

1 RADseq data reveal a lack of admixture
2 in a mouse lemur contact zone
3 contrary to previous microsatellite results

4

5 Jelmer Poelstra^{1,2*}, B. Karina Montero³, Jan Lüdemann³, Ziheng Yang⁴, S. Jacques
6 Rakotondranary^{3,5}, Paul Hohenlohe⁶, Nadine Stetter^{3,7}, Jörg U. Ganzhorn^{3^}, Anne D. Yoder^{1^}

7

8 ¹: *Department of Biology, Duke University, Durham, NC 27708, USA*

9 ²: *Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA*

10 ³: *Institute of Zoology, Dept. Animal Ecology and Conservation, Universität Hamburg, 20146
11 Hamburg, Germany*

12 ⁴: *Department of Genetics, Evolution and Environment, University College London, London,
13 UK*

14 ⁵: *Département Biologie Animale, Faculté des Sciences, P.O. Box 906, Université
15 d'Antananarivo, Antananarivo, 101, Madagascar*

16 ⁶: *Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences,
17 University of Idaho, Moscow, ID 83844, USA*

18 ⁷: *Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg*
19

20 * Corresponding author

21 ^ Co-senior authors

22

23 Author contributions:

24 - Conception and design of study:
25 - Data collection: JR, KM, NS, and JG collected samples in the field. PH and JP generated
26 sequencing data.
27 - Data analysis and interpretation: JP, ZY, JL, and KM performed all analyses.
28 - Drafting and revising manuscript: JP, KM, JG, and ADY drafted the manuscript. All co-
29 authors revised and agreed on the last version of the manuscript.

30 **Abstract**

31 Despite being one of the most fundamental biological processes, the process of
32 speciation remains poorly understood in many groups of organisms. Mouse lemurs are a
33 species-rich genus of small primates endemic to Madagascar, whose diversity has only
34 recently been uncovered using genetic data and is primarily found among morphologically
35 cryptic, allopatric populations. To assess to what extent described species represent
36 reproductively isolated entities, studies are needed in areas where mouse lemur taxa come
37 into contact. Hybridization has previously been reported in a contact zone between two
38 closely related mouse lemur species (*Microcebus murinus* and *M. griseorufus*) based on
39 microsatellite data. Here, we revisit this system using RADseq data for populations in, near,
40 and far from the contact zone, including many of the individuals that had previously been
41 identified as hybrids. Surprisingly, we find no evidence for admixed nuclear ancestry in any
42 of the individuals. Re-analyses of microsatellite data and simulations suggest that previously
43 inferred hybrids were false positives and that the program `NewHybrids` can be particularly
44 sensitive to erroneously inferring hybrid ancestry. Using coalescent-bases analyses, we also
45 show an overall lack of recent gene flow between the two species, and low levels of ancestral
46 gene flow. Combined with evidence for local syntopic occurrence, these data indicate that *M.*
47 *murinus* and *M. griseorufus* are reproductively isolated. Finally, we estimate that they
48 diverged less than a million years ago, suggesting that completion of speciation is relatively
49 rapid in mouse lemurs. Future work should focus on the underpinnings of reproductive
50 isolation in this cryptic primate radiation, which are mostly unknown. Our study also
51 provides a cautionary tale for the inference of hybridization with microsatellite data.

52 **Introduction**

53 Secondary contact zones, in which previously isolated populations meet, provide
54 outstanding possibilities to investigate the mechanisms by which biodiversity accumulates. If
55 contact zones form when reproductive isolation is incomplete, several outcomes are possible:
56 the divergent populations can merge back together (e.g. Kearns et al. 2018), hybrid zones can
57 form (Hewitt 2000, Hewitt 2001), and/or reinforcement of reproductive barriers can take
58 place (e.g. Hoskin et al. 2005; Hopkins and Rausher 2012). The study of these different
59 outcomes has contributed significantly to our current understanding of speciation. For instance,
60 hybrid zones offer opportunities to reveal the underlying basis of sources of reproductive
61 isolation such as divergent phenotypes and genetic incompatibilities (Payseur 2010; Knief et
62 al. 2019; Powell et al. 2020).

63 If secondary contact happens when reproductive isolation is complete, another set of
64 outcomes is possible. One species may out-compete the other, preventing local overlap (e.g.
65 Gurnell et al. 2004; Perry et al. 2007). Similarly, broad-scale mutual competitive exclusion
66 and distinct habitat preferences may lead to adjacent yet largely non-overlapping distributions
67 (Case et al. 2004; Wisz et al. 2012). Alpha biodiversity will only increase if species are able
68 to co-occur locally, for instance by means of small-scale habitat heterogeneity or habitat
69 partitioning among species, possibly after character displacement (e.g. Morris 1996; Arlettaz
70 2001; Estevo et al. 2017; Wuesthoff et al. 2021).

71 Mouse lemurs (genus *Microcebus*) provide an excellent organismal system for
72 investigating these potential consequences of secondary contact. They are the world's
73 smallest primates and are endemic to and widespread throughout Madagascar comprising as
74 many as 25 named species, one of which was described as recently as 2020 (Schüßler et al.

75 2020). Additionally, there are several unnamed, hypothesized species (e.g. Louis et al. 2006).
76 Species descriptions have relied heavily on genetic data because most species are
77 morphologically highly cryptic and occur allopatrically, especially closely related ones (see
78 Setash et al. 2017). Moreover, for many species descriptions, only mtDNA sequences have
79 been analyzed and samples originated from a single or very few locations (Tattersall 2007
80 and references therein).

81 The combination of limited genetic and geographical sampling, little morphological
82 differentiation, and allopatric occurrence has lead several authors to argue that the genus is
83 likely to have been oversplit, possibly substantially so (Tattersall 2007; Markolf et al. 2011).
84 One concern is that mtDNA divergence may not accurately reflect species divergence given
85 that mtDNA represents only a single non-recombining, maternally inherited locus. This issue
86 can be further exacerbated by limited geographic sampling which can cause clinal variation
87 to be misinterpreted as the occurrence of multiple distinct clusters. Another concern is that
88 lineages, even when they are indeed genetically divergent, may be more appropriately
89 considered intraspecific variation (see also Coates et al. 2018). While examination with
90 numerous nuclear loci and dense geographic sampling awaits for many mouse lemur species,
91 so far, two studies have used RADseq data finding that genomic divergence largely (though
92 not fully) corresponded to nominal species and mtDNA lineages (Yoder et al. 2016; Poelstra
93 et al. 2020). The second concern, that lineages may be best described as distinct populations
94 or subspecies, is harder to address. The fact that genomic data can be leveraged to obtain
95 more accurate estimates of divergence times and rates of gene flow, and thus inform modern
96 species delimitation analyses (e.g. Poelstra et al. 2020; Dincă et al. 2019; Hundsdoerfer et al.
97 2019), does offer the promise of a more nuanced assessment of taxonomic boundaries.

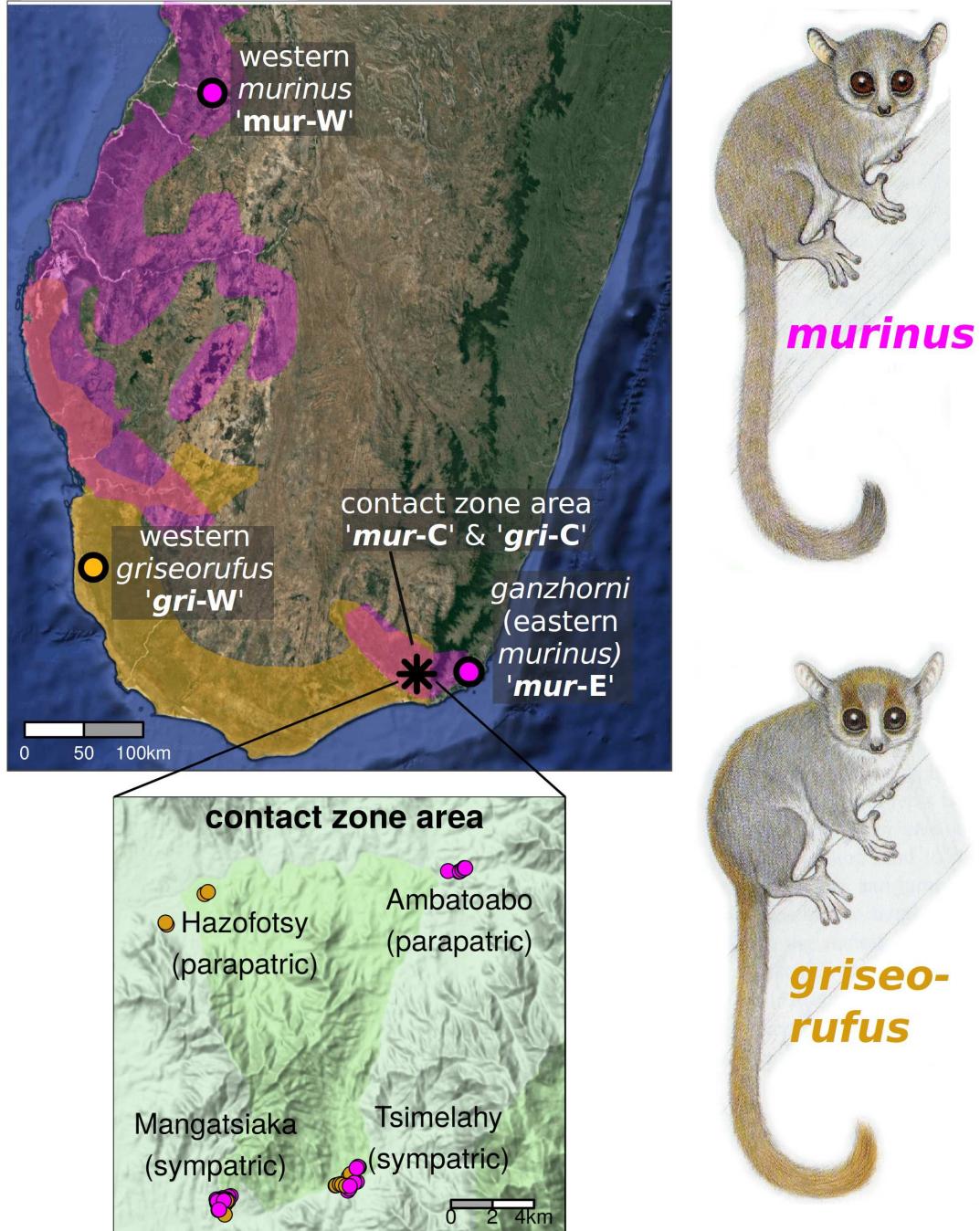
98 Even so, there are distinct limits to this approach when lineages occur allopatrically
99 given that the key measure of speciation – whether and to what extent reproductively

100 isolation (RI) exists between divergent lineages – cannot be directly assessed in the absence
101 of experimental approaches that are time-consuming and not feasible for many non-model
102 organisms. Thus, studies of divergent lineages in secondary contact are needed to gain insight
103 into types and levels of divergence that do or do not produce RI. From a practical species
104 delimitation perspective, this will also allow for the comparative examination of divergence
105 for allopatric lineages.

106 To date, seven different pairs of mouse lemur species have been shown to co-occur
107 locally at various localities throughout Madagascar. One widespread species, *M. murinus*, is
108 involved in five of these cases. *M. murinus* co-occurs with its sister species *M. griseorufus* in
109 southern Madagascar and from south to north in western Madagascar with *M. berthae*, *M.*
110 *myoxinus*, *M. ravelobensis*, and *M. bongolavensis*, respectively (Radespiel 2016; Sgarlata et
111 al. 2019; Wuesthoff et al. 2021). In northeastern Madagascar, two other species pairs occur in
112 local sympatry: *M. mittermeieri* and *M. macarthurii* (Radespiel et al. 2008; Poelstra et al.
113 2020) as well as *M. lehilahysara* and *M. jonahi* (Poelstra et al. 2020; Schüßler et al. 2020).

114 In all but one of these seven cases of sympatry, no hybridization has been detected
115 Sources of reproductive isolation among sympatric mouse lemurs are poorly known, but
116 factors that may contribute to prezygotic isolation via differential mate choice may include
117 divergence in acoustic (Braune et al. 2008; Hasiniaina et al. 2020) and olfactory signaling
118 (Kollikowski et al. 2019; Hunnicutt et al. 2020). Additionally, opportunities for reproductive
119 interaction may be reduced by ecological divergence manifesting, for example, in differential
120 timing of the highly seasonal and temporally constrained reproductive season seen in mouse
121 lemurs (Schmelting 2000; Evasoa et al. 2018; Schüßler et al. 2020).

