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ABSTRACT

Over 90% of variants are rare, and 50% of them are singletons in the Alzheimer’s Disease
Sequencing Project Whole Exome Sequencing (ADSP WES) data. However, either single variant
tests or unit-based tests are limited in the statistical power to detect the association between rare
variants and phenotypes. To best utilize rare variants and investigate their biological effect, we
exam their association with phenotypes in the context of protein. We developed a protein
structure-based approach, POKEMON (Protein Optimized Kernel Evaluation of Missense
Nucleotides), which evaluates rare missense variants based on their spatial distribution on the
protein rather than allele frequency. The hypothesis behind this is that the three-dimensional
spatial distribution of variants within a protein structure provides functional context and improves
the power of association tests. POKEMON identified four candidate genes from the ADSP WES
data, namely two known Alzheimer’s disease (AD) genes (TREMZ2 and SORL) and two novel
genes (DUSP18 and CSF1R). For known AD genes, the signal from the spatial cluster is stable
even if we exclude known AD risk variants, indicating the presence of additional low frequency
risk variants within these genes. DUSP18 has a cluster of variants primarily shared by case
subjects around the ligand-binding domain, and this cluster is further validated in a replication
dataset with a larger sample size. POKEMON is an open-source tool available at
https://github.com/bushlab-genomics/POKEMON.

INTRODUCTION

High-throughput DNA sequencing of diverse human populations has identified millions of genetic
variants, the vast majority of which are exceptionally rare. A survey of ~60,000 individuals from
the Exome Aggregation Consortium (ExAC) found that out of ~7M variants, 99% have a frequency
<1% and 54% are singletons (Karczewski et al., 2020). Similarly, in the Alzheimer's Disease
Sequencing Project (ADSP) Whole Exome Sequencing (WES) of ~10k individuals, 97% of
identified variants have a minor allele frequency <1% and 23% are singletons (Butkiewicz et al.,
2018). However, the effect of most rare variants on diseases of interest remains unknown
because of insufficient statistical power to detect the associations between these variants and

phenotypes.

We hypothesized that rare variants contribute to common diseases by forming clustered or
dispersed patterns within protein structures that reflect modest disruption of protein function.
Based on this hypothesis, incorporating protein spatial context should improve rare variant
association tests. Prior studies have shown missense variants exhibit non-random patterns in

protein structures, such as cancer-associated hot spot regions with a high density of missense
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somatic mutation (Tokheim et al., 2016). Our group (Sivley et al., 2018) also found that germline
causal missense variants for Mendelian diseases exhibit non-random patterns in 3D space,

including both clusters and depletion.

To test this hypothesis, we developed a kernel function to quantify genetic similarity among
individuals by using protein structure information. Consider a scenario where two individuals have
different missense variants distal in genomic coordinates but close in 3D protein structure; these
individuals will be assigned a high genetic similarity through our kernel function, which when
applied over an entire dataset captures the spatial patterns of rare missense variants. Using a
statistical framework similar to SKAT (Wu et al., 2011), we test the association of rare variants
with quantitative and dichotomous phenotypes using this structure-based kernel. We call this
approach POKEMON (Protein Optimized Kernel Evaluation of Missense Nucleotides). We
validated that POKEMON can identify trait associations with spatial patterns formed by missense

variants both in simulation studies and real-world data.

POKEMON identified four candidate genes from the ADSP WES Discovery Dataset, namely two
AD genes (TREM2 and SORL1) and two novel genes (DUSP18 and CSF1R). Both DUSP18 and
CSF1R have clusters of variants primarily shared by case subjects around ligand-binding sites.
Specifically for the cluster identified in DUSP18, we examined it in the ADSP WES replication
dataset with a larger sample size and found that the cluster is better formed by the additional
variants included. In summary, the cluster we identified is populated with variants mostly from

cases and likely has a functional association with AD risk.

