

1      **Tissue-based IL-10 signalling in helminth infection limits**  
2      **IFN $\gamma$  expression and promotes the intestinal Th2 response**

3  
4

5      Holly C. Webster<sup>1,2</sup>, Virginia Gamino<sup>3</sup>, Amy L. Shergold<sup>1,2</sup>, Anna T. Andrusaitė<sup>1</sup>, Graham A. Heieis<sup>1,2</sup>,  
6      Simon W. F. Milling<sup>1</sup>, Rick M. Maizels<sup>2</sup>, Georgia Perona-Wright<sup>1,2</sup>

7

8      <sup>1</sup> *Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of*  
9      *Glasgow, Glasgow, UK*

10     <sup>2</sup> *Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation,*  
11     *University of Glasgow, Glasgow, UK*

12     <sup>3</sup> *Department of Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University*  
13     *of Madrid, Madrid, Spain*

14

15

16     Corresponding author:  
17     Dr Georgia Perona-Wright,  
18     Institute of Infection, Immunity and Inflammation,  
19     University of Glasgow,  
20     120 University Place,  
21     Glasgow, G12 8TA,  
22     Scotland, UK.  
23     Phone: +44 (0)141 330 5844  
24     Email: [georgia.perona-wright@glasgow.ac.uk](mailto:georgia.perona-wright@glasgow.ac.uk)

25

26

27     **Disclosures:**

28     All authors state that they have no conflicts of interest in the content of this manuscript.

29

## 30 **Abstract**

31 Type 2 immunity is activated in response to both allergens and helminth infection. It can be  
32 detrimental or beneficial, and there is a pressing need to better understand its regulation. The  
33 immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is  
34 currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we  
35 show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and  
36 the draining mesenteric lymph node, with higher expression in the infected tissue. *In vitro*,  
37 exogenous IL-10 enhanced Th2 differentiation in isolated CD4<sup>+</sup> T cells, increasing expression of  
38 GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided  
39 with its suppression of IFN $\gamma$  expression and, *in vivo*, we found that, in intestinal helminth infection,  
40 IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same  
41 tissue, or on any Th cell in the draining lymph node. *In vivo* blockade of IL-10 signalling during  
42 helminth infection resulted in an expansion of IFN $\gamma$ <sup>+</sup> and Tbet<sup>+</sup> Th1 cells in the small intestine and  
43 caused a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. Together our  
44 data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in  
45 part by regulating competing Th1 cells in the infected tissue.

46

## 47 1 Introduction

48 Gastrointestinal helminths infect more than 1.5 billion people per year<sup>1</sup> and type 2 immune  
49 responses are critical for parasite expulsion<sup>2, 3</sup> and subsequent wound healing<sup>4</sup>. The same type 2  
50 responses can be harmful in contexts such as allergy and atopic asthma<sup>5</sup>. Better understanding of  
51 type 2 immunity is important both to optimise anti-helminthic strategies, such as vaccination, and to  
52 accelerate new therapeutic approaches to atopic diseases. Type 2 immunity is initiated when  
53 antigen or allergen exposure coincides with the release of alarmins such as interleukin (IL) -25, IL-33  
54 or thymic stromal lymphopoietin (TSLP)<sup>6</sup>. Alarmins promote the activation of type 2 innate lymphoid  
55 cells (ILC2) and the recruitment and activation of dendritic cells (DCs) that direct T helper 2 (Th2) cell  
56 differentiation<sup>7-9</sup>. Th2 cells secrete cytokines such as IL-4, IL-5 and IL-13, which drive further Th2  
57 polarisation, direct B cell class-switching, recruit effector cells such as eosinophils, basophils and  
58 mast cells, and stimulate goblet cell hyperplasia, mucus secretion, epithelial turnover and increased  
59 smooth muscle reactivity<sup>10, 11</sup>. Th2 cytokines show spatial patterning, with IL-4 concentrated in the  
60 lymph node and IL-5 and IL-13 in the effector tissues<sup>12-15</sup>, reflecting the timing of their production,  
61 and their distinct target cells<sup>16</sup>. If cytokine production becomes chronic or excessive, type 2  
62 immunity can drive fibrosis, scar formation and loss of tissue function. Regulatory mechanisms are  
63 therefore an inherent part of type 2 immunity, balancing protective immunity and  
64 immunopathology.

65 IL-10 is a key regulatory cytokine. It was first described as a Th2 effector cytokine, secreted by  
66 isolated Th2 clones<sup>17, 18</sup>. Neonates have a Th2 bias that correlates with high expression of IL-10<sup>19, 20</sup>.  
67 DC-derived IL-10 has been reported to promote antigen-specific Th2 responses in a model of allergic  
68 dermatitis<sup>21</sup>, and IL-10-dependent induction of STAT3 and Blimp-1 has recently been shown to be  
69 essential for the development of inflammatory Th2 cells in the lung during asthma<sup>22, 23</sup>. IL-10 has also  
70 been reported to support antibody isotype switching<sup>24</sup> and to amplify mast cell activity<sup>25-27</sup>.

71 However, IL-10 is known foremost as a suppressive cytokine, particularly in Th1 responses. IL-10-  
72 deficient mice develop spontaneous colitis<sup>28</sup>, driven by exaggerated IFN $\gamma$  and IL-17 responses to  
73 commensal bacteria<sup>29-31</sup>. Protozoan, viral and bacterial infections in IL-10-deficient mice also show  
74 potent increases in Th1 and Th17 cytokines, associated with rapid pathogen clearance but also with  
75 acute and often fatal immunopathology<sup>32-34</sup>. The original description of IL-10 as a Th2 effector  
76 molecule *in vitro* may reflect its ability to limit Th1 differentiation, especially *in vitro* where Th1 and  
77 Th2 responses are mutually antagonistic<sup>18</sup>. The impact of IL-10 on Th2 responses *in vivo*, in the  
78 context of mixed T cell responses, is less clear.

79 IL-10 expression increases in the draining lymph node during infection with the murine helminth  
80 *Heligmosomoides polygyrus*<sup>35-37</sup>, and it is essential for host survival during infection with the  
81 whipworm *Trichuris muris*<sup>38</sup>. The Th2 response to *Nippostrongylus brasiliensis* infection also requires  
82 IL-4 dependent IL-10 signalling<sup>39</sup>. IL-10 has different effects at different stages of *Trichinella spiralis*  
83 infection, promoting intestinal mast cell accumulation and clearance of adult worms, but  
84 suppressing the immune response against larvae encysted in peripheral muscle<sup>25</sup>. The tissue location  
85 of IL-10 activity may be influential. The impact of IL-10 is dependent on timing, location and cell  
86 type<sup>34, 40</sup> and yet the cells that IL-10 targets at the site of helminth infection, and the intestinal  
87 networks by which it acts, are still uncertain. Previous studies of T cell regulation during helminth  
88 infection have focused on lymph node responses, limited by the technical difficulties created by the  
89 extensive mucus production, oedema, and tissue fragility in the helminth-infected gut. We and  
90 others recently published new protocols for successful isolation of intestinal immune cells during  
91 active type 2 immune responses<sup>40-42</sup>. Here, we have used these technical advances to interrogate the  
92 impact of IL-10 on the regulation of the Th2 immune response in the infected tissue during an  
93 enteric helminth infection.

94 Our data show that, during infection with the intestinal helminth parasite *H. polygyrus*, IL-10 is a  
95 striking feature of the immune response in the infected intestinal tissue. We demonstrate *in vitro*

96 that IL-10 promotes Th2 cytokine expression in unpolarised cells in part by suppressing IFN $\gamma$   
97 expression. We show *in vivo* that *H. polygyrus* infection includes an intestinal Th1 response that is  
98 limited by direct IL-10 signalling. Surface expression of the IL-10 receptor was higher on Th1 cells in  
99 the infected small intestine than on Th2 cells locally or in the draining lymph node, and *in vivo*  
100 blockade of IL-10 signalling during *H. polygyrus* infection resulted in enhanced Th1 and reduced Th2  
101 activity in the small intestine. Together our data suggest a regulatory loop in helminth-infected,  
102 intestinal tissue in which IL-10 suppresses competing Th1 cells to promote Th2 immunity.

103

104

105 **2 Results**

106

107 *IL-10 expression increases in *H. polygyrus* infection and is higher in the small intestine than the*  
108 *draining lymph node*

109 To investigate the impact of IL-10 on the immune response to intestinal helminth infection, we first  
110 assessed the location of IL-10 expression during infection with the enteric roundworm,  
111 *Heligmosomoides polygyrus*. IL-10 production has previously been shown to increase during *H.*  
112 *polygyrus* infection in cells of the draining, mesenteric lymph node (MLN)<sup>35-37, 43</sup>. Using IL-10 reporter  
113 mice<sup>44, 45</sup>, we saw a significant increase in the percentage of CD45<sup>+</sup> IL-10<sup>+</sup> cells upon infection in the  
114 MLN (**Figure 1A**) but also in the small intestine lamina propria (SILP). Expression was significantly  
115 higher in the small intestine compared with MLN (**Figure 1A**). We then analysed the cells producing  
116 IL-10 in both the SILP and MLN. Our gating strategies are shown in figures S1 and S2. In the SILP, the  
117 percentage of CD8<sup>+</sup> T cells, B cells and ILCs expressing IL-10 increased at day 7 (D7) post-infection  
118 with *H. polygyrus* compared to naïve controls, whereas the proportion of IL-10<sup>+</sup> CD4<sup>+</sup> T cells  
119 remained unchanged and there was a small decrease in IL-10<sup>+</sup> myeloid cells (**Figure 1A-F**). In the  
120 MLN, the percentage of IL-10<sup>+</sup> CD8<sup>+</sup> T cells, CD4<sup>+</sup> T cells and ILCs increased upon infection, while both  
121 IL-10<sup>+</sup> B cells and myeloid cells remained unchanged between naïve and infected samples (**Figure 1D**  
122 & **1F**). IL-10 expression in both naïve and infected mice was higher in the SILP compared to the MLN  
123 in all cell types (**Figure 1A-F**). We then compared the contribution of each cell type to the total IL-10<sup>+</sup>  
124 population (**Figure 1G-H**). In the SILP, CD4<sup>+</sup> T cells and myeloid cells made up the majority of CD45<sup>+</sup>  
125 IL-10<sup>+</sup> cells in both naïve and infected mice. The proportion of IL-10<sup>+</sup> cells that were CD8<sup>+</sup> T cells also  
126 expanded in the SILP during infection (**Figure 1G**). In the MLN, CD4<sup>+</sup> T cells were the dominant  
127 population of CD45<sup>+</sup> IL-10<sup>+</sup> cells in both naïve and infected animals, although the proportion of B  
128 cells and ILCs within the IL-10<sup>+</sup> pool increased slightly upon infection (**Figure 1H**). Together, these

129 data show multiple sources of IL-10 active during *H. polygyrus* infection and demonstrate high IL-10  
130 expression at the site of infection, in the SILP.

131

132 *IL-10 enhances Th2 differentiation in vitro*

133 To determine the functional importance of IL-10 expression during *H. polygyrus* infection, we first  
134 considered whether direct IL-10 signalling to CD4<sup>+</sup> T cells could contribute to Th2 polarisation. We  
135 stimulated purified CD4<sup>+</sup> T cells with αCD3, αCD28 and IL-2 *in vitro* (Th0 cultures) (Figure S3) and  
136 added recombinant IL-10. The presence of IL-10 caused a significant increase in the expression of  
137 GATA3, IL-5 and IL-13 (Figure 2A & B), showing that, in an unpolarised CD4<sup>+</sup> T cell, IL-10 can enhance  
138 Th2 differentiation. When we added IL-10 to polarised Th2 cell cultures (CD4<sup>+</sup> T cells stimulated with  
139 αCD3, αCD28, IL-2, IL-4 and anti-IFNγ), the presence of IL-10 did not result in a further significant  
140 increase in expression of GATA3 or of the effector cytokines IL-5 and IL-13 (Figure 2C & D), perhaps  
141 reflecting the high levels of these cytokines already produced under polarising conditions. The  
142 impact of IL-10 in enhancing Th2 differentiation in Th0 cultures appeared to be on polarisation  
143 rather than on activation or proliferation, since neither CD44, CD69 nor cell division were  
144 significantly different in Th0 cells cultured in the presence or absence of IL-10 (Figure 2E, F, G).  
145 Together, these data show that IL-10 can act directly on CD4<sup>+</sup> T cells to promote Th2 polarisation,  
146 particularly in sub-maximal polarisation conditions, and that this occurs independently of activation  
147 and proliferation.

