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Biological evolution of a population is governed by the fitness landscape, which is a map from
genotype to fitness. However, a fitness landscape depends on the organisms environment, and
evolution in changing environments is still poorly understood. We study a particular model of
antibiotic resistance evolution in bacteria where the antibiotic concentration is an environmental
parameter and the fitness landscapes incorporate tradeoffs between adaptation to low and high
antibiotic concentration. With evolutionary dynamics that follow fitness gradients, the evolution
of the system under slowly changing antibiotic concentration resembles the athermal dynamics
of disordered physical systems under quasistatic external drives. Specifically, our model can be
described as a system with interacting hysteretic elements, and it exhibits effects such as hysteresis
loops and memory formation under antibiotic concentration cycling. Using methods familiar from
studies in this field, we derive a number of analytical and numerical results. Our approach provides
a general framework for studying motifs of evolutionary dynamics in biological systems in a changing
environment.

INTRODUCTION

The concept of the fitness landscape, introduced by
Sewall Wright [1], is a useful tool for the visualization
of evolutionary processes as populations that are being
driven uphill along fitness gradients by natural selection.
Mathematically, a fitness landscape is a map from the
genotypes of a species to fitness values. In recent decades,
it has become possible to empirically determine fitness
landscapes for systems comprising multiple mutations,
and a wealth of new work has illuminated various as-
pects of evolutionary dynamics on different kinds of fit-
ness landscapes [2–10]. The theory of fitness landscapes
and its application to empirical data has also seen a rise
in recent decades [11–16].

A less well-studied topic in this field is the evolution in
changing environments. Fitness landscapes are a func-
tion of environment, and can change in systematic ways
as environmental parameters change. Whereas the fitness
landscape provides information about G×G (gene-gene)
interactions, the introduction of the environmental pa-
rameter furnishes information about G × G × E (where
E stands for environment) interactions, i.e., about how
the environment modifies the gene-gene interactions [17–
20]. A few studies on microbial growth have measured or
interpolated fitnesses as a function of environmental pa-
rameters [21–23], but systematic theoretical work in this
field is still limited.

Understanding and predicting the effect of the envi-
ronment on fitness landscapes has important practical
applications. A pertinent example is the case of antibi-
otic resistance in bacteria, where it has been shown that
the fitness landscape depends strongly on the antibiotic
concentration [21, 22]. Uncontrolled variation in antibi-
otic concentration, both in clinical settings and elsewhere

[24, 25], is a cause for the rise in antibiotic resistance,
which is a major clinical challenge today. Figure 1 shows
an empirical example of the kind of processes we are in-
terested in. The fitnesses of the genotypes in the figure
were measured in [21], and based on it, one can pre-
dict transitions between genotypes under concentration
increase (black/gray arrows) or decrease (red/orange ar-
rows). Notice that this small system already exhibits
some interesting properties, such as a hysteresis loop un-
der antibiotic concentration cycling and transient geno-
types that are not part of the loop.

Our focus is primarily on one such class of problems,
where the environmental dependence of the fitness land-
scape is governed by a tradeoff between two phenotypes,
bacterial growth rate and resistance [23]. While we will
mostly use the language of antibiotic resistance evolu-
tion in the following, the theory developed is more gener-
ally applicable, as will become clear from the mathemat-
ical model. Our work uses tools from statistical physics,
specifically the physics of disordered systems. Concepts
and methods from statistical physics have been used in
the theory of evolution for a long time [26, 27]. Pre-
cise quantitative analogies with evolutionary phenomena
have been found with equilibrium statistical physics [28],
the theory of random walks [29], spin glasses [30–32], and
many more. Most of these, however, focus on static fit-
ness landscapes. Here we investigate evolution on rugged
landscapes that vary with changes in an external param-
eter. This problem is naturally reminiscent of the physics
of driven disordered systems, particularly in the athermal
quasistatic (AQS) regime [33], where thermal activation
processes are absent or negligible. The primary effect of
the external forcing is then to alter the set of stable equi-
libria or their locations. As a result, under a time-varying
external forcing such systems remain in a given equilib-
rium until it becomes unstable, and a fast relaxation pro-
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FIG. 1. State transition graph of antibiotic resistance
evolution. The nodes depict genotypes composed of four
mutations in the antibiotic resistance enzyme TEM-50 β-
lactamase. Genotypes are represented as binary strings where
a 1 denotes the presence and 0 the absence of a specific mu-
tation. The growth rates of bacteria expressing these mutant
enzymes were reported in [21] for the antibiotic piperacillin at
three different concentrations (128 µg/ml, 256 µg/ml and 512
µg/ml). Each node is a local fitness maximum at one of these
concentrations. Black and grey arrows connect nodes that
would be reached under adaptive evolution when the concen-
tration is increased, and red and orange arrows represent the
dynamics under concentration decrease. For example, 0001 is
a local maximum at 256 µg ml, but when the concentration
is switched to 512 µg/ml, it is no longer a fitness maximum.
Evolution through a greedy adaptive walk then leads to the
new maximum 1101. The graph displays a hysteresis loop
0101 → 0001 → 1101 → 1100 → 0101. The green nodes
cannot be reached under cyclic concentration changes.

cess leads to a new equilibrium. Despite the absence of
thermal activation processes, the resulting dynamics can
nevertheless be rather complex, exhibiting memory ef-
fects [34, 35] as well as dynamic phase transitions, such
as the jamming transition in granular materials [36], or
the yielding transition in amorphous solids [37].

We find that evolutionary genotypic change has close
parallels with systems such as cyclically sheared amor-
phous solids [38, 39], where a changing environmental
parameter is analogous to an external shear, and tran-
sitions to new genotypes are similar to localized plastic
events inside the solid. As was shown recently [35, 40, 41],
the AQS conditions permit a rigorous description of the
dynamics of such systems in terms of a directed state
transition graph. Since the transition graph represents
the response of the system to any possible deformation
protocol, it provides a bird’s-eye view of the possible dy-
namics [35, 42, 43]. One of the main goals of this paper
is to show that this approach leads not only to new in-
sights into evolution in changing environments, but fur-
nishes new quantitative results through the application of
analytical techniques used in the theory of driven disor-
dered systems. We find analogies with certain variations
of the Preisach model, which is an elementary model of
hysteresis [44] that was introduced in the context of mag-
netic systems, and has subsequently been generalized by
allowing the hysteresis elements, the hysterons, to inter-
act with each other in various ways [43, 45–47]. In the
following section, we describe our evolutionary model in

detail, before moving on to the analogies with disordered
systems and their applications.