By performing an association test in the context of protein structure, we have identified highly
relevant gene-disease associations which are driven by specific clusters of variants. Such clusters
imply functional domains in the protein structure susceptible to variation and related to disease
risk. Analyzing missense variants from complex disease studies in this way provides a new

structural aspect which can be leveraged for association tests.
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Figure 1. Empirical power to detect a pattern of association centered at the protein core among five
methods with varying percentages of influential variants (k) and core variant odds ratios. Empirical power
is calculated by counting the number of tests with a p-value below the significance level in 100 independent
tests. The five methods include the structure kernel (POKEMON), combined kernel (POKEMON), frequency
kernel (SKAT), PSCAN with variance test (PSCAN-V), and POINT. The core variant odds ratio is chosen
as 2.0 or 3.0 (left to right). k is the percentage of pathological variants within the selected 50 variants,
ranging from 0.3 to 0.9 (from top to bottom).

RESULTS

POKEMON can detect associations with spatially clustered or dispersed rare variants


https://doi.org/10.1101/2021.08.09.455695
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455695; this version posted August 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

As a proof of concept, we evaluated the performance of POKEMON using simulations that mimic
real-world case/control studies. The simulation datasets varied in sample sizes (1000 - 5000), the
odds ratio of the core variants (2.0 — 3.0), and the proportion of influential to neutral variants (0.3
— 0.9). For a cluster pattern, influential variants were simulated by establishing a maximum odds
ratio decaying over a fixed distance of14 A. We limit the number of variants within the genotype
profile to 50, which is the mean number of variants mapped per protein in the ADSP WES. For
each simulation scenario, we generated 100 datasets and tested for spatial clustering using a
structure kernel, estimating power as the proportion of significant tests. In general, POKEMON
performed better than two other structure-based methods, PSCAN(Tang et al., 2020) and
POINT(Marceau West et al., 2019) and a frequency-based kernel (SKAT) (see Figure 1). For
scenarios with weaker effects and/or smaller sample sizes, POKEMON showed much better

performance relative to other methods.

Additionally, to evaluate POKEMON’s ability to identify a dispersed pattern, we simulated the
scenario where variants are distributed on the protein's surface. When all influential variants on
the surface had small odds ratios, none of the methods performed well. When increasing the odds
ratio to 1.5, POKEMON outperformed other methods in most scenarios, except for cases where

the percentage of influential variants was low (0.3) (see Figure S1).

We also assessed POKEMON'’s power at a higher resolution for different configurations of core
odds ratios and influential variant proportions. Figure 2 illustrates the dynamics of statistical
power for the POKEMON test under the assumption of a spatial effect. POKEMON achieved a
power of 0.8 with study designs commonly found in sequencing studies of complex disease: a
population of 3000 cases/3000 controls, the core odds ratio of 3.0, and 50% of the rare variants
influential on the simulated phenotype with moderate effect. However, as expected, when the
percentage of influential variants is low (<35%) and the core variant odds ratio is small (<1.8),
POKEMON did not reach 80% power. A small core odds ratio and a low percentage of influential
variants are more challenging for POKEMON to assess because more control subjects will carry
variants located within the cluster region, making POKEMON less likely to identify associated

patterns.
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Figure 2. Power assessment for POKEMON at different configurations (for both structure kernel and
combined kernel). Each line represents the minimum percentages of influential variants (k) and minimum

core variant odds ratios to reach a power of 0.8 when the number of cases/controls is fixed.

POKEMON replicates the cancer-related spatial clusters from the TCGA dataset

To demonstrate POKEMON’s ability to identify spatial patterns from real-world data, we analyzed
germline variants from The Cancer Genome Atlas (TCGA), which has previously been evaluated
for spatial clusters associated with cancer risk and metastasis (Mashl et al., 2018). We
constructed a case/control dataset by combining 10389 subjects from TCGA across 33 cancer
types with 4919 presumably cancer-free controls from the ADSP WES Discovery Dataset. We
restricted our POKEMON analysis to rare variants with unknown effects and 31 proteins with
functional assessement in the literature. This analysis directly tested the hypothesis that cancer-
related variants tend to cluster in a protein hotspot while rare variants from cancer-free subjects
are randomly distributed. We observed significant enrichment of statistical associations within the

31 proteins evaluated (27 with p < 0.05, see Supplementary Table 1).
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Figure 3. Spatial distribution of variants from TCGA dataset within MET (PDB:1R0P) and RET (PDB:2IVT).
A and C show the rare missense variants with unknown effects mapped to the structure. The color scale
indicates the percentage of case subjects that carry the variants out of the overall sample. Pathological and
likely pathological variants are highlighted in purple. B, D show clusters identified by POKEMON. Clusters
that are consistent with the original literature are highlighted with pink sphere models. Pathological and

likely pathological variants are highlighted with purple sphere models.

