic expression of trehalose-6-phosphate phosphatase
in developing maize ears was associated with increased yield under control and drought stressed condi-
tions>” 7!, By contrast, the increased accumulation of trehalose in response to nutrient-deficit stresses in
wild-type plants is, to our knowledge, specific to paspalum. Given the environment that paspalum has
adapted to during evolution, paspalum has an extraordinary ability to tolerate high-salinity stress!®2%3.
Trehalose accumulation in paspalum might also act to ameliorate osmotic stress caused by a larger amount
of salt uptake from the soil driven by a higher transpiration when nutrient deficient plants seek to increase
nutrient uptake.

Trehalose has been recognized as an autophagy activator in animals and plants’®. Autophagy
plays pivotal roles in proteome remodeling, lipid turnover® 7, nitrogen remobilization®’~'%°  nitrogen
use efficiency'?!, and abiotic stress responses in a variety of plant species (as reviewed previously!'%?).
In the resurrection plant Tripogon loliiformis, trehalose abundance correlated with an increase in ATGS8
lipidation and the number of autophagosomes’®. Here, we pharmaceutically inhibited trehalase activity
with ValA to increase treahalose abundance in maize and observed increases in both ATGS8 protein
abundance and lipidation in both 3-week-old and 1-week-old maize seedlings (Figure 5 E & F). The effect
of ValA treatment on biomass accumulation in maize was autophagy dependent as inhibiting autophagy
via treatment with 3-MA restored the wild-type phenotype of ValA treated plants (Figure 5 H). In addition,
we observed upregulation of both ammonium and nitrate transporter expression in the seedlings treated
with validamycin A under both Full and -N conditions (Figure 5 D) suggesting that validamycin A treated
seedlings may performed better not only as a result of nitrogen recycling and remobilization, but could
also exhibit increased nitrogen uptake due to the upregulated transporter activities in roots. However, the
reversion of validamycin A treated seedlings to wild type levels of biomass accumulation with treated
with an autophagy inhibitor suggests that the role of increased nitrogen uptake, if any, is likely also
autophagy dependent. The triggering of trehalose accumulation in response to nutrient deficit is specific to
paspalum (Figure 3 A-D). However, caution should be taken in interpreting these results as multiple genes
encoding enzymes in the trehalose biosynthetic pathway were also reported to be associated with changes
in autophagy activity in different systems®® 103, Trehalase activity was initially observed in tissue cultures
generated from a range of plant species more than three decades ago'?*. Inhibiting trehalase activity with
ValA can control wheat Fusarium head blight (FHB) and inhibit Deoxynivalenol (DON) contamination'%>,
Over-expression of OsTRE] in rice was associated with improved salt tolerance!%® and over-expression
of AfTREI in Arabidopsis was associated with improved drought tolerance'?’. However, these known
phenotypic consequences of alterations in trehalase activities would not necessarily predict an association
between inhibition of trehalase activity and decreased plasticity in response to nutrient deficiency stress,
as was observed here.

The maize experiments described in this paper would not have been conducted in the absence of the
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observation that paspalum accumulates trehalose in response to nutrient deficient treatments. However,
at the same time it must be noted that the work linking trehalose accumulation to increased biomass
accumulation via an autophagy dependent mechanism was conducted entirely in maize. Hence, while
the maize data certainly suggests that an increase in autophagy induced by the increased accumulation
of trehalose in paspalum observed under nutrient deficient conditions is also responsible for the low
degree of phenotypic plasticity paspalum exhibits in response to nutrient deficit stress, strong tests of this
model would require experimentation which is not yet practical, such as the transgenic overexpression of
trehalase in paspalum. In any case, these results suggest that the manipulation of trehalose accumulation
in maize and sorghum, as well as potentially on other domesticated grasses, whether chemically or via the
modification of the expression of the endogenous trehalase enzyme, may increase agricultural productivity
per unit of nitrate and phosphate fertilizer applied. Finally, the observation of autophagy dependent
increases in biomass accumulation in even maize plants grown under nutrient-replete conditions suggests
that current maize lines may exhibit a suboptimal level of autophagy in roots. However, again, caution
should be taken in interpreting these results as, while increases in biomass accumulation were observed
not only in seedlings but in late stage vegetative plants (Figure 4E), all data presented in this study
were generated in controlled environmental conditions and changes in regulation or metabolism that are
beneficial in the greenhouse may or may not generalize to the field.