MODEL

We define a genotype σ as a binary string of length L,
i.e. σi ∈ {0, 1}, where i = 1, 2, . . . , L denotes the sites
where mutations can occur, and σi = 1 indicates the
presence of a mutation. An equivalent and useful way
of thinking about σ is as a set of mutations drawn from
a total of L possible mutations. The genotype without
mutations, commonly referred to as the wild type, is then
the empty set, whereas the all-mutant is the set with all
the L mutations. We will use the notation σ both as a
string and as a set, and clarifications on the notation will
be provided wherever necessary.
Our focus is on the tradeoff induced landscapes (TIL)

model introduced in [23], which is defined through three
key properties that are motivated by empirical observa-
tions. 1) The fitness of each genotype σ is a function of
an environmental parameter x ≥ 0, and the fitness curve
has the form

fσ = rσw(x/mσ). (1)

The fitness curve thus has the same shape for differ-
ent genotypes except for a rescaling of the axes by the
genotype-specific parameters rσ and mσ. We call rσ
the null-fitness and mσ the resistance of a genotype σ,
following terminology used for bacterial dose-response
curves that represent the population growth rate as a
function of drug concentration [23, 48, 49]. We choose
units such that for the wild type σ = 0, r0 = 1 and
m0 = 1, so that f0(x) = w(x). Further, w(x) is a
monotonic decreasing function, reflecting the decreasing
fitness of a bacterial cell with increasing drug concen-
tration. 2) Every mutation comes with two parameters
ri and mi, and for any genotype, rσ = exp[

∑
i σi ln ri]

and mσ = exp[
∑

i σi lnmi]. Thus, the effects of individ-
ual mutations combine in a simple multiplicative man-
ner. 3) We assume that mutations exhibit tradeoff be-
tween adaptation to low and high drug concentrations,
i.e. ri < 1 and mi > 1. This means that every muta-
tion enhances the resistance, but this comes at the cost
of reduced null-fitness. The fitness curves of a specific
realization of the TIL model with L = 2 mutations are
shown in Fig 2(a).
The problem of analyzing this model has two compo-

nents. First, one needs to understand the topography of
the fitness landscape, e.g., the set of local fitness max-
ima and the paths that lead to the maxima, for a fixed
x. The second part involves questions about evolution-
ary dynamics between maxima under changing drug con-
centrations. Specifically, we address scenarios where x
changes quasistatically, in the sense that, at every value
of x, evolution reaches a local fitness maximum. The first
part has been addressed in detail in [23], and we describe
some of the salient features of landscape topography here.
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The landscape of the TIL model is highly rugged (except
at very low and very high x), i.e. the number of fitness
maxima is asymptotically exponential in L [23]. To de-
scribe evolutionary dynamics at fixed x, it is useful to
introduce the notion of a fitness graph. The nodes of the
graph are the genotypes, and edges connect mutational
neighbors, i.e. genotypes that differ by a single mutation.
The fitness graph is an acyclic oriented graph, where the
edges point towards increasing fitness [16, 50]. Evolution
is assumed to proceed through adaptive walks, i.e. the
entire population moves along the edges of the fitness
graph respecting their orientation [30, 51, 52]. Along
the path taken by an adaptive walk the fitness increases
monotonically, and such paths are called (evolutionarily)
accessible [2, 11, 53]. The adaptive walk terminates once
a local fitness maximum is reached. In general, there are
multiple accessible paths starting from a genotype. We
define a greedy walk as an adaptive walk at which every
step is maximally fitness increasing. It should be clear
that the fitness graph is a function of x, and a fitness
maximum for a certain value of x may not be a fitness
maximum for another (see Fig. 2(b) for an example).
We also make use of the notion of mutationally directed
(or simply directed) paths, which are paths in the fitness
graph along which the number of mutations increases or
decreases monotonically. The following interesting prop-
erty about the TIL landscapes at fixed x was established
in [23]. It is worth discussing, since we will use it to prove
certain results in the following sections.
Directed Path Accessibility: Every (mutationally) di-
rected path ending at a local fitness maximum is accessi-
ble.
In other words, every local maximum σ is evolutionar-
ily accessible from the subsets (respectively supersets)
of σ by a sequential gain (resp. loss) of mutations; the
mutations may be gained (or lost) in any order. This
property has remarkable consequences. For example, the
wild type is a subset of every genotype, and therefore can
access every fitness maximum through all directed paths.
Whenever the wild type is a fitness maximum, it must be
the only fitness maximum in the landscape, since it can
be accessed from all genotypes. The same two properties
also hold for the all-mutant. With this background, we
move on to the main focus of this article, which is evo-
lutionary dynamics under slow changes in x. It is here
that the relation with the Preisach model will become
apparent.

RESULTS

Stable states

We consider an evolutionary dynamic where the pa-
rameter x changes quasistatically, i.e. slowly enough
that at any x the system always reaches a local max-
imum through an adaptive walk. We call a genotype
a stable state if it is a local fitness maximum at some

concentration x. As x changes, the fitness graph is al-
tered by flipping the direction of one edge every time
the fitness curves of two mutational neighbors intersect
(see Fig 2(a) and (b)). A stable genotype σ loses sta-
bility once its fitness curve intersects that of a neigh-
bor, and the system transitions to a new stable state
by moving along the oriented edges of the new fitness
graph. Given a state σ, we define the two disjoint sets
I+[σ] = {i : σi = 1}, I−[σ] = {j : σj = 0}. For
i ∈ I+[σ], we denote by σ

−i the configuration obtained
form σ by setting σi = 0. Likewise for j ∈ I−[σ], let
σ

+j denote the configuration obtained from σ by setting
σj = 1. Let xi be the intersection point of the dose-
response curves of the wild-type σ = 0 and the genotype
with a single mutation at site i, i.e. 0

+i. Hence, xi is
the solution of the equation

w(x) = riw(x/mi). (2)

By a suitable choice of the function w(x) this solution
can be guaranteed to be unique (see [23] and SI). It then
follows that for σ and i ∈ I−[σ], the fitness curves of σ
and σ

+i intersect at mσ xi. Likewise, for j ∈ I+[σ] the
fitness curves of σ and σ

−j intersect at mσ xj , where we
have defined xj =

xj

mj
. We now see that a necessary and

sufficient condition for a genotype σ to be a stable state
is that

max
j∈I+[σ]

xj < min
i∈I−[σ]

xi. (3)

If this holds, let the index ` (u) correspond to the site
where the maximum (minimum) on the left (right) hand
side of the inequality is attained. The stability range of
σ is then (mσx`,mσxu).