From these results, we focus specifically on two genes highlighted in the literature that have been
experimentally validated, namely RET and MET (Table 1). We found similar patterns of variant
clustering for RET and MET, formed by somatic variants and pathological/likely pathological
germline variants (Mashl et al.,, 2018). For MET, POKEMON identified a cluster formed by
P1091L, S1092G, and Q1085K, which surrounds the pathological variant H1112R (Figure 3A and
B). For RET, POKEMON identified a cluster formed by E867D, V8711, L895F, R897L, and R908K,
which surrounds the pathological variants R912P and R918T (Figure 3C and D). Notably,
POKEMON identified these two clusters via case/control analysis of rare germline variants while
excluding known pathological variants. Thus our significant association statistic is driven by

additional rare variants within MET and RET surrounding those with known pathological effects.
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Table 1: Results for MET and RET from TCGA dataset
Gene | PDB entry | Phenotype | # SNPs | #SNPs mapped | p-value
MET | PDB:1ROP cancer 757 17 5.454e-04
RET | PDB:2IVT cancer 765 33 1.606e-04

POKEMON identifies known AD risk genes (TREM2 and SORL 1) and novel candidate genes
(CSF1R and DUSP18)

To discover any spatial rare variant patterns associated with AD, we applied POKEMON with a
structure kernel to the ADSP WES Discovery Dataset with 5,522 AD cases and 4,919 controls.
We perform the POKEMON test on 4,173 genes with available protein structures and = 5 rare
missense variants (MAF<0.05). APOE €2 and €4 dosages were included as covariates.

We used two significance thresholds to identify candidate genes: a typical Bonferroni correction
threshold and an empirical threshold we derived from the MET and RET results based on our
TCGA analysis which reflects the order of magnitude of significance of a true-positive signal

obtained from variants with unknown effects and extremely low allele frequency (<0.001).

Overall, there are four genes out of 4,173 identified as candidate genes. TREMZ2 was identified
with the Bonferroni correction, while SORL1, CSF1R, and DUSP18 were identified with the
empirical threshold (<1E-03).

Table 2: genes associated with AD based on structure kernel

Gene | # SNP | # SNP mapped | PDB Entry | p-value | log(p-value)
TREM?2 40 33 PDB:6XDS | 1.261E-08 7.899
SORL1 203 56 PDB:3WSY | 8.167E-05 4.088
CSF1R 74 38 PDB:4LIQ | 4.428E-04 3.354

DUSP18| 25 18 PDB:2ESB | 6.717E-04 3.509

The spatial cluster is stable for SORL1, while TREM?2 is driven primarily by a single variant.

As with our TCGA analyses of RET and MET, both SORL1 and TREMZ2 harbor known AD-
assocated variants. To determine if the cluster pattern we detected is stable even in the absence
of these known effects, we excluded any AD-related variants previously identified in GWAS
studies leaving only rare genetic variants with unknown effects within SORL1 and TREM2. A
significant result from this analysis indicates that rare additional variants within these genes
contribute to AD risk.

Indeed, for SORL1(Ensembl: ENST00000260197; PDB: 3WSY), even though AD-related variants
A528T (Overall MAC:439; MAF:0.0210), E270K (Overall MAC:990; MAF:0.0474), and T947M
(Overall MAC:2; MAF: 9.578e-05) were excluded respectively (Vardarajan et al., 2015), the
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signals persist. While the results for the structure kernel with these loci excluded are still
significant, SORL1 is not significantly associated with AD even with all variants included for the
frequency kernel analysis (Table 3a). The result indicates that the spatial pattern of variants within
the 3WSY structure of SORL1 is associated with AD.

For TREM2 (Ensembl: ENST00000373113; PDB: 5ELI), The signal is likely driven primarily by
the variant R47H. The results for TREMZ2 from the structure kernel test are comparable to that
from the frequency kernel test before and after R47H being excluded. Excluding R47H (Korvatska
et al., 2015) changes the p-value drastically for both the structure kernel and the frequency kernel
(Table 3b).