Materials and methods

Determination of DNA content via flow cytometry and genome size estimation

One leaf per plant of paspalum (PI 509022) and sorghum (BTx623) were harvested and kept on ice until
processing. A CyStain Propidium lodide Absolute P kit (Sysmex, Milton Keynes, United Kingdom)
was used to extract and stain the nuclei from a 1 cm? piece of leaf tissue following the manufacturer’s
instructions. To reduce the amount of cellular debris in the extracts, samples were passed through a 30 um
filter (CellTrics®-Sysmex Partec, Goerlitz, Germany) and centrifuged at 600xg before final staining.
Sorghum was used as an internal standard to reduce the staining variability between samples. The stained
samples were then analyzed on a CytoFLEX flow cytometer (Beckman Coulter, Brea, CA, USA) following
a two-hour incubation at 4 °C. The propidium iodide was excited with a yellow-green 561 nm laser and
detected with a 585/42 emission filter. The genome size was calculated for a total of six samples. The
2C genome size for BTx623 is 1.67 pg DNA!%; therefore the formula to calculate the DNA content of
paspalum was (median fluorescencesample nuclei /median fluorescencegandard nuclei) X 1.67 pg. The mean
and standard error of these six samples were calculated, and the mean was converted to a 1C genome size
using the conversion factor 1 pg = 980 Mbp.

Paspalum genome assembly and annotation

The paspalum genome assembly was generated using an error-corrected 74.3x coverage of PacBio reads
with an average read length of 9,523 bp. The reads were assembled using MECAT!'?? and polished using
QUIVER!'!?. Comparisons with the genome of Panicum hallii var. HAL2 (v2) and two paspalum F,
genetic maps (see Supplemental Methods for map generation) were used to identify and split 15 misjoins
in the initial assembly. The resulting scaffolds were ordered and orientated using the two paspalum
genetic maps. A total of 357 scaffolds were assembled into 10 pseudomolecules representing 75% of
the overall assembled genome. A set of six F{ maps (total of 8,861 markers)’? were used to refine the
order/orientation of the contigs. The final numbering and orientation were verified using S. bicolor cDNAs
obtained from Phytozome (https://phytozome-next.jgi.doe.gov/). Heterozygous SNP/InDel phasing errors
were corrected using both 74.3X raw PacBio data and 78X Illumina data (San Diego, CA, USA) (2x150 bp
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reads, 400 bp target insert size). A detailed genome assembly methods and assembly integrity assessment
is provided in Supplementary Note 1.

The v3.0 paspalum genome assembly was annotated using a combination of an alignment of assembled
transcripts from paspalum and protein sequences from other plant species. Prior to its annotation, the
genome assembly was first repeat-masked using both known repeats from RepBase and de novo identified
repetitive sequences from RepeatModeler''!- 112, Transcript assemblies were generated via a two-stage
assembly process utilizing PERTRAN followed by PASA!'!3. A total of 112,258 RNAseq transcript
assemblies were generated from approximately 1.6 billion 2x150 bp strand-specific Illumina sequencing
reads. Protein sequences from Arabidopsis, soybean, sorghum, Kitaake rice (Oryza sativa Kitaake),
green foxtail (Setaria viridis), grape (Vitis vinifera), and the Swiss-Prot proteomes were aligned to the
repeat-masked genome using EXONERATE'!*. Independent sets of gene models were predicted using
FGENESH+, FGENESH_EST, EXONERATE and AUGUST as implemented in BRAKERI, and the
in-house PASA assembly open reading frames (ORFs; in-house homology constrained ORF finder) tool
from JGI''*-16_ For each locus, the prediction with the best score based on the expressed sequence
tag (EST) and protein support and a lack of overlap with repeats was selected. The best prediction for
each locus was further improved using PASA to add untranslated regions, correct splice sites, and add
alternative transcripts. Improved transcripts were assessed based on both the C-score (ratio of the BLASTP
alignment score to the mutual best hit BLASTP alignment score) and protein coverage. Transcripts were
retained if any one of three criteria were met: 1) Transcripts where the C-score and protein coverage score
were each > 0.5 and less than 20% of the transcript overlapped with sequence annotated as repetitive.
2) Transcripts supported by EST coverage and less than 20% of the transcript overlapped with sequence
annotated as repetitive. 3) Transcripts with a Cscore > 0.9 and a protein coverage score > (.7, regardless
of the proportion of overlap with annotated repeat sequences. Sequences that satisfied one or more of
the above three criteria and where more than 30% of predicted protein sequence was covered by Pfam
domains annotated as belonging to transposable elements were also removed. Short single exon (predicted
coding sequence <300 bp) genes without protein domain support and expression data, incomplete gene
models and those with low homology support (sum of Cscore and coverage <1.5 for complete, <1.8 for
incomplete) and without full transcriptome support (CDS and intron coverage supported by any transcript
assemblies) were removed. Gene models that passed all the criteria described above were included in the
gene model annotations for paspalum. The GO terms assignment was based on the InterProScan results'!”.