148

149 *Th2 induction by IL-10 in vitro coincides with suppression of IFNγ*

150 An inverse relationship between IL-10 and IFNγ has been well described<sup>18, 33, 46-48</sup>, and we next aimed  
151 to determine if the Th2 skewing effects of IL-10 could be due to IFNγ-mediated suppression. The  
152 addition of exogenous IL-10 decreased IFNγ expression in the unpolarised Th0 cells, as well as in

153 polarised Th1 cultures (purified CD4<sup>+</sup> T cells stimulated with  $\alpha$ CD3,  $\alpha$ CD28 IL-2 and IL-12) (**Figure 3A**).  
154 We then treated Th0 cells with or without IL-10 while blocking IFN $\gamma$  signalling, using an anti-IFN $\gamma$   
155 antibody, to test whether the absence of IFN $\gamma$  signalling could replicate the Th2 polarisation induced  
156 by IL-10 alone. Indeed, Th0 cells cultured without IL-10 but in the absence of IFN $\gamma$  signalling showed  
157 equivalent Th2 polarisation to Th0 cells stimulated with IL-10 alone (**Figure 3B**). However, dual  
158 treatment of Th0 cells with IL-10 and anti-IFN $\gamma$  was synergistic and induced higher secretion of IL-5  
159 and IL-13 than each intervention alone (**Figure 3B**). Interestingly, the partial reduction in IFN $\gamma$   
160 production seen even in strongly polarised Th1 cultures (**Figure 3A**) also corresponded with a  
161 rebound in IL-13 expression (**Figure 3C**), although any increase in IL-5 expression did not reach  
162 statistical significance (**Figure 3C**). Together, these data suggest that the ability of IL-10 to enhance  
163 Th2 polarisation correlates with its ability to limit IFN $\gamma$  expression.

164

165 *In the infected intestine, IL-10 receptor expression is higher on Th1 cells than Th2*  
166 Our *in vitro* data suggested that IL-10 may promote the Th2 response in part by suppressing IFN $\gamma$ . To  
167 compare the potential IL-10 responsiveness of Th1 and Th2 cells *in vivo*, we first measured the  
168 expression of IL-10R1, which has been shown to correlate closely with changes in cellular  
169 responsiveness to IL-10<sup>48, 49</sup>. We infected B6.4get IL-4 reporter mice<sup>50</sup> with *H. polygyrus* and  
170 identified Th cell subsets using CXCR3 as a marker of Th1 cells and IL-4-GFP as an indicator of Th2  
171 cells. Our gating and isotype controls are shown in supplementary figures S4-S6. As expected in a  
172 helminth infection, the frequency and number of IL-4<sup>+</sup> CD4<sup>+</sup> Th2 cells increased in both the MLN and  
173 small intestine upon *H. polygyrus* infection (**Figure 4A & B**). We were able to define a small  
174 population of CXCR3<sup>+</sup> CD4<sup>+</sup> Th1 cells in the MLN and SLP (**Figure 4A & B**), the frequency of which  
175 decreased in both the MLN and small intestine as the Th2 cells expanded (**Figure 4A & B**). Both  
176 CXCR3<sup>+</sup> Th1 cells and IL-4/GFP<sup>+</sup> Th2 cells appeared activated, as indicated by scatter profile (**Figure**  
177 **4C**) and expression of CD44 (**Figure 4D**). CXCR3<sup>+</sup> CD4<sup>+</sup> Th1 cells in the small intestine showed

178 significantly higher expression of IL-10R1 than Th2 cells, both in frequency and intensity, in infected  
179 and uninfected animals (**Figure 4E-G**). IL-10R1 expression was significantly higher on Th1 cells in the  
180 intestine than in the draining MLN, while the lower level of IL-10R1 expression on Th2 cells was  
181 similar in both tissues (**Figure 4E-G**). These data indicate that high IL-10R expression is a feature of  
182 Th1 cells in the small intestinal mucosa, but not in the draining LN, even during intestinal helminth  
183 infection.

184

185 *IL-10 signalling blockade in helminth infection leads to Th1 expansion in the infected tissue*  
186 Our data so far had shown that IL-10 expression and IL-10 receptor expression were both  
187 concentrated at the site of infection and suggested that the primary T cell target of IL-10 signalling  
188 during *H. polygyrus* infection may be Th1 cells in the small intestine. To test the impact of IL-10  
189 during infection, we disrupted signalling using a blocking antibody against the IL-10R1. IL-10  
190 blockade during *H. polygyrus* infection caused an increase in the frequency and number of IFN $\gamma$ <sup>†</sup>  
191 CD4<sup>+</sup> CD44<sup>hi</sup> Th1 cells in the intestinal tissue (**Figure 5 A - C**), but no change in the draining MLN  
192 (**Figure 5D**). Staining for Tbet<sup>+</sup> CD4<sup>+</sup> CD44<sup>hi</sup> Th1 cells gave the same result (**Figure 5A - D**). These data  
193 indicate that, during *H. polygyrus* infection, IL-10 acts to limit Th1 expansion and IFN $\gamma$  expression in  
194 the small intestine.

195

196 *Immune competition in the small intestine during *H. polygyrus* infection is regulated by IL-10*  
197 Our observation that IL-10 controls IFN $\gamma$  expression in the small intestine during *H. polygyrus*  
198 infection prompted two hypotheses. The first was that IL-10 signalling might regulate tissue  
199 pathology. *H. polygyrus* causes only limited pathology in laboratory mice<sup>51-53</sup>, but parasite larvae  
200 cross the intestinal wall twice during infection: by day 2 they penetrate into the sub-mucosa, where  
201 they encyst, mature and moult; and again at D7-8 as the adult worms move back into the intestinal

202 lumen, where they persist by twisting themselves around the surface of the host villi. We predicted  
203 that, at D7, the effect of the enhanced  $\text{IFN}\gamma$  expression in the absence of IL-10 signalling would be to  
204 exaggerate pathology around the encysted larvae or at sites of epithelial disruption. In contrast, our  
205 data showed that IL-10 blockade had little effect on intestinal pathology at this timepoint. In  
206 infected animals, the severity of inflammation was very variable among areas of the tissue sampled,  
207 varying from very mild and mostly mucosal at sites distant from the parasite (**Figure 6A, top row**), to  
208 severe and submucosal around the encysted parasites (**Figure 6A, bottom left**). Comparing  
209 pathology in infected animals treated with IL-10R1 blocking mAb versus those infected but given the  
210 isotype control did not reveal any significant differences (**Figure 6A, bottom row**). When we  
211 quantified the histology sections, infection was associated with an increase in both combined  
212 inflammation and inflammation depth score, but there was no difference in pathology between mice  
213 that were infected with or without disrupted IL-10 signalling (**Figure 6B - C**).

214

215 Our second hypothesis was that the impact of IL-10 during *H. polygyrus* infection would be to reduce  
216 immune competition between Th1 and Th2 cell subsets and thus allow the Th2 response to expand.  
217 To assess this, we repeated the infection in the presence or absence of the anti-IL-10R1 blocking  
218 antibody and measured the Th2 response. In the MLN, infection induced a clear Th2 response,  
219 shown by increased expression of the Th2 master transcription factor GATA3 and the Th2 cytokines  
220 IL-5 and IL-13 in  $\text{CD4}^+ \text{CD44}^{\text{hi}}$  cells, and this response was not affected by the blockade of IL-10  
221 signalling (**Figure 6D**). Th2 immunity in the SILP, however, was significantly decreased during IL-10R1  
222 blockade compared with isotype treated controls (**Figure 6E & 6F**). *Il5* and *Il13* gene expression in  
223 the duodenum, which increased upon infection, was also curtailed by IL-10R1 blockade, becoming  
224 similar to levels seen in naïve mice (**Figure 6G**). In contrast, gene expression of *Il22*, a cytokine  
225 known to be negatively regulated by IL-10, increased 100-fold during IL-10R1 blockade (**Figure 6G**).  
226 Together our data demonstrate that IL-10 signalling limits  $\text{IFN}\gamma$  expression by Th1 cells in the small

227 intestine during *H. polygyrus* infection, and that this restriction on IFN $\gamma$  corresponds with a local

228 expansion of Th2 immune activity in the infected tissue site.

229

230

### 231 3 Discussion

232 Understanding the regulation of Th2 immunity is important for a variety of diseases, most  
233 prominently helminth infection and allergy. IL-10 is a key regulatory cytokine, but while it is well  
234 established that IL-10 is suppressive in type 1 immune settings<sup>18</sup>, its role during a type 2 immune  
235 response is less well understood. IL-10 expression is known to increase in the lymph nodes and  
236 blood during type 2 immune responses<sup>22, 35, 36, 38, 54, 55</sup>, but it has been suggested both to promote and  
237 to restrict Th2 immunity<sup>56, 57</sup>. Here we show that, during infection with the helminth *H. polygyrus*,  
238 the intestinal immune response involves both Th1 and Th2 activity and intestinal IL-10 balances  
239 these responses, promoting Th2 cytokine expression by limiting local Th1 cells.

240 The original identification of IL-10 was as an effector cytokine of Th2 immunity<sup>18</sup>, but there have  
241 been mixed reports of its regulatory impact on Th2 cells. He, Poholek and colleagues recently argued  
242 that IL-10 signalling is critical for the development of the Th2 response in a murine model of  
243 asthma<sup>22</sup>, and Coomes, Wilson and colleagues have previously reported that IL-10 promotes full Th2  
244 differentiation in allergic airway inflammation<sup>23</sup>. In contrast, others have reported that IL-10 inhibits  
245 Th2 activity in the lung<sup>23, 58</sup>. Even within a single parasite infection with *Trichinella spiralis*, IL-10 can  
246 both suppress Th2 immunity in infected muscle and promote Th2 activity in infected intestine<sup>25</sup>.  
247 Site-specific variation in IL-10 signalling complements our growing understanding of the importance  
248 of tissue-specific regulation of immunity<sup>59, 60</sup>. One of the location-dependent factors that could  
249 influence IL-10's impact might be the presence or absence of an underlying Th1 response. Despite  
250 containing fewer bacteria than the colon, the small intestine still has an abundant microbiome<sup>61</sup> and  
251 any breach of the intestinal epithelium provides an opportunity for bacterial translocation and the  
252 stimulation of anti-bacterial immunity. In *H. polygyrus* infection, larvae and adult worms burrow into  
253 and out of the intestinal wall of the small intestine at days 1-2 and 7-8 of infection. Barrier disruption  
254 in the presence of intestinal bacteria has been hypothesised to lead to IFN $\gamma$  expression<sup>62</sup>, and our

255 data showing Th1 expansion in the *H. polygyrus*-infected intestine when IL-10 is blocked provide  
256 new experimental evidence. Bacterial translocation has been reported in other infections that  
257 damage the integrity of the intestinal wall, such as in *Toxoplasma gondii*, where the microbiota-  
258 specific T cell response has been shown to amplify the parasite-specific Th1 response to infection<sup>63</sup>.  
259 In helminth infection, where protective immunity is Th2 biased, a Th1 component to the anti-  
260 parasite immune response may instead act as a competitive inhibitor<sup>39</sup>.

261 *H. polygyrus* infection is also associated with a shift in the balance of bacterial species in the  
262 intestine, favouring an expansion of Lactobacillae<sup>64</sup>, and this altered microbiome might alone be  
263 immunogenic<sup>62, 64, 65</sup>. In *Trichuris muris* infection, Duque-Correa, Berriman and colleagues have  
264 reported that IL-10 can influence both the composition of the intestinal microbiome and the  
265 translocation of those bacteria across the intestinal wall<sup>66</sup>. Here we report that IL-10 in *H. polygyrus*  
266 infection regulates an intestinal Th1 response, and it will be interesting in future studies to assess  
267 whether the underlying Th1 response is a reaction to helminth- and/or bacterial-derived stimuli.