Table 3a: Results for SORL7 w/ and w/o known loci

Method Gene PDB Entry | p-value
Structure kernel SORL1 8.167E-05
SORL1(exclude A528T) 2.841E-02

SORL1 PDB:3WSY [ 0.0923
Frequency kemnel (SKAT) =552 7 (exclude A528T) 8.578E-01
Structure kernel SORL1 8.167E-05
SORL1(exclude E270K) 7.373E-05

SORL1 PDB:3WSY [ 0.0923
Frequency kemel (SKAT) =551 7(exclude E270K) 3.881E-02
Structure kernel SORL1 8.167E-05
SORL1(exclude T947M) 8.166E-05

SORL1 PDB:3WSY [ 0.0923
Frequency kemel (SKAT) o527 exclude T947M) 9.214E-02
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Table 3b: Results for TREM2 w/ and w/o known loci

Method Gene PDB Entry | p-value
Structure kernel TREM2 1.261E-08
TREM2(exclude R47H) 8.982E-04
TREM?2 PDB: 6XDS | 5.218E-09
Frequency kemnel (SKAT) et oxclude RA7H) 3.501E-03

Gene associations passing the significance threshold(0.05) are highlighted in bold

ADSP WES Discovery(10k) ADSP WES Replication(12k)

Percentage of case carriers

Il Case Cluster1 Il Case Cluster1
Il Control Cluster1 Il control Cluster1
Case Cluster2 Case Cluster2

Figure 4. Spatial distribution of variants from ADSP WES discovery and replication dataset within
DUSP18 (PDB:2ESB.A). A and C show the rare missense variants with unknown effects mapped to the
structure. The color scale indicates the percentage of case subjects that carry the variants out of the
overall sample. Variants that show a different percentage of case carriers and are being classified into
other clusters between ADSP WES discovery and replication dataset are highlighted and labeled. B, D
show clusters identified by POKEMON. Clusters are colored differently.

DUSP18 has a cluster of variants primarily shared by case subjects around the ligand-binding

domain

The signal identified within DUSP18 (Ensembl: ENST00000334679; PDB: 2ESB) is driven by a
cluster of variants primarily shared by case subjects in the catalytic domain for ligand binding,
highlighted as Case Cluster 1 in Figure 4. This association is strengthened in the replication
dataset (Table 4), where the cluster is better formed by an additional case variant A35T and the
deletion of a control variant G107A (Figure 4). Overall, Case Cluster 1 is formed by missense

10
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variants A35T, N51S, E55G, S74A, R78C, and R110H, which surround the ligand-binding site
(Figure 5). Indeed, Variant R110H, a catalytic triad residue, interacts with E55G (Jeong et al.,
2006), indicating a functional interaction related to AD risk. DUSP18 has been previously reported
to inhibit SUMOylation and reduce ATXN1 aggregation (Ryu and Lee, 2018), and ATXN1 loss of
function is associated with an increased risk for AD (Suh et al., 2019).

Table 4: Results for candidate genes from the replication dataset

ADSP WES Discovery(10k) ADSP WES replication (12k)
Overall: 10441 Overall: 11828
Case/Control: 5522/4919 Case/Control: 6238/5590
Gene PDB entry | # SNPs #SNPs p-value | # SNPs #SNPs p-value
mapped mapped
TREM2 | PDB:6XDS | 40 33 | 1:261E-08 ) 44 29 5'01419'5'
SORL1 | PDB:3WSY | 203 56 | S167E051 446 59 9'75’(;‘ E-
CSF1R | PDB:4LIQ 74 3g | 442BE04 ) o4 38 6'1023?'5'
DUSP18 | PDB:2ESB | 25 18 | B7VEO4] 4 19 1'05’57 E-

11
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Figure 5. Spatial distribution of variants and their distance to the EPE within DUSP18 (PDB:2ESB.A). The
distance is calculated from Ca to S. All the variants that belong to the cluster of interest are highlighted
and labeled with the AA change.

The spatial pattern within CSF1R is unstable through the replication dataset

For CSF1R (Ensembl: ENST00000286301; PDB: 4LIQ), the structure kernel result is more
significant than the frequency kernel (Table 5), indicating that spatial patterns within the protein
improve detection power. A case cluster identified by POKEMON in the Discovery Dataset
contains T163A, N153H, A123G, L1111, R106Q, R106W, Q77E, and P53L (Figure 6.B: Case
Cluster 1). The distances between those variants range from 5.3 to 14.3 A, while their average
sequence distance is 18 amino acids. This cluster is within the extracellular region (AA 1-498),
where CSF-1 or IL-34 binds (Stanley and Chitu, 2014).