Plant materials and growth conditions

The maize (Zea mays ssp. mays), sorghum (Sorghum bicolor), and seashore paspalum (Paspalum
vaginatum) genotypes used to create the reference genomes for each species were: accessions B73,
BTx623, and PI 509022, respectively!!® 11, Maize and sorghum seeds were surface sterilized in 2%
bleach for 40 minutes, rinsed, and imbibed overnight in deionized distilled water (ddiH,0O). The seeds
were sown in a mixture of 20% MitroMix200, 30% sterilized sand and 50% fine vermiculite(v/v) and
grown under greenhouse conditions (temperature: 22-29°C with a 14-h light: 10-h dark photoperiod). The
heterozygous reference clone PI 509022 was obtained from the USDA National Plant Germplasm Service
and propagated via rhizome cuttings using the same growth medium and conditions used for sorghum and
maize. All plants were watered with sterilized ddiH,O until three days after emergence (usually 4-5 days
after planting). For each trial, three days after emergence, the seedlings were divided evenly into three
trial groups. The first group received Hoagland nutrient solution (Supplementary Note 8) and ddiH,0 on
alternating days. The second group received Hoagland nutrient solution in which the potassium nitrate
and calcium nitrate were substituted with potassium sulfate and calcium chloride, respectively, to remove
nitrate. The third group received Hoagland nutrient solution in which the monopotassium phosphate was
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substituted with potassium sulfate to remove phosphate. The nutrient treatments continued every other day
until harvest. For the ValA treatment assay, plants grown under nutrient-optimal or N-deficit conditions
were treated with 30 uM ValA dissolved in nutrient solutions beginning at 7 days after planting; the plants
were treated at 6 PM every other day.

Plant phenotyping and root sampling

On the date of harvest and phenotyping, the plants were taken to a dark room illuminated solely by green
light, separated from the potting media and cleaned in a two stage process. The roots were washed in a
0.05% bleach solution and then were rinsed with warm running water and dried with paper towels. The
root samples used for RNA extraction and metabolite analyses were flash frozen in liquid nitrogen. The
roots were scanned using an EPSON scanner (Perfection V550, setting at 120 dpi; Epson, Suwa, Japan)
with a green film covering the scanning surface to avoid exposing the roots to non-green light. Fresh
biomass measurements were taken for the whole seedlings, after which they were divided into shoot and
root fractions and weighted separately. Dry weight measurements of shoots and roots were taken after 48
h of freeze-drying. For paspalum, the weight of the original rhizome cutting was subtracted from the final
whole-plant fresh biomass to estimate biomass accumulation.

Species phylogeny construction

A set of 7,728 single-copy syntenic orthologs from the Zea mays, Sorghum bicolor, Setaria italica,Oropetium
thomaeum, Brachypodium distachyon and, Oryza sativa genomes was extracted from the syntenic gene
sets identified among the seven species. Of the 7,728 orthologs with primary transcript CDSs longer than
500 bp, 6,151 were aligned using the codon-based aligner ParaAT'??. Subsequently, the 6,151 multiple
sequence alignments, each consisting of one gene each from each of the seven species were trimmed to re-
move poorly aligned or highly divergent regions using Gblocks(v0.91b)'?! with the following parameters:
minimum number of sequences for a conserved position set at 5; minimum number of sequences for a
flank position set at 6; maximum number of contiguous nonconserved positions set at 8; and minimum
length of a block set at 10. The resulting nucleotide alignments were used to construct phylogenies using
RAXML(v8.2) with the parameters ’-f a -N 1000 -m GTRGAMMA -x 1234 -p 1234’ and a clade containing
rice and Brachypodium as an outgroup'??. In 292 cases, it was not possible to form a monophyletic clade
containing rice and Brachypodium. The remaining 5,859 trees were analyzed using Densitree to generate
a consensus tree'>3. IQ-TREE was used to construct maximum likelihood phylogeny estimate branch
lengths using a super gene concatenated from the trimmed nucleotide sequence alignments of the 5,859
single copy syntenic genes used for consensus tree analysis!'?*. Divergence time estimates were then
performed using these branch lengths, a previously estimated divergence date for B. distachyon and O.

sativa of 54 Myr ago'? and an estimated divergence date for Z. mays and S. bicolor of 12 Myr ago'?6 as a
reference with r8s software

127

Syntenic and substitution rate analysis

Syntenic orthologous gene pairs were identified between the sorghum and paspalum genomes using
sequence similarity data from LAST'?® and a Python implementation of MCScan, JCVI'?% 130 This
analysis was run using the command ’python -m jcvi.compara.catalog ortholog paspalum sorghum —
no_strip_names’. The LAST results were filtered using a Cscore setting of > -0.7. Raw synteny gene
pairs were polished using a previously described approach>”. Sorghum-paspalum orthologous gene pairs
were merged into a published sorghum referenced synteny list>" for maize (B73_RefGen_V4)''8, sorghum
v3.1119 foxtail millet v2.234, Oropetium v2.0, rice v7131 and Brachypodium v3.1 132 The final synteny
list and the scripts used to generate it are hosted at https://github.com/gsun2unl/PaspalumNutrientStress.
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Codon-level multiple sequence alignments of syntenic orthologous gene groups were generated with
ParaAT2.0'?°. Synonymous nucleotide substitution rates (Ks), and non-synonymous nucleotide substi-
tution rates (Ka) were estimated from these multiple sequence alignments using the ‘codeml’ package
implemented in PAML!33. The estimation was conducted using the maximum-likelihood method and
the parameters runmode=0, Codon-Freq=2, model=1. The known phylogenetic relationships of the six
included species were used as a known input tree. Syntenic orthologous groups containing any genes with
a Ks greater than 2, a Ka greater than 0.5, and a Ka/Ks ratio greater than 2 were removed.