At this point, we introduce a fruitful analogy with the
standard Preisach model, which is comprised of a set of
non-interacting two-level systems referred to as hysterons
[44, 54]. The mutation variable σi ∈ {0, 1} is analogous
to the i-th hysteron, and its states 0 and 1 to the up
and down states of the hysteron. The parameter x plays
the role of an external magnetic field that drives the sys-
tem. In the Preisach model, each hysteron has an upper
(lower) threshold at which it transitions to the up (down)
states as the magnetic field reaches the threshold from the
lower (upper) direction. We define the Preisach analogue
of the TIL model as composed of L hysterons, where the
upper and lower thresholds of the i-th hysteron are xi

and xi respectively. Note that since mi > 1, we have
xi < xi. There is hysteresis since the transition from the
down to the up state occurs at a higher value of the field
than the transition from up to down. Referring to Eq. 3
we arrive at our first key result:
The stable states of the TIL model and its Preisach ana-
logue are identical.
However, as we will show next, there are significant dif-
ferences in the dynamical properties of the two models.
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FIG. 2. Tradeoff-induced fitness landscapes (TIL) model. (a) Fitness curves for four genotypes in a TIL model
with two sites (L = 2). The parameters are r1 = 0.8, m1 = 1.3 and r2 = 0.25, m2 = 2.5. The shape of the curve is
w(x) = 1/(1+x2), which is a Hill function, a form commonly used to model dose-response curves [48, 49]. The figure is divided
into five regions A-E, corresponding to different fitness graphs. A new fitness graph occurs when the fitness curves of two
mutational neighbors intersect. The x-values of the intersection points are marked by the letters a-d. (b) Fitness graphs in the
regions A-E. Concentration increases in the downward direction. In each fitness graph, the local fitness maxima are marked in
red. Evolution in a fitness graph follows the oriented edges until a fitness maximum is reached. The curved grey arrows follow
the evolution of the system under quasistatic increase of x starting from the stable state 00 at x = 0 until the all-mutant 11
is reached; the curved red arrows continue the trajectory as the concentration is quasistatically decreased until 00 is reached
again. The points on the x-axis at which the transitions occur are stated next to the arrows. Note that not all curved arrows
involve changes at a single site. The transition at c alters both sites in two steps, 10 → 11 → 01. (c) Transition graph for
the two-site system. The nodes are the stable states which, in this simple case, comprise all genotypes. The grey arrows are
the U transitions, i.e. the transitions under concentration increase, and the red arrows are the D transitions, i.e. transitions
under concentration decrease. The transition graph can be read off from the sequence of fitness graphs in panel (b). (d) The
transition between between states is shown schematically. Each horizontal level is a genotype, and the vertical lines denote
transitions. The black lines correspond to genotypes under U transitions (starting from 00 at x = 0), while the line traced out
by the red dots indicates the genotypes under D transitions (starting from 11 at large x). The hysteresis loop pqrs is marked
in the figure.

Dynamics and the transition graph

As mentioned before, the dynamics under quasistati-
cally changing x can be described by transitions among
stable states. We call a transition under concentration
increase a U-transition, and that under concentration
decrease a D-transition. Then the dynamics can be de-
scribed by a transition graph (see Fig 2(c) for an exam-
ple) where the nodes are the stable states, and each node

has outgoing U and D edges. While the TIL model and
its Preisach analogue share the same set of stable states,
the dynamical properties are in general different. To il-
lustrate this, in Fig 3 we show a particular realization of
the TIL model with L = 5 along with its Preisach ana-
logue. In the Preisach model, each transition comprises
of a single switching of the least stable hysteron, which
leads to a new stable state. In the TIL model, a change
at a single site need not lead to a stable state. For exam-
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FIG. 3. Transition graph of a realization of the TIL model (left) and its Preisach analogue (right) with L = 5
sites. The null-fitness and resistance parameters (ri,mi) of the 5 mutations were drawn randomly from a distribution specified
in the SI. The symbolic ordering sequence of this realization is given in Eq. 4. Each genotype is assigned an integer label,
placed within the nodes, by interpreting the genotype string as a binary code where the leftmost digit is the least significant.
The red arrows are U-transitions and grey arrows are D transitions. The yellow nodes are the genotypes that cannot be reached
starting from the wild type. When multiple outgoing arrows are present from a state, the solid ones correspond to greedy
walks, i.e maximal fitness increase at every intermediate step, whereas the dashed lines represent fitness-increasing walks but
with one or more steps that are not maximally fitness-increasing.

ple, the U-transition 15 → 27 in the TIL model in Fig 3
involves changes at the third and fifth sites.

To understand why, first notice that under concentra-
tion changes in the U direction, the first change in a
stable state σ (which must satisfy Eq. 3) is a flip 0 → 1
at the site u which has the smallest xi among sites with
σi = 0. This flip occurs at x = mσxu. The new state
σ

+u also satisfies Eq. 3 (since xu < xu) and is therefore
a stable state. However, in order for σ

+u to be a local
fitness maximum at x we must require that its lower sta-
bility threshold is less or equal to x. This threshold is
m

σ
+uxj = mσmuxj , where j ∈ I+[σ+u] and xj > xk for

all k 6= j with k ∈ I+[σ+u]. Therefore the new state is a

fitness maximum if and only if mu
xj

xu
=

xj

xu
≤ 1, in which

case the dynamics terminates at σ
+u. When the con-

dition is violated, additional secondary mutations occur
until a fitness maximum is reached. While many detailed
properties of the secondary mutations depend on system
parameters, certain features are general and in particular
do not depend on the choice of w(x). In the following we
will mention some of these.