Table 5: Results for CSF1R with different kernels

Method Gene | PDB Entry | p-value
Structure kernel 4.428E-04
CSF1R | PDB:A4LI
Frequency kernel (SKAT) Q 7.731E-03
ADSP WES Discovery(10k) ADSP WES Replication(12k)
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Figure 6. Spatial distribution of variants from ADSP WES discovery and replication dataset within CSF1R

(PDB:4LIQ.A+E). A and C show the rare missense variants with unknown effects mapped to the structure.
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The color scale indicates the percentage of case subjects that carry variants from the overall sample.
Variants that show a different percentage of case carriers and are classified into other clusters (illustrated
by color) between ADSP WES discovery and replication dataset are highlighted and labeled. B, D show
clusters identified by POKEMON.

However, when we examined CSF1R with the replication dataset, we did not observe an improved
signal compared to the Discovery Dataset (Table 4). Reviewing the PDB:4LIQ structure, we found
that Case Cluster 1 persists in the replication dataset while other clusters become sporadic.
Specifically, Case Cluster 1 has two additional case variants E119K and N255I, while two case
variants P53L, N153H drop out of the dataset (Figure 6.A, C). The complete comparison of
variants between the Discovery Dataset and the Replication dataset can be found in the

Supplementary Tables.

Discussion

We have shown that POKEMON improves the power to detect rare variant associations in the
context of protein structure. We found POKEMON outperforms other structure-based methods
through simulation studies except in a small number of cases where all existing methods have
insufficient power. Specifically, POKEMON achieves a power of 0.8 for what we presume to be a
common scenario in sequencing studies: a study population of 3,000 cases/3,000 controls, a core
odds ratio of 3, and 50% of the variants associated with the phenotype. In contrast, all other
methods tested for this scenario have power below 0.6. We applied POKEMON to the ADSP
Discovery WES dataset and identified spatial patterns of rare variants related to AD risk. The
spatial patterns of variants within SORL1, is consistent with a previously reported association
using PSCAN(Tang et al., 2020). We also identify two potentially AD-associated clusters of
variants within CSF1R and DUSP18, located around ligand-binding sites. Specifically, the cluster

within DUSP18 is validated with the replication dataset with a larger sample size.

Notably, an advantage for POKEMON over other rare-variant analysis methods is that statistical
power increases with the observation of any new variant including singletons assuming the
existence of divergent spatial patterns between cases and controls. In most rare variant
association tests, increasing sample size only increases the power for non-singleton variants in
the resulting data. Even for those non-singleton variants, the improvement in power is not
necessarily proportional to the increase in sample size. Moreover, additional neutral variants will

be introduced and negatively impacting the statistical power when the sample size increases. In
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contrast, POKEMON can utilize rare variants and even singletons with the structure kernel,
regardless of their low allele frequency. The increasing number of rare variants helps form a
spatial pattern, which can be identified by POKEMON with higher power (Figure S4D).

Based on our analyses of MET/RET in the TCGA dataset, and SORL1 in the ADSP WES
Discovery dataset, we also demonstrated that the association detected by our spatial kernel is
not driven by a single variant but rather a collection of variants with modest effects. Additionally,
even though we didn’t include any population-related covariates in the structure kernel test for
ADSP WES Discovery Dataset, the overall results didn’t show large genomic inflation (GC=1.23).
This confirms our assumption that the structure kernel in POKEMON is less susceptible to
population stratification than frequency-based tests; any constraint to the positions of rare variants
within protein structures is likely independent of the variants' population origin and therefore does

not confound analyses as is typical of a frequency-based test.

POKEMON is designed to leverage pre-existing biological information for sequencing datasets
where typically only variant counts or frequencies are considered. Even though protein structure
information of variants has been incorporated into association tests like POINT and PSCAN
(Marceau West et al., 2019; Tang et al., 2020), they serve as guiding information for more
traditional association tests ultimately based on allele frequency. Therefore, these approaches
are still potentially subject to the limitations in unit-based or single variant tests. With the structure
kernel, POKEMON uses the spatial information of a missense variant, which is independent of
allele frequency. Assuming the rare variants form spatial patterns, POKEMON ameliorates the
power dilemma induced by increasing numbers of singleton variants as the sample size of

sequencing studies increases.