122 Hybridization has only been detected between *M. murinus* and *M. griseorufus* (Gligor et
123 al. 2009; Hapke et al. 2011), which is also unique among the seven cases of sympatry in


124 consisting of a pair of sister lineages. It should be noted that populations of *M. murinus*
125 studied by Gligor et al. (2009) have since been split as *M. manitatra* and *M. ganzhorni* by
126 Hotaling et al. (2016), whereas the populations studied by Hapke et al. (2011) continue to be
127 part of *M. murinus*. However, we here include *M. manitatra* and *M. ganzhorni* under the
128 nomenclature “*M. murinus s.l.*” (Weisrock et al. 2010) pending further taxonomic revisions (see
129 Methods for further details).

130 Gligor et al. (2009) studied an area where *M. murinus s.l.* and *M. griseorufus* come into
131 geographic contact. They sequenced part of the mitochondrial HV1 locus and genotyped 9
132 microsatellite loci for a total of 162 mouse lemurs at three spiny forest sites with *M.*
133 *griseorufus* (n=26), three littoral forest sites for *M. murinus* (n=98), and three sites in an
134 ecotone between spiny and littoral forest with both species (n=38). Using the programs
135 STRUCTURE (Pritchard et al. 2000) and GeneClass (Piry et al. 2004), they concluded that
136 “most individuals within the transition zone” had mixed ancestry (no individual-level
137 assignments were made). Hapke et al. (2011) studied a contact zone 40 km further north,
138 where, instead of a gradual transition between habitat types, narrow strips of mesic gallery
139 forest along rivers and streams directly border dry spiny forest in the surrounding areas. This
140 study used the same set of microsatellite loci for a total of 159 mouse lemurs, with
141 STRUCTURE and NewHybrids (Anderson and Thompson 2002) identifying a total of 18
142 admixed individuals, originating from all but one of the six sites examined (highest
143 percentage of hybrids: 17.3% out of 75 at Mangatsiaka). Of these, 15 individuals showed
144 signs of nuclear admixture (i.e., among microsatellites) whereas 3 had a mismatch between
145 microsatellite and mitochondrial ancestry.

146 Based on the results of Gligor et al. (2009) and Hapke et al. (2011), the contact zones
147 between these species seemed to provide an ideal opportunity for studying species separation

148 based on species-specific microhabitat utilization, and its breakdown along ecotones or in
149 disturbed areas where habitat patches become too small to allow for habitat-specific
150 separation (Rakotondranary and Ganzhorn 2011; Rakotondranary et al. 2011). In a follow-up
151 study (Sommer et al. 2014), hybrids showed a higher prevalence of intestinal parasites, and
152 several MHC alleles were found to be shared between both species and their putative hybrids.

153 Here, we revisit the contact zone area studied by Hapke et al. (2011) using RADseq data.
154 We have included many of the individuals that were inferred to be hybrids by that study in
155 addition to samples from nearby and distant allopatric populations. We examined individual-
156 level admixture in the contact zone and used coalescent modeling to ask whether there is
157 evidence for ongoing and or ancestral gene flow between the species. To our surprise, we
158 found no evidence for admixed individuals in the contact zone – including among the
159 individuals previously identified as hybrids – and have also inferred a lack of ongoing gene
160 flow between the two species more generally.

161

162 **Fig. 1: Distributions and sampling sites of *murinus* and *griseorufus* in southern Madagascar.**

163 The distribution of *murinus* is shown in purple and that of *griseorufus* in gold. A population in southeastern
164 Madagascar was recently split from *murinus* as *M. ganzhorni*, but is here included within *murinus* s.l.. A
165 large gap across the central part of southern Madagascar divided *murinus* populations, and sampling areas
166 *mur-C* and *mur-E* are together referred to as “southeastern *murinus* populations”. Note that the range of *M.*
167 *murinus* extends to the north of the area shown in the map, whereas the entire distribution of *M. griseorufus*
168 is shown. **Inset:** Overview of sampling in the contact zone area, showing two parapatric (Hazofotsy with
169 *griseorufus* and Ambatoabo with *murinus*) and two sympatric (Mangatsiaka and Tsimelahy) sites.

170 **Methods**

171 **Sampling**

172 Hapke et al. (2011) and follow-up work in Lüdemann (2018) detected hybridization
173 between *M. murinus* (hereafter referred to as *murinus*) and *M. griseorufus* (hereafter referred
174 to as *griseorufus*) using 9 microsatellites and a fragment of the HV1 mitochondrial locus
175 from individuals in the Andohahela area in southeastern Madagascar. We made use of a
176 selection of their samples, for which trapping and sample collection procedures are described
177 in Gligor et al. (2009), Hapke et al. (2011), and Lüdemann (2018). We augmented this dataset
178 with 13 *griseorufus* and 20 *murinus* s.l. (see below) samples from distant, allopatric sites, and
179 with 3 *M. rufus* samples that were used as an outgroup. Ear clips from wild-caught and
180 released mouse lemurs were collected between 2006 and 2017 (*Table S1*, *Table S2*).

181 At two of the six sites examined by Hapke et al. (2011), they detected unadmixed
182 individuals of both parental species as well as individuals with admixed ancestry (individuals
183 inferred to be admixed by Hapke et al. (2011) and Lüdemann (2018) are hereafter referred to
184 as “putative hybrids”). Given this community composition, we refer to these two contact zone
185 sites, Mangatsiaka and Tsimelahy, which are ~6.5 kilometers apart, as “sympatric” sites.

186 From these two sites, we selected 78 samples for the present study (*Table S1*). Among the
187 49 samples from Mangatsiaka that we sequenced, Hapke et al. (2011) and Lüdemann (2018)
188 classified 21 as *murinus* based on microsatellites as well as mtDNA, 13 as *griseorufus* based
189 on microsatellites as well as mtDNA, 3 as *griseorufus* based on microsatellites but as *murinus*
190 based on mtDNA (i.e. these individuals had a mitonuclear ancestry mismatch), and 14 as
191 admixed based on the microsatellites (i.e. putative hybrids, of which 7 had a *griseorufus*

192 mtDNA haplotype, and 7 had a *murinus* mtDNA haplotype). Among the 29 individuals from
193 Tsimelahy, Hapke et al. (2011) classified 15 as pure *murinus*, 15 as pure *griseorufus*, and 1 as
194 admixed based on microsatellites (this individual had a *griseorufus* mtDNA haplotype). Thus,
195 in total, we sequenced 15 individuals for which Hapke et al. (2011) or Lüdemann (2018) had
196 detected nuclear admixture, and an additional 3 with a mitonuclear ancestry mismatch.

197 We additionally selected samples from nearby sites at which Hapke et al. (2011) had
198 exclusively (or nearly so) detected unadmixed individuals of one of the two species: 8
199 *griseorufus* from Hazofotsy and 8 *murinus* from Ambatoabo (*Table S1*). We refer to these
200 contact zone sites as “parapatric” sites. Hazofotsy is 14.5 kilometers from Mangatsiaka,
201 whereas Ambatoabo is 14 kilometers from Tsimelahy (*Fig. 1* - inset). In total, we sequenced
202 94 samples from the contact zone area (sympatric and parapatric sites) in the Andohahela
203 area.

204 Finally, “allopatric” samples, taken well away from the contact zone, were represented
205 by 14 *griseorufus* from several sites in southwestern Madagascar, 8 *murinus* from several
206 sites in western Madagascar, and 11 *M. ganzhorni*, a species that was recently split from
207 *murinus* (Hotaling et al. 2016), from Mandena in far southeastern Madagascar (*Table S2*,
208 *Fig. 1*). Below, we show that *M. ganzhorni* diverged from the *murinus* populations from the
209 Andohahela area very recently, while a much deeper split occurs between other populations
210 from southeastern Madagascar and those from Madagascar that all continue to be classified
211 as *murinus*. Therefore, as mentioned above, we here include *M. ganzhorni* (and *M. manitatra*,
212 which was not included in this study) under the nomen “*M. murinus s.l.*”. As an outgroup, we
213 used *M. rufus* (three samples, *Table S2*).

214 We used the following geographically defined population groupings for analyses where
215 individuals are assigned to predefined groups (*Fig. 1*): western *griseorufus* (abbreviated

216 “*gri*-W”), central/contact zone area *griseorufus* (abbreviated “*gri*-C”), western *murinus*
217 (abbreviated “*mur*-W”), central/contact zone area *murinus* (abbreviated “*mur*-C”), and
218 eastern *murinus* *s.l.* (abbreviated “*mur*-E”; this population corresponds to *M. ganzhorni* sensu
219 Hotaling et al. (2016), see details above). The *mur*-C and *mur*-E populations are
220 geographically and phylogenetically close and are sometimes together referred to as
221 “southeastern *murinus* populations”.

222 Sequencing

223 We prepared Restriction-site Associated DNA (RAD) sequencing libraries using 50 ng of
224 genomic DNA from each sample following the protocol of Ali et al. (2016). Briefly, samples
225 were digested with SbfI (New England Biolabs), followed by ligation with custom
226 biotinylated adapters containing 8 bp barcodes unique to each sample. We pooled 48 samples
227 in a single library, with a technical replicate for four of these samples, and sheared DNA to an
228 average fragment size of 400 bp using a Covaris M220. RAD fragments were enriched with a
229 streptavidin bead pull-down and prepared as a sequencing library using a NEBNext Ultra
230 DNA Library Prep Kit (New England Biolabs). Final libraries were sequenced using paired-
231 end 150 bp sequencing on an Illumina HiSeq 4000 at Duke University's Center for Genomic
232 and Computational Biology sequencing facility.

233 RADseq bioinformatics and genotyping

234 When using the Ali et al. (2016) protocol, half of the barcodes end up in the reverse (R2)
235 reads. Therefore, raw reads in FASTQ files were first “flipped” using a custom Perl script,
236 and were next demultiplexed and deduplicated in `Stacks` v2.0b (Rochette et al. 2019) using
237 the “`process_radtags`” and “`clone_filter`” commands, respectively. Reads were then
238 quality filtered using `Trimmomatic` (Bolger et al. 2014) with the following parameters:

239 Leading: 3, Trailing: 3, Slidingwindow: 4:15, Minlen: 60. Reads were aligned to the *M.
240 murinus* reference genome (“Mmurinus 3.0”, [https://www.ncbi.nlm.nih.gov/genome/777?
241 genome_assembly_id=308207](https://www.ncbi.nlm.nih.gov/genome/777?genome_assembly_id=308207), Larsen et al. 2017) with BWA MEM v0.7.15 (Li 2013). From
242 the resulting BAM files, reads that were properly paired and had a minimum mapping quality
243 of 30 were retained using “samtools view” (“-f 0x2” and “-q 30” arguments, respectively),
244 and filtered BAM files were sorted using “samtools sort”, all from the SAMtools library
245 (v1.6, Li et al. 2009).

246 We performed genotype calling with GATK v4.0.7.0 (DePristo et al. 2011), and we
247 filtered SNPs and individuals largely according to the "FS6" filter of O’Leary et al. (2018)
248 (see *Supplementary Materials* for details). Unless otherwise noted, downstream analyses
249 used sets of SNPs that resulted from this filtering procedure for all analyses except the
250 coalescent-based modeling. The filtering procedure, which includes several consecutive
251 rounds of removing the individuals and SNPs with the highest amounts of missing data, was
252 performed separately for the set of all 135 sequenced individuals (including the 3 outgroup
253 individuals; the resulting VCF was used for phylogenetic inference, admixture statistics, and
254 served as the basic for generating full-sequence loci for coalescent-based modeling) and for
255 the set of 94 individuals from the contact zone area (the resulting VCF was used for
256 clustering analyses).

257 For the set of individuals from the contact zone area, we additionally produced two
258 datasets using more lenient filtering procedures, to be able to examine admixture using more
259 individuals and SNPs: (1) a dataset produced by omitting the last round of removal of SNPs
260 and individuals based on missing data; (2) a dataset produced using the FS6 filter without the
261 individual-filtering steps that retained two additional putative hybrids and two individuals
262 with mitonuclear discordance.

263 We computed the following quality control statistics for each sample and then compared
264 these between samples that had previously been identified as *murinus*, as *griseorufus*, or as
265 hybrid: number of filtered FASTQ reads, depth of coverage in BAM files, mean mapping
266 quality, percentage of reads that were mapped, percentage of reads that were properly paired,
267 depth of coverage, and the percentage of missing data in VCF files.

268 Based on GATK-called genotypes, we also produced full-sequence FASTA files for each
269 RAD locus (see *Supplementary Materials* for details).