In the Preisach model, exactly L U-transitions are re-
quired to get from the wild type to the all mutant, and
exactly L D-transitions to go from the all-mutant to the
wild type, as is seen in Fig 3. In the TIL model, due to
the existence of secondary mutations, these numbers are
generally different. The TIL model in Fig 3 requires 6
U-transitions to go from the wild type to the all-mutant,

and 6 D-transitions in the reverse direction, even though
L = 5. One important consequence of the secondary mu-
tations is that the number of mutations does not always
increase monotonically under U or decrease monotoni-
cally under D. The first secondary mutation is always of
a complementary kind to the initial mutation, where the
changes 0 → 1 and 1 → 0 are defined to be of comple-
mentary kind to each other (see SI for a proof). Further
mutations may also continue to be complementary to the
initial mutation, leading to a (temporary) decrease in the
number of mutations under U or an increase under D,
as shown in a typical trajectory for L = 20 mutations in
Fig 5(a). This seems counterintuitive, but arises from the
state-dependent pre-factor mσ in the stability thresholds
of stable states.

Moreover, when secondary mutations are present, the
state σ′ to which a transition occurs from a state σ need
not be unique, due to the possible presence of multiple
adaptive paths. In Fig 3, the state 15 can transition ei-
ther to the state 27 or the state 23 under concentration
increase. It can also be shown, using the property of di-
rect path accessibility, that secondary mutations cannot
cause a transition to a subset or superset of σ (see SI),
i.e. both the initial and the final state must contain at
least one mutation not contained in the other. Another
related consequence of the secondary mutations is that
σ may transition to the same state σ

′ under U and D-
transitions. For example, the state 5 in the TIL graph
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FIG. 4. TIL transition graph with L = 4 and no sec-
ondary mutations. The ordering sequence is of the form
given in Eq. 5. The transition graph is unique for this order-
ing sequence, and is identical to the graph for the Preisach
analogue.

in Fig 3 transitions to the state 3 under both U and D-
transitions. This also appears counterintuitive from a
biological standpoint, but it can occur when the stability
range of σ is contained in that of σ′.
To understand the transition graph of the TIL model

in a more systematic way, we adopt a strategy that has
been fruitful for the Preisach model [54]. We construct a
symbolic sequence p that specifies the total order among
all the elements of {xi}L1 , {xj}L1 . First, without loss of
generality, we order our indices i such that x1 < x2 <
· · · < xL. Next, it is useful to define the permutation
ρ of (1, 2, . . . , L) that orders the x̄i among themselves
from largest to smallest, so that x̄ρ1

> x̄ρ2
> . . . > x̄ρL

.
Since xi < xi for each i, what remains is the specification
of the ordering relation between xi and xj for j 6= i.
Given the sets {xi}L1 , {xj}L1 and the ordering prescribed
by ρ, we can describe the total ordering in terms of a
symbolic sequence p of elements ī and i by making the
correspondence ī ↔ x̄i and i ↔ xi, so that the sequence
specifies the increasing order of xi and x̄i. Since x̄i < xi

and the permutation ρ have to be respected, the sequence
has to be such that the following hold: for each i, ī is to
the left of i; the subsequence of sites without overbars
is 1, 2, . . . , L; the subsequence of sites with overbars is
ρL, ρL−1, . . . , ρ1. As an example, consider the TIL Model
in Fig 3, which has L = 5 and ρ = (43521), and the
ordering

x1 < x2 < x1 < x5 < x3 < x2 < x4 < x3 < x4 < x5.

The corresponding symbolic ordering sequence p is then

p = 1 2 1 5 3 2 4 3 4 5. (4)

Because of the Preisach-TIL correspondence, whether
a genotype/Preisach state is stable or not, and what the
least stable sites of a stable state are, can be read off
from p, since the condition in Eq. 3 is easy to check by
inspecting p. In the case of the Preisach model this im-
plies that p completely determines the transition graph
[54]. While this is not the case for the TIL model, the se-
quence p nevertheless contains considerable information
about the TIL transition graph. In particular, this rep-
resentation provides a precise condition for the existence
of secondary mutations (see SI):
Secondary mutations are absent from all transitions in
the TIL model if and only if the ordering sequence is of
the form

p = 1 1 2 2 . . . L L. (5)

In the absence of secondary mutations, the transition
graph of the TIL model becomes identical to that of its
Preisach analogue. The transition graph in this case has a
simple chain structure (see Fig 4), and the number of sta-
ble states is L+1, which is the lowest possible in a TIL (or
Preisach) model. Note that despite identical transition
graphs in this case, some dynamical differences are still
present. Each Preisach element is hysteretic, and there-
fore forward and reverse transitions between two states
do not occur at the same concentration; in the TIL model
satisfying Eq. 5, however, they occur at the same con-
centration, namely the one at which the dose-response
curves of the two genotypes intersect.

Hysteresis, reversibility and memory

The reversibility of evolution under a reversal of envi-
ronmental conditions is an important question in evolu-
tionary biology [55–57]. In the specific case of antibiotic
resistance evolution, to what extent resistance is reversed
in a drug-free environment is a question of considerable
clinical importance [58–60]. One should note that dif-
ferent notions of reversion are used here. One common
definition refers to a sudden (rather than slow) change
in environment to a new state, followed by a switch back
to the original state [58, 61, 62]. In the context of our
model, we study reversion under quasistatic environmen-
tal changes, which would appear to be most conducive for
approximately reversible behavior. The phenomenon is
naturally linked to the notion of hysteresis under a slow
and continuous change of an external field, and indeed
the Preisach model was first proposed as a simplified,
tractable model of hysteresis [44, 54].
It is clear that the TIL model, in general, also ex-

hibits hysteresis and irreversibility. The highest degree
of reversibility is exhibited by systems with chain-like
transition graphs, such as in Fig 2(c) or Fig 4, where
each transition σ → σ

′ is accompanied by the transi-
tion σ

′ → σ in the reverse direction, and there are no
states with multiple outgoing edges in either direction.
This means that under a reversal of the direction of con-
centration change, the same genotypes occur in reversed
sequence. However, the transitions σ → σ

