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Abstract Defining reference models for population variation, and the ability to study individual43

deviations is essential for understanding inter-individual variability and its relation to the onset44

and progression of medical conditions. In this work, we assembled a reference cohort of45

neuroimaging data from 82 sites (N=58,836; ages 2-100) and use normative modeling to46

characterize lifespan trajectories of cortical thickness and subcortical volume. Models are47

validated against a manually quality checked subset (N=24,354) and we provide an interface for48

transferring to new data sources. We showcase the clinical value by applying the models to a49

transdiagnostic psychiatric sample (N=1,985), showing they can be used to quantify variability50

underlying multiple disorders whilst also refining case-control inferences. These models will be51

augmented with additional samples and imaging modalities as they become available. This52

provides a common reference platform to bind results from different studies and ultimately53

paves the way for personalized clinical decision making.54

55

Introduction56

Since their introduction more than a century ago, normative growth charts have become funda-57

mental tools in pediatric medicine and also in many other areas of anthropometry (Cole (2012)).58

They provide the ability to quantify individual variation against centiles of variation in a reference59

population, which shifts focus away from group-level (e.g., case-control) inferences to the level of60

the individual. This idea been adopted and generalized in clinical neuroimaging and normative61

modelling is now established as an effective technique for providing inferences at the level of the62

individual in neuroimaging studies (Marquand et al. (2016, 2019)).63

Although normative modelling can be used to estimate many different kinds of mappings – for64

example between behavioral scores and neurobiological readouts – normative models of brain de-65

velopment and aging are appealing considering thatmany brain disorders are grounded in atypical66

trajectories of brain development (Insel (2014)) and the association between cognitive decline and67

brain tissue in ageing and neurodegenerative diseases (Jack et al. (2010); Karas et al. (2004)). In-68

deed, normative modelling has been applied in many different clinical contexts, including charting69

the development of infants born pre-term (Dimitrova et al. (2020)) and dissecting the biological70

heterogeneity across cohorts of individuals with different brain disorders including schizophre-71

nia, bipolar disorder, autism and attention deficit/hyperactivity disorder (Bethlehem et al. (2020);72

Wolfers et al. (2021); Zabihi et al. (2019)).73

A hurdle to the widespread application of normative modelling is a lack of well-defined ref-74

erence models to quantify variability across the lifespan and to compare results from different75

studies. Such models should: (i) accurately model population variation across large samples; (ii)76

be derived from widely accessible measures; (iii) provide the ability to be updated as additional77

data come on-line and (vi) be supported by easy-to-use software tools. In addition, they should78

quantify brain development and ageing at a high spatial resolution, so that different patterns of79

atypicality can be used to stratify cohorts and predict clinical outcomes with maximum precision.80

The purpose of this work is to introduce a set of reference models that satisfy these criteria.81

To this end, we assemble a large neuroimaging dataset (Table 1) from 58,836 individuals across82

82 scan sites covering the human lifespan (aged 2-100, Figure 1A) and fit normative models for83

cortical thickness and subcortical volumes derived from Freesurfer (version 6.0). We show the84

clinical utility of thesemodels in a large transdiagnostic psychiatric sample (N=1,985). Tomaximize85

the utility of this contribution, we distribute model coefficients freely along with a set of software86

tools to enable researchers to derive subject-level predictions for new datasets against a set of87

common reference models.88

2 of 34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.08.455487doi: bioRxiv preprint 

https://github.com/predictive-clinical-neuroscience/braincharts
https://github.com/predictive-clinical-neuroscience/braincharts
https://github.com/predictive-clinical-neuroscience/braincharts
https://doi.org/10.1101/2021.08.08.455487
http://creativecommons.org/licenses/by/4.0/


Table 1. Sample Description and Demographics. mQC refers to the manual quality checked subset of the

full sample. ‘All’ rows = Train + Test. Clinical refers to the transdiagnostic psychiatric sample (diagnostic details

in Figure 2A).