Importantly, POKEMON does not have sufficient power to detect patterns for some scenarios. As
shown in the simulations, POKEMON lacks the power even with 5,000/5,000 cases/controls when
the percentage of influential variants is low (<30%) and the core variant odds ratio is small (<1.5).
While we expected lower power in this scenario, this result may also reflect a limitation of our
simulation strategy; we limit the number of variants simulated to 50. If more variants are included
in the test, the underlying spatial pattern is better formed, and thus the power of POKEMON wiill

improve.

We anticipate POKEMON will be helpful as a large-scale screening method to detect potentially
disease-associated proteins in a proteome-wide fashion. Currently, the PDB structures deposited
in the PDBank only cover ~70% of the identified molecular functions in the human genome

(Somody et al., 2017). We expect that the improvement in Cryo-EM and prediction methods like
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AlphaFold2 (Senior et al., 2020) will massively increase the availability of structural information
for proteins and complexes. As POKEMON is a unit-based test, it only provides a single
association statistic for the influence of all missense variants within the protein for a phenotype.
Follow-up analyses to assess specific SNVs or refine SNV subsets may provide more detailed

quantitative assessments of specific variant spatial patterns.

MATERIAL AND METHODS
Derivation of the POKEMON method

We briefly review the linear mixed model used in association tests and then introduce the
construction of a structure kernel for POKEMON. Assume we have n individuals for whom we
have p non-genetic covariates, genotypes for m SNPs, and the phenotype y as an n x 1 vector.

Genotype G is a n x m matrix. Covariate X is a n X p matrix.

A linear mixed model contains a fixed effect from covariates Xf, a random effect annotated by
Zu, and an error term €. The y is fit with a high-dimensional normal distribution (2). The random
effect can be further divided into two parts, an environmental effect 621 and a genetic effect 012Kg-
K 4 is the kernel containing the genetic similarity between individuals. a# is the amount of variance

of y explained by K.
y=XB+Zu+e€e(1)
y ~N(XB,0fK 4+ o2I) (2)
The null hypothesis o; = 0 indicates that K ; does not explain any variance of y. The score statistic

Q is defined as the partial differential for the log-likelihood on ¢2. Under the null hypothesis, Q
follows a mixed chi-squared distribution(3), where S projects y into a space orthogonal to

covariates and A; are the eigenvalues of SK ;S.
Q
o2 = VI SKSy~ i 4ixi(3)

For POKEMON, we construct the n x n kernel K in the context of protein as follows. For K,
each entry is the genetic similarity between individuals based on the variants they carry, which is
weighted by variants’ distance in the protein structure(4). dy; is the distance of pair-wise single
nucleotide variants (SNVs) in angstroms (A) within the protein. k and / represent the kth variant

from individual j and the Ith variants from individual j.

Kij = Xy, j, AcAmin{f (di)} (4)

15


https://doi.org/10.1101/2021.08.09.455695
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455695; this version posted August 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Some protein structures are formed by identical subunits (homo-multimer), which introduces
redundancy in the variant-to-amino acid projection (i.e., one variant can map to multiple amino
acids located in different subunits). To eliminate the spatial similarity induced by multiple mapping
locations of a single variant in a homo-multimer, we took d,,; to be the minimum distance over all
pair-wise distances. Function f(d) converts a Euclidean distance to the similarity score for a pair

of variants.

dZ
%1
fdi) = e 22 (3)
As a default, the exponential function for f in (5) with ¢ set to a value of 7 A, with which the effect

decays below 0.1 after 2t (14 A). 14 A was chosen as it is a commonly adopted short-range non-

bonded cut-off in molecular dynamic simulation (Monticelli et al., 2008).