′ and σ
′ → σ

need not occur at the same concentration. For example,
in Fig 2(d), the transition 10 → 01 occurs at the point
x = c during concentration increase, but 01 → 10 occurs
at x = b during concentration decrease. On the other
hand, for systems of the type shown in Fig 4, the forward
and reverse transitions occur at the same concentration.
However, such perfect reversibility is not typical of TIL
models. In general, TIL graphs have forward transitions
with no corresponding reverse transitions, such as the D-
transition 11 → 3 or the U-transition 15 → 27 in the TIL
graph in Fig 3. Based on the observation of the systems
described in Fig 2 and 4, we need to distinguish between
two kinds of hysteresis loops. We say that two states σ

and σ
′ form a concentration loop if one can go from σ
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FIG. 5. Average properties of greedy evolutionary trajectories along the main hysteresis loop for L = 20. The
dose-response curve is w(x) = 1/(1 + x2). The mutation parameters (ri,mi) are drawn randomly from a joint probability
density described in the SI. A total of 104 realizations were used to calculate averages. (a) Mean number of mutations in the
genotypes along the U and D boundaries, which describe the behavior under increasing (U) and decreasing (D) concentrations.
The dashed blue and green lines show a typical sample trajectory. The dashed brown line is the curve ln x

b
, where b = 〈lnm〉.

The inset shows rescaled values of the mutation number in comparison to the Preisach analogue (dashed lines). The rescaling is
done by the mean resistance level 〈m(x)〉. (b) Mean resistance level 〈m(x)〉 of the genotypes along the boundaries. The brown
dashed curve is x. The inset shows the fitness of the genotypes along the boundaries. The dashed green line is the fitness of
the wild type w(x), and the dashed blue line is the power law x−β , where β = −a

b
and a = −〈ln r〉. Angular brackets denote

averages with respect to the distribution Q({(ri,mi)}) (see main text for further details).

to σ
′ under quasistatic concentration increase and from

σ
′ to σ under concentration decrease, and there is some

range of x over which the forward and reverse trajecto-
ries do not share the same genotype. The system in Fig 2
exhibits a concentration loop, as shown by the rectangle
with corners marked by the points p, q, r, and s in Fig
2(d). We say that σ and σ

′ form a graph loop (σ,σ′) if
one can go from σ to σ

′ under U-transitions and from
σ to σ

′ under D-transitions, and if there is at least one
genotype contained in either the forward or reversed se-
quence of states that is not contained in the other. A
graph loop between two states implies a concentration
loop, but a concentration loop does not imply a graph
loop. For example, the case shown in Fig 2 has a con-
centration loop, but does not have a graph loop, as can
be readily seen in Fig 2(c). An example of a graph loop
in the TIL model is the one formed by the U transitions
from 7 to 23 and the D transitions from 23 to 7. A nec-
essary condition for the existence of graph loops in the
TIL model is the presence of secondary mutations; for
otherwise, every transition must be among mutational
neighbors, and such that the upper stability threshold
of one coincides with the lower stability threshold of the
other, causing the transitions to be reversible.

Hysteresis is also linked to the notion of memory
[34, 35]. A genotype encountered along a trajectory not
only contains information about the concentration, but
also about the history of environmental change. At the
simplest level, it may contain information about whether
one is on the U or D boundary of a loop. For exam-

ple, in the region between x = b and x = c in Fig 2(d),
the state 10 indicates that the concentration has been in-
creasing, while 01 indicates that it was decreasing. But
there is more information available than this, in general.
The subloops seen in the TIL graph in Fig 3 contain
(partial) information about extreme values of x reached
in previous rounds of concentration cycling. Thus, if the
dynamics started with the wild type at x = 0 and reached
the genotype 11 at some point, one infers that the last
transition happened by a lowering of the concentration to
below the stability threshold of 19; but we also see from
the transition graph that on some previous upward path
the concentration must have exceeded the upper stability
threshold of 15, followed by some sequence of transitions
that brought it to the lower stability threshold of 19 for
the first time since this happened.

In this context, it is important to mention the phe-
nomenon of return point memory (RPM) [40, 63] pos-
sessed by certain systems, which in our setting of adap-
tive evolution implies that genotypes at which the direc-
tion of the concentration change has been reversed can be
returned to with a subsequent reversal and hence remem-
bered. The RPM property is universally present in the
Preisach model [34, 40, 54]. In the context of state tran-
sition graphs, one talks about the loop-RPM property,
which ensures that the system cannot escape any loop
between two states σ and σ

′ without passing through
one of these states (see [40, 54] for a detailed exposition).
The RPM property implies the loop-RPM property, and
is therefore possessed by the Preisach model and can be
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checked for the Preisach graph in Fig 3.
Return-point memory is a mechanism by which a mem-

ory of local extremes of the driving parameter can be re-
tained. For example, in the TIL model and under greedy
dynamics, starting with the wild type at x = 0, and in-
creasing the concentration until state 15 is reached, any
decrease of concentration followed by a subsequent in-
crease will eventually lead again to state 15. However,
if the concentration continues to increase, so that state
23 is reached, then a concentration decrease to 19 fol-
lowed by an increase will not lead to 15 anymore. Thus
the memory of 15 as the genotype at a local extreme
event has been erased and replaced by 23. While we
have found many realizations of the TIL model that pos-
sess the loop-RPM property under greedy transitions, it
is not universally present. Additionally, the existence of
alternative fitness increasing transitions, such as the ones
shown in Fig 3 by the dashed lines, can cause a loss of this
kind of memory. To see this, consider the loop formed
by the greedy U transitions leading from state 7 to 23
and the greedy D transitions going from 23 to state 7.
On the downward trajectory from 23, it is possible to
escape the loop without going first through 7 by making
the transition 19 → 11.