Gas chromatography—-mass spectrometry (GC-MS) metabolite profiling

Root samples from maize, sorghum, and paspalum seedlings grown as described above were collected
in a dark room illuminated solely by a green bulb and ground into a fine powder in liquid nitrogen.
Approximately 50 + 0.5 mg of the ground powder was used for metabolite extraction and derivatization as
described previously'3* 133 A 1 uL sample of the derivatized material was analyzed in splitless mode
using a 7200 GC-QTOF system (Agilent Technologies, Santa Clara, CA, USA). A solution of fatty acid
methyl esters (C8 to C30) was added to each sample during derivatization to determine the retention
index. The raw data were acquired using MassHunter Workstation v.08 (Agilent Technologies), while peak
detection, deconvolution and identification were performed using MassHunter Unknown Analysis software
(Agilent Technologies) using the Fiehn GC/MS Metabolomics RTL Library (Agilent Technologies) as a
reference. Peak areas of the identified metabolites were computed using MassHunter Quantitative Analysis
software (Agilent Technologies). Peak area was normalized by the precise sample fresh weight and the
peak area of the ribitol added to each samples as an internal standard to calculate the relative levels of
metabolites.

Genetic map construction for genome assembly validation

Nine genetic maps generated from two populations were employed to order, and orient the scaffolds into
pseudomolecules, and to validate the assembly. The first population employed was an F; population
of 184 individuals derived from a cross between paspalum accessions PI 509022 and HI33, previously
described in Qi e al.>*. The second population was generated by crossing two F1 sibs from the PI 509022
x HI33 population. Only 52 progeny of this cross were validated and ultimately used for map construction.
Genotyping-by-sequencing (GBS), single nucleotide polymorphism (SNP) calling, and mapping of the F1
population were previously described’’. Essentially the same protocols were used for marker development
and genetic mapping in the F2 population, except that the restriction enzymes Pst/ and Mspl were used
for GBS library preparation. SNPs in the F1 population were called from GBS reads both independently
of the genome assembly and by alignment to an early draft of the paspalum genome assembly. SNPs in
the F2 population were called from GBS reads aligned to seashore paspalum assembly v2.0. Because the
mapping software MAPMAKER '3 does not have an algorithm to deal with outcrossing species, the three
sets of SNPs were further split into HA sets (comprising markers heterozygous in the female parent and
homozygous in the male parent), AH sets (homozygous in the female parent and heterozygous in the male
parent) and HH sets (heterozygous in both parents), leading to a total of six F1 datasets*° and three F2
datasets (Supplementary Note 2). For the F2 population, information from the grandparents was used to
rescore the progeny using the rules listed in Table S2 to ensure that all markers were in the same linkage
phase.

To assist with scaffold ordering and assessment of the quality of the assembly, 500 bp on either side
of mapped SNP markers were excised from the assembly used for GBS read alignment and mapped to
consecutive improved versions of the assembly using BLASTN. The sequences and location of the mapped
F1 and F2 markers on the seashore paspalum version 3.0 assembly reported here as determined by the
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top BLASTN hit are provided in Supplementary Note 2. Discrepancies between marker orders in any
two of the nine maps and the order and orientation of scaffolds in the pseudomolecules triggered manual
examination and in some cases error correction

Gene family analysis in various crop species

Protein sequences of the primary transcripts for seven species were retrieved from Phytozome: Zea mays,
Sorghum bicolor, Setaria italica, Paspalum vaginatum, Oropetium thomeaum, Brachypodium distachyon,
and Oryza sativa'®’. These sequences were used as inputs for orthoFinder'?% 3% to generate clusters
of genes representing gene families. Family expansion and contraction were determined with CAFES
using default settings'“?. Significantly expanded gene families in paspalum were defined as those with
significantly different lambda value (p <0.05) that showed increases in gene copy numbers in the lineage
leading to paspalum as estimated by CAFES5'40,

RNA isolation, sequencing, and quantification

Root samples were homogenized by grinding to a fine powder in liquid nitrogen. Approximately 50 mg of
homogenized root tissue per sample was mixed with 1 mL of TRIzol reagents by robust vortexing and,
incubated at room temperature (25°C) for 10 minutes. The samples were mixed with 200 uL. chloroform
and incubated for 15 minutes at room temperature until a clear separation of three layers was observed. The
tubes containing the mixtures were centrifuged at 12,000 rpm for 15 minutes to achieve phase separation.
The top layer was transferred to a new set of tubes containing 400 puL isopropanol and incubated on ice for
at least 30 minutes. RNA precipitation was achieved by centrifugation at 12,000 rpm for 15 minutes at
4°C. Following the removal of the supernatants, the precipitates were washed with 75 % ethanol three
times before being dissolved in 40 uL of 65°C DEPC treated water.