268 In many protozoan and bacterial infections, the role of IL-10 in limiting IFN $\gamma$  expression is critical for  
269 host survival, suppressing damaging immunopathology<sup>33, 34, 67, 68</sup>. IL-10 has also been proposed to  
270 limit tissue pathology in the intestine by promoting epithelial cell proliferation and subsequent  
271 colonic wound repair, via WISP-1 signalling<sup>69</sup>. Despite these data, we did not see significant changes  
272 in intestinal pathology in *H. polygyrus* infection when IL-10 signalling was blocked. Pathology in *H.*  
273 *polygyrus* infection is both mild and patchy, concentrated around the granulomas that encase  
274 developing larvae<sup>10, 70</sup>. A more detailed analysis of granulomas, or of later times of infection, may  
275 have revealed more marked differences. However, even at this early time point, our data did reveal  
276 striking differences in intestinal cytokine profiles. These data suggest that, in *H. polygyrus* infection,  
277 the main impact of IL-10 is to suppress IFN $\gamma$  and to enhance Th2 function. The ability of IL-10 to  
278 promote the Th2 response was observed only in the small intestine lamina propria and not in the

279 draining lymph node, complementing a growing understanding of the importance of tissue-specific  
280 regulation of immunity<sup>59, 60</sup>.

281 Immune regulation through the balance of opposing T cell cytokines is a common feature of  
282 infection. In mice, *H. polygyrus* infection of MyD88<sup>-/-</sup> animals leads to reduced IFN $\gamma$  expression,  
283 heightened IL-4, and accelerated parasite expulsion<sup>71</sup>. Mice without a functional IL-4 receptor show  
284 exaggerated IFN $\gamma$  recall responses during *H. polygyrus* infection, compared with wildtype controls<sup>39</sup>.  
285 Cytokine exclusion is often less absolute in humans, but a recent report of a child with an inherited  
286 Tbet deficiency described elevated Th2 cytokine production<sup>72</sup>. The mechanisms of regulation by  
287 opposing Th1 and Th2 cytokines can include direct molecular inhibition of signalling within the CD4 $^{+}$   
288 T cell, such as STAT1-driven induction of Tbet, and Tbet mediated suppression of GATA3<sup>73</sup>. Cytokine  
289 competition can also be achieved through different conditioning of antigen presenting cells,  
290 recruitment of different effector cells, or alteration of metabolic profiles<sup>74</sup>. Our data emphasise that  
291 such cytokine competition is a key feature of the intestinal immune response during enteric  
292 helminth infection, and that IL-10 is a key regulator of this process.

293 Our observation of high expression of the IL-10 receptor on Th1 cells in the intestine, greater than on  
294 intestinal Th2 cells or on all T cells in the draining lymph node, suggested strong, local IL-10 signalling  
295 to Th1 cells. Surface expression of cytokine receptors reflects both gene expression and surface  
296 binding, internalisation and recycling<sup>75</sup> and *in vitro*, when exogenous cytokines are added at  
297 supraphysiological concentrations, active signalling can result in loss of surface expression of the  
298 receptors<sup>76, 77</sup>. *In vivo*, active cytokine concentrations are lower and cell surface receptor stripping is  
299 less commonly observed<sup>78</sup>; instead, increased receptor expression is associated with increased  
300 signalling<sup>48, 79</sup>. Macrophage expression of IL-10R1 determines their responsiveness to exogenous IL-  
301 10<sup>49</sup>. Decreased IL-10R1 expression on peripheral T cells in lupus patients correlates with heightened  
302 T cell activity, suggesting that reduced receptor expression is associated with reduced IL-10  
303 function<sup>80</sup>. Our data show high expression of IL-10R1 on Th1 cells in the intestine, and increased

304 frequency of intestinal Tbet<sup>+</sup> or IFN $\gamma$ <sup>+</sup> T cells when IL-10 signalling is blocked. Together these data  
305 suggest that understanding receptor expression will be an important step in targeting attempts to  
306 use IL-10 therapeutically, which has been challenging and highly context-dependent<sup>34, 81</sup>.

307 In summary, we have shown that IL-10 promotes the intestinal Th2 response to a helminth infection.  
308 We show that IL-10 can signal directly to CD4<sup>+</sup> T cells to increase Th2 differentiation, but that IL-10  
309 production and IL-10 receptor expression are both concentrated in the infected tissue rather than  
310 the MLN. High expression of the IL-10R by Th1 cells in the small intestine suggests that these cells  
311 are sensitive to IL-10 signalling and subsequent IL-10 mediated suppression, providing an indirect  
312 mechanism in which IL-10 promotes the intestinal Th2 response. Our data provide new insight into  
313 the complexity of tissue-based regulation during a Th2 immune response and suggest that IL-10 may  
314 be an interesting candidate for therapeutic targeting in Th2 dominated diseases such as allergy,  
315 asthma and helminth infection.

316

317

318

319

320

321

322 **4 Methods**

323

324 **Mice and Infection**

325 C57BL/6 mice were purchased from Envigo (Huntingdon, UK). B6.4get mice were kindly provided by

326 Professor Judi Allen (University of Manchester) and bred in-house at the University of Glasgow.

327 These mice were first developed by Mohrs *et al*<sup>50</sup>. Il10gfp-foxp3rfp B6 mice were bred in-house

328 (University of Glasgow). These mice express two separate transgenes: IRES-eGFP inserted at the last

329 exon and before the polyadenylation site of the Il10 gene<sup>44</sup> and IRES-RFP inserted at this site of the

330 Foxp3 gene<sup>45</sup>. For each experiment mice were sex-matched and used at age 6-12 weeks. Animals

331 were maintained in individually ventilated cages under standard animal house conditions at the

332 University of Glasgow and procedures were performed under a UK Home Office licence (Project

333 number 70/8483) in accordance with UK Home Office regulations following review by the University

334 of Glasgow Ethics Committee. Mice were acclimatised for 1 week after arrival in the animal unit

335 before use. For infections, *H. polygyrus* (also known as *H. polygyrus bakeri* or *H. bakeri*) was

336 maintained in the laboratory as described<sup>82</sup>, and experimental animals were infected with 200 L3

337 larvae by oral gavage.

338

339 **Isolation of cells**

340 Lamina propria leukocytes were isolated as described previously<sup>40</sup>. The MLN was harvested and

341 crushed through a 70µm filter to obtain a single cell suspension. For experiments where myeloid

342 cells were analysed, MLNs were digested for 40min in a shaking incubator using 1mg/ml collagenase

343 D (Merck) in RPMI. Cells were counted and dead cell exclusion carried out using trypan blue.

344

345 ***In vitro* CD4<sup>+</sup> T cell culture and proliferation**

346 Negative selection of CD4<sup>+</sup> T cells from naïve splenocytes was carried out using the MojoSort™  
347 magnetic cell separation system (Biolegend). CD4<sup>+</sup> T cells were re-suspended in RPMI 1640  
348 supplemented with 10% FCS, 100 U/ml penicillin, 100µg/ml streptomycin and 2mM L-glutamine and  
349 stimulated in a 96-well plate with plate bound αCD3 (1µg/ml), soluble αCD28 (1µg/ml) and  
350 appropriate stimulation and polarisation cocktails. Polarisation cocktails: Th0: 20ng/ml IL-2, Th2: IL-2  
351 (20ng/m), IL-4 (40ng/ml) (ThermoFisher), αIFNγ(1µg/ml) (Biolegend). Th1: IL-2 (20ng/m), IL-12  
352 (10ng/ml) (ThermoFisher). Cells were then cultured for 4 days 37°C, 5% CO<sub>2</sub>. For IL-10 stimulation, IL-  
353 10 (ThermoFisher) was added at 10ng/ml. For assessing CD4 T cell proliferation the CellTrace™ Violet  
354 Cell Proliferation Kit (ThermoFisher) was used according to manufacturer's guidelines.

355

356 **Ex-vivo re-stimulation**

357 To measure cytokine production following ex vivo re-stimulation, unfractionated MLN cells were  
358 resuspended at 5x10<sup>6</sup> cells/ml in RPMI 1640 supplemented with 10% FCS, 100 U/ml penicillin,  
359 100µg/ml streptomycin and 2mM L-glutamine. 500,000 cells were then added to each well, coated  
360 with αCD3 (1µg/ml). Cultures were incubated (37°C, 5% CO<sub>2</sub>) for 3 days and then supernatants  
361 collected for further analysis.

362

363 **Cytokine measurement in supernatants**

364 Supernatants were collected from *in vitro* T cell cultures or ex-vivo stimulated cultures and stored at  
365 -20°C until further analysis. For cytokine measurements, supernatants were diluted 1/200 in sterile  
366 filtered FACS buffer (PBS, 2mM EDTA and 10% FCS). Cytokines (IL-5 and IL-13) were measured using  
367 BD™ CBA Flex Sets (BD Biosciences) according to manufacturer's guidelines. The cytometric bead  
368 array was analysed using the MACSQuant® Analyser (Miltenyi Biotec). Analysis was performed using  
369 FlowJo (Treestar).

370

371 **Flow cytometry and intracellular cytokine staining**

372 To measure cytokine production immediately ex vivo, cells were stimulated and then stained for  
373 flow cytometry.  $3 \times 10^6$  cells were resuspended in 500 $\mu$ l of RPMI 1640 supplemented with 10% FCS,  
374 100 U/ml penicillin, 100 $\mu$ g/ml streptomycin, 2mM L-glutamine and 2 $\mu$ l/ml solution of cell  
375 stimulation cocktail and protein transport inhibitors (Invitrogen eBioscience™ Cell Stimulation  
376 Cocktail plus protein transport inhibitors (500X)). After 4 hours of stimulation, cells were washed and  
377 stained with Fixable viability dye eFluor 780 or 506 (Ebioscience), to enable dead cell exclusion, and  
378 then with anti-mouse CD16/32 Antibody (BioLegend) as an FC block, to reduce non-specific binding.  
379 Samples were next stained for surface markers for 20min at 4°C with: PerCP-Cy5.5-conjugated anti-  
380 TCR $\beta$  (H57-597, BioLegend), APC-CY7-conjugated anti-B220 (RA3-6B2, BioLegend), APC-CY7-  
381 conjugated MHCII (M5/114.15.2, eBioscience), APC-conjugated anti-IL-7R $\alpha$  (A7R34, BioLegend),  
382 BV421-conjugated anti-CD44 (IM7, BioLegend), PE-Cy7-conjugated anti-CXCR3 (CXCR3-173,  
383 BioLegend), PE-conjugated IL-10R (1B1.3a, BioLegend), APC-Cy7-conjugated anti-CD19 (6D5,  
384 BioLegend) BUV395-conjugated CD45 (30-F11, BD Bioscience), BV711-conjugated anti-CD4 (RM4-5,  
385 BioLegend), BV421-conjugated anti-CD11b (M1/70, BioLegend), PE-Cy7-conjugated anti-CD8 (53.6.7,  
386 BioLegend), FITC-conjugated anti-CD44 (IM7, BioLegend) BV505-conjugated anti-CD4 (RM4-5,  
387 BioLegend), FITC-conjugated anti-CD69 (H1.2F3, BioLegend). Samples were then permeabilised and  
388 fixed for intracellular cytokine staining using 150 $\mu$ l of BD Cytofix/Cytoperm™ for 20 min at 4°C.  
389 Samples were stained using 50 $\mu$ l of intracellular anti-cytokine antibody stain: PE-Cy7-conjugated  
390 anti-IL-13 (eBio13A, Invitrogen), PE-conjugated anti-IL-5 (TRFK5, BioLegend), e450-conjugated anti-  
391 IFN $\gamma$  (XMG1.2, Invitrogen) or appropriate isotype controls for 1 hour at room temperature in the  
392 dark). When including staining for intracellular transcription factors, samples were then  
393 permeabilised and fixed intracellularly using the eBioscience™ Foxp3 / Transcription Factor Staining  
394 Kit (ThermoFisher) for 1 hour at room temperature in the dark. Samples were stained with  
395 100 $\mu$ l of intracellular anti-transcription factor stain: eFluor 450-conjugated anti-FOXP3 (FJK-16s,  
396 ThermoFisher), PE-Cy7-conjugated anti-T-bet (eBio4B10, ThermoFisher) and PE-conjugated anti-

397 GATA3 (TWAJ, ThermoFisher) for 1.5 hours at room temperature in the dark. All samples were  
398 acquired immediately after staining on either a BD LSRII flow cytometer or a BD LSR FORTESSA  
399 running FACS-Diva software (BD Biosciences). Analysis was performed using FlowJo (Treestar).