270 Detection of hybrids using clustering approaches

271 For the detection of admixed individuals, we used complementary model-free and
272 model-based approaches. First, we used Principal Component Analysis (PCA) as
273 implemented in the `SNPRelate` R package v1.17.2 (Zheng et al. 2012), using the
274 `snpGDSPCA()` function (after conversion from the VCF file with the `snpGDSVCF2GDS()`
275 and `snpGDSOpen()` functions). Second, we used the program `ADMIXTURE` v1.3.0 (Alexander
276 et al. 2009) to detect clusters and assign individual-level ancestry proportions from each
277 cluster. Third, we used the program `NewHybrids` v1.1 (Anderson and Thompson 2002),
278 which identified the majority of admixed individuals in Hapke et al. (2011) and Lüdemann
279 (2018). `NewHybrids` was used to estimate, for each sample, the posterior probability of it
280 belonging to each of six predefined categories: *griseorufus*, *murinus*, F1 hybrid (*griseorufus* x
281 *murinus*), F2 hybrid (F1 x F1), *griseorufus* backcross (F1 x *griseorufus*) and *murinus*
282 backcross (F1 x *murinus*). 500,000 iterations were used as burn-in, with another 1,500,000
283 iterations after that, using Jaffereys-like priors. A run was considered successful if it passed a
284 test for convergence implemented in the `hybriddetective` R package (Wringe et al.
285 2017).

286 These analyses were first performed with datasets produced by passing individuals only
287 from the contact zone area (i.e., the sympatric and parapatric sites), through the three filtering
288 procedures described above. In addition, we ran these analyses for a dataset produced by
289 passing *all* individuals (i.e., including individuals from allopatric populations) through the
290 standard genotyping filter.

291 Reanalysis of microsatellite data

292 We reanalyzed the Hapke et al. (2011) and Lüdemann (2018) microsatellite data using
293 only the samples included in this study. Like in Hapke et al. (2011), we used the Bayesian
294 classification methods STRUCTURE v. 2.3.4 (Pritchard et al. 2000; see the *Supplementary*
295 *Materials* for details) and NewHybrids v. 1.1 to detect hybrids. For STRUCTURE, 20 runs
296 using K=2 were used to calculate the average membership coefficients by creating an optimal
297 alignment using the full-search algorithm implemented in CLUMPP v. 1.1.2 (Jakobsson and
298 Rosenberg 2007). To keep the results directly comparable, we used the same threshold for the
299 detection of hybrids as Hapke et al. (2011): a sample was considered a hybrid when the
300 posterior probability for assignment to the species of their mitochondrial haplotype was ≤ 0.9
301 for STRUCTURE or ≤ 0.5 in NewHybrids, and part of a specific hybrid category when the
302 corresponding probability was > 0.5 .

303 Comparison of microsatellites and SNPs using simulations

304 Using simulations, we compared the performance of microsatellites and SNPs for
305 detecting hybrids. The *hybriddetective* R package (Wringe et al. 2017) was used to
306 generate multi-generational hybrids from both the microsatellite and SNP data. First,
307 unadmixed *murinus* and *griseorufus* individuals were created by randomly drawing two
308 alleles per locus from the allopatric reference populations, without replacement. For

309 subsequent F1 samples, one allele per locus was drawn from an unadmixed individual of each
310 species. This procedure, drawing from the appropriate population, was continued for F2 and
311 backcross individuals. In total, 60 simulated individuals were created: 20 each of unadmixed
312 *griseorufus* and *murinus*, and 5 each of F1, F2, F1 x unadmixed *griseorufus*, and F1 x
313 unadmixed *griseorufus*. Ancestry assignment was compared between microsatellites and
314 SNPs by running STRUCTURE and NewHybrids, as described above, on the simulated
315 genotypes.

316 Phylogenetic inference

317 To enable subsequent tests of gene flow and demographic modeling, we determined
318 relationships among all *murinus* s.l. and *griseorufus* individuals sampled by our study, using
319 three *M. rufus* individuals as an outgroup. These analyses also provided a first-pass
320 exploration of patterns of gene flow.

321 First, we used the NeighborNet method implemented in `Splitstree` v. 4.14.4 (Huson
322 and Bryant 2006). This method visually displays phylogenetic conflict in an unrooted tree
323 and thus shows phylogenetic relationships while also allowing for the detection of potentially
324 admixed populations and individuals.

325 Second, we used `Treemix` v1.13 (Pickrell and Pritchard 2012) to estimate relationships
326 among predefined populations (*gri-W*, *gri-C*, *mur-W*, *mur-C*, and *mur-E*) both with and
327 without admixture events among populations, which are inferred based on a user-defined
328 number of admixture events. We used a number of admixture events m ranging from 0 to 10,
329 and 100 bootstraps. We performed likelihood-ratio tests to determine the most likely number
330 of migration events, comparing each graph to one with one fewer migration event, and took
331 the first non-significant comparison as the most likely number of migration events.

332 **Formal admixture statistics**

333 The D-statistic and related formal statistics for admixture use phylogenetic invariants to
334 infer post-divergence gene flow between non-sister populations. We used the `qpDstat`
335 program of `admixtools` v4.1 (Patterson et al. 2012) to compute four-taxon D-statistics,
336 which test for gene flow between P3 and either P1 or P2, given the tree topology (((P1, P2),
337 P3), P4).

338 We used all possible configurations in which gene flow between *murinus* and *griseorufus*
339 could be detected. First, we used the five main populations (*gri*-W, *gri*-C, *mur*-W, *mur*-C,
340 *mur*-E). In order to test for admixture limited to the specific sites where contact between the
341 two species currently occurs, we next divided the contact zone area populations (*gri*-C, *mur*-
342 C) into two groups each: sympatric (Mangatsiaka and Tsimelahy) and parapatric sites
343 (Ambatoabo and Hazofotsy, see *Fig. 1* - inset). For all tests, *M. rufus* was used as P4 (the
344 outgroup). Significance of D-values was determined using the default Z-value reported by
345 `qpDstat`, which uses weighted block jackknifing. This approach to determining significance
346 is conservative for RADseq data given that linkage disequilibrium is, on average, expected to
347 be lower between a pair of RADseq SNPs than between a pair of SNPs derived from whole-
348 genome sequencing (Patterson et al. 2012; Kim et al. 2018).

349 Admixture proportions can be estimated using f_4 -ratio tests for tree topologies using five
350 populations wherein P_x is potentially admixed between P2 and P3, with P2 sister to P1, and O
351 as an outgroup to the other four populations. Using this framework, we first tested whether
352 and to what extent contact zone area populations of either species (*mur*-C and *gri*-C) are
353 admixed with one more populations of the other species, with follow-up tests using *mur*-E as
354 the potentially admixed population P_x .

355 Demographic Modeling

356 First, G-PhoCS v1.3 (Gronau et al. 2011), a coalescent-based approach that utilizes
357 Markov Chain Monte Carlo (MCMC) was used to jointly infer population sizes, divergence
358 times and migration rates for the three *murinus* populations (*mur*-W, *mur*-C, and *mur*-SE) and
359 the two *griseorufus* populations (*gri*-W and *gri*-SE). Because it was not computationally
360 feasible to run G-PhoCS for the entire dataset, we selected, for each population, 3 individuals
361 that had high coverage and low amounts of missing data, while ensuring that mean coverage
362 and missing data amounts were approximately equal across populations. Because G-PhoCS
363 does not infer phylogenetic relationships among populations, the species tree recovered from
364 phylogenetic analyses (above) was fixed for parameter sampling. As input, we created full-
365 sequence FASTA files based on the GATK genotypes (See *Supplementary Materials* for
366 details).

367 Gene flow is modelled in G-PhoCS using one or more discrete unidirectional migration
368 bands between a pair of extant or ancestral lineages that overlap in time. Since each migration
369 band adds a parameter to the model, it is often not feasible to include all possible migration
370 bands. Here, we modelled reciprocal migration bands between *gri*-C and *mur*-C and between
371 ancestral *griseorufus* and *murinus* lineages, as we were interested in the occurrence gene flow
372 between *griseorufus* and *murinus* in the contact zone and in more ancient gene flow between
373 the two species. Additionally, we ran a model with no migration bands to assess how this
374 affected divergence time and population size estimates.

375 Second, we ran the multispecies-coalescent-with-introgression (MSCi) model in BPP v.
376 4.2 (Flouri et al. 2020) using the same set of full-sequence loci used for G-PhoCS. While G-
377 PhoCS implements an isolation-with-migration model with continuous gene flow during
378 potentially long periods, the MSCi model in BPP models discrete introgression events. For

379 each introgression event, it estimates the introgression probability φ , which represents the
380 proportion of loci inherited from one of the two parents of an introgression node. We
381 conducted 4 replicate runs all of which assessed support for 6 introgression events during the
382 same periods for which gene flow was modelled in G-PhoCS: between the extant *mur*-C and
383 *gri*-C populations, between the *murinus* lineage ancestral to *mur*-C and *mur*-E and the co-
384 temporal ancestral *griseorufus* lineage, and between ancestral *murinus* and *griseorufus*
385 lineages prior to intraspecific divergence in both species.

386 Conversion of demographic parameters

387 We converted the migration rate parameter m to the population migration rate ($2Nm$),
388 which is the number of haploid genomes (i.e., twice the number of migrants) in the source
389 population that arrive each generation by migration from the target population. The
390 population migration rate is calculated using the value of θ for the target population [$2Nm_{s \rightarrow t}$
391 $= m_{s \rightarrow t} \times (\theta_t/4)$], and as such it does not depend on an estimate of the mutation rate.

392 Divergence times, population sizes and the proportion of migrants per generation ($m \times \mu$)
393 were converted using empirical estimates of the mutation rate and generation time. To
394 incorporate uncertainty in these estimates, we drew a random number from distributions for
395 the mutation rate and generation time for each sampled MCMC generation. We used a
396 mutation rate of 1.52×10^{-8} , which is the pedigree-based mutation rate estimate for *M.*
397 *murinus* from Campbell et al. (2021). For the generation time, we used a lognormal
398 distribution with a mean of $\ln(3.5)$ and a standard deviation of $\ln(1.16)$ based on two
399 available estimates for *Microcebus* (4.5 years from Zohdy et al. 2014 and 2.5 years from
400 Radespiel et al. 2019).

401 Results

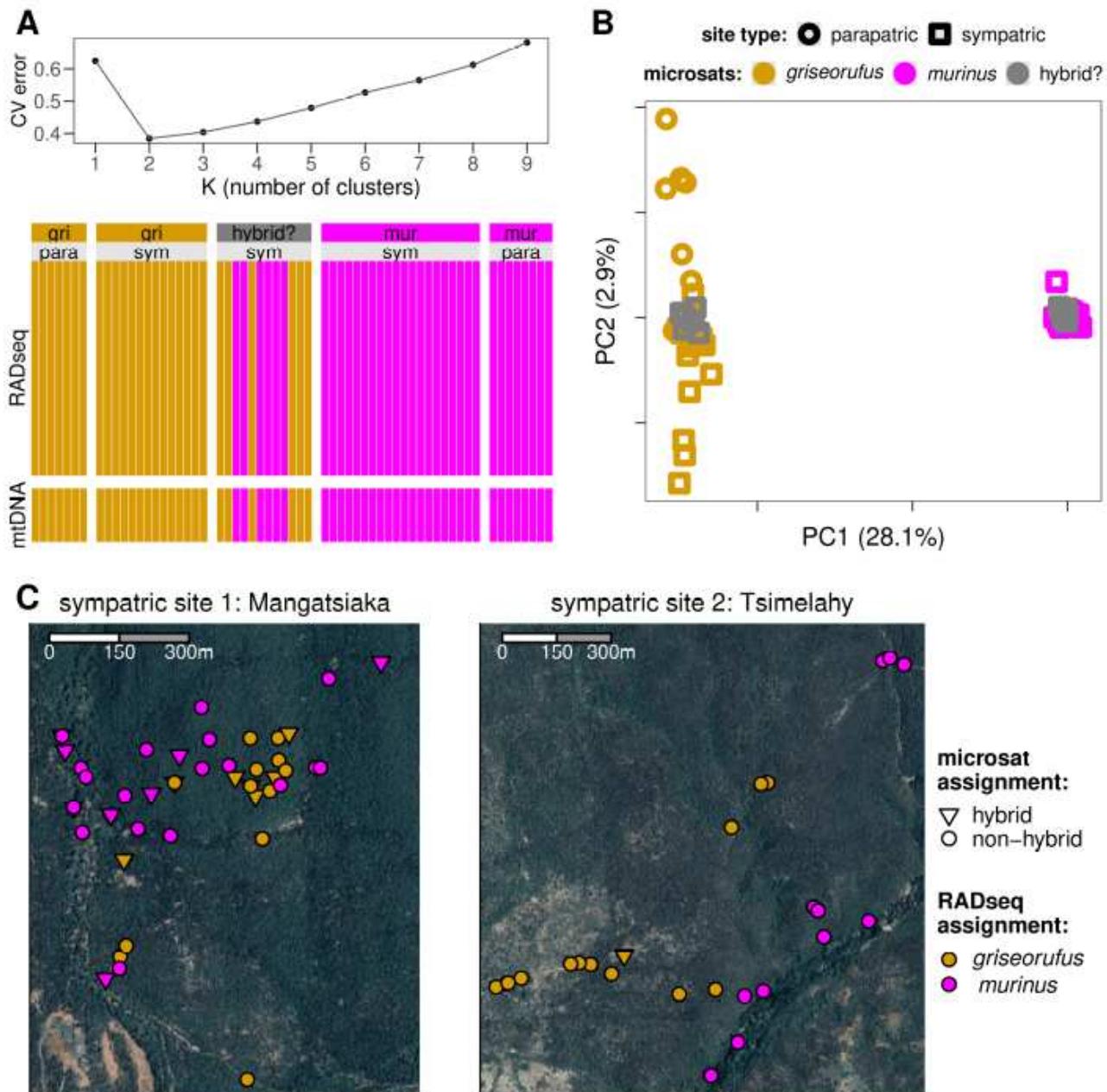
402 Genotyping and QC statistics

403 GATK genotyping followed by the standard (“FS6”) filtering procedure for all individuals
404 resulted in a VCF file with 79 individuals and 56,255 SNPs. The equivalent VCF file with
405 only samples from sympatric and parapatric sites in the contact zone area (Andahohela area,
406 see *Fig. 1*) contained 69 individuals, 12 of which were putative hybrids, and 7,180 SNPs.
407 The two less stringent filtering procedures (see Methods) for the contact zone set resulted in
408 the retention of 78 individuals (13 putative hybrids) and 48,556 SNPs and 79 individuals (18
409 putative hybrids) and 1,360 SNPs, respectively. 16 individuals, among which 2 putative
410 hybrids, did not survive the filtering steps for any of the final VCF files.