N (subjects) N (sites) Sex (%F, %M) Age (Mean, s.d)

Full All 58,836 82

Training set 29,418 82 51.1, 48.9 46.9, 24.4

Test set 29,416 82 50.9, 49.1 46.9, 24.4

mQC All 24,354 59

Training set 12,177 59 50.2, 49.8 30.2, 24.1

Test set 12,177 59 50.4, 49.4 30.1, 24.2

Clinical Test set 1,985 24 38.9, 61.1 30.5, 14.1

Results89

We split the available data into training and test sets, stratifying the split by site, such that all sites90

are equally represented in the training and test sets (Table 1, Supplementary Table 2, Supplemen-91

tary Table 3, and Supplementary Table 4). After careful automated and manual quality checking92

procedures (see methods), we then fit a normative model using a set of covariates (age, gender,93

and fixed effects for site) to predict cortical thickness and subcortical volume for each parcel in a94

high resolution atlas derived from the Freesurfer software package (Destrieux et al. (2010)). We95

employed a warped Bayesian linear regression model so as to accurately model both non-linear96

effects andnon-Gaussian distribution of the imaging phenotype (Fraza et al. (2021)), whilst account-97

ing for the well-known effects of different scanners on neuroimaging data (Bayer et al. (2021); Kia98

et al. (2021)). These models are summarized in Figure 3, Supplementary Table 5, Supplementary99

Table 6, Supplementary Table 7, and Supplementary Table 8.100

We validate our models with several careful procedures: first, we report out of sample metrics;101

second, we perform a supplementary analysis on a subset of participants for whom input data had102

undergone manual quality checking by an expert rater (Table 1 - mQC). Third, each model fit was103

evaluated using metrics (Figure 3, Supplementary Table 5, Supplementary Table 6, Supplementary104

Table 7, and Supplementary Table 8) that quantify central tendency and distributional accuracy105

(Dinga et al. (2021); Fraza et al. (2021)). We also estimated separate models for males and females,106

which indicate that sex effects are adequately modeled using a global offset. Finally, to facilitate107

independent validation, we packaged pretrainedmodels and code for transferring to new samples108

into an open resource for use by the community and demonstrate how to transfer the models to109

new samples (i.e., data not present in the initial training set).110

Our models provide the opportunity for mapping the diverse trajectories of different brain ar-111

eas. Several examples are shown in Figure 1 C and D which align with known patterns of devel-112

opment and aging (Ducharme et al. (2016); Gogtay et al. (2004); Tamnes et al. (2010)). Moreover,113

across the cortex and subcortex ourmodel fits well, explaining up to 80%of the variance (minimum114

12%) out of sample (Figure 3, Supplementary Table 5, Supplementary Table 6, Supplementary Table115

7, and Supplementary Table 8 for full details).116

A goal of this work is to develop normativemodels that can be applied tomany different clinical117

conditions. To showcase this, we apply the model to a transdiagnostic psychiatric cohort (Table 1118

– Clinical; Figure 2A) resulting in personalized, whole-brain deviation maps that can be used to un-119

derstand inter-individual variability (e.g., for stratification) and to quantify group separation (e.g.,120

case-control effects). To demonstrate this, for each clinical group, we summarized the individual121

deviations within that group by computing the proportion of subjects that have deviations in each122

region and compare to matched (same sites) controls in the test set (Figure 2B-C). Additionally,123

we performed case-control comparisons on the raw cortical thickness and subcortical volumes,124

and on the deviation maps (Figure 2D), again against a matched sample from the test set. This125

demonstrates the advantages of using normativemodels for investigating individual differences in126
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Figure 1. Normative Model Overview. A) Age distribution (x-axis) of each site (y-axis) in the full model train and test sets. B) Age distribution of

each site in the clinical test set. C-D) Examples of lifespan trajectories of brain regions. Age is shown on x-axis and predicted thickness (or

volume) values are on the y-axis. Centiles of variation are plotted for each region. In panel C, we show that sex differences between females