The quality of individual RNA samples was assessed using an Agilent 2100 Bioanalyzer. Samples
with RNA Integrity Number (RIN) values >5 were used to isolate mRNA and construct RNA sequencing
libraries using a TrueSeq v2 kit from Illumina'4'. Paired-end sequence data (2x75 bp) were generated
using an Illumina NextSeq 500 platform. The overall quality of the RNAseq reads was assessed using
FASTQC'#? (Figure S4A). Demultiplexed reads were filtered and quality trimmed using Trimmomatic
(v0.33) with the parameters "-phred33 LEADING:3 TRAILING:3 slidingwindow:4:15 MINLEN:36
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10".!%3. Trimmed reads were mapped to the reference genomes of
their respective species using STAR/2.7'%* with two rounds of mapping; the first round of mapping was run
with the parameters "—alignIntronMin 20 —alignIntronMax 20000 —outSAMtype None —outSJfilterReads
Unique —outSJfilterCountUniqueMin 10 3 3 3 —outSJfilterCountTotalMin 10 3 3 3" and the second
round of mapping was run after a new genome index was built based on the known and novel splicing
sites recognized by the first round of mapping with parameters "—alignlntronMin 20 —alignIntronMax
20000 —limitBAMsortRAM 5000000000 —outSAMstrandField intronMotif —alignSJoverhangMin 20
—outSAMtype BAM SortedByCoordinate". Maize reads were mapped to B73_RefGen_V4!'8. Sorghum
reads were mapped to v3.1 of the BTx623 reference genome downloaded from Phytozome!'®. Paspalum
reads were mapped to the paspalum genome assembly described and released as a part of this paper. A
Transcripts Per Million (TPM) table was generated using Kallisto!*. Syntenic orthologous genes across
paspalum, maize and sorghum with a mean TPM value higher than 50 were log transformed prior to
principal component analysis (Figure S4B). For each individual sequencing library, the read counts were
determined using the software package HTSeq (version 0.9) with the parameter settings "-r pos -s no -t
exon -i gene_id", the overlap mode used was the default ("union")!®. Statistically significant DEGs were
identified from the read count matrix generated by HTSeq using DESeq2 (v1.22.2)!'#’(Figure S4B). Genes
were considered to be significantly differentially expressed when an absolute log; fold change >1 and an
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adjusted p value lower than 0.05 were both observed. Total RNA of paspalum shoot was extracted using
the same method and sequenced using the same library preparation protocol and sequencing platform as
other samples described in this study, only genes with TPM higher than 5 and syntenically conserved were
examined. Statistical significance of expression level changes was calculated by DESeq2!4.

MDC staining of samples and confocal microscopy

Microscopy visualization of autophagosomes by Monodansylcadaverine (MDC) staining was performed
as described by Contento et al. (2005)!*8. Root tissues from maize seedlings one week after germination
were gently rinsed with sterilized ddiH,O and submerged in 40 uM MDC solution for 30 minutes in the
dark. Confocal microscopy imaging was performed with a Nikon A1 laser scanning confocal mounted on
a Nikon 90i compound microscope (software version: NIS Elements 4.13). Excitation/emission for MDC
detection was set to 488 nm/505-550 nm. Aperture and light source intensity were kept the same for all
images taken. MDC stained autophagosomes from ten different cells in root tips were counted. Three
biological samples were examined.

Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis of the DEGs was performed using GOATOOLS'*’. To ensure
consistency in cross species comparisons, the same population of syntenically conserved genes in maize,
sorghum, and paspalum was used as the population set for enrichment analysis in each species. Similarly,
to avoid bias introduced by the use of different GO term annotation pipelines, the same set of GO terms
was assigned to each syntenic ortholog in each of the three species. These annotations were taken from
the GO terms assigned to the maize copy of each conserved syntenic gene group by Maize-GAMER ",
As the whole genome duplication in maize introduced bias into the background gene set (genes retained as
duplicate homeologous gene pairs are enriched in the annotations transcription factor, "responds to X"
and protein complex subunit) only a single copy from maizel subgenome of each maize gene pair was
retained for both the background population set and the DEG defined set.