411 The full-sequence FASTA file produced for G-PhoCS analyses contained 12,952 loci
412 with an average length of 475 bp.

413 QC statistics were overall highly similar between *murinus*, *griseorufus*, and putative
414 hybrid samples from the contact zone area (*Fig. S1-S10, Table S3*). Statistics related to
415 read mapping were slightly lower for *griseorufus* than for *murinus*, which is expected given
416 that the reference genome is *murinus*: the percentage of mapped reads (means of 93.4% and
417 93.9%, respectively; *Fig. S4*), the mean mapping quality for unfiltered BAM files (means of
418 44.6 and 45.8, respectively; *Fig. S5*). For these statistics, putative hybrids were
419 intermediate, which would be expected both if they were true hybrids and if they consisted of
420 a mixture of individuals from either species. The percentage of properly paired reads differed
421 very little between *griseorufus* (99.76%) and *murinus* (99.85%), though these distributions
422 barely overlapped and putative hybrids separated in two clusters (*Fig. S6*).

423 A lower percentage of *griseorufus* samples passed the standard filtering procedure
424 (“FS6”, 60.5% vs 83.7% for *murinus*, *Table S3*) but for samples passing these filtering steps,
425 mean depth and the percentage of missing SNPs were similar between the two species (mean
426 depth: 39.8x for *griseorufus* and 38.2x for *murinus*; mean percentage of missing SNPs 2.25%
427 for *griseorufus* and 2.49% for *murinus*; *Fig. S9-S10, Table S4*). While putative hybrids
428 had a slightly lower depth (34.7x) and higher missingness (2.92%) in the final VCF (*Fig.*
429 *S9-S10, Table S4*), the absolute values are no cause of concern for subsequent analyses.

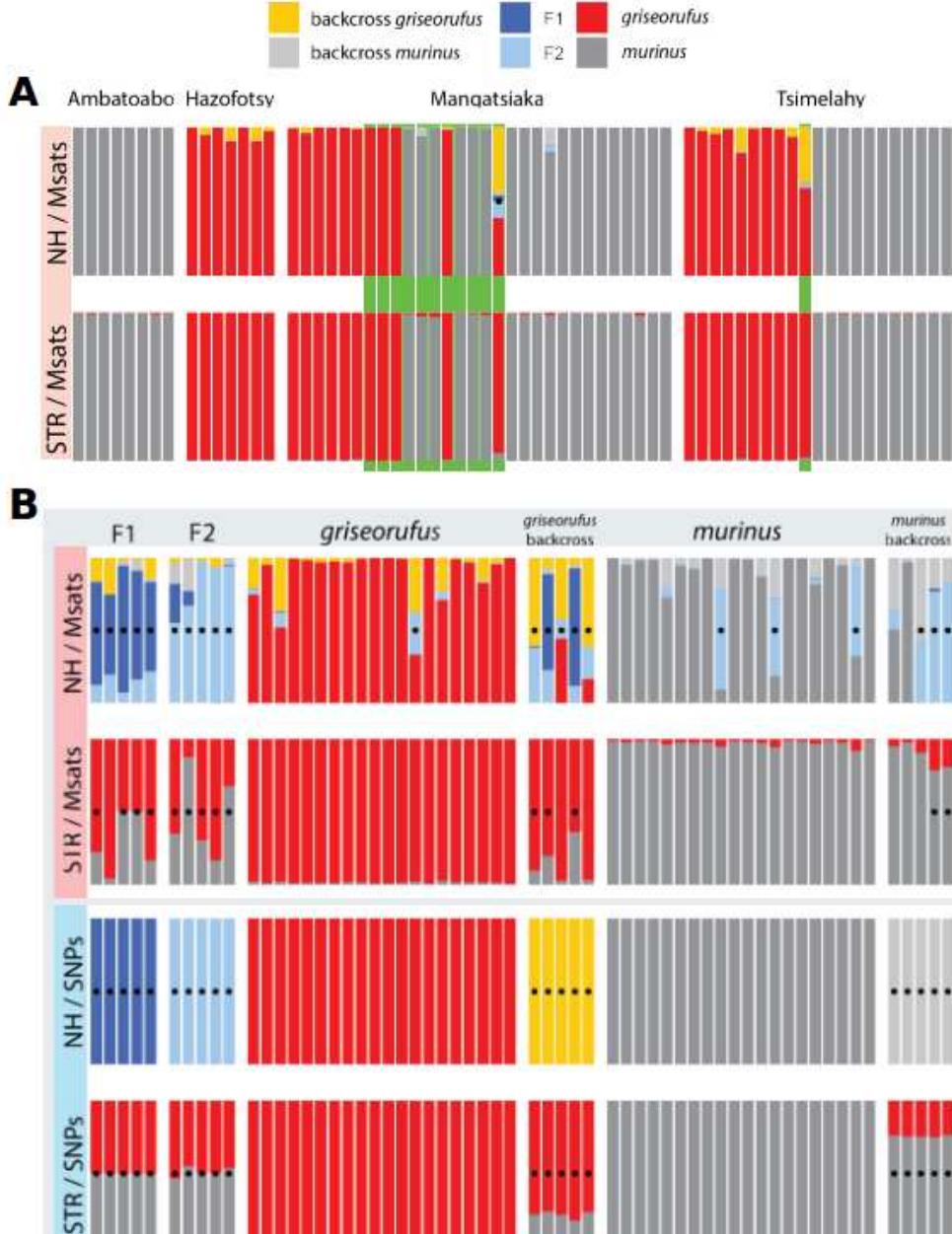

430 No evidence for ongoing hybridization in the contact zone

431 *ADMIXTURE* identified K=2 as the optimal number of clusters among individuals from
432 the contact zone area (*Fig. 2A* - top). All individuals, including the 12 putative hybrids that
433 passed filtering, were entirely assigned to one of the two clusters (*Fig. 2A* - bottom), with no
434 signs of admixture. Results were also plotted for K=3, for which a third cluster corresponded
435 to differentiation between sympatric (Mangatsiaka, Tsimelahy) and parapatric (Hazofotsy)
436 sites in *griseorufus* (*Fig. S11*).

437 Principal component analysis (PCA) with individuals from the contact zone revealed a
438 wide separation between two groups along the first principal component axis (PC1), which
439 explained around tenfold more of the variation compared to PC2. The separation along PC1
440 corresponded to differentiation between *griseorufus* and *murinus*, and importantly, all
441 putative hybrids fell within one of those two groups, with none occupying an intermediate
442 position (*Fig. 2B*). Similar to the *ADMIXTURE* results at K=3, PC2 mostly corresponded to
443 differentiation between sympatric and parapatric sites in *griseorufus* (see also *Fig. S12* for a
444 within-species PCA).

445 `NewHybrids` was run with and without assigning individuals from the parapatric
446 populations to reference parental species, and in both cases, all individuals were assigned to
447 one of the two parental species and none were assigned to one of the hybrid categories.
448 Assignment to species matched perfectly with `ADMIXTURE` assignments and PCA results.

449 Datasets produced by less stringent filtering procedures included an additional 4 putative
450 hybrids that did not pass all filtering steps but could still be assessed using a more limited
451 number of SNPs (*Fig. S13*). `ADMIXTURE` and `NewHybrids` analyses of these datasets
452 similarly showed no evidence for admixed individuals with the exception of mitonuclear
453 discordance: for two of the individuals for which Lüdemann (2018) had detected *griseorufus*
454 ancestry in nuclear DNA but *murinus* mtDNA haplotypes mitonuclear discordance, we could
455 confirm that the nuclear DNA has pure *griseorufus* ancestry (*Fig. S13*). The third sample for
456 which Lüdemann (2018) detected mitonuclear discordance did not pass filtering at all. No
457 other cases of mitonuclear discordance were found (Fig. 2A, *Table S1*.)

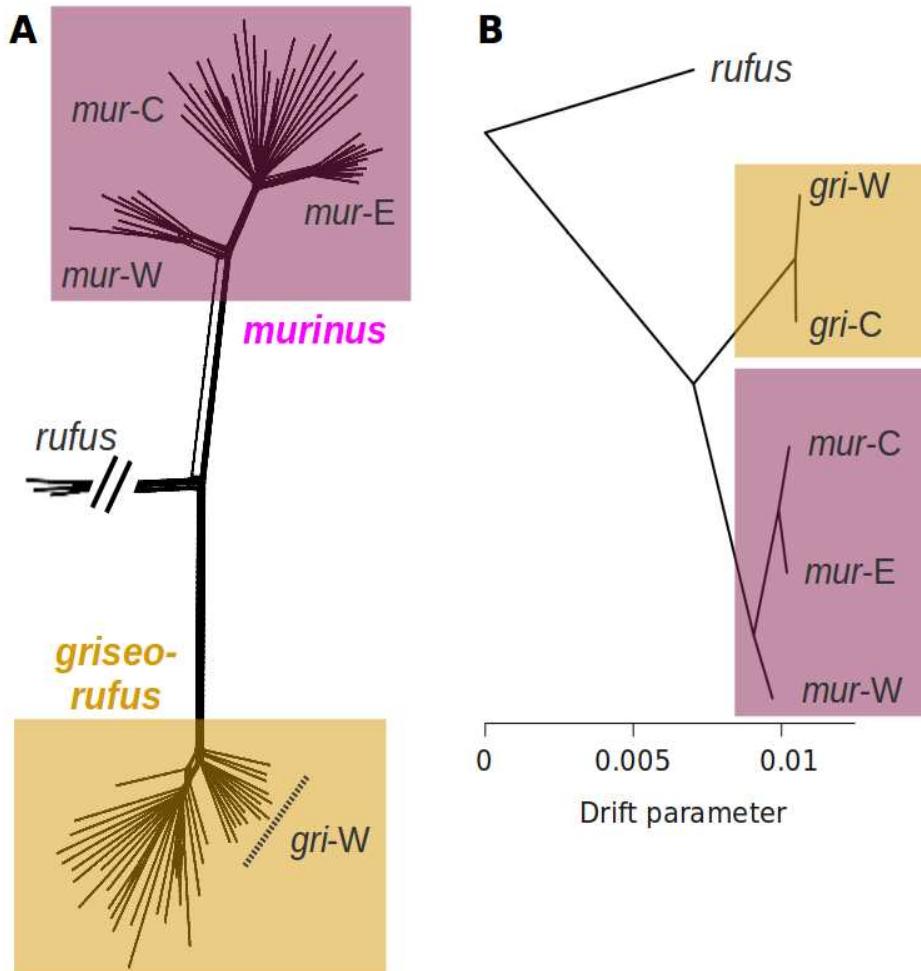

458 **Fig. 2: No evidence for hybridization in the contact zone.**

459 Nuclear RADseq data from the contact zone area was used for all analyses, including 12 individuals that
460 had been identified as admixed in a previous microsatellite study (dark gray in panels A and B).
461 **A)** ADMIXTURE results. Top: a cross-validation error plot identifies K=2 as the optimal number of clusters.
462 Bottom: Ancestry components for each individual for K=2 reveal a lack of admixture: all individuals were
463 inferred to have 100% ancestry from only a single species. Individuals were previously characterized using
464 mtDNA (bottom bars) and microsatellites (labels at top).
465 **B)** A PCA analysis reveals two clusters that are well-separated along PC1, corresponding to *griseorufus*
466 and *murinus*, with no individuals that are intermediate along this axis.
467 **C)** Map showing spatial distribution of *murinus* and *griseorufus* individuals at the two contact sites.