(red) and males (blue) are most pronounced when modeling large scale features such as mean cortical thickness across the entire cortex or total

gray matter volume. These sex differences manifest as a shift in the mean in that the shape of these trajectories is the same for both sexes, as

determined by sensitivity analyses where separate normative models were estimated for each sex. The explained variance (in full test set) of the

whole cortex and subcortex is highlighted inside the circle of panel D. All plots within the circle share the same color scale. E) The distribution of

evaluation metrics in the full test set, separated into left and right hemispheres and subcortical regions, with the skew and excess kurtosis being

measures that depict the accuracy of the estimated shape of the model, ideally both of these would be around zero.

psychiatry, i.e., quantifying clinically relevant information at the level of each individual. For most127

diagnostic groups, the z-statistics derived from the normative deviations also provided stronger128

case-control effects than the raw data. This shows the importance of accurate modeling of popula-129

tion variance acrossmultiple clinically relevant dimensions. The individual-level deviations provide130

complimentary information to the group effects, which aligns with previous work (Wolfers et al.131

(2020); Zabihi et al. (2020);Wolfers et al. (2018)). We note that a detailed description of the clinical132

significance of our findings is beyond the scope of this work and will be presented separately.133

Discussion134

In this work we create lifespan brain charts of cortical thickness and subcortical volume derived135

from structural MRI, to serve as reference models. Multiple datasets were joined to build a mega-136

site lifespan reference cohort to provide good coverage of the lifespan. We applied the reference137

cohort models to clinical datasets and demonstrate the benefits of normativemodeling in addition138

to standard case-control comparisons. All models, including documentation and code, are made139

available to the research community.140

We identify three main strengths of our approach. First, our large lifespan dataset provides141

high anatomical specificity, necessary for discriminating between conditions, predicting outcomes,142

and stratifying subtypes. Second, our models are flexible in that they can model non-Gaussian143

distributions, can easily be transferred to new sites, and are built on validated analytical techniques144

and software tools (Fraza et al. (2021); Kia et al. (2021); Marquand et al. (2019)). Third, we show145

the general utility of this work in that it provides the ability to map individual variation whilst also146

improving case control inferences across multiple disorders.147

In recent work, a large consortium established lifespan brain charts that are complementary to148
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Figure 2. Normative Modeling in Clinical Cohorts. Reference brain charts were transferred to several clinical samples (panel A). Patterns of

extreme deviations were summarized for each clinical group and compared to matched control groups (from the same sites). Panel B) shows

extreme positive deviations (thicker/larger than expected) and panel C) shows the extreme negative deviation (thinner/smaller than expected)

patterns. Panel D) shows the significant (FDR corrected p<0.05) results of classical case-control methods (mass-univariate t-tests) on the true

cortical thickness data (top row) and on the deviations scores (bottom row). There is unique information added by each approach which

becomes evident when noticing the maps in panels B-D are not identical. ADHD=Attention Deficit Hyperactive Disorder, ASD=Autism Spectrum

Disorder, EP=Early Psychosis, SZ=Schizophrenia, BD=Bipolar Disorder, MDD=Major Depressive Disorder.

our approach (Bethlehem et al. (2021)). Benefits of their work include the use of a large sample149

and good coverage of the peri-natal life stages. This was used to provide estimates of brain growth150

in terms of global features (e.g., brain volume), which is valuable for applications where quantify-151

ing global brain development or ageing is of interest but has limited spatial precision. In contrast,152
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Figure 3. Evaluation Metrics Across All Test Sets. The distribution of evaluation metrics in 3 different test sets (full, mQC, and Transfer)

separated into left and right hemispheres and subcortical regions, with the skew and excess kurtosis being measures that depict the accuracy of

the estimated shape of the model, ideally both of these would be around zero.

we focus on providing spatially specific estimates across the post-natal lifespan which provides153

fine-grained anatomical estimates of deviation that may be valuable for understanding the biolog-154

ical basis for mental disorders where individual patterns are widespread (e.g., not all individuals155

deviate in the same regions).156

We also identify limitations of this work. First, we view the word “normative” as problematic.157