Statistical properties of the main hysteresis loop

While the properties of the TIL model described so far
depend only on the ordering sequences ρ and p encoded
by the transition graph, for a more detailed study of the
concentration-dependent evolutionary dynamics the fit-
ness values of the model need to be explicitly assigned.
In the standard Preisach model, one usually considers
the thresholds to be independent random variables. Sim-
ilarly for the TIL model, we assume that ri and mi follow
a joint probability distribution with density P (r,m) and
the ordered pairs (ri,mi) for i = 1, 2, . . . L are indepen-
dently and identically distributed. Their joint probability

density is then given by Q({(ri,mi)}) =
∏L

j=1 P (rj ,mj).
Since xi and x̄i are functions of ri and mi only, the

pairs (xi, x̄i) for i = 1, 2, . . . L are independently and
identically distributed as well. Let the (marginal) cumu-
lative distribution function (CDF) of xi be Fx(xi) and
that of x̄i be Fx̄(xi), and let Px̄(z) = F ′

x̄(z) denote the
probability density function of xi. The probability that a
genotype is a fitness maximum is the probability that Eq.
3 holds. The calculation of this probability is facilitated
by the fact that I+[σ] and I−[σ] are disjoint sets. One
can show that in the limit of large L the average number
of stable states 〈Nss〉 is given by

〈Nss〉 '
√

2π

(L− 1)|G′′(z0)|
eG(z0)(L−1), (6)

where the average is taken with respect to Q({ri,mi}),
G(z) = ln(1 + Fx̄(z) − Fx(z)), and the global maximum
of this function is at z0. The mean number of states

is asymptotically exponential in L, showing the highly
rugged nature of these landscapes (see SI for the deriva-
tion of Eq. 6).

An important dynamical question is understanding the
evolutionary sequence of genotypes as the concentration
is cycled between very low and very high values. Inves-
tigating this is facilitated by considering only greedy U
and D transitions. We numerically generate trajectories
starting from the wild type at x = 0 and increasing x
quasistatically until the all-mutant is reached, and then
decreasing x quasistatically until the wild type is reached
again. We call this trajectory the main hysteresis loop,
and the upward and downward parts of it the U- and
D-boundary respectively. The mean number of muta-
tions in the genotype as a function of x on both the U
and D boundaries are shown in Fig 5(a), which clearly
shows hysteresis. The inset shows a comparison with the
Preisach model. Note that in the TIL model the range of
concentrations over which a genotype σ is a local maxi-
mum has an overall scale factor mσ. Therefore, in order
to facilitate comparison of the data for the TIL model and
its Preisach analogue, we have rescaled the concentration
axis for the former by 〈m(x)〉, the average scale factormσ

of the states σ that are stable at concentration x. From
the inset of 5(a) we see that for the Preisach model the
curve for the number of mutations on the U-boundary
is seen to be lower than the corresponding curve for the
D-boundary. This effect can be understood qualitatively
as follows. The intersection points along the U-boundary
are governed by the distribution of xi and those along the
D-boundary by the distribution of x̄i = xi/mi < xi. As
a result, the i-th mutation is acquired at a larger x along
the U-boundary compared to where it is lost on the D
boundary. More generally, for any randomly chosen pair
of mutations i and j, xj tends to be higher than x̄i since
all the mi’s are larger than 1. The consequence is that
the intersections along the U-boundary tend to occur at
larger values of x compared to the D-boundary, making
the the curve for the number of mutations along the U-
boundary lower. Essentially the same effect is visible for
the TIL model when the x values are rescaled by the
value of 〈m(x)〉 on the boundaries. When the rescaling
is not done, the U-boundary becomes higher, as seen in
the main Fig 5(a). The clue to understanding this comes
from Fig 5(b), which shows that the average resistance
level 〈m(x)〉 at given x is lower for the U-boundary. Since
the intersection points have the pre-factor mσ in the TIL
model, this effect tends to make the intersection points
along the U-boundary occur at lower values of x. For
our system, this effect is apparently strong enough to
shift the curve of the number of mutations along the U
boundary above that of the D-boundary.

Generally, the changes of resistance level and muta-
tion number have a complex mutual dependence, and
these can vary between systems depending on the dose
response curve and the parameter distribution. However,
certain asymptotic features that hold generically for sta-
ble states can be computed to leading order. For ex-
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ample, the mean number of mutations in a state that is
stable at x scales asymptotically as ' ln x

b
, where the pa-

rameter b = 〈lnm〉, and m is the resistance of an individ-
ual mutation. This is indicated by the brown dashed line
in Fig 5(a). At the same level of approximation, the mean
level of resistance satisfies the relation ln〈m(x)〉 ' lnx,
which is shown as a dashed brown line in Fig 5(b). The
inset of Fig 5(b) displays the fitness as a function of x,
which is seen to decline at a much lower rate than that of
the wild type, as a consequence of the increasing level of
resistance. Detailed derivations of these results are given
in the SI.

Secondary mutations and path irreversibility

Figure 6 shows simulation results for the mean number
of secondary mutations as a function of the number of
background mutations (i.e., the number of mutations in
the genotype from which the transition originates) along
the main hysteresis loop. The curves appear to become
largely independent of L at large L. Moreover, for large
L, the number of secondary mutations depends weakly on
the number of background mutations (unless the latter
is close to 0 or L). Overall the number of secondary
mutations is seen to be well below 1. Therefore, even for
large L, the greedy adaptive walks at fixed x are seen to
be short (provided, of course, one starts from genotypes
on the main loop that are very close to their stability
range).
As was shown above, secondary mutations are also the

source of genotypic irreversibility in the TIL model. We
now describe a measure of irreversibility, adapted from
a distance measure for evolutionary paths introduced in
[64]. Let σ be the genotype at x on the U boundary of
the main loop. Then dU (x) is defined as the minimum
of the Hamming distance between σ and the genotypes
on the D boundary (for any x). The quantity dD(x)
can be defined in an analogous way. These quantities
are plotted in Fig 7. The distance measures vanish at
very low and high concentrations, which is expected since
the wild type and all-mutant are on both the U and D
boundaries of the loop. The maximum value is reached
close to the concentration at which the estimated mean
number of mutations is L/2, as shown by the vertical
dotted lines. The maximum value of the distance reached
for L = 18 is about 1.4. The level of reversibility is
thus high, consistent with the low number of secondary
mutations, and the relatively narrow hysteresis loops seen
in Fig 5.