468 **False positives in hybrid detection using microsatellites with NewHybrids**

469 In a reanalysis of the Hapke et al. (2011) microsatellite data for only the individuals that
470 were included in this study, 11 individuals identified as hybrids in Hapke et al. (2011) were
471 no longer identified as such by either NewHybrids or STRUCTURE. Only a single sample
472 was now identified as a hybrid by NewHybrids, but STRUCTURE did not support this
473 inference (*Fig. 3A, Fig. S14*). As noted above, admixture was not detected for any
474 individuals in the RADseq data, including those that had been identified as hybrids in the
475 original microsatellite analyses.

476 In analyses of simulated microsatellite data, NewHybrids inferred that 4 out of 40
477 unadmixed individuals were hybrids, whereas STRUCTURE found no false positives. False
478 negatives occurred with both NewHybrids (2 out of 20) and STRUCTURE (6 out of 20) for
479 microsatellite data. On the other hand, NewHybrids and STRUCTURE analyses of simulated
480 RADseq data were 100% accurate in inferring ancestry (*Fig. 3B, Fig. S15*).


481 **Fig. 3: Re-analysis of microsatellite data and analysis of simulated individuals.**

482 **A)** Re-analysis of microsatellite data with NewHybrids (NH; top row) and STRUCTURE (STR; bottom
483 row). Among the 12 individuals previously identified as hybrids (green background bars), NewHybrids
484 now identifies only a single individual as a hybrid (black dot), with several further *griseorufus* individuals
485 showing non-significant signs of admixed ancestry (yellow ancestry).
486 **B)** Analysis of simulated individuals. Dots indicate detected hybrids. Using SNPs (bottom two rows), both
487 NewHybrids and STRUCTURE correctly inferred ancestry for all individuals. Using microsatellites (top
488 two rows), NewHybrids was prone to falsely inferring hybrids (4 out of 40 unadmixed individuals), and
489 false negatives occurred both with NewHybrids (2 out of 20) and STRUCTURE (6 out of 20).

490 Phylogenetic approaches clarify relationships within *murinus*

491 A SplitsTree NeighborNet phylogenetic network (*Fig. 4A*) showed a very clear
492 separation between *griseorufus* and *murinus* with little phylogenetic conflict, and strong
493 intraspecific structure in *murinus*, thus agreeing with previous analysis by Weisrock et al.
494 (2010). The three well-defined clades within *murinus* correspond to the three predefined
495 populations (western *mur*-W, contact zone area *mur*-C, and eastern *mur*-E), and in accordance
496 with geographical distances, *mur*-W appears to be the most divergent *murinus* population.
497 Similarly, *griseorufus* samples clustered by population (western *gri*-W and contact zone area
498 *gri*-C), but the clades were less well-defined than in *murinus*. The only notable, though still
499 minor, interspecific phylogenetic conflict was observed along the edges between *murinus* and
500 *rufus* (*Fig. 4A*). All putative hybrids fell squarely within one of the two clades, with
501 individual assignments in perfect agreement with clustering approaches. Similarly, a
502 NeighborNet network using only contact zone individuals showed little to no phylogenetic
503 conflict (*Fig. S16*).

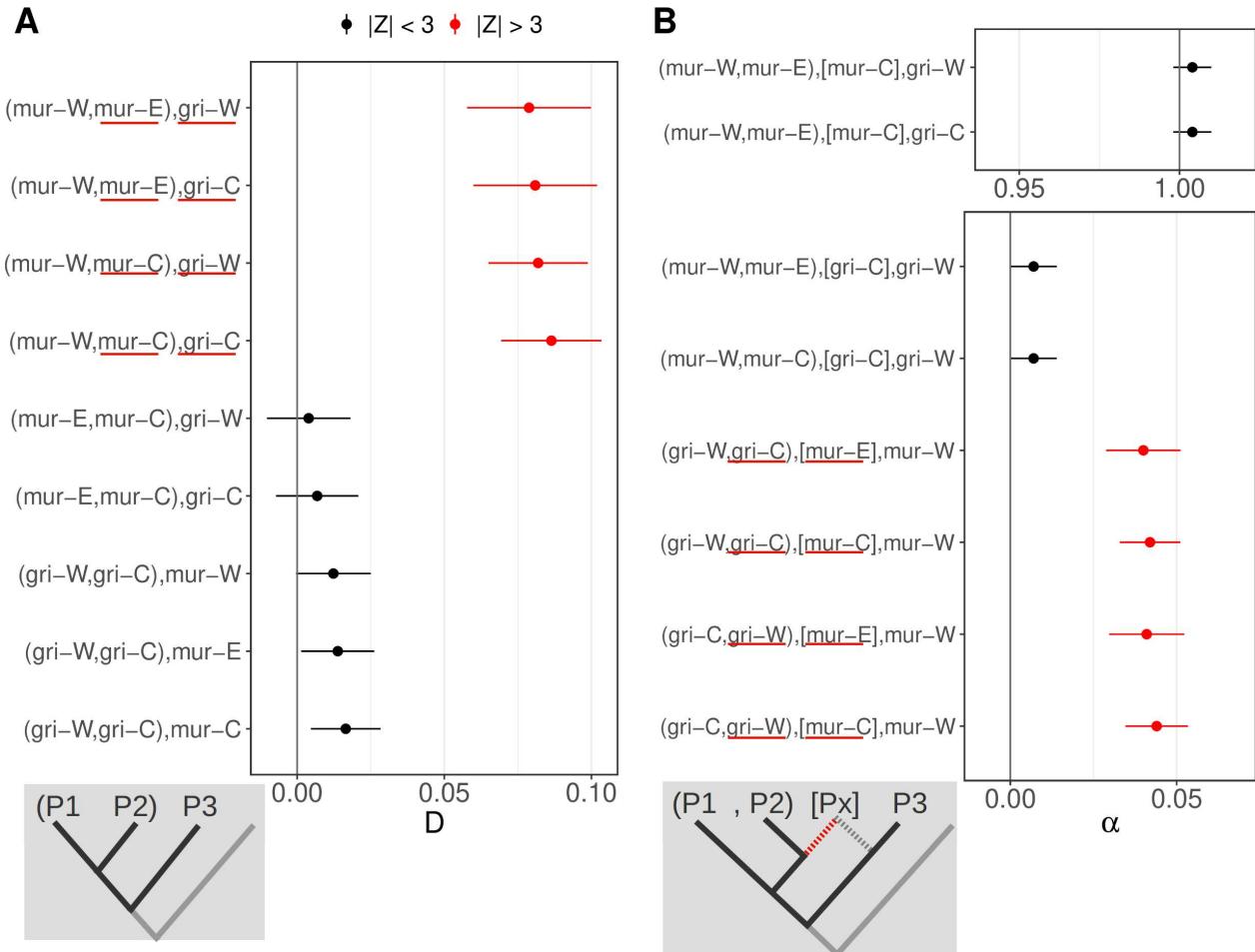
504 Treemix (*Fig. 4B*) was run with *murinus* and *griseorufus* individuals assigned to the
505 five populations and *M. rufus* as the outgroup, and confirmed the relationships within
506 *murinus* suggested by Splitstree: *mur*-W was the most divergent and *mur*-C and *mur*-E
507 were sister. No significant migration edges were found between *murinus* and *griseorufus*,
508 with instead several significant edges between *M. rufus* and *griseorufus* and *M. rufus* and
509 *murinus* (*Fig. S17*). When *M. rufus* was excluded, significant migration edges between
510 *griseorufus* and *murinus* did emerge, but did not include any between contact zone area
511 populations (*gri*-C and *mur*-C) (*Fig. S18*).

512

513 **Fig. 4: Phylogenetic relationships.**

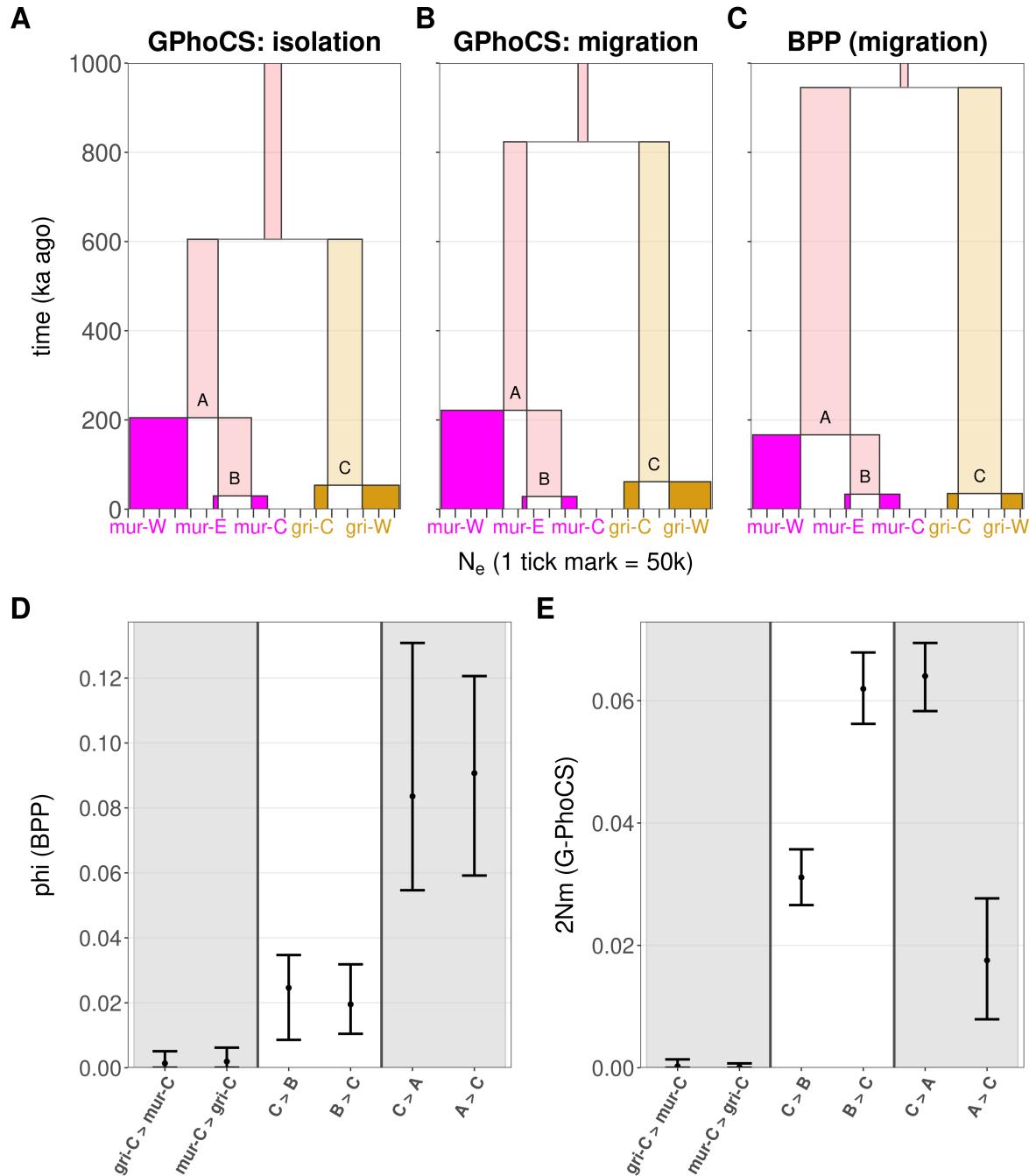
514 **A**) A SplitsTree NeighborNet phylogenetic network. Each tip represents an individual, and the width of
515 any edge boxes depicts phylogenetic conflict, which can be due to incomplete lineage sorting or admixture.
516 Very little conflict is observed along the edges between *griseorufus* and *murinus*. *Murinus* is separated into
517 three clades which correspond to western (*mur-W*), contact zone area (*mur-C*), and eastern (*mur-E*)
518 populations. The separation of *griseorufus* into clades corresponding to western (*gri-W*) and contact zone
519 area (*gri-C*) populations is not as well-defined.
520 **B**) Treemix results with no migration edges. Treemix supports the relationships suggested by the
521 phylogenetic network, with western *murinus* (*mur-W*) being the most divergent among the three *murinus*
522 populations.

523 No current – but some ancestral – interspecific gene flow


524 D-statistics showed an over-representation of shared derived sites between both
525 *griseorufus* populations (*gri*-W and *gri*-C) and the two southeastern *murinus* populations
526 (*mur*-C and *mur*-E; relative to their sister *mur*-W, western *murinus*) (Fig. 5A). Values of D
527 were highly similar regardless of which of the *griseorufus* or southeastern *murinus*
528 populations were used, which suggests historical admixture between the ancestral *griseorufus*
529 and southeastern *murinus* lineages, as well as a lack of ongoing gene flow in the contact zone.
530 A lack of ongoing gene flow was further supported by values of D very close to (and not
531 significantly different from) zero for comparisons testing for excess derived allele sharing
532 between contact zone populations of both species relative to their sister populations (Fig.
533 5A).