Immunoblot detection of free ATG8 and ATG8-PE conjugate

ATG8 and ATGS-PE conjugate were detected as previously described with slight modifications!>!. Maize
seedlings were grown under full-nutrient or N-deficient conditions for three weeks with or without the 30
uM validamycin A treatment described above. Root tissues were collected in a dark room solely illuminated
by green light and ground to a fine powder in liquid nitrogen. The ground root tissues were homogenized
in lysis buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride, 10 mM
iodoacetamide, and 1 X complete protease inhibitor cocktail [Sigma Aldrich, St. Louis, MO, USA)]) and
centrifuged at 2000 Xg, 4°C for 5 min. The extracted protein samples were quantified using a Bradford
assay, and 25 pg protein was loaded onto a 15% SDS-PAGE (polyacrylamide gel electrophoresis) gel
containing 6 M urea. Immunoblotting was performed with affinity-purified anti-At ATGS8 antibodies
(1:1000 dilution)(Agrisera, Vinnds, Sweden; AS14 2769). The ATGS8-PE (lipidation) band was confirmed
by incubating protein samples at 37°C for 1 hour with Streptomyces chromofuscus phospholipase D
(Thermo Fisher Scientific, Waltham, MA, USA; 525200-250U; 250 units mL! final concentration) as
previously described’8.

Data availability statement

The genome sequence and annotation is accessible via Phytozome v13: https://phytozome-next.jgi.doe.gov/info/Pvagin:

RNAseq data for root tissues of paspalum, maize and sorghum under three nutrient conditions are avail-
able at NCBI under the BioProject: PRINA746310. RNAseq data for root tissues of maize seedlings
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under three nutrient conditions with or without validamycin A treatment are available at NCBI under the
BioProject: PRINA746310. RNAseq data for paspalum shoots/rhizome is available at NCBI with SRA
id SRR10230104; SRR10230108; SRR10230122; SRR10230130. RNAseq data of maize wild type and
atg12 mutant is available at NCBI with Accession ID: PRINA449498. Illumina sequence of papspalum
genome is available at NCBI with Accession ID: PRINA234783. All of the scripts and raw data used for
figures can be accessed at github: https://github.com/gsun2unl/PaspalumGenome
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Table S1. Final summary assembly statistics for chromosome scale assembly

Scaffold total 1903

Contig total 2212

Scaffold sequence total 651.0 Mb

Contig sequence total 648.0 Mb (0.5% gap)
Scaffold L/N50 7144.5 Mb

Contig L/N50 111/ 1.5 Mb

Number of scaffolds >50 Kb 1112

% main genome in scaffolds >50 Kb | 95.5 %
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Table S2. Rescoring of progeny based on allele information from grandparents

Grandparent 1 Grandparent 2 Parents Rule (to be applied to the F2 progeny)  Marker suffix

A H AH or HA  Keep original scores -

H A AH or HA Change ‘A’ to ‘H’, and ‘H’ to ‘A’ R
Duplicate marker; keep original scores
in one copy (marker suffix ‘u’), change

H H AH or HA ‘A to ‘H’pa}llnd ‘H’ to ‘A’ in second coiy u/ur
(marker suffix ‘ur’)

A B HH Keep original scores -

A H HH Keep original scores -

H B HH Keep original scores -

B A HH Change ‘A’ to ‘B’, and ‘B’ to ‘A’ r

H A HH Change ‘A’ to ‘B’, and ‘B’ to ‘A’ r

B H HH Change ‘A’ to ‘B’, and ‘B’ to ‘A’ r
Duplicate marker; keep original scores

H 0 HH in one copy (marker suffix ‘u’), change u/uD

‘H’ to *-’ and both ‘A’ and ‘B’ to ‘H’ in
second copy (marker suffix ‘uD’)
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Figure S1. Estimating the genome size of the paspalum accession employed for genome sequencing. (A) Estimation of
genome size using flow cytometry. The x axis indicates yellow fluorescence intensity, which is linearly correlated with the
genome size. Sorghum bicolor BTX623 nuclei (So 2N) were used as an internal control. (B) Statistics of the flow cytometry
results for one representative sample. Based on the median yellow fluorescence intensity, the ratio of genome size of Paspalum
vaginatum (Pa) to Sorghum bicolor(So) is 285848:396332. The Sorghum bicolor genome size is 818 Mbp!%®; therefore, the
estimated genome size of Paspalum vaginatum is 590 Mbp. (C) Genome wide read coverage of Illumina sequencing reads
mapped to the current paspalum genome assembly.
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Figure S2. Gene families identified among the seven grass species. (A-B) Syntenic regions conserved between the
paspalum genome and sorghum genome. (C) Length of homologs with identity >60% over the annotated length of proteins
annotated in paspalum genome when BLAST paspalum proteome against sorghum proteome (upper) and reversely, the length
of homologs with identity >60% over the annotated length of proteins annotated in sorghum genome when BLAST sorghum
proteome against paspalum proteome (lower).
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Figure S3. Gene families identified among the seven grass species. (A) DensiTree drawn from phylogenies constructed
based on selected individual single-copy sytenic orthologous gene pairs across species: paspalum (Paspalum vaginatum), maize
(Zea mays), sorghum (Sorghum bicolor), foxtail millet (Setaria italica), Oropetium (Oropetium thomaeum), Brachypodium
(Brachypodium distachyon), and rice (Oryza sativa). The consensus tree drawn in blue was supported by 4,265 (73%) of the
individual gene trees and the second most common topology drawn in purple was supported by 762 individual gene trees
(13%). (B) Comparison of shared and species-specific gene families among the five grass species. Green numbers indicate
species-specific gene families. Blue numbers indicate gene families shared by all but one of the five species compared, while
numbers in red indicate the number of gene families shared across all five species. Gene families shared by either two or three
of the five species are shown in black. Maize and rice which do not have a unique most recent common ancestor (MRCA) with
paspalum (the MRCA of maize and paspalum is the MRCA of sorghum and pasaplum, and the MRCA of rice and pasplaum is
the MRCA of Brachypodium and paspalum), were omitted to simplify visualization. (C) Distribution of copy numbers for gene
families in each of the seven species shown in panel A.
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Figure S4. Principal component analysis of biological replicates of root transcriptomes under three experimental