Apart from spatial patterns, we also account for the magnitude of the protein change due to the
different amino acid substitutions. We scaled the pair-wise variants by their amino acid
substitution, which is defined as A, and A4;. A, and 4, are the weights for amino acid substitution
for variant k and variant / according to the BLOSUMG62 matrix (Henikoff and Henikoff, 1992),
respectively. For a less conservative amino acid substitution, the score s, in BLOSUMG62 matrix
will be negative and consequently A, will be greater than 1. In contrast, for a neutral or
conservative amino acid substitution, s, will be positive and A4, will be less than 1.
Ay = —V/eSk (8)

The structure kernel is nonlinear in contrast to the SKAT tests (Wu et al., 2011), which uses a
linear kernel (e.g., K = GWW'G') to calculate the genetic similarity between individuals. The
genetic similarity in a linear kernel between individuals is the sum of weighted SNVs being shared.
However, singletons are carried by only a single individual and thus fail to be included in
calculating genetic similarity. With the structure kernel, a pair of singleton variants will be assigned
non-zero weights if they are spatially proximate in the protein structure. The interpretation of the

structure kernel is that case individuals are genetically similar because they share more spatially

clustered or dispersed rare variants than the control individuals.

We also allow for incorporating allele frequency in the POKEMON test and develop a combined
kernel function. Variants clustered in protein structure already contribute to a high genetic
similarity based on our structure kernel. With a combined kernel, those variants will be further up-
weighted if they are rare in allele frequency and vice versa. The combined kernel function is based

on K4, extended by further scaling variants by weights derived from the allele frequency. w; =
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Beta(MAF,; a, b) is the weight for the k™ variant characterized by beta density witha = 1 and b =
25 as default.

Kij = Yijoket AcAmin{f (di)} + i j, WiAi (7)
Workflow of POKEMON

POKEMON requires a genotype matrix and consequence profile containing variant-to-amino acid
mapping information as inputs (see Figure S2). Additional covariate files are optional to adjust
for covariates. POKEMON first maps the variants using their coordinates into the 3D protein,
which is accomplished with the consequence profile generated by Ensembl Variant Effect
Predictor (VEP v95) and the reference from SIFTS function mapping a PDB entry to a UniProt
residue level (Dana et al., 2019). A single variant may be mapped to multiple amino acids for
multimers with identical subunits. The protein structures are fetched from the PDB during the
analysis. If multiple protein structures are available for a single gene, the structure with the most
variants mapped will be selected. The user may also specify a specific PDB entry. After mapping,
the score between a pair of variants is calculated based on the minimum distance between them,
which is further scaled by the amino acid substitution weight from the BLOSUM62 matrix by
default. The pair-wise genetic similarity between individuals is the summation of all pair-wise

scores of variants. The genetic similarity kernel K, is then evaluated in the variance component

test.

Data Simulation

We conducted simulation studies to assess POKEMON'’s power in detecting disease-associated
protein variant patterns. We hypothesized that variants with moderate effects on a phenotype
form spatial patterns within a protein structure and induce subtle alterations to the protein’s
function. To test the hypothesis, we established two patterns. The first pattern entails an
embedded core within the protein disrupted by rare variants (i.e., variant clustering), while the
other represents the localization of influential variants to the protein’s surface (i.e., variant
dispersion). Both patterns are shown in Fig S4.A & Fig S4.B. We randomly selected a protein
structure, Human c-Fms Kinase Domain (PDB:20GV), to carry out simulations. Structural
information for PDB:20GYV is available for both PSCAN and SKAT.

We simulated a clustering pattern by distributing influential variants within the core of the protein

structure and scaling the variant odds ratios proportionally to their distance from the core. We
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then randomly sampled 50 variants from the protein. The minor allele frequencies for all the
variants were randomly sampled from a log-transformed uniform distribution within an interval (-
4, -2.3). This variant sampling strategy restricted the selected minor allele frequencies within the
range (0.0001, 0.005) and generates singletons, which is consistent with ADSP WES studies
(Figure S3). To investigate how neutral variants influence the power, we varied the percentage of
influential variants out of all variants being sampled (Figure S4). For each set of parameters (e.g.,
sample size, core variant odds ratio, etc.), the empirical power was estimated by the percentage
of successful tests out of 100 independent tests with a significance level of 0.05. We compared
the empirical power of POKEMON with three other methods: SKAT, PSCAN-V, and POINT. The
number of case and control subjects sampled is from 1000 to 5000. Additional details for the

simulation can be found in Figure S4 and supplementary materials.