400

#### 401 **RNA extraction and real-time PCR**

402 1cm section of the top of the duodenum was collected, placed in RNA later (Qiagen) and kept at 4°C.  
403 RNA was purified using RNEASY Mini Kit (Qiagen) and its concentration determined using a  
404 Nanodrop 1000. cDNA was generated using the High Capacity cDNA Reverse Transcription Kit  
405 (Invetrogen). For real time PCR, PowerUp™ SYBR™ Green Master Mix (Applied Biosystems) and  
406 QuantStudio 6 Flex Real-time PCR system (Applied Biosystems) were used. Values were normalised  
407 to ribosomal protein S29 (RPS29) and expression of gene of interest determined using the  $2^{-\Delta\Delta C(t)}$   
408 method. The following primers were used (all primers are shown 5'-3'); *Rps29* Fwd,  
409 ACGGTCTGATCCGCAAATAC, Rev, CATGATCGGTTCCACTTGGT; *Il13* Fwd, CCTGGCTTGTGCTGCCTT,  
410 Rev, GGTCTTGTGTGATGTTGCTCA; *Il5* Fwd, CTCTGTTGACAAGCAATGAGACG, Rev,  
411 TCTTCAGTATGTCTAGCCCCCTG; *Il22* Fwd, TTTCCTGACCAAACTCAGCA, Rev, CTGGATGTTCTCGTCGTAC.

412

#### 413 **IL-10R1 monoclonal antibody blockade**

414 IL-10R signalling was blocked using an IL-10R1 monoclonal antibody (Clone 1b1.3a BioXcell). A rat  
415 IgG1 antibody (Merck) was used as the isotype-matched control. 200µl of a 2.5mg/ml stock solution  
416 of each antibody was injected intraperitoneally at days -1, 2, and 5 of *H. polygyrus* infection. Infected  
417 mice treated with anti-IL-10R or isotype were kept in mixed cages.

418

#### 419 **Histology and scoring**

420 The first 6cm of the duodenum were collected, sliced into 1cm pieces and placed in 10% neutral  
421 buffered formalin. Samples were fixed overnight, trimmed and embedded in paraffin wax. Tissue  
422 sections were collected on frosted glass slides and stained with haematoxylin and eosin. The depth

423 of inflammation, and a combined score of depth and severity of inflammation, were evaluated  
424 blindly by a certified pathologist (VG) in several high-power fields of two intestinal sections per  
425 animal using a protocol established to previously<sup>83</sup>. The scoring system was from 0-4: 0 – Minimal  
426 and mucosal, 1 – Mild and mucosal/submucosal or minimal transmural, 2 – Moderate and  
427 mucosal/submucosal, mild transmural or marked and mucosal, 3 – Marked mucosal/submucosal or  
428 moderate and transmural, 4- Marked and transmural.

429

430 **Statistical analysis**

431 All statistical analysis was carried out using GraphPad Prism (version 8/9) and data represents mean  
432 + standard deviation. A Student *t* test was used for comparison between 2 groups and a one-way  
433 ANOVA with Tukey's multiple comparison correction was carried out for comparisons between 3 or  
434 more groups. All data sets were tested for normality using the Shapiro-Wilk normality test and  
435 where data were not normally distributed, a Mann Whitney U test for comparisons between 2  
436 groups and a Kruskal-Wallis test with Dunn's multiple comparison correction was carried out for  
437 comparisons between 3 or more groups. \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ , \*\*\*\* $p<0.0001$ , ns = not  
438 significant.

439

440

441

442

443

444

445 **5 Acknowledgements**

446 We thank David Dow, Joanne Battersby and staff in the Wolfson Research Unit for animal  
447 husbandry; Nicola Britton and Claire Ciancia for *H. polygyrus* larvae and life cycle maintenance, and  
448 for advice and discussion; Allan Mowat for critical review of the manuscript; the Flow Core at the  
449 University of Glasgow and especially Diane Vaughan of the manuscript for flow cytometry support;  
450 and Lucy McShane and Lotus Westerhof for sample processing. This work was supported by the MRC  
451 (grant MR/S009779/1) and funds from the University of Glasgow, including a University of Glasgow  
452 MVLS PhD studentship awarded to HCW. RMM also received Wellcome Trust support through an  
453 Investigator Grant (Ref 219530), and the Wellcome Trust core-funded Wellcome Centre for  
454 Integrative Parasitology (Ref: 104111).

455

## 456 **6 Author Contributions**

457 H.C.W conceived and refined the experimental and conceptual design of the study, conducted  
458 experiments, analysed data and prepared the manuscript. V.G is a veterinary pathologist and  
459 conducted all analysis of the histopathology and developed a scoring system for histological  
460 samples. A.L.S, A.T.A and G.A.H performed experiments and acquired data. S.W.F.M provided critical  
461 expertise and edited the manuscript. R.M.M contributed to the conceptual design of the study,  
462 provided critical expertise and edited the manuscript. G.P.W conceived and refined the experimental  
463 and conceptual design of the study, analysed data and prepared and edited the manuscript.

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

## 484 **7 Disclosures**

485 The authors declare no competing interests.

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

## 506 8 References

- 507 1. Hotez, P.J. *et al.* Helminth infections: the great neglected tropical diseases. *The Journal of*  
508 *Clinical Investigation* **118**, 1311-1321 (2008).
- 509 2. Gause, W.C., Urban, J.F. & Stadecker, M.J. The immune response to parasitic helminths:  
510 insights from murine models. *Trends Immunol* **24**, 269-277 (2003).
- 512 3. Urban, J.F., Jr., Katona, I.M. & Finkelman, F.D. *Heligmosomoides polygyrus*: CD4+ but not  
513 CD8+ T cells regulate the IgE response and protective immunity in mice. *Experimental*  
514 *Parasitology* **73**, 500-511 (1991).
- 516 4. Gause, W.C., Wynn, T.A. & Allen, J.E. Type 2 immunity and wound healing: evolutionary  
517 refinement of adaptive immunity by helminths. *Nature Reviews Immunology* **13**, 607-614  
518 (2013).
- 520 5. Yazdanbakhsh, M., Kremsner, P.G. & van Ree, R. Allergy, parasites, and the hygiene  
521 hypothesis. *Science* **296**, 490-494 (2002).
- 523 6. Hammad, H. & Lambrecht, Bart N. Barrier Epithelial Cells and the Control of Type 2  
524 Immunity. *Immunity* **43**, 29-40 (2015).
- 526 7. Gold, M.J. *et al.* Group 2 innate lymphoid cells facilitate sensitization to local, but not  
527 systemic, Th2-inducing allergen exposures. *Journal of Allergy and Clinical Immunology* **133**,  
528 1142-1148.e1145 (2014).
- 530 8. Mayer, J.U. *et al.* Different populations of CD11b(+) dendritic cells drive Th2 responses in the  
531 small intestine and colon. *Nature communications* **8**, 15820-15820 (2017).
- 533 9. Redpath, S.A. *et al.* Functional specialization of intestinal dendritic cell subsets during Th2  
534 helminth infection in mice. *European Journal of Immunology* **48**, 87-98 (2018).
- 536 10. Anthony, R.M. *et al.* Protective immune mechanisms in helminth infection. *Nature reviews.*  
537 *Immunology* **7**, 975-987 (2007).
- 539 11. Maizels, R.M., Pearce, E.J., Artis, D., Yazdanbakhsh, M. & Wynn, T.A. Regulation of  
540 pathogenesis and immunity in helminth infections. *The Journal of experimental medicine*  
541 **206**, 2059-2066 (2009).
- 543 12. Liang, H.-E. *et al.* Divergent expression patterns of IL-4 and IL-13 define unique functions in  
544 allergic immunity. *Nature immunology* **13**, 58-66 (2011).

547 13. King, I.L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth  
548 infection are T follicular helper cells. *The Journal of experimental medicine* **206**, 1001-1007  
549 (2009).

550  
551 14. Van Dyken, S.J. *et al.* A tissue checkpoint regulates type 2 immunity. *Nature immunology* **17**,  
552 1381-1387 (2016).

553  
554 15. Ochiai, S. *et al.* Thymic stromal lymphopoietin drives the development of IL-13(+) Th2 cells.  
555 *Proceedings of the National Academy of Sciences of the United States of America* **115**, 1033-  
556 1038 (2018).

557  
558 16. Redpath, S.A., Heieis, G. & Perona-Wright, G. Spatial regulation of IL-4 signalling in vivo.  
559 *Cytokine* **5**, 51-56 (2015).

560  
561 17. Moore, K.W., de Waal Malefydt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the  
562 Interleukin-10 Receptor. *Annual Review of Immunology* **19**, 683-765 (2001).

563  
564 18. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper cell. IV. Th2  
565 clones secrete a factor that inhibits cytokine production by Th1 clones. *Journal of  
566 Experimental Medicine* **170**, 2081-2095 (1989).

567  
568 19. Halonen, M. *et al.* Th1/Th2 patterns and balance in cytokine production in the parents and  
569 infants of a large birth cohort. *Journal of immunology (Baltimore, Md. : 1950)* **182**, 3285-  
570 3293 (2009).

571  
572 20. Forsthuber, T., Yip, H.C. & Lehmann, P.V. Induction of Th1 and Th2 Immunity in Neonatal  
573 Mice. *Science* **271**, 1728 (1996).

574  
575 21. Laouini, D. *et al.* IL-10 is critical for Th2 responses in a murine model of allergic dermatitis.  
576 *The Journal of clinical investigation* **112**, 1058-1066 (2003).

577  
578 22. He, K. *et al.* Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the  
579 lung. *Journal of Experimental Medicine* **217** (2020).

580  
581 23. Coomes, S.M. *et al.* CD4 + Th2 cells are directly regulated by IL-10 during allergic airway  
582 inflammation. *Mucosal Immunol* **10**, 150-161 (2017).

583  
584 24. Malisan, F. *et al.* Interleukin-10 induces immunoglobulin G isotype switch recombination in  
585 human CD40-activated naive B lymphocytes. *The Journal of experimental medicine* **183**, 937-  
586 947 (1996).

587  
588 25. Helmby, H. & Gencis, R.K. Contrasting roles for IL-10 in protective immunity to different life  
589 cycle stages of intestinal nematode parasites. *European Journal of Immunology* **33**, 2382-  
590 2390 (2003).

591

592 26. Thompson-Snipes, L. *et al.* Interleukin 10: a novel stimulatory factor for mast cells and their  
593 progenitors. *The Journal of experimental medicine* **173**, 507-510 (1991).

594

595 27. Ghildyal, N. *et al.* IL-10 induces transcription of the gene for mouse mast cell protease-1, a  
596 serine protease preferentially expressed in mucosal mast cells of *Trichinella spiralis*-infected  
597 mice. *The Journal of Immunology* **149**, 2123 (1992).

598

599 28. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice  
600 develop chronic enterocolitis. *Cell* **75**, 263-274 (1993).

601

602 29. Berg, D.J. *et al.* Enterocolitis and colon cancer in interleukin-10-deficient mice are associated  
603 with aberrant cytokine production and CD4(+) TH1-like responses. *The Journal of clinical  
604 investigation* **98**, 1010-1020 (1996).

605

606 30. Yen, D. *et al.* IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17  
607 and IL-6. *The Journal of clinical investigation* **116**, 1310-1316 (2006).

608

609 31. Kullberg, M.C. *et al.* *Helicobacter hepaticus* triggers colitis in specific-pathogen-free  
610 interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent  
611 mechanism. *Infection and immunity* **66**, 5157-5166 (1998).

612

613 32. Sellon, R.K. *et al.* Resident enteric bacteria are necessary for development of spontaneous  
614 colitis and immune system activation in interleukin-10-deficient mice. *Infection and  
615 immunity* **66**, 5224-5231 (1998).

616

617 33. Couper, K.N., Blount, D.G. & Riley, E.M. IL-10: The Master Regulator of Immunity to  
618 Infection. *The Journal of Immunology* **180**, 5771-5777 (2008).

619

620 34. Redpath, S.A., Fonseca, N.M. & Perona-Wright, G. Protection and pathology during parasite  
621 infection: IL-10 strikes the balance. *Parasite Immunology* **36**, 233-252 (2014).

622

623 35. Finney, C.A.M., Taylor, M.D., Wilson, M.S. & Maizels, R.M. Expansion and activation of  
624 CD4+CD25+ regulatory T cells in *Heligmosomoides polygyrus* infection. *European Journal of  
625 Immunology* **37**, 1874-1886 (2007).

626

627 36. Setiawan, T. *et al.* *Heligmosomoides polygyrus* promotes regulatory T-cell cytokine  
628 production in the murine normal distal intestine. *Infection and Immunity* **75**, 4655-4663  
629 (2007).

630

631 37. Redpath, S.A. *et al.* ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-  
632 10 production during helminth infection. *European journal of immunology* **43**, 705-715  
633 (2013).