534 F₄-ratio tests similarly indicated ancestral admixture between *griseorufus* and the
535 ancestor of contact zone (*mur*-C) and eastern *murinus* (*mur*-E) populations, specifically
536 estimating that after divergence from western *murinus*, this ancestral southeastern *murinus*
537 population experienced about 4.0-4.4% admixture with *griseorufus* (Fig. 5B).

538 Demographic modeling using G-PhoCS supported the presence of non-zero but low
539 levels of historical gene flow between ancestral southeastern *murinus* and *griseorufus* ($2N_m =$
540 0.02-0.03 from *griseorufus* into *murinus*, and 0.06-0.07 from *murinus* into *griseorufus*), but a
541 lack of gene flow between extant contact zone area populations of *griseorufus* and *murinus*
542 ($2N_m = 0$) (Fig. 6A-B). Furthermore, some gene flow was inferred between ancestral
543 *murinus* (i.e., the lineage ancestral to all three sampled extant populations) and ancestral
544 *griseorufus*, particularly from *griseorufus* into *murinus* ($2N_m = 0.06-0.07$). Similarly, BPP
545 inferred an absence of introgression between extant populations, and some introgression


546 between ancestral populations. But unlike G-PhoCS, BPP inferred that introgression occurred
547 symmetrically, and introgression was more pronounced for the event further back in time
548 (Fig. 6C-D; see Supplementary Results for further details).

549

550 **Fig. 5: Admixture statistics suggest some ancestral but no contemporary gene flow.**

551 **A) D-statistics.** Focal comparisons are listed as $(P_1, P_2), P_3$ and test for admixture between P_3 and
 552 P_1 (negative D) or P_2 (positive D). Populations inferred to have experienced admixture are underlined in
 553 red. For all tests, *M. rufus* was used as the outgroup (O/P4). In the top 4 rows, with *mur-W* as P_1 , D is
 554 significant and highly similar regardless of which *griseorufus* population (*gri-W* or *gri-C*) is used as P_3 and
 555 regardless of which southeastern *murinus* population (*mur-E* or *mur-C*) is used as P_2 . This suggests
 556 historical but no ongoing admixture between the ancestral *griseorufus* and southeastern *murinus* lineages.
 557 A lack of ongoing gene flow is also supported by non-significant results for the bottom five comparisons.
 558 **B) f_4 -ratio tests.** Focal comparisons are listed as $(P_1, P_2), [P_x], P_3$, where P_x is tested for being a
 559 mixture between P_2 and P_3 . On the x-axis, α indicates the proportion of P_2 ancestry in P_x ($\alpha=1$ if P_x is
 560 sister to P_2 with no admixture from P_3 , and $\alpha=0$ if P_x is sister to P_3 with no admixture from P_2). Admixture
 561 is inferred if α is significantly different from 0 and 1 (red dots). Consistent with results for D-statistics,
 562 admixture is inferred between the two southeastern *murinus* populations and both *griseorufus* populations,
 563 with values of α highly similar regardless of which *griseorufus* population (*gri-W* or *gri-C*) is used as P_1 and
 564 which as P_2 , and regardless of which southeastern *murinus* population (*mur-E* or *mur-C*) is used as P_x .

565 **Fig. 6: Demographic inferences using G-PhoCS and BPP.**

566 **A-C)** Summary of results for G-PhoCS models without (A) and with (B) gene flow and for BPP (C; with
 567 gene flow). Each box represents an extant (bright colors: gold for *griseorufus*, purple for *murinus*) or
 568 ancestral (faded colors) lineage, with box width indicating N_e and box height indicating time. Gene flow was
 569 estimated reciprocally between three pairs of lineages, as depicted by the arrows.
 570 **D)** Point estimates and 95% HPDs of BPP introgression probabilities (phi).
 571 **E)** Point estimates and 95% HPDs of G-PhoCS population migration rates (2Nm).

573 Intraspecific differentiation is more pronounced within *murinus*

574 G-PhoCS estimated a divergence time of 20.3-37.3 ka ago (95% HPD) between the
575 contact zone area population (*mur*-C) and eastern (*mur*-E) *murinus* populations, whereas the
576 divergence time between western (*mur*-W) and the ancestral southeastern population (*mur*-C
577 + *mur*-E) was inferred to be much older at 162-291 ka ago (Fig. 6A, C). The divergence time
578 between western (*gri*-W) and contact zone area (*gri*-C) *griseorufus* was estimated to be 43.6-
579 79.2 ka ago. Thus, in line with NeighborNet results, considerably more pronounced
580 population structure was detected within *murinus*.

581 Striking differences in N_e between extant populations were inferred, especially in
582 *murinus*, where those of the two southeastern populations (*mur*-E: 13-16 k, *mur*-C: 45-53k)
583 much smaller than that of the western (*mur*-W: 194-205 k) population (Fig. 6A, D).
584 Similarly, in *griseorufus*, the western (*gri*-W: 125-140 k) population was also inferred to be
585 much larger than the southeastern population (*gri*-C: 46-50 k).

586 Overall, divergence time and population size estimates were similar for G-PhoCS models
587 that did and those that did not incorporate gene flow (Fig. 6C, D) and for BPP (with gene
588 flow); above, we presented estimates from G-PhoCS models that did incorporate gene flow.
589 The largest differences were found for the divergence time between *murinus* and *griseorufus*,
590 which was estimated to be 605 (95% HPD: 432-782) ka ago by G-PhoCS without accounting
591 for gene flow, 824 (601-1081) ka ago by G-PhoCS when accounting for gene flow, and 945
592 (679-1238) ka ago by BPP.

593 Discussion

594 We re-examined a contact zone between two species of mouse lemur in southeastern
595 Madagascar, where extensive hybridization had previously been reported based primarily on
596 evidence from microsatellite data (Hapke et al. 2011). With RADseq data, we found no
597 evidence for the presence of admixed individuals, and using simulations and re-analyses of
598 microsatellite data, we showed that previously detected hybrids were likely false positives.
599 By including allopatric populations and performing multispecies coalescent analyses, we
600 furthermore found a general lack of ongoing gene flow, and very low levels of ancestral gene
601 flow, between these two species. We discuss the implications for speciation in mouse lemurs,
602 and for inferring hybridization using microsatellites.

603 Reconciling the lack of evidence for hybrids with microsatellite results

604 We found no admixed nuclear ancestry in any of the individuals from the contact zone.
605 Our data is expected to have high power in species assignment and hybrid detection, given
606 the combination of the relatively high number of genetic markers used (Vähä and Primmer
607 2006; McFarlane and Pemberton 2019) and the pronounced genetic differentiation between
608 these two species (estimated divergence time in a no-migration scenario: ~600 ka ago, *Fig.*
609 6; average F_{ST} in the contact zone area: 0.40, *Table S5*). Furthermore, in a re-analysis of
610 microsatellite data using the same methods as the original studies (Hapke et al. 2011,
611 Lüdemann 2018), though restricted to the individuals used in this study, all but one of the
612 previously detected hybrids were no longer classified as such (*Fig. 3A*).

613 Considering the clear and robust RADseq results, it is highly unlikely that true hybrids
614 were missed in our analyses, even with the more limited sampling of individuals used in this
615 study. Instead, our results suggest specifically that the hybrids inferred in Hapke et al. (2011)
616 were false positives, and more generally, that the inference of hybridization using

617 microsatellites can be sensitive to such false positives, particularly when using the program
618 `NewHybrids`. While simulations showed an overall much lower accuracy of ancestry
619 inference with microsatellites compared to SNPs, STRUCTURE suffered from false negatives
620 only, whereas `NewHybrids` produced 4 false positives among 40 simulated unadmixed
621 individuals (Fig. 3B). Additionally, in our reanalysis of the microsatellite data, the single
622 individual that `NewHybrids` continued to assign hybrid ancestry to did not show signs of
623 admixture using STRUCTURE (Fig. 3A). In Hapke et al. (2011, their Figure 5), STRUCTURE
624 did also not consistently infer admixed ancestry for several of the putative hybrids. This was
625 especially apparent when parapatric populations were included, in which case only 4 out of
626 the 12 `NewHybrids` positives showed admixed ancestry using STRUCTURE (and 3 out of
627 those 4 were still assigned <10% admixed ancestry by STRUCTURE, Hapke et al. 2011, their
628 Figure 5). Even though `NewHybrids` appears considerably more prone to false positives
629 than STRUCTURE, the latter did show admixed ancestry for 7 individuals in an analysis using
630 only individuals from the contact zone site Mangatsiaka (versus 9 with `NewHybrids`).

631 **Ancestral gene flow and the possibility of geographically restricted gene flow**

632 Consistent with the lack of evidence for admixed individuals in contact zone sites, we
633 found a lack of evidence for ongoing gene flow using multiple methods, including a
634 phylogenetic network (Fig. 4A), `Treemix` (Fig. 4B), formal admixture statistics (Fig. 5) and
635 two multispecies coalescent methods (G-PhoCS and BPP, Fig. 6). The latter two methods did
636 indicate some ancestral gene flow between *griseorufus* and the southeastern *murinus*
637 populations as a whole, though these coalescent-based methods also suggested gene flow that
638 is even more ancient (prior to population divergence within *murinus*).

639 In this study, we exclusively used samples from the area studied by Hapke et al. (2011),
640 while the area examined by Gligor et al. (2009), who also inferred hybridization using
641 microsatellites, is located 40 km further south. Based on the results of this study, what can we
642 say about the possibility that hybridization is in fact taking place in that area, given that our
643 coalescent analyses did not detect ongoing gene flow between *griseorufus* and *murinus*?
644 First, the *murinus* population reported to hybridize in Gligor et al. (2009) likely involves a
645 differentiated *Microcebus* population that has recently been split as *M. manitatra* based on
646 patterns of genetic differentiation (Hotaling et al. 2016). Therefore, it is possible that local
647 gene flow in that area remained undetected by our analyses, particularly when occurring from
648 *griseorufus* into *murinus* / *M. manitatra*. However, unaccounted-for genetic differentiation
649 between *murinus* populations may have also impacted the analyses in Gligor et al. (2009),
650 given that their three “reference” populations likely included populations from both of the
651 two recent splits *M. manitatra* and *M. ganzhorni* (Hotaling et al. 2016).

652 We also note that Gligor et al. (2009) used the same 9 microsatellite loci as Hapke et al.
653 (2011) and applied similar analytical methods, although they used `GeneClass` rather than
654 `NewHybrids`. Furthermore, concordance between `STRUCTURE` and `GeneClass` analyses
655 were low (see their Fig. 5). Finally, Gligor et al. (2009) found some evidence that the ecotone
656 populations may form their own cluster. Given the historical isolation at very small scales
657 identified in this region, it is thus feasible that the “ecotone” population has also been
658 isolated, further complicating ancestry inference. All in all, a genomic study using samples
659 from that area is needed to clarify whether hybridization is taking place in the contact zone
660 area studies by Gligor et al. (2009).

661 **Lack of ongoing gene flow and implications for speciation**

662 The presence of at least two individuals with mitonuclear discordance (a *griseorufus*-
663 type mitochondrial haplotype, and *murinus* nuclear DNA) may suggest some ongoing or
664 recent gene flow between the two species. However, we did not detect gene flow between
665 extant *murinus* and *griseorufus* populations using formal admixture statistics (*Fig. 4*) or
666 with coalescent-based demographic modeling (*Fig. 5*). Combined with the lack of evidence
667 for nuclear admixture in the contact zone, and syntopic occurrence at least one of the contact
668 zone sites (*Fig. 2*), these findings strongly suggest that *murinus* and *griseorufus* are
669 currently reproductively isolated.

670 Little is known about the relative importance of different types of reproductive isolation
671 in mouse lemurs. Across their ranges, *murinus* and *griseorufus* occur in distinct habitat types,
672 with *griseorufus* mostly limited to spiny forests that appear to be too arid for *murinus* (Yoder
673 et al. 2002; Rakotondranary and Ganzhorn 2011; Rakotondranary et al. 2011a). Separation by
674 habitat (e.g., Wuesthoff et al. 2021) at larger scales could therefore minimize or even prevent
675 syntopic co-occurrence despite nominal sympatry in the contact zone area, thus limiting
676 interactions between the species. At one of the two sympatric sites included in this study,
677 Tsimelahy, species-specific sampling locations are indeed consistent with separation by
678 habitat, at Mangatsiaka, the two species co-occur even at a very fine spatial scale but despite
679 statistical microhabitat and dietary separation (Rakotondranary and Ganzhorn 2011;
680 Rakotondranary et al. 2011b; *Fig. 2C*). Therefore, the observed lack of gene flow is unlikely
681 to simply be a by-product of separation by habitat, and additional sources of pre- and/or
682 postzygotic reproductive isolation need to be invoked.