We also simulated a dispersion pattern by distributing influential variants on the protein's surface.
Considering the selected protein PDB:20GV is about 40 A in diameter, we defined the surface
variants as those more than 21 A away from the core, which yielded 33 variants. All the surface
variants were assigned with the same odds ratio (e.g., 1.1), while the rest were considered neutral
with an odds ratio of 1. The simulation settings were similar to the clustering pattern, with the only
difference that we sampled 30 variants from the protein, which allowed us to tune the percentage

of influential variants to as large as 90%.
Applying POKEMON to ADSP WES data

Discovery Dataset

We used the whole-exome sequencing (WES) data from the Discovery Case-Control study under
the Alzheimer’s Disease Sequencing Project (ADSP). ADSP WES data contains 5,740 late-onset
AD cases and 5,096 cognitively normal controls primarily of European ancestry, with 218 cases
and 177 controls of Caribbean Hispanic ancestry. Cases were determined based on diagnosis
using cognitive testing data and medical records, while controls were determined on their low risk
of developing AD by age 85 years (Bis et al., 2018; Beecham et al., 2017). ADSP WES data is
available by applying to the NIAGADS Data Sharing Service.

We selected 10,441 subjects of European ancestry from the ADSP as the study group (5,522
late-onset AD cases and 4,919 cognitively normal controls). The whole-exome sequencing for
these 10,441 subjects provided ~850,000 variants, of which 97.5% have a minor allele frequency
< 0.01. We retained the missense variants with minor allele frequency < 0.05 for our assessment.

Overall, we selected 4,173 genes with experimentally determined protein structures and = 5 rare
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missense variants mapped to the structure. The mean number of rare missense variants mapped
per gene was ~50. To exclude signals induced by the well-known APOE association, we included

APOE €2 and €4 dosages as covariates.

Replication Dataset

The ADSP FUS contains the 9389 subjects from the Discovery Phase Case-Control study plus
additional 1044 cases and 1395 controls for a total of 11828 non-Hispanic white subjects. The
WES data in FUS was reprocessed using joint genotype calling approaches implemented in the
VCPA pipeline (Leung et al., 2019). The genotype calling approaches for the replication dataset
were updated from the ATLAS genotype calling process implemented for the Discovery Dataset.
Therefore, we consider that this replication dataset is a validation by expanding the sample size
and accounting for variability in the variant calling process. If the spatial pattern POKEMON
identified is stable, the additional variants identified in the replication dataset should also

contribute to the association signal.

Our primary purpose for using the replication dataset was to validate the spatial patterns identified
from the discovery analysis, there for we examined only SORL1, TREM2, DUSP18, and CSF1R
genes. Tests on the replication dataset were conducted similarly to the discovery analyses, with

APOE €2 and €4 dosages included as covariates to regress out the APOE association.
Applying POKEMON to TCGA data

The TCGA data is a real-world, true-positive example of spatial patterns of missense variants
associated with phenotypes (Kamburov et al., 2015). To create a dataset in the form of a case-
control study, we combined 4919 control subjects from the ADSP WES Discovery Dataset and
10389 subjects from TCGA data diagnosed with 33 cancer types (Mashl et al., 2018). We
assumed that 4919 control subjects from the ADSP WES Discovery Dataset are cancer-free
controls. While this is not an ideal study design, any violation of this assumption would reduce
statistical power rather than identifying spurious associations. The combined case/control dataset
provided a real-world assessment of our hypothesis that rare variants from cancer tissues would
form spatial patterns, while the rare variants from control subjects would be randomly distributed

within the protein.

All previously identified pathological or likely pathological variants were excluded from the TCGA
data. Moreover, we set a stringent MAF threshold as <0.001 to retain rare variants. In summary,
the entire test was carried out to examine rare variants with unknown effects. We carried out
POKEMON tests on 31 genes with potential hotspots (Mashl et al., 2018) and available protein

structures. We only applied structure kernel tests with no covariate included.
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CODE AVAILABILITY

The code for this study is available at GitHub: https://github.com/bushlab-genomics/POKEMON

with open access.

DATA ACCESS

Whole Exome Sequencing Data from the Alzheimer's Disease Sequencing Project are available
via NIAGADS (NGO00067 - ADSP Umbrella). https://dss.niagads.org/datasets/ng00067/
NIAGADS Data Sharing Service is needed to access the data.

The Cancer Genome Atlas data are available via dbGaP Study Accession (phs000178.v1.p1)
and accessible via the National Cancer Institute Genomic Data Commons
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