634

635 38. Schopf, L.R., Hoffmann, K.F., Cheever, A.W., Urban, J.F. & Wynn, T.A. IL-10 Is Critical for Host  
636 Resistance and Survival During Gastrointestinal Helminth Infection. *The Journal of*  
637 *Immunology* **168**, 2383-2392 (2002).

638

639 39. Balic, A., Harcus, Y.M., Taylor, M.D., Brombacher, F. & Maizels, R.M. IL-4R signaling is  
640 required to induce IL-10 for the establishment of Th2 dominance. *International Immunology*  
641 **18**, 1421-1431 (2006).

642

643 40. Webster, H.C., Andrusaita, A.T., Shergold, A.L., Milling, S.W.F. & Perona-Wright, G. Isolation  
644 and functional characterisation of lamina propria leukocytes from helminth-infected, murine  
645 small intestine. *Journal of Immunological Methods* **477**, 112702 (2020).

646

647 41. Ferrer-Font, L. *et al.* High-dimensional analysis of intestinal immune cells during helminth  
648 infection. *eLife* **9**, e51678 (2020).

649

650 42. Jarjour, N.N. *et al.* BHLHE40 Promotes Th2 Cell–Mediated Antihelminth Immunity and  
651 Reveals Cooperative CSF2RB Family Cytokines. *The Journal of Immunology* **204**, 923 (2020).

652

653 43. Hang, L. *et al.* *Heligmosomoides polygyrus bakeri* Infection Activates Colonic Foxp3 + T  
654 Cells Enhancing Their Capacity To Prevent Colitis. *The Journal of Immunology* **191**, 1927  
655 (2013).

656

657 44. Kamanaka, M. *et al.* Expression of Interleukin-10 in Intestinal Lymphocytes Detected by an  
658 Interleukin-10 Reporter Knockin tiger Mouse. *Immunity* **25**, 941-952 (2006).

659

660 45. Wan, Y.Y. & Flavell, R.A. Identifying Foxp3-expressing suppressor T cells with a bicistronic  
661 reporter. *Proceedings of the National Academy of Sciences of the United States of America*  
662 **102**, 5126-5131 (2005).

663

664 46. Hu, X. *et al.* IFN- $\gamma$  Suppresses IL-10 Production and Synergizes with TLR2 by Regulating GSK3  
665 and CREB/AP-1 Proteins. *Immunity* **24**, 563-574 (2006).

666

667 47. Gazzinelli, R.T. *et al.* In the absence of endogenous IL-10, mice acutely infected with  
668 *Toxoplasma gondii* succumb to a lethal immune response dependent on CD4+ T cells and  
669 accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. *The Journal of*  
670 *Immunology* **157**, 798 (1996).

671

672 48. Shouval, D.S. *et al.* Interleukin 10 receptor signaling: master regulator of intestinal mucosal  
673 homeostasis in mice and humans. *Advances in immunology* **122**, 177-210 (2014).

674

675 49. von Lanzenauer, S.H. *et al.* Interleukin-10 receptor-1 expression in monocyte-derived  
676 antigen-presenting cell populations: dendritic cells partially escape from IL-10's inhibitory  
677 mechanisms. *Genes & Immunity* **16**, 8-14 (2015).

678

679 50. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for  
680 cytokine production revealed by IL-4 dual-reporter mice. *Immunity* **23**, 419-429 (2005).

681 51. Liu, S.-K. Pathology of *Nematospiroides dubius*. I. Primary infections in C3H and Webster  
682 mice. *Experimental Parasitology* **17**, 123-135 (1965).

684 52. Reynolds, L.A., Filbey, K.J. & Maizels, R.M. Immunity to the model intestinal helminth  
685 parasite *Heligmosomoides polygyrus*. *Semin Immunopathol* **34**, 829-846 (2012).

687 53. Monroy, F.G. & Enriquez, F.J. *Heligmosomoides polygyrus*: a model for chronic  
688 gastrointestinal helminthiasis. *Parasitology Today* **8**, 49-54 (1992).

690 54. Marinho, F.V. *et al.* Schistosoma mansoni Tegument (Sm teg) Induces IL-10 and Modulates  
691 Experimental Airway Inflammation. *PLoS one* **11**, e0160118-e0160118 (2016).

693 55. Dias, F.F. *et al.* Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1  
694 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental. *Front Immunol* **9**, 3019  
695 (2018).

697 56. Hoffmann, K.F., Cheever, A.W. & Wynn, T.A. IL-10 and the Dangers of Immune Polarization:  
698 Excessive Type 1 and Type 2 Cytokine Responses Induce Distinct Forms of Lethal  
700 Immunopathology in Murine Schistosomiasis. *The Journal of Immunology* **164**, 6406 (2000).

701 57. Hawrylowicz, C.M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells  
702 in allergy and asthma. *Nature Reviews Immunology* **5**, 271-283 (2005).

704 58. Golebski, K. *et al.* Induction of IL-10-producing type 2 innate lymphoid cells by allergen  
705 immunotherapy is associated with clinical response. *Immunity* (2021).

707 59. Hu, W. & Pasare, C. Location, location, location: tissue-specific regulation of immune  
708 responses. *Journal of leukocyte biology* **94**, 409-421 (2013).

710 60. Molofsky, A.B. & Locksley, R.M. Tissue immunity broadcasts near and far. *Nature Reviews  
711 Immunology* **20**, 93-94 (2020).

713 61. Bowcutt, R. *et al.* Heterogeneity across the murine small and large intestine. *World journal  
714 of gastroenterology* **20**, 15216-15232 (2014).

716 62. Rapin, A. & Harris, N.L. Helminth-Bacterial Interactions: Cause and Consequence. *Trends  
717 Immunol* (2018).

719 63. Hand, T.W. *et al.* Acute gastrointestinal infection induces long-lived microbiota-specific T cell  
720 responses. *Science (New York, N.Y.)* **337**, 1553-1556 (2012).

722

723 64. Reynolds, L.A. *et al.* Commensal-pathogen interactions in the intestinal tract: lactobacilli  
724 promote infection with, and are promoted by, helminth parasites. *Gut microbes* **5**, 522-532  
725 (2014).

726

727 65. Walk, S.T., Blum, A.M., Ewing, S.A.-S., Weinstock, J.V. & Young, V.B. Alteration of the murine  
728 gut microbiota during infection with the parasitic helminth *Heligmosomoides polygyrus*.  
729 *Inflammatory Bowel Diseases* **16**, 1841-1849 (2010).

730

731 66. Duque-Correa, M.A. *et al.* Exclusive dependence of IL-10R $\alpha$  signalling on intestinal  
732 microbiota homeostasis and control of whipworm infection. *PLOS Pathogens* **15**, e1007265  
733 (2019).

734

735 67. Suzuki, Y. *et al.* IL-10 Is Required for Prevention of Necrosis in the Small Intestine and  
736 Mortality in Both Genetically Resistant BALB/c and Susceptible C57BL/6 Mice Following  
737 Peroral Infection with *Toxoplasma gondii*. *The Journal of Immunology* **164**, 5375  
738 (2000).

739

740 68. Arai, T. *et al.* Effects of in vivo administration of anti-IL-10 monoclonal antibody on the host  
741 defence mechanism against murine *Salmonella* infection. *Immunology* **85**, 381-388 (1995).

742

743 69. Morhardt, T.L. *et al.* IL-10 produced by macrophages regulates epithelial integrity in the  
744 small intestine. *Scientific Reports* **9**, 1223 (2019).

745

746 70. Menge, D.M. *et al.* Mapping of chromosomal regions influencing immunological responses  
747 to gastrointestinal nematode infections in mice. *Parasite Immunology* **25**, 341-349 (2003).

748

749 71. Reynolds, L.A. *et al.* MyD88 signaling inhibits protective immunity to the gastrointestinal  
750 helminth parasite *Heligmosomoides polygyrus*. *Journal of immunology (Baltimore, Md. : 1950)* **193**, 2984-2993 (2014).

752

753 72. Yang, R. *et al.* High Th2 cytokine levels and upper airway inflammation in human inherited T-  
754 bet deficiency. *J Exp Med* **218** (2021).

755

756 73. Usui, T. *et al.* T-bet regulates Th1 responses through essential effects on GATA-3 function  
757 rather than on IFNG gene acetylation and transcription. *The Journal of experimental  
758 medicine* **203**, 755-766 (2006).

759

760 74. Butcher, M.J. & Zhu, J. Recent advances in understanding the Th1/Th2 effector choice.  
761 *Faculty reviews* **10**, 30-30 (2021).

762

763 75. Cendrowski, J., Mamińska, A. & Miaczynska, M. Endocytic regulation of cytokine receptor  
764 signaling. *Cytokine & Growth Factor Reviews* **32**, 63-73 (2016).

765

766 76. Perona-Wright, G., Mohrs, K. & Mohrs, M. Sustained signaling by canonical helper T cell  
767 cytokines throughout the reactive lymph node. *Nat Immunol* **11**, 520-526 (2010).

768  
769 77. Perona-Wright, G., Mohrs, K., Mayer, K.D. & Mohrs, M. Differential regulation of IL-4Ralpha  
770 expression by antigen versus cytokine stimulation characterizes Th2 progression in vivo.  
771 *Journal of immunology (Baltimore, Md. : 1950)* **184**, 615-623 (2010).

772  
773 78. Ingram, J.T., Yi, J.S. & Zajac, A.J. Exhausted CD8 T cells downregulate the IL-18 receptor and  
774 become unresponsive to inflammatory cytokines and bacterial co-infections. *PLoS pathogens*  
775 **7**, e1002273-e1002273 (2011).

776  
777 79. Liu, Y., Wei, S.H., Ho, A.S., de Waal Malefyt, R. & Moore, K.W. Expression cloning and  
778 characterization of a human IL-10 receptor. *The Journal of Immunology* **152**, 1821 (1994).

779  
780 80. Cui, H.D. *et al.* Interleukin-10 receptor expression and signalling were down-regulated in  
781 CD4<sup>+</sup> T cells of lupus nephritis patients. *Clinical and experimental immunology* **165**, 163-171  
782 (2011).

783  
784 81. Rallis, K.S. *et al.* Cytokine-based Cancer Immunotherapy: Challenges and Opportunities for  
785 IL-10. *Anticancer Research* **41**, 3247 (2021).

786  
787 82. Johnston, C.J.C. *et al.* Cultivation of *Heligmosomoides polygyrus*: an immunomodulatory  
788 nematode parasite and its secreted products. *Journal of visualized experiments : JoVE*,  
789 e52412-e52412 (2015).

790  
791 83. Erben, U. *et al.* A guide to histomorphological evaluation of intestinal inflammation in mouse  
792 models. *International journal of clinical and experimental pathology* **7**, 4557-4576 (2014).

793  
794

## 795 9 Figure Legends

796

### 797 **Figure 1. IL-10 expression increases in the MLN and small intestine during *H. polygyrus* infection**

798 Il10gfp-foxp3rfp B6 mice were infected with 200 L3 *H. polygyrus* and 7 days later the small intestine  
799 and MLN collect for analysis. % of IL-10<sup>+</sup> of (A) CD45<sup>+</sup>, (B) CD8<sup>+</sup>, (C) CD4<sup>+</sup>, (D) CD19<sup>+</sup>, (E) IL-7R<sup>+</sup> and (F)  
800 CD11b<sup>+</sup> cells from the MLN and small intestine of naïve and D7 infected mice. Changes in proportion  
801 of IL-10 producing cells from total CD45<sup>+</sup> IL-10<sup>+</sup> cells in the (G) small intestine and (H) MLN from naïve  
802 and D7 infected mice Graphed data are shown with mean ± 1 SD and are pooled from 3 independent  
803 experiments with  $n=2-5$  per experiment. Statistical significance was calculated by Student *t* test  
804 where data were normally distributed (A, C (SILP)) and Mann Whitney U test where data were not  
805 normally distributed (B, D (MLN), D, E, F). (Significance \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ ,  
806 \*\*\*\* $p<0.0001$ ).