683 One potential source of prezygotic reproductive isolation may be related to differences in
684 torpor patterns: *murinus* seems to enter torpor more frequently than *griseorufus* prior to the
685 reproductive period (Rakotondranary and Ganzhorn 2011). In several other cases of mouse

686 lemur sympatry, differences in body size and seasonal timing of reproduction have also been
687 observed (Evasoa et al. 2018). However, the size difference between *murinus* and *griseorufus*
688 is modest, with the former being on average about 10-15% heavier, while it is not presently
689 known whether timing of reproduction differs among sympatric populations (Rakotondranary
690 et al. 2011a). Although divergence times are relatively short, postzygotic incompatibilities
691 may also play a role. More research into sources of reproductive isolation among these and
692 other mouse lemur species is clearly needed.

693 We estimated the divergence time between these two species to be less than 1 million
694 years ago (Fig. 6). Similarly, a recent study estimated that two pairs of sympatric mouse
695 lemur species in northeastern Madagascar each diverged less than 1 ma ago (Poelstra et al.
696 2020). These findings tentatively suggest an *upper bound* for the time to completion of
697 speciation in mouse lemurs of under a million years. By comparison, Curnoe et al. (2006)
698 found that the median estimated divergence time between pairs of naturally hybridizing
699 primate species was 2.9 Ma. These divergence time comparisons are, however, not
700 straightforward: dates for most other primate clades were calculated using fossil-calibrated
701 relaxed clock methods, whereas estimates from this study and Poelstra et al. (2020) are based
702 on coalescent analyses using mutation rates estimated from pedigree studies Poelstra et al.
703 (2020) found large differences between these two types of divergence time estimates for the
704 mouse lemur TMRCA (see also Tiley et al. 2020). Moreover, we here used the recent mouse
705 lemur mutation rate estimate from Campbell et al. (2021)), whereas Poelstra et al. (2020)
706 used a mean primate mutation rate that was 19% lower, leading to relatively older absolute
707 time estimates.

708 Concerns have been raised that mouse lemurs may have undergone oversplitting or
709 “taxonomic inflation” (Tattersall 2007; Markolf et al. 2011). The evidence for relatively rapid
710 speciation discussed above suggests that despite limited genetic differentiation between

711 recently described species, such species may in fact be partially or even fully reproductively
712 isolated. On the other hand, our results suggest that the current taxonomic treatment of *M.*
713 *murinus* is not tenable. Hotaling et al. (2016) recently split two southeastern micro-endemics
714 from *M. murinus*. We estimate that the divergence time between one of these (*M. ganzhorni*)
715 and another southeastern *murinus* population is as recent as ~40 ka ago (Fig. 6). Moreover,
716 divergence between the “western” and “southeastern” population groups was much more
717 ancient, such that *murinus* s.s. is currently paraphyletic. To fully re-evaluate the taxonomy of
718 *murinus* s.l., a study is needed that also includes samples from the other recent split, *M.*
719 *manitatra*, and a broader sampling of western *murinus* (which itself has been shown to
720 contain phylogeographic breaks – Pastorini et al. 2003; Schneider et al. 2010),

721 As per the results of our study, there are as yet no well-documented hybrid zones
722 between mouse lemur species. This is noteworthy given the high diversity of the genus in a
723 relatively small area. On the other hand, and perhaps even more strikingly, there are also
724 relatively few instances of overlapping ranges between mouse lemurs. More generally,
725 factors that limit the tempo of a successful transition of allopatrically speciating lineages into
726 sympatry include interactions between incipient species after contact (e.g., reproductive
727 isolation and competitive exclusion) and processes that limit such contact in the first place
728 (e.g., low dispersal distances). Many mouse lemur species have spatially abutting ranges that
729 are separated by large rivers, which are thought to provide barriers to dispersal for many
730 Malagasy micro-endemics, including mouse lemurs (Martin 1972; Pastorini et al. 2003;
731 Goodman and Ganzhorn 2004; Wilmé et al. 2006; Olivieri et al. 2007). These observations, in
732 combination with the inference of relatively rapid evolution of reproductive isolation (in this
733 study and in Poelstra et al. (2020)) lead us to speculate that dispersal may be a key limiting
734 factor for generating alpha diversity in mouse lemurs.

735 **Contrasting and parallel demographic patterns**

736 Intraspecific genetic differentiation was found to be considerably more pronounced in
737 *murinus* than in *griseorufus*. To some extent, this is not surprising given the large gap in the
738 distribution of *murinus* in southern Madagascar (Fig. 1). Indeed, the deepest split within
739 *murinus* corresponds to differentiation between populations on opposite sides of this large
740 geographic gap, and we estimated the divergence time between these populations to be over
741 200 ka ago (Fig. 6). Perhaps more striking is that differentiation between *murinus*
742 populations within southeastern Madagascar, only ~35 km apart, is similar to that between
743 *griseorufus* from southeastern and southwestern Madagascar, ~275 km apart (Fig. 3A,
744 Table S5). This might be taken to suggest differences in, for example, dispersal distances
745 between the two species. Yet, in comparing sympatric and parapatric sites within the contact
746 zone area (Fig. 1), we found slightly stronger population structure within *griseorufus* (Fig.
747 2, Fig. S12). Therefore, general differences in dispersal patterns between *murinus* and
748 *griseorufus* may not underlie the contrasting patterns of intraspecific differentiation at larger
749 scales. Instead, stronger genetic differentiation in *murinus* may reflect a greater degree of
750 historical isolation of mesic compared to more arid habitats during the Pleistocene, such as
751 the isolation of mesic mountain areas (home to *M. manitatra*) from drier lowland sites during
752 colder periods (Wilmé et al. 2006), or reductions and expansions of the eastern littoral forests
753 during associated fluctuations of the sea level (Virah-Sawmy et al. 2009).

754 For both species, we found large and parallel differences in N_e between extant
755 populations: smaller population sizes were inferred in eastern than in western populations
756 (Fig. 5). Moreover, very similar effective population sizes were inferred for contact zone
757 populations of each species (*mur*-C and *gri*-C, Fig. 5). The overall magnitude of
758 intraspecific differences in N_e was larger in *murinus*, with a more than 10-fold difference
759 between the western (*mur*-W) and the southeastern Mandena population (*mur*-E). The

760 inferred small N_e for the Mandena population (see also Montero et al. 2019) is consistent with
761 this population's habitat: littoral forests are the Madagascar's smallest and most endangered
762 forest ecosystem (Ganzhorn et al. 2001; Virah-Sawmy et al. 2009). Previous studies, which
763 assumed that a narrow coastal strip along the entire eastern coast originally consisted of
764 littoral forest, estimated that ~90% of littoral forests have disappeared due to anthropogenic
765 deforestation (Ganzhorn et al. 2001; Consiglio et al. 2006). More recent studies suggest that
766 the forest was naturally fragmented and interspersed by heathlands, at least during the past
767 6,000 years, and thus prior to human arrival (Virah-Sawmy 2009; Virah-Sawmy et al. 2009).

768 **Conclusions**

769 Using RADseq data, we found no evidence for admixture between two species of mouse
770 lemurs in a contact zone in southern Madagascar. This is in sharp contrast to a previous study
771 that found widespread hybridization among the same samples using microsatellites. Our
772 results suggest that the hybrids inferred by the previous study were likely false positives, and
773 we urge caution when using microsatellites to infer hybridization. Finally, we used coalescent
774 models to show that despite an estimated divergence time of under 1 million years between
775 these two species, interspecific gene flow only took place between ancestral populations and
776 has long ago ceased towards the present.

777 **Acknowledgments**

778 We would like to thank Ryan Campbell, Peter Larsen, and Kelsie Hunnicutt for their help
779 with the planning of the RADseq, Anne Veillet for help with RADseq library preparation, and
780 Tobias L. Lenz for comments on an earlier version of the manuscript.

781 Financial support has been provided by the Deutsche Forschungsgemeinschaft (DFG Ga
782 342/19), the Landesforschungsförderung Hamburg, and an Award of the Humboldt
783 Foundation to ADY.

784 Field work has been carried out under the Accord de Collaboration between Madagascar
785 National Parks, the University of Antananarivo and the University of Hamburg.

786 **Data Availability**

787 Raw sequence data will be made available through the NCBI. Processed data, such as
788 VCF and FASTA files, will be made available through the Dryad Digital Repository. All code
789 used to run the analyses and produce the figures in this manuscript can be found on GitHub at
790 https://github.com/jelmerp/lemurs_contactzone_grimur.

791 **References**

Alexander D.H., Novembre J., Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* 19:1655–1664.

Ali O.A., O'Rourke S.M., Amish S.J., Meek M.H., Luikart G., Jeffres C., Miller M.R. 2016. RAD capture (Rapture): Flexible and efficient sequence-based genotyping. *Genetics*. 202:389–400.

Anderson E.C., Thompson E.A. 2002. A model-based method for identifying species hybrids using multilocus genetic data. *Genetics*. 160:1217–1229.

Arlettaz R. 1999. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species *Myotis myotis* and *Myotis blythii*. *Journal of Animal Ecology*. 68:460–471.

Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*. 30:2114–2120.

Braune P., Schmidt S., Zimmermann E. 2008. Acoustic divergence in the communication of cryptic species of nocturnal primates (*Microcebus* ssp.). *BMC Biology*. 6:19.

Campbell C.R., Tiley G.P., Poelstra J.W., Hunnicutt K.E., Larsen P.A., Lee H.-J., Thorne J.L., dos Reis M., Yoder A.D. 2021. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. *Heredity*. 127:233–244.

Case T.J., Holt R.D., McPeek M.A., Keitt T.H. 2005. The community context of species' borders: ecological and evolutionary perspectives. *Oikos*. 108:28–46.

Coates D.J., Byrne M., Moritz C. 2018. Genetic Diversity and Conservation Units: Dealing With the Species-Population Continuum in the Age of Genomics. *Front. Ecol. Evol.*

Consiglio T., Schatz G.E., McPherson G., Lowry P.P., Rabenantoandro J., Rogers Z.S., Rabevohitra R., Rabehevitra D. 2006. Deforestation and plant diversity of Madagascar's littoral forests. *Conserv. Biol.* 20:1799–1803.

Curnoe D., Thorne A., Coate J.A. 2006. Timing and tempo of primate speciation. *J. Evol. Biol.* 19:59–65.

DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y., Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics*. 43:491–498.

Dincă V., Lee K.M., Vila R., Mutanen M. 2019. The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. *Proc. R. Soc. Lond. B Biol. Sci.* 286:20191311.

Estevo C.A., Nagy-Reis M.B., Nichols J.D. 2017. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. *PLOS ONE*. 12:e0179489.

Evasoa M.R., Radespiel U., Hasiniaina A.F., Rasoloharijaona S., Randrianambinina B., Rakotondravony R., Zimmermann E. 2018. Variation in reproduction of the smallest-bodied primate radiation, the mouse lemurs (*Microcebus* spp.): A synopsis. *Am. J. Primatol.* 80:e22874.

Flouri T., Jiao X., Rannala B., Yang Z. 2020. A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. *Mol Biol Evol.* 37:1211–1223.

Ganzhorn J.U., Lowry P.P., Schatz G.E., Sommer S. 2001. The biodiversity of Madagascar: one of the world's hottest hotspots on its way out. *Oryx.* 35:346–348.

Gligor M., Ganzhorn J.U., Rakotondravony D., Ramilijaona O.R., Razafimahatratra E., Zischler H., Hapke A. 2009. Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. *Molecular Ecology.* 18:520–533.

Goodman S.M., Ganzhorn J.U. 2004. Biogeography of lemurs in the humid forests of Madagascar: the role of elevational distribution and rivers. *Journal of Biogeography.* 31:47–55.

Gronau I., Hubisz M.J., Gulko B., Danko C.G., Siepel A. 2011. Bayesian inference of ancient human demography from individual genome sequences. *Nat. Genet.* 43:1031–1034.

Gurnell J., Wauters L.A., Lurz P.W.W., Tosi G. 2004. Alien species and interspecific competition: effects of introduced eastern grey squirrels on red squirrel population dynamics. *Journal of Animal Ecology.* 73:26–35.

Hapke A., Gligor M., Rakotondranary S.J., Rosenkranz D., Zupke O. 2011. Hybridization of mouse lemurs: different patterns under different ecological conditions. *BMC Evolutionary Biology.* 11:297.

Hasiniaina A.F., Radespiel U., Kessler S.E., Evasoa M.R., Rasoloharijaona S., Randrianambinina B., Zimmermann E., Schmidt S., Scheumann M. 2020. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (*Microcebus* spp.). *Ecology and Evolution.* 10:3784–3797.