SUMMARY

We have investigated a class of models of bacte-
rial evolution under changing drug concentrations, and
shown that their dynamics are closely related to that
of driven disordered systems, exhibiting dynamical phe-
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nomena such as hysteresis and memory formation. We
have applied analytical tools developed within the con-
text of driven disordered systems in order to character-
ize the evolutionary dynamics. The transitions between
genotypes in a homogeneous population are found to ex-
hibit a number of generic properties which we have de-
scribed in detail. Adaptive walks are found to be short,
i.e they involve a small number of mutations, when a slow
change in the drug concentration renders a local fitness
maximum unstable. Moreover, the systems generically
exhibit hysteresis loops, i.e a lack of reversibility when
the direction of concentration change is reversed at cer-
tain points in the trajectory. However, the degree of re-
versibility is found to be rather high, which is related to
the quasistatic nature of change in concentration studied
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here. We have also obtained asymptotic scaling approx-
imations to the number of mutations, and to the fitness
and resistance level of genotypes, which are expected to
be relatively robust to modifications in the driving pro-
tocol or the precise assumptions of the model. Concep-
tually, our analysis highlights the distinction between re-
versibility on the level of genotypes and on the level of
phenotypes such as resistance or fitness.
We have shown that partial information about the

changing environment is stored in evolving genotypes,
and can be recovered from state transition graphs. Al-
though our analysis has focused on the relatively sim-
ple TIL model, we should emphasize that the memory
effects described here are generic features of disordered
systems. The analogies presented in this paper are there-
fore indicative of a much greater scope for the study of
information about the past history of a population that is
embedded in its genotype as it is evolves under changing
environmental conditions.
The approach used in this paper can be easily extended

to systems that go beyond the specific assumptions of the
model investigated here. Of particular interest is the ex-
tension to situations where the environment, and hence
the fitness landscape, changes periodically in discontin-
uous, discrete steps. An important realization of this
scenario is the cycling of different antibiotics in the treat-
ment of bacterial infections, where fitness landscape the-
ory can be used to devise treatment plans that are opti-
mized to avoid or slow down resistance evolution [65, 66].
This problem will be pursued in future work.
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SUPPLEMENTARY INFORMATION

This file includes details of the mathematical models
and computations used in the main text.

MATHEMATICAL DETAILS

We first derive a series of general results for the TIL
model which are independent of the shape of the dose-
response function w(x) as long as it satisfies the following
properties:

(W1) w(x) is a continuous, strictly decreasing function
for x ≥ 0.

(W2) For all pairs of permissible values (r,m) such that
r < 1 and m > 1, the curves w(x) and rw(x/m)
intersect at precisely one point.

As noted in [23] these conditions are satisfied for a large
class of dose-response functions considered in the litera-
ture, including the exponential and half-Gaussian func-
tions. When considering statistical results, we will spe-
cialize to the n = 2 Hill-type dose-response function
w(x) = 1/(1 + x2). In this case, in order for (W2) to
be satisfied, the permissible pairs (r,m) have to satisfy
also m2r > 1, as is readily checked.
As given in the main text, the stability condition of a

state is

max
j∈I+[σ]

xj < min
i∈I−[σ]

xi, (7)

In the following, we shall assume that we are given a
stable genotype σ such that

x−[σ] = mσ x` and x+[σ] = mσ xu, (8)

hold with x−[σ] < x+[σ], implying that the stability
condition Eq. 7 is satisfied, and the sites ` and u are
those at which the maximum, respectively minimum of
the terms on the left and right hand side of the inequality
are attained. We say that sites ` and u are the least stable
sites in the sense that the first mutation will occur there
under concentration decreases or increases, respectively.
The following two statements are readily shown. Given
any pair of sites ` and u such that x` < xu, there exists
a symbolic ordering sequence p such that Eq. 8 holds
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and thus ` and u are the least stable sites for some stable
state σ. Conversely, given a symbolic ordering sequence
p, using Eq. 7, the set of all stable genotypes σ can
be inferred from it, and hence the possible pairs of least
stable sites (`, u) associated with these. Whenever we
assume that Eq. 8 holds, this will either imply that we
are given a specific order sequence p and that with respect
to p the state σ is stable with (`, u) being the pair of
least-stable sites, or alternatively, we are given (`, u) and
consider the set of order sequences p and stable states
σ compatible with this choice of least stable sites. The
particular point of view will be clear from the context.

Secondary mutation must be complementary

We first derive some simple inequalities for the TIL
model. The following is readily shown from the assump-
tions (W1) and (W2) made above for w(x):

x < xi ⇔ w(x) > riw

(

x

mi

)

, (9)

x > xi ⇔ w(x) < riw

(

x

mi

)

. (10)

Now, let σ be a stable state, such that Eq. 8 holds.
Then, we can show from the previous results that for all
i ∈ I−[σ] \ {u},

f
σ

+u,+i(x+[σ])

f
σ

+u(x+[σ])
< 1, (11)

and for all j ∈ I+[σ] \ {`},

f
σ

−`,−j (x−[σ])

f
σ

−`(x−[σ])
< 1. (12)

The last two inequalities together assert that first sec-
ondary mutations which are in the same direction as the
primary mutation, are fitness-decreasing. Thus either
the first mutation leads to a local fitness maximum, and
hence there will be no further mutations, or the first sec-
ondary mutation must be complementary to the original
mutation.

Locations of complementary secondary mutations

Let σ be a stable state such that Eq. 8 holds. Then
for i ∈ I+[σ],

xi > xu ⇔ f
σ

+u,−i(x+[σ])

f
σ

+u(x+[σ])
> 1. (13)

Therefore, subsequent to an initial mutation under con-
centration increase at site u, fitness increasing comple-
mentary mutation sites are those sites i ∈ I+[σ] for which

the symbol i is located to the right of u in the order se-
quence p. Note in particular, that the initial mutation
site u itself cannot be also the site for a subsequent sec-
ondary mutation, as this would have implied that σ has
a higher fitness than σ

+u at the triggering concentration.
Likewise, for j ∈ I−[σ],

xj < x` ⇔ f
σ

−`,+j (x−[σ])

f
σ

−`(x−[σ])
> 1. (14)

Any secondary mutation following an initial mutation
under concentration decrease at site `, must be a site
j ∈ I−[σ] located to the left of ` in the symbolic or-
der sequence p. The statements Eq. 13 and Eq. 14 are
proven by repeated application of Eq. 9, Eq. 10, and the
properties of ordering sequences p that are compatible
with the assumption Eq. 8.