807

### 808 **Figure 2. IL-10 enhances Th2 differentiation independently of activation and proliferation**

809 *In vitro* polarised Th0 and Th2 cells were cultured with αCD3, αCD28 and IL-2 for 4 days with or  
810 without IL-10. (A) Representative histogram of GATA3 staining from IL-10 stimulated and  
811 unstimulated Th0 cells. (B) % of CD4<sup>+</sup> GATA3<sup>+</sup> CD4 T cells (left) and pg/ml of IL-13 (middle) and IL-5  
812 (right) in Th0 culture supernatants. (C) Representative histogram of GATA3 staining from IL-10  
813 stimulated and unstimulated Th0 cells. (D) % of CD4<sup>+</sup> GATA3<sup>+</sup> CD4 T cells (left) and pg/ml of IL-13  
814 (middle) and IL-5 (right) in Th2 culture supernatants. (E) % of CD44<sup>hi</sup> (left) and CD69<sup>+</sup> CD4 T cells from  
815 IL-10 stimulated and unstimulated Th0 cultures. (F) Representative histograms of cell trace violet  
816 staining from IL-10 stimulated (right) and unstimulated (left) Th0 cultures. Graphed data are shown  
817 with mean ± 1 SD and are pooled from 3 independent experiments with  $n=4-5$  per experiment.  
818 Statistical significance was calculated by Student *t* test where data were normally distributed (B, D,

819 E) and Mann Whitney U test where data were not normally distributed (G). (Significance \*\* $p<0.01$ ,  
820 \*\*\*\* $p<0.0001$ ).

821

822 **Figure 3. IL-10 suppresses IFNy expression when promoting Th2 differentiation**

823 *In vitro* polarised Th0 and Th1 cells were cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-2 only for Th0, with the  
824 addition of IL-12 for Th1 for 4 days with or without IL-10. (A) The % of IFNy<sup>+</sup> CD44<sup>hi</sup> CD4<sup>+</sup> T cells  
825 measured in Th0 (top) and Th1 (bottom) cultures. (B) *In vitro* polarised Th0 cells were cultured with  
826  $\alpha$ CD3,  $\alpha$ CD28 and IL-2 for 4 days with or without IL-10 and with or without anti-IFNy, the  
827 concentration of IL-5 and IL-13 measured in supernatants. (C) *In vitro* polarised Th1 cells were  
828 cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-12 for 4 days with or without IL-10 and IL-5 and IL-13  
829 concentration in the supernatants measured. Graphed data are shown with mean  $\pm$  1 SD and are  
830 representee of 2 independent experiments with n=5 per experiment. Statistical significance was  
831 calculated by Student t test and one-way ANOVA with Tukey's post-test for multiple comparisons  
832 between groups (Significance \* $p<0.05$ , \*\* $p<0.01$ , \*\*\*\* $p<0.0001$ ).

833

834 **Figure 4. Th1 cells in the small intestine during *H. polygyrus* infection show high IL-10R expression**

835 B6 4get mice were infected with 200 L3 *H. polygyrus* and 7 days post-infection the small intestine  
836 and MLN removed. (A) % (top) and total number (bottom) of IL-4(GFP)<sup>+</sup> Th cells (TCR $\beta$ <sup>+</sup> CD4<sup>+</sup> CD44<sup>+</sup>)  
837 in the small intestine. (B) % (top) and total number (bottom) of CXCR3<sup>+</sup> of Th cells in the small  
838 intestine. (C) Representative flow cytometry scatter plot of IL-4<sup>+</sup> (top) and CXCR3<sup>+</sup> (bottom) Th cells  
839 from the SILP of D7 infected mice. (D) % of CD44<sup>hi</sup> of IL-4(GFP)<sup>+</sup> (left) and CXCR3<sup>+</sup> (right) from the SILP  
840 and MLN. (E) Representative overlaid histograms of IL-10R expression of IL-4<sup>+</sup> and CXCR3<sup>+</sup> Th cells  
841 compared to IL-10R FMO. (F) Geometric mean of IL-10R expression and (G) % of IL-10<sup>+</sup> cells of DN  
842 (double negative), IL-4(GFP)<sup>+</sup> and CXCR3<sup>+</sup> Th cells in the MLN and small intestine. Graphed data are

843 shown with means  $\pm$  1 SD and are pooled from 3 independent experiments with n=3 per experiment.  
844 Statistical significance was calculated by Student *t* test and Kruskal-Wallis test with Dunn's post-test  
845 for multiple comparisons between groups. (Significance \* $p<0.05$  \*\*\* $p<0.001$ , \*\*\*\* $p<0.0001$ ).

846

847

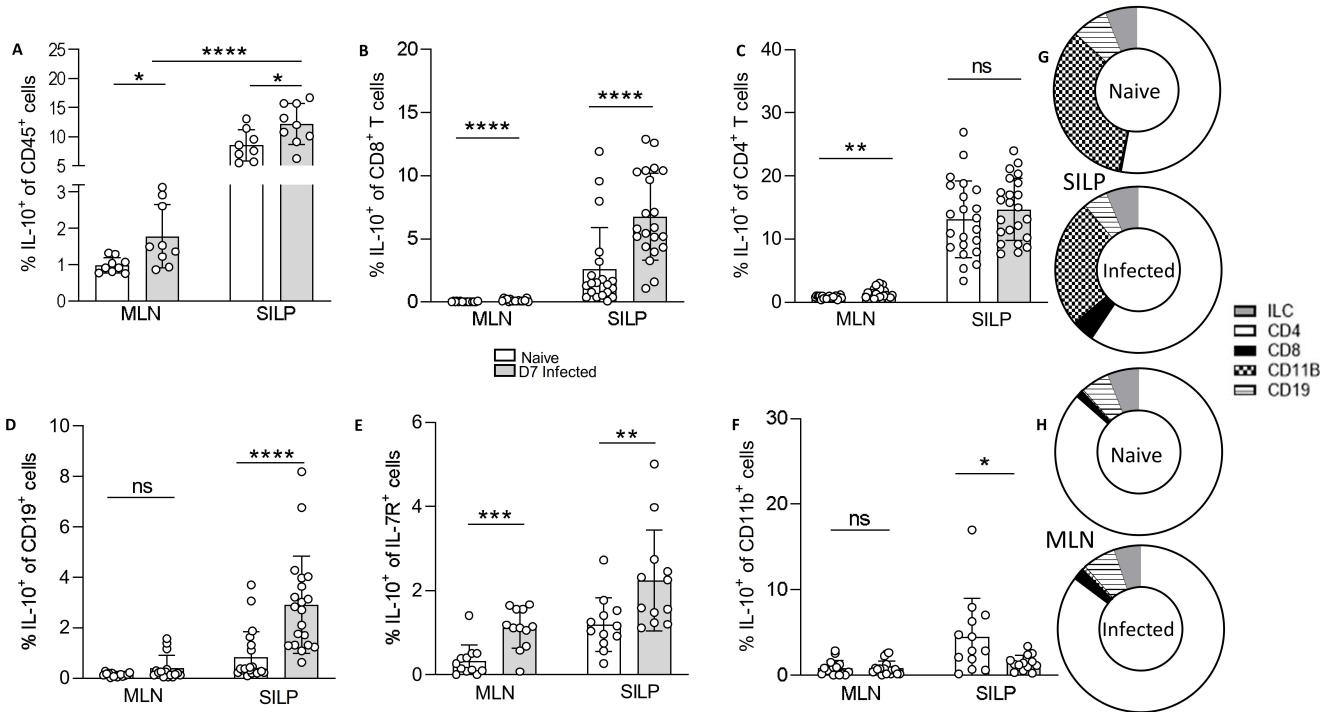
848 **Figure 5. IL-10 signalling blockade in *H. polygyrus* infection leads to expansion of Th1 cells in the**  
849 **small intestine**

850 C57BL/6 mice were infected with 200 L3 *H. polygyrus* and at D-1, D2 and D5 treated with anti-IL-10R  
851 mAb or isotype control, and 7 days post-infection the small intestine and MLN collect for analysis.  
852 (A) Representative flow cytometry of plot IFN $\gamma$  (top) and TBET (bottom). (B) Percentage of IFN $\gamma$ <sup>+</sup>  
853 (top) and TBET<sup>+</sup> (bottom) of CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the SILP. (C) Total number of IFN $\gamma$ <sup>+</sup> (top) and TBET<sup>+</sup>  
854 (bottom) of CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the SILP. (D) Percentage of IFN $\gamma$ <sup>+</sup> (top) and TBET<sup>+</sup> (bottom) of  
855 CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the MLN. Graphed data are shown with mean  $\pm$  1 SD and are representative of  
856 3 independent experiments with n=4-5 per experiment. Statistical significance was calculated by  
857 ANOVA followed by a Tukey's post-test for multiple comparisons between groups where data were  
858 normally distributed (B, C (TBET), D) and Kruskal-Wallis test with Dunn's post-test for multiple  
859 comparisons between groups where data were not normally distributed (C (IFN $\gamma$ )). (Significance  
860 \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ , \*\*\*\* $p<0.0001$ ).

861

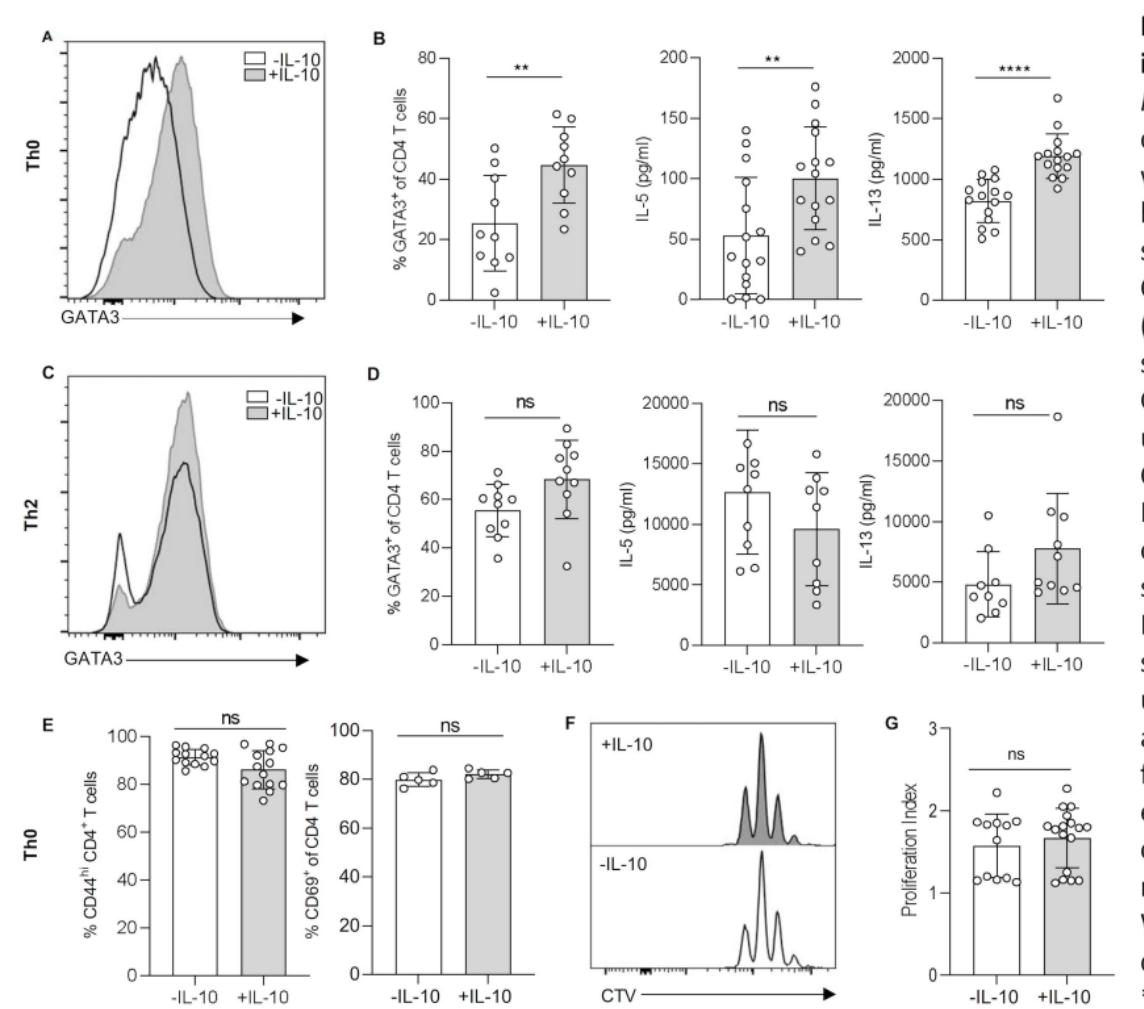
862 **Figure 6. IL-10 signalling promotes the intestinal Th2 response in *H. polygyrus* infection**

863 C57BL/6 mice were infected with 200 L3 *H. polygyrus* and at D-1, D2 and D5 treated with anti-IL-10R  
864 mAb or isotype control, and 7 days post-infection the small intestine and MLN collect for analysis.  
865 (A) Representative H&E staining of the duodenum from naïve (top left), D7 isotype parasite area  
866 (bottom left), D7 infected distal parasite area mice (top right) and D7 anti-IL-10R mAb parasite area


867 (bottom right). Histology scoring of (B) inflammation depth and (C) combined inflammation score  
868 from the 3 treatment groups. (D) % of GATA3<sup>+</sup> (left) IL-5<sup>+</sup> (middle) IL-13<sup>+</sup> (right) of CD4<sup>+</sup> CD44<sup>hi</sup> in the  
869 MLN. (E) % of GATA3<sup>+</sup> (left) IL-5<sup>+</sup> (middle) IL-13<sup>+</sup> (right) of CD4<sup>+</sup> CD44<sup>hi</sup> in the small intestine. (F)  
870 Representative staining of GATA3 (top), IL-13 (middle) and IL-5 (bottom) from *H. polygyrus* infected  
871 small intestine. (G) Fold change of IL-5 (left), IL-13 (middle) and IL-22 (right) in the duodenum  
872 compared to housekeeping gene (RSP29). Graphed data are shown with mean  $\pm$  1 SD and are pooled  
873 from 2-3 independent experiments with  $n=4-5$  per experiment. Statistical significance was calculated  
874 by ANOVA followed by a Tukey's post-test for multiple comparisons between groups where data  
875 were normally distributed (D (IL-5, IL-13), E (GATA3), G) and Kruskal-Wallis test with Dunn's post-test  
876 for multiple comparisons between groups where data were not normally distributed (D (GATA3), E  
877 (IL-5, IL-13). (Significance \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ , \*\*\*\* $p<0.0001$ ).