This language implies that there are normal and abnormal brains, a potentially problematic as-158

sumption. As indicated in Figure 2, there is considerable individual variability and heterogeneity159

among trajectories. We encourage the use of the phrase ‘reference cohort’ over ‘normative model’.160

Second, to provide coverage of the lifespan the curated dataset is based on aggregating existing161

data, meaning there is unavoidable sampling bias. Race, education, and socioeconomic variables162

were not fully available for all included datasets, however, given that data were compiled from163

research studies, they are likely samples drawn predominantly from Western, Educated, Indus-164

trialized, Rich, and Democratic (WEIRD) societies (Henrich et al. (2010)) and future work should165

account for these factors. By sampling both healthy population samples and case-control studies,166

we achieve a reasonable estimate of variation across individuals, however, downstream analyses167

should consider the nature of the reference cohort and whether it is appropriate for the target168

sample. Finally, although the models presented in this study are comprehensive, they are only169

the first step, and we will augment our repository with more diverse data, different features and170

modelling advances as these become available.171
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Methods and Materials172

Data from 82 sites were combined to create the initial full sample. These sites are described in173

detail in Supplemental Table 5, including the sample size, age (mean and standard deviation), and174

sex distribution of each site. Many sites were pulled from publicly available data sets including175

ABCD, ABIDE, ADHD200, CAMCAN, CMI-HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis,176

HCP-Young Adult, IXI, NKI-RS, Oasis, OpenNeuro, PNC, SRPBS, and UK Biobank. Other included177

data come from studies conducted at the University of Michigan (Duval et al. (2018); Rutherford178

et al. (2020); Tomlinson et al. (2020); Tso et al. (2021); Weigard et al. (2021); Zucker et al. (1996)),179

University of California Davis (Nordahl et al. (2020)), University of Oslo (Nesvåg et al. (2017)), King’s180

College London (Green et al. (2012); Lythe et al. (2015)), and Amsterdam University Medical Center181

(Mocking et al. (2016)). Full details regarding sample characteristics, diagnostic procedures and ac-182

quisition protocols can be found in the publications associatedwith each of the studies. Equal sized183

training and testing data sets (split half) were created using scikit-learn’s train_test_split function,184

stratifying on the site variable. It is important to stratify based on site, not only study (Bethlehem185

et al. (2021)), as many of the public studies (i.e., ABCD) include several sites, thus modeling study186

does not adequately address MRI scanner confounds.187

The clinical validation sample consisted of a subset of the full data set (described in detail in188

Figure 2A and Supplemental Table 3). Studies (sites) contributing clinical data included: Autism189

Brain Imaging Database Exchange (ABIDE GU, KKI, NYU, USM), ADHD200 (KKI, NYU), CNP, SRPBS190

(CIN, COI, KTT, KUT, HKH, HRC, HUH, SWA, UTO), Delta (AmsterdamUMC), Human Connectome191

Project Early Psychosis (HCP-EP BWH, IU, McL, MGH), KCL, University of Michigan Schizophrenia192

Gaze Processing (UMich_SZG), and TOP (University of Oslo).193

In addition to the sample-specific inclusion criteria, inclusion criteria for the full sample was194

based on participants having basic demographic information (age and sex), a T1-weighted MRI195

volume, and Freesurfer output directories that include summary files which represent left and196

right hemisphere cortical thickness values of the Destrieux parcellation and subcortical volumetric197

values (aseg.stats, lh.aparc.a2009s.stats, rh.aparc.a2009s.stats). Freesurfer image analysis suite198

(version 6.0) was used for cortical reconstruction and volumetric segmentation for all studies. The199

technical details of these procedures are described in prior publications (Dale et al. (1999); Fischl200

and Dale (2000); Fischl et al. (2002)). UK Biobank was the only study for which Freesurfer was not201

run by the authors. Freesurfer functions aparcstats2table and asegstats2table were run to extract202

cortical thickness from the Destrieux parcellation (Destrieux et al. (2010)) and subcortical volume203

for all participants into CSV files. These files were inner merged with the demographic files, using204