nutrient conditions. (A) Principal component analysis based on log transformed expression of syntenic genes in maize (Zea
mays) (B) Principal component analysis based on log transformed expression of syntenic genes in sorghum (Sorghum bicolor)
(C) Principal component analysis based on log transformed expression of syntenic genes in paspalum (Paspalum vaginatum).

Panels (A-C) Nutrient conditions are color coded. PC, principal component.
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Figure S5. Members of gene families that are transcriptionally responsive to nutrient-deficit conditions. (A) Members
of paspalum-specific expanded gene families that are transcriptionally responsive to nitrogen deficiency. (B) Members of
paspalum-specific expanded gene families that are transcriptionally responsive to phosphorus deficiency.
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Figure S6. Gene ontology (GO) analysis of differentially expressed syntenic orthologous genes across the three
species and in papspalum alone. (A) Significantly enriched GO terms (false discovery rate (FDR) < 0.05) for 220 and 37
syntenic orthologous genes that were differentially expressed in all of the three species in response to N-deficit and P-deficit

conditions, respectively. Bars indicate the log-transformed enrichment factor (number of genes associated with the

overrepresented GO terms in the study gene set over the number of genes associated with the GO term in the background gene
set) for enriched GO terms. Negative log-transformed multi-test corrected p values are color coded. (B) Significantly enriched
GO terms (false discovery rate (FDR) < 0.05) in 825 and 650 syntenic orthologous genes that were differentially expressed
only in paspalum in response to N-deficit and P-deficit conditions, respectively. Bars indicate the log-transformed enrichment
factor (number of genes associated with the overrepresented GO terms in the study gene set over the number of genes
associated with the GO term in the background gene set) for enriched GO terms. Negative log-transformed multi-test corrected