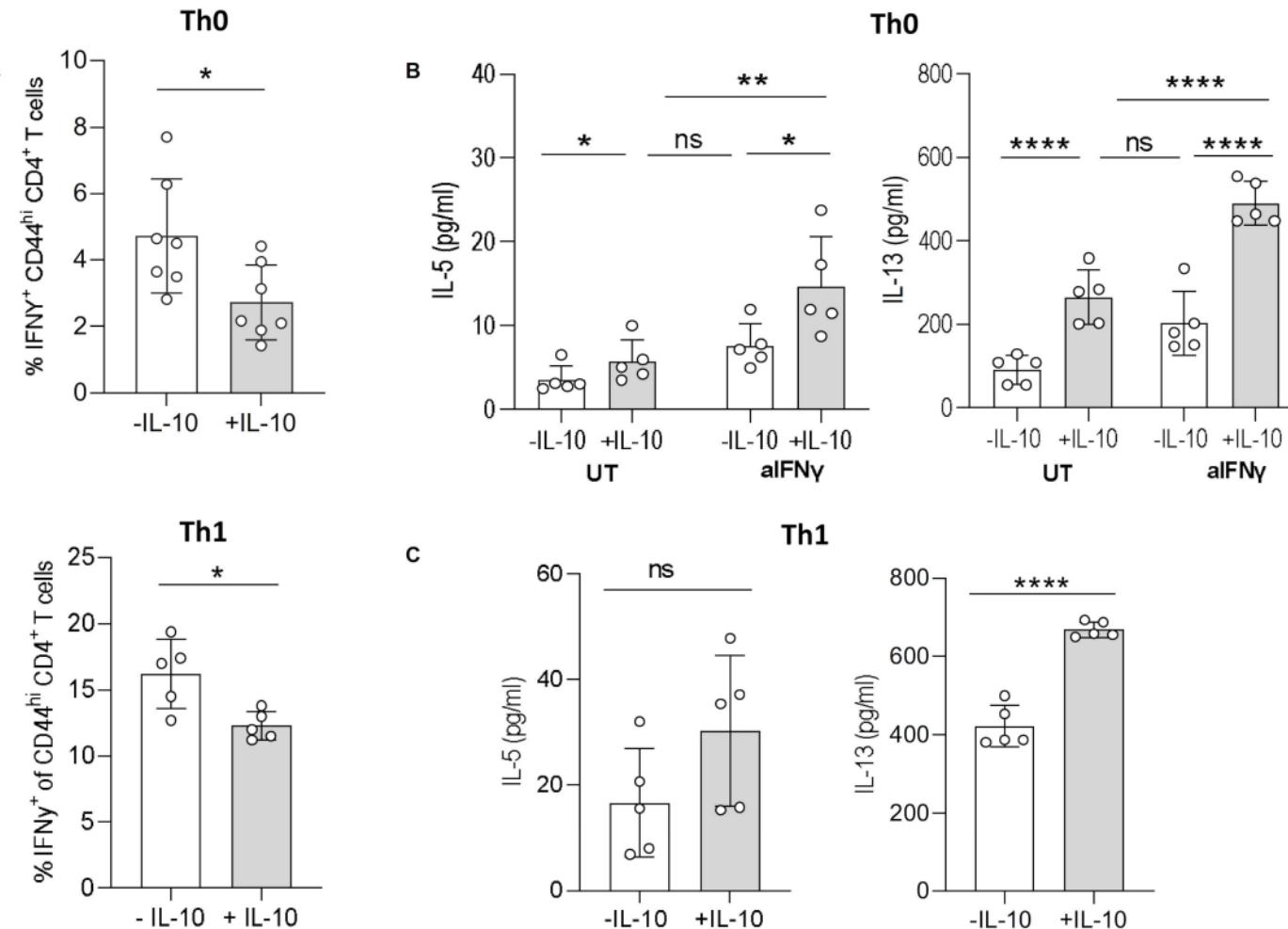
---

878


879

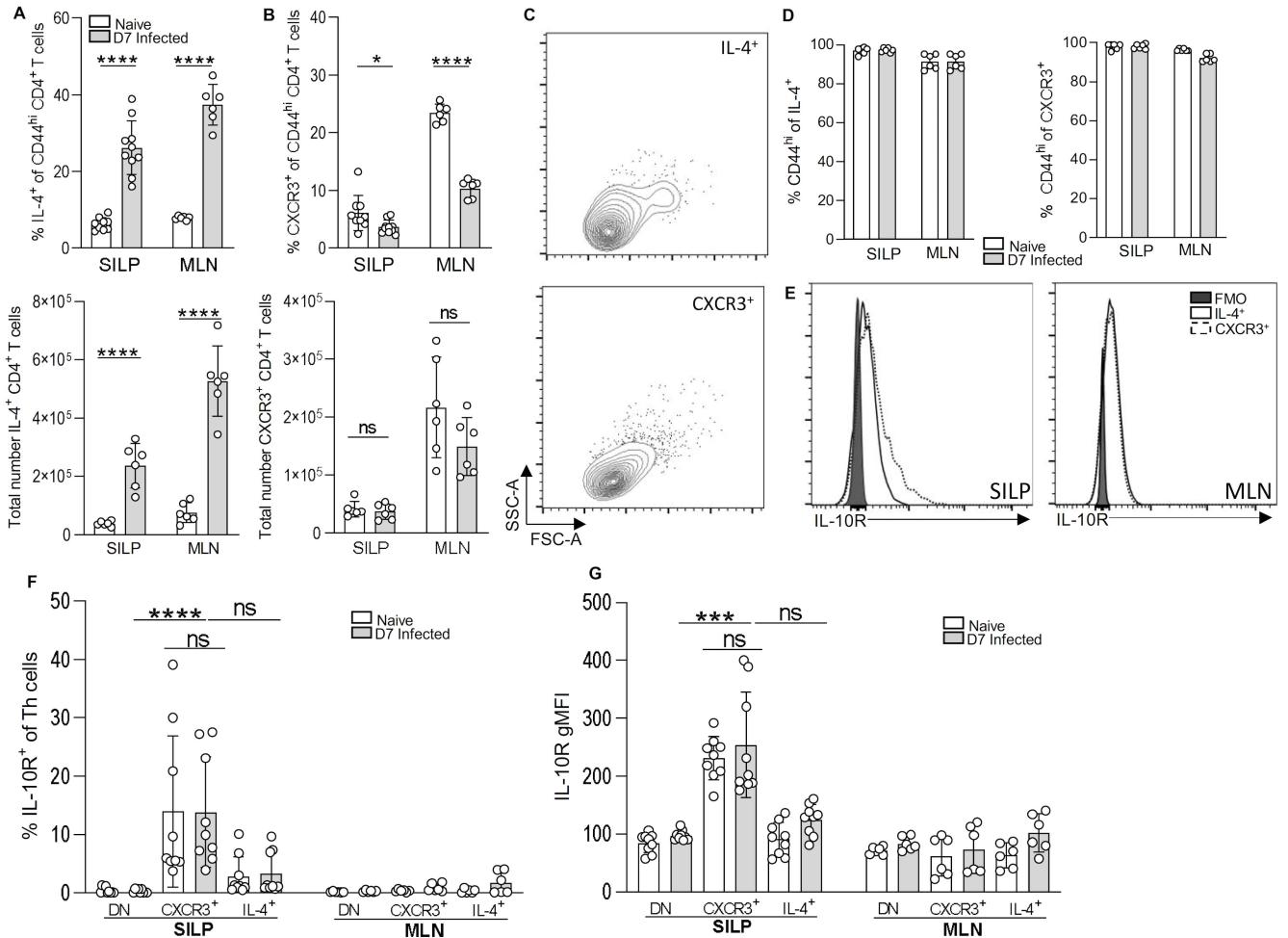
880




**Figure 1. IL-10 expression increases in the MLN and small intestine during *H. polygyrus* infection**

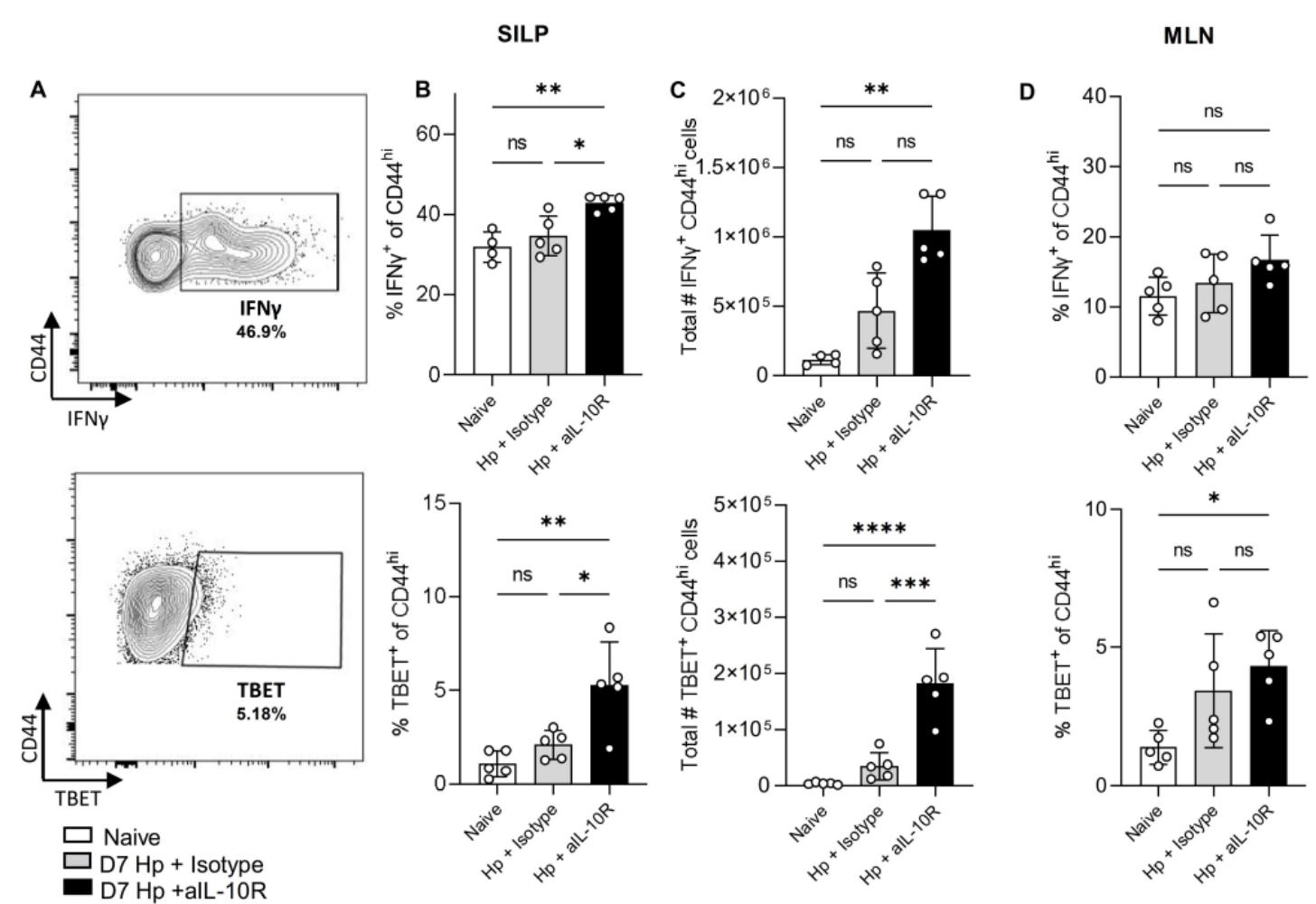
Il10gfp-foxp3rfp B6 mice were infected with 200 L3 *H. polygyrus* and 7 days later the small intestine and MLN collect for analysis. % of IL-10<sup>+</sup> of (A) CD45<sup>+</sup>, (B) CD8<sup>+</sup>, (C) CD4<sup>+</sup>, (D) CD19<sup>+</sup>, (E) IL-7R<sup>+</sup> and (F) CD11b<sup>+</sup> cells from the MLN and small intestine of naïve and D7 infected mice. Changes in proportion of IL-10 producing cells from total CD45<sup>+</sup> IL-10<sup>+</sup> cells in the (G) small intestine and (H) MLN from naïve and D7 infected mice. Graphed data are shown with mean  $\pm$  1 SD and are pooled from 3 independent experiments with  $n=2-5$  per experiment. Statistical significance was calculated by Student *t* test where data were normally distributed (A, C (SILP)) and Mann Whitney U test where data were not normally distributed (B, D (MLN), D, E, F). (Significance \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ , \*\*\*\* $p<.0001$ ).