Pandas, and NaN rows were dropped.205

Quality control (QC) is an important consideration for large samples and is an active research206

area (Alfaro-Almagro et al. (2018); Klapwijk et al. (2019); Rosen et al. (2018)). We consider manual207

quality checking of images both prior to and after preprocessing to be the gold standard. However,208

this is labor intensive and prohibitive for very large samples. Therefore, in this work we adopt209

a pragmatic and multi-pronged approach to QC. First, a subset of the full data set underwent210

manual quality checking (mQC, described in Supplemental Table 4) by author S.R. using Papaya,211

a JavaScript based image viewer. Each subject’s T1w volume was viewed in 3D volumetric space,212

with the Freesurfer brain.finalsurfs file as an overlay, to check for obvious quality issues such as213

excessive motion, ghosting or ringing artifacts. Example scripts used for quality checking can be214

found on GitHub. The ABCD study data distributes a variable (freesqc01.txt; fsqc_qc==1/0) that215

represents manual quality checking (pass/fail) of the T1w volume and Freesurfer data, thus this216

data set was added into our manual quality checked data set bringing the sample size to 24,354217

individuals passing manual quality checks. Although this has a reduced sample, we consider this218

to be a gold standard sample in that every single scan has been checked manually. All inferences219

reported in this manuscript were validated against this sample. Second, for the full sample, we220

adopted an automated QC procedure that quantifies image quality based on the Freesurfer Euler221
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Characteristic (EC), which has been shown to be an excellent proxy for manual labelling of scan222

quality (Monereo-Sánchez et al. (2021); Rosen et al. (2018)) and is the most important feature in223

automated scan quality classifiers (Klapwijk et al. (2019)). Since the distribution of the EC varies224

across sites, we adopt a simple approach that involves scaling and centering the distribution over225

the EC across sites and removing samples in the tail of the distribution (see (Kia et al. (2021)) for226

details).227

Normativemodelingwas runusing python3.8 and the PCNtoolkit package (version 0.20). Bayesian228

Linear Regression (BLR) with likelihood warping was used to predict cortical thickness and subcor-229

tical volume from a vector of covariates (age, sex, site). For a complete mathematical description230

and explanation of this implementation see (Fraza et al. (2021)). Briefly, for each brain region of231

interest (cortical thickness or subcortical volume), y is predicted as:232

y = !⊺'(x) + � (1)

Where !⊺ is the estimated weight vector, '(x) is a basis expansion of the of covariate vector x,233

consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to model non-234

linear effects of age, and � = �(�, �) a Gaussian noise distribution with mean zero and noise preci-235

sion term � (the inverse variance). A likelihood warping approach (Rios and Tobar (2019); Snelson236

et al. (2003)) was used to model non-Gaussian effects. This involves applying a bijective nonlinear237

warping function to the non-Gaussian response variables to map them to a Gaussian latent space238

where inference can be performed in closed form. We employed a ‘sinarcsinsh’ warping function,239

which is equivalent to the SHASH distribution commonly used in the generalized additive model-240

ing literature (Jones and Pewsey (2009)) and which we have found to perform well in prior work241

(Dinga et al. (2021); Fraza et al. (2021)). Site variation was modeled using fixed effects, which we242

have shown in priorwork provides relatively good performance (Kia et al. (2021)), although random243

effects for sitemay provide additional flexibility at higher computational cost. A fast numerical opti-244

mization algorithm was used to optimize hyperparameters (L-BFGS). Computational complexity of245

hyperparameter optimization was controlled by minimizing the negative log likelihood. Deviation246

scores (Z-scores) are calculated for the ntℎ subject, and dtℎ brain area, in the test set as:247

Znd
=

ynd − ̂ynd
√

(�d)
2 + (�∗d )

2

(2)

Where ynd is the true response, ̂ynd is the predicted mean, �2
d
is the estimated noise variance (re-248

flecting uncertainty in the data), and �2
∗d
is the variance attributed to modeling uncertainty. Model249

fit for each brain region was evaluated by calculating the explained variance (which measures cen-250

tral tendency), the mean squared log-loss (MSLL, central tendency and variance) plus skew and251

kurtosis of the deviation scores (equation 2) which measures how well the shape of the regression252

function matches the data (Dinga et al. (2021)). Note that for all models, we report out of sample253

metrics (Figure 3, Supplementary Table 5, Supplementary Table 6, Supplementary Table 7, and254