p values are color coded.
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Figure S7. Expression patterns of genes encoding trehalose-6-phosphate synthase in response to nutrient stress
across maize (Zea mays), sorghum (Sorghum bicolor), and paspalum (Paspalum vaginatum). (A) Phylogeny of orthologs
of Arabidopsis trehalose-6-phosphate synthase 1 (TPSI) genes in the three species. (B) Expression pattern of the
trehalose-6-phosphate synthase genes in the three species under nutrient-optimal (Full), nitrogen-deficit (—N), and
phosphorus-deficit (-P) conditions. "maizel" and "maize2" indicate the two subgenomes that formed in maize after the recent
whole-genome duplication event 12—16 million years ago. (C-I) Expression patterns of other syntenic genes annotated as
encoding trehalose-6-phosphate synthase that did not cluster with Arabidopsis homologs in the three species under
nutrient-optimal (Full), nitrogen-deficit (-N), and phosphorus-deficit (—P) conditions.
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Figure S8. Expression patterns of genes encoding trehalose-6-phosphate phosphatase enzymes in response to
nutrient stress across maize (Zea mays), sorghum (Sorghum bicolor), and paspalum (Paspalum vaginatum). (A)
Phylogeny of orthologs of characterized Arabidopsis trehalose-6-phosphate phosphatase (TPP) genes in the three species.
(B-C) Expression patterns of the trehalose-6-phosphate phosphatase genes (trpp6 and trpp11) that clustered with their
Arabidopsis homologous (TPPA, TPPG, TPPF) under nutrient-optimal (Full), nitrogen-deficit (—N), and phosphorus-deficit
(=P) conditions. (D-H) Expression patterns of other syntenic genes annotated as trehalose-6-phosphate phosphatase that did not
cluster with Arabidopsis homologs in the three species grown under nutrient-optimal (Full), nitrogen-deficit (—N), and
phosphorus-deficit (—P) conditions. For panels B to I, "maizel" and "maize2" indicate the two subgenomes that formed in
maize after the recent whole-genome duplication event 12—16 million years ago.
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Figure S9. ValA treatment alters biomass accumulation and nutrient reallocation to sorghum (Sorghum bicolor)
grown under nutrient-deficient conditions. (A) Representative images of sorghum seedlings grown under nutrient optimal
and N-deficit conditions with or without validamycin A (ValA) treatment. Images were taken 21 days after planting. For the
ValA treatment, a 30 uM solution was added at 6 PM on the day that the plants were watered with the indicated nutrient
solutions. (B) Changes in observed trehalose abundance — normalized to an internal reference (ribitol) — in response to
validamycin A and/or nutrient conditions in sorghum root tissues. Error bars are standard deviations. Student’s t-test (* = p
<0.05; ** = p <0.005; *** = p <0.0005). (C) Dry weight of the above-ground tissue of sorghum seedlings grown under
nutrient-optimal and nitrogen-deficit conditions harvested at 3 weeks after planting. Plant tissues were freeze-dried for 48 hours
after harvesting. (D) Shoot-to-root ratio calculated from the dry weight of above-ground tissues and roots of the same sorghum
seedlings. (E) Representative images of paspalum seedlings at 3 weeks after planting grown under nutrient optimal (Full) and
nitrogen-deficient (-N) conditions with (ValA) or without (Control) validamycin A treatment. (F) Lack of significant increases
in trehalose abundance (normalized to an internal reference [ribitol]) in response to validamycin A treatment (ValA) in
3-week-old paspalum seedlings under either full-nutrient or N-deficient conditions. (G) No significant change observed in
above ground dry weight of 3-week-old paspalum seedlings in response to validamycin A treatment (ValA) under full-nutrient
or N-deficient conditions. (H) Ratio of shoot-to-root dry weight in 3-week-old paspalum seedlings grown with or without
validamycin A under full-nutrient or N-deficient conditions.
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Figure S10. Validamycin A treatment improves important agronomic traits in adult maize plants. (A-B) Images of
whole plants (A) and tassels (B) taken 70 days after planting. The left three plants were grown under full-nutrient conditions
and the right three were grown under full-nutrient conditions with a weekly 30 uM ValA treatment. (C-F) Flowering time (C),
mean length of tassel branches (D), flag leaf length (E) and above ground dry biomass (F) of plants with or without ValA
treatment. Student’s t-test (* = p <0.05; ** = p <0.005; *** = p <0.0005).
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Figure S11. Transcriptional responses of SNRK1 target genes to Validamycin A treatment (A) Expression level fold
changes of the genes encoding trehalose-6-phosphate synthases (TPS) and trehalose-6-phosphate phosphatases (TPP) relative
to the seedlings treated with validamycin A under Full and -N conditions. (B-E) Expression level fold changes of the ZmAKIN2
(A), ZmMDH3 (B), ZmMDHG6 (C) and ZmBZIP11 with our without validamycin A treatment under full nutrient and N-deficient
conditions. p values were calculated by DESeq?2 after correction for false discovery rate lower than 0.05. (F) Trehalose
accumulation might lead to a lower T6P level, resulting in the release of inhibition of SNRK1 activity. The active status of
SNRKI1 would promote autophagy and ZmAKIN11 expression while repressing the expression of MDH and bZIP genes. (G-H)
A biological replicate of the immunoblot measuring the abundance of both free ATG8 (upper band) and the ATG8-PE
conjugate (lower band) in root samples collected from 3-week-old maize seedlings grown under optimal nutrient (Full) and
nitrogen-deficit (-N) conditions with or without ValA treatment (G) and in root samples collected from 1-week-old maize

seedlings grown under optimal nutrient conditions with or without ValA treatment (H). Total protein loading control is shown
in the lower panel.

43/44


https://doi.org/10.1101/2021.08.18.456832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456832; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1018 Supplementary Notes attached to this submission as separate files.

1019 * Supplementary Note 1: Detailed paspalum genome assembly and annotation methods.

1020 * Supplementary Note 2: Markers used for paspalum genetic map construction.

1021 * Supplementary Note 3: Calculated Ka, Ks, and Ka/Ks ratios for each grass gene employed in this
1022 study.

1023 * Supplementary Note 4: Genes from the paspalum specific expanded gene families and GO terms
1024 enriched among these genes.

1025 * Supplementary Note 5: Raw fold change values for each metabolite plotted in Figure 3.

1026 * Supplementary Note 6: Phylogeny of TRPP homologues across arabidopsis, maize, sorghum and
1027 paspalum.

1028 * Supplementary Note 7: Phylogeny of TRPS homologues across arabidopsis, maize, sorghum and
1029 paspalum.

1030 * Supplementary Note 8: Recipes for full and modified hoagland solutions employed in this study.
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