**Figure 2. IL-10 enhances Th2 differentiation independently of activation and proliferation**

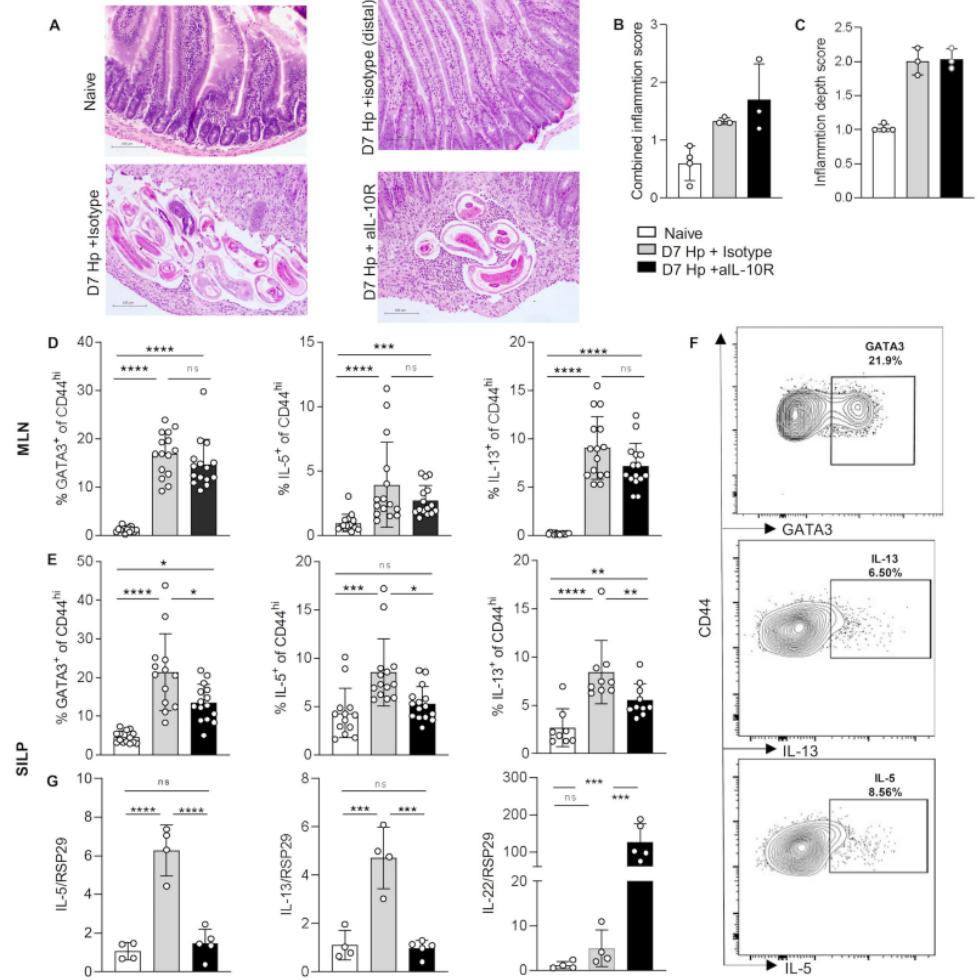
*In vitro* polarised Th0 and Th2 cells were cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-2 for 4 days with or without IL-10. (A) Representative histogram of GATA3 staining from IL-10 stimulated and unstimulated Th0 cells. (B) % of CD4<sup>+</sup> GATA3<sup>+</sup> CD4 T cells (left) and pg/ml of IL-5 (middle) and IL-13 (right) in Th0 culture supernatants. (C) Representative histogram of GATA3 staining from IL-10 stimulated and unstimulated Th0 cells. (D) % of CD4<sup>+</sup> GATA3<sup>+</sup> CD4 T cells (left) and pg/ml of IL-5 (middle) and IL-13 (right) in Th2 culture supernatants. (E) % of CD44<sup>hi</sup> (left) and CD69<sup>+</sup> CD4 T cells from IL-10 stimulated and unstimulated Th0 cultures. (F) Representative histograms of cell trace violet staining from IL-10 stimulated (right) and unstimulated (left) Th0 cultures. Graphed data are shown with mean  $\pm$  1 SD and are pooled from 3 independent experiments with  $n=4$ -5 per experiment. Statistical significance was calculated by Student *t* test where data were normally distributed (B, D, E) and Mann Whitney U test where data were not normally distributed (G). (Significance \*\* $p<0.01$ , \*\*\*\* $p<.0001$ ).




**Figure 3. IL-10 suppresses IFNy expression when promoting Th2 differentiation**

*In vitro* polarised Th0 and Th1 cells were cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-2 only for Th0, with the addition of IL-12 for Th1 for 4 days with or without IL-10. (A) The % of IFNy<sup>+</sup> CD44<sup>hi</sup> CD4<sup>+</sup> T cells measured in Th0 (top) and Th1 (bottom) cultures. (B) *In vitro* polarised Th0 cells were cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-2 for 4 days with or without IL-10 and with or without anti-IFNy, the concentration of IL-5 and IL-13 measured in supernatants. (C) *In vitro* polarised Th1 cells were cultured with  $\alpha$ CD3,  $\alpha$ CD28 and IL-12 for 4 days with or without IL-10 and IL-5 and IL-13 concentration in the supernatants measured. Graphed data are shown with mean  $\pm$  1 SD and are representative of 2 independent experiments with n=5 per experiment. Statistical significance was calculated by Student *t* test and one-way ANOVA with Tukey's post-test for multiple comparisons between groups (Significance \*p<0.05, \*\*p< 0.01, \*\*\*\*p< .0001).




**Figure 4. Th1 cells in the small intestine during *H. polygyrus* infection show high IL-10R expression**

B6 4get mice were infected with 200 L3 *H. polygyrus* and 7 days post-infection the small intestine and MLN removed. (A) % (top) and total number (bottom) of IL-4(GFP)<sup>+</sup> Th cells (TCR $\beta$  + CD4<sup>+</sup> CD44<sup>+</sup>) in the small intestine. (B) % (top) and total number (bottom) of CXCR3<sup>+</sup> of Th cells in the small intestine. (C) Representative flow cytometry scatter plot of IL-4<sup>+</sup> (top) and CXCR3<sup>+</sup> (bottom) Th cells from the SILP of D7 infected mice. (D) % of CD44<sup>hi</sup> of IL-4(GFP)<sup>+</sup> (left) and CXCR3<sup>+</sup> (right) from the SILP and MLN. (E) Representative overlaid histograms of IL-10R expression of IL-4<sup>+</sup> and CXCR3<sup>+</sup> Th cells compared to IL-10R FMO. (F) Geometric mean of IL-10R expression and (G) % of IL-10<sup>+</sup> cells of DN (double negative), IL-4(GFP)<sup>+</sup> and CXCR3<sup>+</sup> Th cells in the MLN and small intestine. Graphed data are shown with means  $\pm$  1 SD and are pooled from 3 independent experiments with n=3 per experiment. Statistical significance was calculated by Student *t* test and Kruskal-Wallis test with Dunn's post-test for multiple comparisons between groups. (Significance \*p<0.05 \*\*\*p< 0.001, \*\*\*\*p< .0001).



**Figure 5. IL-10 signalling blockade in *H. polygyrus* infection leads to expansion of Th1 cells in the small intestine**

C57BL/6 mice were infected with 200 L3 *H. polygyrus* and at D-1, D2 and D5 treated with anti-IL-10R mAb or isotype control, and 7 days post-infection the small intestine and MLN collect for analysis. (A) Representative flow cytometry of plot IFN $\gamma$  (top) and TBET (bottom). (B) Percentage of IFN $\gamma$ <sup>+</sup> (top) and TBET<sup>+</sup> (bottom) of CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the SILP. (C) Total number of IFN $\gamma$ <sup>+</sup> (top) and TBET<sup>+</sup> (bottom) of CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the SILP. (D) Percentage of IFN $\gamma$ <sup>+</sup> (top) and TBET<sup>+</sup> (bottom) of CD44<sup>hi</sup> CD4<sup>+</sup> T cells in the MLN. Graphed data are shown with mean  $\pm$  1 SD and are representative of 3 independent experiments with n=4-5 per experiment. Statistical significance was calculated by ANOVA followed by a Tukey's post-test for multiple comparisons between groups where data were normally distributed (B, C (TBET), D) and Kruskal-Wallis test with Dunn's post-test for multiple comparisons between groups where data were not normally distributed (C (IFN $\gamma$ )). (Significance \*p<0.05, \*\*p< 0.01, \*\*\*p< 0.001, \*\*\*\*p< .0001).



**Figure 6. IL-10 signalling promotes the intestinal Th2 response in *H. polygyrus* infection**

C57BL/6 mice were infected with 200 L3 *H. polygyrus* and at D-1, D2 and D5 treated with anti-IL-10R mAb or isotype control, and 7 days post-infection the small intestine and MLN collect for analysis. (A) Representative H&E staining of the duodenum from naïve (top left), D7 isotype parasite area (bottom left), D7 infected distal parasite area mice (top right) and D7 anti-IL-10R mAb parasite area (bottom right). Histology scoring of (B) inflammation depth and (C) combined inflammation score from the 3 treatment groups. (D) % of GATA3<sup>+</sup> (left) IL-5<sup>+</sup> (middle) IL-13<sup>+</sup> (right) of CD4<sup>+</sup> CD44<sup>hi</sup> in the MLN. (E) % of GATA3<sup>+</sup> (left) IL-5<sup>+</sup> (middle) IL-13<sup>+</sup> (right) of CD4<sup>+</sup> CD44<sup>hi</sup> in the small intestine. (F) Representative staining of GATA3 (top), IL-13 (middle) and IL-5 (bottom) from *H. polygyrus* infected (anti-IL-10R treated) small intestine. (G) Fold change of IL-5 (left), IL-13 (middle) and IL-22 (right) in the duodenum compared to housekeeping gene (RSP29). Graphed data are shown with mean  $\pm$  1 SD and are pooled from 2-3 independent experiments with  $n=4-5$  per experiment. Statistical significance was calculated by ANOVA followed by a Tukey's post-test for multiple comparisons between groups where data were normally distributed (D (IL-5, IL-13), E (GATA3), G) and Kruskal-Wallis test with Dunn's post-test for multiple comparisons between groups where data were not normally distributed (D (GATA3), E (IL-5, IL-13)). (Significance \* $p<0.05$ , \*\* $p<0.01$ , \*\*\* $p<0.001$ , \*\*\*\* $p<0.0001$ ).