Supplementary Table 8).255

To provide a summary of individual variation within each clinical group, deviation scores were256

summarized for each clinical group (Figure 2B-C) by first separating them into positive and negative257

deviations, counting how many subjects had an extreme deviation (positive extreme deviation de-258

fined asZ > 2, negative extreme deviation asZ < −2) at a given ROI, and then dividing by the group259

size to show the percentage of individualswith extremedeviations at that brain area. Controls from260

the same sites as the patient groups were summarized in the same manner for comparison. We261

also performed classical case vs. control group difference testing on the true data and on the devia-262

tion scores (Figure 2D) and thresholded results at a Benjamini-Hochberg false discovery rate (FDR)263

of p < 0.05. Note that in both cases, we directly contrast each patient group to their matched con-264

trols to avoid nuisance variation confounding any reported effects (e.g., sampling characteristics,265

demographic differences).266
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All pretrained models and code are shared online with straightforward directions for transfer-267

ring to new sites. Given a new set of data (e.g., sites not present in the training set), this is done by268

first applying the warp parameters estimating on the training data to the new dataset, adjusting269

the mean and variance in the latent Gaussian space, then (if necessary) warping the adjusted data270

back to the original space, which is similar to the approach outlined in (Dinga et al. (2021)). Note271

that to remain unbiased, this should be done on a held-out calibration dataset. To illustrate this272

procedure, we apply this approach to predicting a subset of sites in the 1000 functional connec-273

tomes project (Biswal et al. (2010)) that were not used during the model estimation step. These274

results are reported in Supplemental Figure 4 (bottom row). We also distribute scripts for this275

purpose in the GitHub Repository associated with this manuscript. Furthermore, to promote the276

use of these models and remove barriers to using them, we have set up access to the pretrained277

models and code for transferring to users’ own data, using Google Colab, a free, cloud-based plat-278

form for running python notebooks. This eliminates the need to install python/manage package279

versions and only requires users to have a personal computer with stable internet connection.280
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Appendix 0 Table 2. Full Sample Description, per site, in the train and test sets.

Site Train N %F/M Age (m, s.d) Test N %F/M Age (m, s.d)