Heckman K.L., Mariani C.L., Rasoliarison R., Yoder A.D. 2007. Multiple nuclear loci reveal patterns of incomplete lineage sorting and complex species history within western mouse lemurs (*Microcebus*). *Mol. Phylogenet. Evol.* 43:353–367.

Hewitt G.M. 2000. The genetic legacy of the Quaternary ice ages. *Nature.* 405:907–913.

Hewitt G.M. 2001. Speciation, hybrid zones and phylogeography - or seeing genes in space and time. *Mol Ecol.* 10:537–549.

Hopkins R., Rausher M.D. 2012. Pollinator-Mediated Selection on Flower Color Allele Drives Reinforcement. *Science.* 335:1090–1092.

Hoskin C.J., Higgle M., McDonald K.R., Moritz C. 2005. Reinforcement drives rapid allopatric speciation. *Nature.* 437:1353–1356.

Hotaling S., Foley M.E., Lawrence N.M., Bocanegra J., Blanco M.B., Rasoliarison R., Kappeler P.M., Barrett M.A., Yoder A.D., Weisrock D.W. 2016. Species discovery and validation in a cryptic radiation of endangered primates: coalescent-based species delimitation in Madagascar's mouse lemurs. *Mol Ecol.* 25:2029–2045.

Hundsdoerfer A.K., Lee K.M., Kitching I.J., Mutanen M. 2019. Genome-wide SNP data reveal an overestimation of species diversity in a group of hawkmoths. *Genome Biol. Evol.* 11:2136–2150.

Hunnicutt K.E., Tiley G.P., Williams R.C., Larsen P.A., Blanco M.B., Rasolosarison R.M., Campbell C.R., Zhu K., Weisrock D.W., Matsunami H., Yoder A.D. 2020. Comparative genomic analysis of the pheromone receptor class 1 family (V1R) reveals extreme complexity in mouse lemurs (Genus, *Microcebus*) and a chromosomal hotspot across mammals. *Genome Biol. Evol.* 12:3562–3579.

Huson D.H., Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies. *Mol. Biol. Evol.* 23:254–267.

Jakobsson M., Rosenberg N.A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics.* 23:1801–1806.

Kearns A.M., Restani M., Szabo I., Schröder-Nielsen A., Kim J.A., Richardson H.M., Marzluff J.M., Fleischer R.C., Johnsen A., Omland K.E. 2018. Genomic evidence of speciation reversal in ravens. *Nature Communications.* 9:906.

Kim B.Y., Wei X., Fitz-Gibbon S., Lohmueller K.E., Ortego J., Gugger P.F., Sork V.L. 2018. RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (*Quercus* sect. *Quercus*: Fagaceae). *Mol. Ecol.* 27:4556–4571.

Knief U., Bossu C.M., Saino N., Hansson B., Poelstra J.W., Vijay N., Weissensteiner M., Wolf J.B.W. 2019. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. *Nat Ecol Evol.* 3:570–576.

Kollikowski A., Zimmermann E., Radespiel U. 2019. First experimental evidence for olfactory species discrimination in two nocturnal primate species (*Microcebus lehilahysara* and *M. murinus*). *Scientific Reports.* 9:20386.

Larsen P.A., Harris R.A., Liu Y., Murali S.C., Campbell C.R., Brown A.D., Sullivan B.A., Shelton J., Brown S.J., Raveendran M., Dudchenko O., Machol I., Durand N.C., Shamim M.S., Aiden E.L., Muzny D.M., Gibbs R.A., Yoder A.D., Rogers J., Worley K.C. 2017. Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (*Microcebus murinus*). *BMC Biology.* 15:110.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv:1303.3997 [q-bio]*.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics.* 25:2078–2079.

Louis E.E., Coles M.S., Andriantompohavana R., Sommer J.A., Engberg S.E., Zaonarivelo J.R., Mayor M.I., Brenneman R.A. 2006. Revision of the mouse lemurs (*Microcebus*) of eastern Madagascar. *Int. J. Primatol.* 27:347–389.

Lüdemann J. 2018. Re-assessment of a lemur hybrid zone using mitochondrial and nuclear data. BSc thesis, Universität Hamburg.

Markolf M., Brameier M., Kappeler P.M. 2011. On species delimitation: Yet another lemur species or just genetic variation? *BMC Evol. Biol.* 11:216.

Martin R. 1972. A preliminary field-study of the lesser mouse lemur (*Microcebus murinus* J. F. Miller 1777). *Z. Tierpsychol.* 9:43–89.

McFarlane S.E., Pemberton J.M. 2019. Detecting the True Extent of Introgression during Anthropogenic Hybridization. *Trends in Ecology & Evolution*. 34:315–326.

Morris D.W. 1996. Coexistence of Specialist and Generalist Rodents Via Habitat Selection. *Ecology*. 77:2352–2364.

O’Leary S.J., Puritz J.B., Willis S.C., Hollenbeck C.M., Portnoy D.S. 2018. These aren’t the loci you’re looking for: Principles of effective SNP filtering for molecular ecologists. *Mol. Ecol.* 27:3193–3206.

Olivieri G., Zimmermann E., Randrianambinina B., Rasoloharijaona S., Rakotondravony D., Guschanski K., Radespiel U. 2007. The ever-increasing diversity in mouse lemurs: three new species in north and northwestern Madagascar. *Mol. Phylogenet. Evol.* 43:309–327.

Pastorini J., Thalmann U., Martin R.D. 2003. A molecular approach to comparative phylogeography of extant Malagasy lemurs. *Proc. Natl. Acad. Sci. U.S.A.* 100:5879–5884.

Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster T., Reich D. 2012. Ancient admixture in human history. *Genetics*. 192:1065–1093.

Payseur B.A. 2010. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. *Molecular Ecology Resources*. 10:806–820.

Perry W.L., Feder J.L., Dwyer G., Lodge D.M. 2001. Hybrid Zone Dynamics and Species Replacement Between *Orconectes* Crayfishes in a Northern Wisconsin Lake. *Evolution*. 55:1153–1166.

Pickrell J.K., Pritchard J.K. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. *PLOS Genetics*. 8:e1002967.

Piry S., Alapetite A., Cornuet J.-M., Paetkau D., Baudouin L., Estoup A. 2004. GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. *J Hered.* 95:536–539.

Powell D.L., García-Olazábal M., Keegan M., Reilly P., Du K., Díaz-Loyo A.P., Banerjee S., Blakkan D., Reich D., Andolfatto P., Rosenthal G.G., Schartl M., Schumer M. 2020. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. *Science*. 368:731–736.

Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data. *Genetics*. 155:945–959.

Radespiel U. 2016. Can behavioral ecology help to understand the divergent geographic range sizes of mouse lemurs? In: Lehman S., Radespiel U., Zimmermann E., editors. *The Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the Cheirogaleidae*. Cambridge, UK: Cambridge University Press. p. 498–519.

Radespiel U., Lutermann H., Schmelting B., Zimmermann E. 2019. An empirical estimate of the generation time of mouse lemurs. *Am. J. Primatol.* 81:e23062.

Radespiel U., Olivieri G., Rasolofoson D.W., Rakotondratsimba G., Rakotonirainy O., Rasoloharijaona S., Randrianambinina B., Ratsimbazafy J.H., Ratelolahy F.,

Randriamboavonjy T., Rasolofoharivel T., Cral M., Rakotozafy L., Randrianarison R.M. 2008. Exceptional diversity of mouse lemurs (*Microcebus* spp.) in the Makira region with the description of one new species. *Am. J. Primatol.* 70:1033–1046.

Rochette N.C., Rivera-Colón A.G., Catchen J.M. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. *Molecular Ecology.* 28:4737–4754.

Schmelting B. 2000. Reproduction of two sympatric mouse lemur species (*Microcebus murinus* and *M. ravelobensis*) in northwest Madagascar: first results of a long term study. *Diversité et Endémisme à Madagascar - Mémoires de la Société de Biogéographie.* Paris: Société de Biogéographie.

Schneider N., Chikhi L., Currat M., Radespiel U. 2010. Signals of recent spatial expansions in the grey mouse lemur (*Microcebus murinus*). *BMC Evolutionary Biology.* 10:105.

Schüßler D., Blanco M.B., Salmona J., Poelstra J.W., Andriambeloson J.B., Miller A., Randrianambinina B., Rasolofoson D.W., Mantilla-Contreras J., Chikhi L., Louis E.E., Yoder A.D., Radespiel U. 2020. Ecology and morphology of mouse lemurs (*Microcebus* spp.) in a hotspot of microendemism in northeastern Madagascar, with the description of a new species. *American Journal of Primatology.* 82:e23180.

Setash C.M., Zohdy S., Gerber B.D., Karanewsky C.J. 2017. A biogeographical perspective on the variation in mouse lemur density throughout Madagascar. *Mammal Review.* 47:212–229.

Sgarlata G.M., Salmona J., Pors B.L., Rasolondraibe E., Jan F., Ralantoharijaona T., Rakotonanahary A., Randriamaroson J., Marques A.J., Aleixo-Pais I., Zoeten T. de, Oussen D.S.A., Knoop S.B., Teixeira H., Gabillaud V., Miller A., Iboouroi M.T., Rasoloharijaona S., Zaonarivelo J.R., Andriaholinirina N.V., Chikhi L. 2019. Genetic and morphological diversity of mouse lemurs (*Microcebus* spp.) in northern Madagascar: The discovery of a putative new species? *Am. J. Primatol.* 81:e23070.

Sommer S., Rakotondranary S.J., Ganzhorn J.U. 2014. Maintaining microendemic primate species along an environmental gradient – parasites as drivers for species differentiation. *Ecol Evol.* 4:4751–4765.

Tattersall I. 2007. Madagascar's lemurs: Cryptic diversity or taxonomic inflation? *Evolutionary Anthropology: Issues, News, and Reviews.* 16:12–23.

Tiley, G.P., Poelstra, J.W., Dos Reis, M., Yang, Z. and Yoder, A.D., 2020. Molecular clocks without rocks: new solutions for old problems. *Trends in Genetics.* 36: 845–856.

Vähä J.-P., Primmer C.R. 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. *Molecular Ecology.* 15:63–72.

Virah-Sawmy M. 2009. Ecosystem management in Madagascar during global change. *Conservation Letters.* 2:163–170.

Virah-Sawmy M., Gillson L., Willis K.J. 2009. How does spatial heterogeneity influence resilience to climatic changes? *Ecological dynamics in southeast Madagascar.* *Ecological Monographs.* 79:557–574.

Weisrock D.W., Rasoliarison R.M., Fiorentino I., Ralison J.M., Goodman S.M., Kappeler P.M., Yoder A.D. 2010. Delimiting species without nuclear monophyly in Madagascar's mouse lemurs. *PLoS ONE.* 5:e9883.

Wilmé L., Goodman S.M., Ganzhorn J.U. 2006. Biogeographic evolution of Madagascar's microendemic biota. *Science*. 312:1063–1065.

Wisz M.S., Pottier J., Kissling W.D., Pellissier L., Lenoir J., Damgaard C.F., Dormann C.F., Forchhammer M.C., Grytnes J.-A., Guisan A., Heikkinen R.K., Høye T.T., Kühn I., Luoto M., Maiorano L., Nilsson M.-C., Normand S., Öckinger E., Schmidt N.M., Termansen M., Timmermann A., Wardle D.A., Aastrup P., Svenning J.-C. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. *Biological Reviews*. 88:15–30.

Wringe B.F., Stanley R.R.E., Jeffery N.W., Anderson E.C., Bradbury I.R. 2017. hybriddetective: A workflow and package to facilitate the detection of hybridization using genomic data in r. *Mol Ecol Resour*. 17:e275–e284.

Wuesthoff E.F., Fuller T.K., Sutherland C., Kamilar J.M., Ramanankirahina R., Rakotondravony R., et al. 2021. Differential habitat use by sympatric species of mouse lemurs across a mangrove–dry forest habitat gradient. *Journal of Mammalogy*.

Yoder A.D., Campbell C.R., Blanco M.B., Reis M. dos, Ganzhorn J.U., Goodman S.M., Hunnicutt K.E., Larsen P.A., Kappeler P.M., Rasoloarison R.M., Ralison J.M., Swofford D.L., Weisrock D.W. 2016. Geogenetic patterns in mouse lemurs (genus *Microcebus*) reveal the ghosts of Madagascar's forests past. *Proc. Natl. Acad. Sci. U.S.A.* 113:8049–8056.

Zheng X., Levine D., Shen J., Gogarten S.M., Laurie C., Weir B.S. 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. *Bioinformatics*. 28:3326–3328.

Zohdy S., Gerber B.D., Tecot S., Blanco M.B., Winchester J.M., Wright P.C., Jernvall J. 2014. Teeth, sex, and testosterone: aging in the world's smallest primate. *PLoS ONE*. 9:e109528.