Secondary mutations cannot cause transitions to a
subset or superset

Assume the contrary. Then, according to the property
of Directed Path Accessibility, a path must exist where
the first secondary mutation is in the same direction as
the original mutation. But this is not possible according
to the previous result.

Conditions for the absence of secondary mutations

Consider a realization of the TIL model with L sites
and let σ be a stable state satisfying Eq. 8. Assume that
we are given a symbolic ordering sequence p compatible
with Eq. 8. For any site u = 1, 2, . . . L, we will be inter-
ested in the interval of elements of p that is bounded to
the left by u and to the right by u. Denote by Iu the set
of sites j that appear in this interval without overbars.
Likewise, let Iu be the set of sites that appear in this in-
terval with overbars. Our definition is such that neither
of the two sets of sites Iu and Iu contain u.
Consider now transitions out of σ under concentration

increases. By assumption, under a concentration increase
to (a value slightly above) x+[σ], the site u will mutate
first, σu = 0 → 1, leading to σ

+u, and as a result, the
upper limit of the stability range of σ

+u increases to
x+[σ+u] > x+[σ]. In order to assert the stability of σ+u

at the concentration x+[σ] which triggered the mutation
at u, we must require that

x−[σ+u] ≤ x+[σ]. (15)

If this condition is not satisfied, then x±[σ+u] > x+[σ]
and at least one secondary mutation occurs. We thus
need to find conditions under which Eq. 15 holds.
Now in terms of the ordering sequence p , the site `

must be located to the left of u, as must be the site u.
Moreover, since ` and u have to be distinct, ` is either to
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the left or right of u. In the former case we have x` < xu,
and hence

x−[σ+u] = m
σ

+uxu = mσxu = x+[σ]. (16)

Since Eq. 15 is satisfied, genotype σ
+u is a local fitness

maximum at this concentration and there will therefore
be no secondary mutations. Suppose next that x` > xu.
In this case

x−[σ+u] = m
σ

+u x` = mσ

x`

xu

xu > x+[σ]. (17)

Therefore there will be at least one complementary sec-
ondary mutation at some site i ∈ I+[σ]. Condition Eq.
13 asserts that in order for such a mutation to be fitness
increasing, i must be such that xi > xu. Using Eq. 7, it
is easily shown that the stability condition of σ, as given
by Eq. 8, implies that xi < xu, so that the secondary
mutation site must be contained in the set Iu. Note in
particular that the site ` itself satisfies these conditions
and hence is a possible candidate for the first secondary
mutation. Combining all of the above results, under in-
creasing concentration, a secondary mutation will occur
if and only if the set Iu is non-empty, and the state σ is
such that, for some j ∈ Iu we have σj = 1. Conversely,
a secondary mutation will not occur if and only if one of
the following two conditions holds:

(U1) The set Iu is empty.

(U2) The set Iu is non-empty, and the state σ is such
that, for each j ∈ Ik we have σj = 0.

In a similar manner, one can show that under decreas-
ing concentration a secondary mutation will not occur, if
and only if one of the following two conditions holds:

(D1) The set I` is empty.

(D2) The set I` is non-empty, and the state σ is such
that, for each j ∈ I` we have σj = 1.

Observe now that in order for secondary mutations to
be absent from all transitions in a TIL model, the sets
Ik and Ik have to be empty for each u = 1, 2, . . . , L,
since otherwise there will exist stable states for which
conditions (U2) or (D2) can be made not to hold. As is
easily shown, the only ordering sequence for which both
of these sets are empty for each u is the sequence

p = 1 1 2 2 . . . L L.

Asymptotic number of stable states

Consider a genotype σ with n mutations, i.e.
∑

i σi =

n. The number of such genotypes is
(

L
n

)

and such a σ is a
stable state if Eq. 7 holds. Since xi and x̄i are indepen-
dent for distinct sites, the probability density that the
left hand side of Eq. 7 is less than z and the right hand

side is greater than z is d
dz
FL−n
x̄ (z)[1 − Fx(z)]

n. Then
the mean number of stable states is

〈Nss〉 =
L
∑

n=0

(

L
n

)
∫

dz

[

d

dz
FL−n
x̄ (z)

]

[1− Fx(z)]
n

= L

∫

dz [1− Fx(z) + Fx̄(z)]
L−1

F ′
x̄(z), (18)

from which the result in the main text follows using a
saddle point approximation for L large.

Probability density function used in the numerics

We assume that the dose-response curve is of Hill-type
with n = 2. In order to satisfy the requirement (W2) for
the dose-response function, the parameters (rj ,mj) must
be chosen such that m2

jrj > 1 for each j = 1, 2, . . . , L.
We further assume that the pairs (rj ,mj) are indepen-
dently and identically distributed, so that their joint den-

sity is given by Q({ri,mi}) =
∏L

j=1 P (rj ,mj). We write

P (rj ,mj) = P1(rj)P2(mj |rj). We chose

P1(r) =

√

2

π

e−
(ln r)2

2

r

P2(m|r) = N e−
(lnm)2

2

m
Θ
(

m− 1√
r

)

,

where Θ(·) is the Heaviside step function, and N is the
appropriate normalization constant.

Asymptotic approximation for number of mutations

The fitness f of a genotype σ can be expressed as

ln f =
∑

i

σi ln ri − ln
(

1 + x2 e−2
∑

i σi lnmi

)

(19)

The number of mutations in the genotype is n =
∑

i σi.
A simple heuristic that produces good approximations for
the mean of various quantities at large L is a s follows:
we consider the fitness of a genotype to be a function of
x and n only, and replace the parameters associated with
the mutations by suitable averages. Thus, we write Eq.
19 as

ln f(n) ' −na− ln
(

1 + x2 e−2nb
)

, (20)

where a = −〈ln r〉 and b = 〈lnm〉. For any given x,
one can now maximize Eq. 20 with respect to n, yielding
an approximation to the mean mutation number at x for
stable maxima. Taking the derivative of the above with
respect to n and setting it to zero produces the equation:

2bx2e−2nb

1 + x2e−2nb
= a.
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The solution to this is

n =
lnx

b
+

1

2b
ln

(

2b

a
− 1

)

. (21)

For large x and therefore large n, the leading order is

n ' lnx

b
. (22)

This estimate works well when L is large and 1 �
ln(x)
〈lnm〉 � L.
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