ABCD_01 194 0.52, 0.48 9.95, 0.62 194 0.51, 0.49 9.85, 0.63

ABCD_02 271 0.47, 0.53 10.12, 0.6 271 0.46, 0.54 10.03, 0.64

ABCD_03 285 0.46, 0.54 9.86, 0.62 284 0.48, 0.52 9.9, 0.62

ABCD_04 315 0.47, 0.53 9.81, 0.64 316 0.5, 0.5 9.82, 0.65

ABCD_05 172 0.53, 0.47 9.9, 0.65 173 0.5, 0.5 9.89, 0.62

ABCD_06 282 0.5, 0.5 9.96, 0.59 282 0.51, 0.49 9.93, 0.59

ABCD_07 162 0.46, 0.54 9.87, 0.63 163 0.48, 0.52 9.87, 0.62

ABCD_08 168 0.42, 0.58 10, 0.62 168 0.54, 0.46 9.91, 0.62

ABCD_09 204 0.52, 0.48 9.95, 0.63 203 0.46, 0.54 9.98, 0.59

ABCD_10 287 0.47, 0.53 9.85, 0.63 288 0.5, 0.5 9.87, 0.62

ABCD_11 207 0.52, 0.48 9.84, 0.62 207 0.47, 0.53 9.79, 0.64

ABCD_12 81 0.41, 0.59 9.89, 0.56 80 0.55, 0.45 9.87, 0.62

ABCD_13 277 0.53, 0.47 9.81, 0.58 278 0.47, 0.53 9.82, 0.61

ABCD_14 292 0.45, 0.55 10.17, 0.56 291 0.47, 0.53 10.22, 0.57

ABCD_15 198 0.44, 0.56 9.87, 0.59 197 0.46, 0.54 9.94, 0.62

ABCD_16 460 0.45, 0.55 9.91, 0.65 461 0.45, 0.55 9.9, 0.65

ABCD_17 278 0.48, 0.52 9.79, 0.61 279 0.48, 0.52 9.84, 0.64

ABCD_18 171 0.48, 0.52 9.92, 0.61 170 0.46, 0.54 9.9, 0.65

ABCD_19 267 0.49, 0.51 10.04, 0.55 267 0.53, 0.47 10.08, 0.54

ABCD_20 320 0.51, 0.49 10.05, 0.5 320 0.49, 0.51 10.07, 0.48

ABCD_21 246 0.42, 0.58 9.92, 0.65 245 0.48, 0.52 9.91, 0.6

ABIDE_GU 27 0.41, 0.59 10.57, 1.68 27 0.59, 0.41 10.29, 1.75

ABIDE_KKI 93 0.34, 0.66 10.35, 1.19 94 0.35, 0.65 10.24, 1.2

ABIDE_NYU 68 0.15, 0.85 14.35, 6.01 67 0.27, 0.73 14.47, 6.62

ABIDE_USM 30 0.07, 0.93 23.12, 6.14 29 0.03, 0.97 20.98, 9.03

ADD200_KKI 31 0.45, 0.55 10.23, 1.28 30 0.43, 0.57 10.27, 1.29

ADD200_NYU 19 0.68, 0.32 10.04, 2.2 19 0.37, 0.63 10.38, 1.6

AOMIC_1000 464 0.51, 0.49 22.87, 1.71 464 0.53, 0.47 22.83, 1.71

AOMIC_PIPO2 104 0.59, 0.41 22.21, 1.91 105 0.56, 0.44 22.16, 1.69

ATV 39 0.21, 0.79 22.59, 1.96 38 0.24, 0.76 22.76, 2.02

CAMCAN 323 0.52, 0.48 55.11, 19.37 324 0.5, 0.5 53.28, 17.7

CIN 33 0.33, 0.67 48.64, 15.83 33 0.33, 0.67 47.15, 18.14

CMI-HBN_CBIC 99 0.35, 0.65 11.16, 3.73 100 0.38, 0.62 11.24, 3.74

CMI-HBN_RU 188 0.3, 0.7 10.37, 3.3 188 0.36, 0.64 10.69, 3.74

CMI-HBN_SI 53 0.32, 0.68 11.24, 3.83 53 0.4, 0.6 10.79, 3.64

CNP-35343.0 45 0.51, 0.49 31.91, 8.39 45 0.44, 0.56 31.98, 9.48

CNP-35426.0 10 0.6, 0.4 28.1, 7.17 10 0.5, 0.5 30.9, 8.75

COI 62 0.63, 0.37 51.92, 14.31 62 0.63, 0.37 51.81, 12.64

delta 24 0.42, 0.58 50.17, 9.27 25 0.32, 0.68 50.72, 8.44

ON_ds001734 54 0.52, 0.48 25.43, 3.75 54 0.59, 0.41 25.67, 3.45

ON_ds002236 43 0.42, 0.58 10.99, 1.75 43 0.47, 0.53 11.99, 2.21

ON_ds002330 33 0.58, 0.42 26.52, 4.15 33 0.55, 0.45 26.73, 4.52

ON_ds002345 104 0.63, 0.38 21.61, 4.12 103 0.64, 0.36 21.79, 5.26

ON_ds002731 29 0.66, 0.34 21.21, 1.57 30 0.3, 0.7 21.3, 1.34

ON_ds002837 43 0.56, 0.44 27.23, 10.63 43 0.42, 0.58 26.23, 9.55
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Appendix 0 Table 2. Full Sample Description, per site, in the train and test sets.

Site Train N %F/M Age (m, s.d) Test N %F/M Age (m, s.d)

HCP_A_MGH 85 0.53, 0.47 61.41, 16.18 86 0.48, 0.52 58.13, 14.79

HCP_A_UCLA 62 0.58, 0.42 51.77, 11.36 62 0.56, 0.44 54.89, 14.03

HCP_A_UM 102 0.66, 0.34 63.71, 16.77 102 0.52, 0.48 59.48, 15.63

HCP_A_WU 89 0.64, 0.36 59.79, 14.34 89 0.62, 0.38 57.89, 12.54

HCP_D_MGH 108 0.53, 0.47 14.4, 3.94 108 0.48, 0.52 13.17, 3.72

HCP_D_UCLA 63 0.52, 0.48 14.3, 3.63 64 0.45, 0.55 13.98, 4.04

HCP_D_UM 78 0.53, 0.47 13.71, 3.69 78 0.56, 0.44 12.82, 3.55

HCP_D_WU 77 0.47, 0.53 14.21, 4.25 77 0.51, 0.49 13.73, 3.46

HCP_EP_BWH 4 0.25, 0.75 21.92, 2.07 4 0.25, 0.75 24.27, 4.28

HCP_EP_IU 12 0.42, 0.58 24.76, 4.21 13 0.46, 0.54 23.12, 3.27

HCP_EP_McL 7 0.29, 0.71 26.49, 4.29 6 0.33, 0.67 23.6, 2.33

HCP_EP_MGH 6 0.17, 0.83 26.89, 4.1 5 0.4, 0.6 28.48, 5.97

HCP_YA 557 0.55, 0.45 28.76, 3.73 556 0.53, 0.47 28.85, 3.66

HKH 15 0.47, 0.53 46.27, 7.69 14 0.71, 0.29 44.5, 11.42

HRC 25 0.76, 0.24 45.88, 12.74 24 0.71, 0.29 37.33, 8.7

HUH 33 0.55, 0.45 38.24, 13.66 34 0.59, 0.41 31.35, 11.45

IXI 279 0.56, 0.44 47.9, 16.57 279 0.56, 0.44 49.53, 16.39

KCL 20 0.65, 0.35 34.65, 14.13 21 0.57, 0.43 33.62, 13.44

KTT 64 0.28, 0.72 30.77, 9.7 64 0.36, 0.64 31.3, 8.88

KUT 79 0.39, 0.61 36.91, 13.35 80 0.44, 0.56 36.11, 13.89

NKI-RS 241 0.6, 0.4 42.63, 21.75 241 0.27, 0.73 42.63, 20.67

Oasis2 93 0.66, 0.34 75.92, 7.3 92 1.77, -0.77 77.86, 8.79

Oasis3 776 0.4, 0.6 69.41, 9.01 776 0.41, 0.59 70.16, 9

PNC 689 0.52, 0.48 14.16, 3.48 689 0.01, 0.99 14.28, 3.54

SWA 50 0.14, 0.86 27.34, 6.77 50 6.92, -5.92 29.62, 8.79

SWU_SLIM_ses1 274 0.59, 0.41 20.07, 1.3 274 0.57, 0.43 20.08, 1.25

TOP 146 0.45, 0.55 34.25, 9.68 146 0.47, 0.53 34.9, 9.43

UCDavis 69 0.49, 0.51 3.16, 0.57 67 0.42, 0.58 3.09, 0.55

ukb-11025.0 12493 0.52, 0.48 63, 7.51 12493 0.52, 0.48 62.98, 7.52

ukb-11027.0 4986 0.55, 0.45 64.35, 7.38 4986 0.54, 0.46 64.44, 7.47

UMich_CWS 14 0.57, 0.43 5.23, 1.15 15 0.6, 0.4 5.44, 1.16

UMich_IMPs 107 0.55, 0.45 12.91, 3.56 107 0.55, 0.45 12.83, 3.29

UMich_MLS 79 0.39, 0.61 19.94, 1.52 78 0.33, 0.67 20.14, 1.5

UMich_MTwins 300 0.47, 0.53 14.28, 1.97 300 0.45, 0.55 14.28, 2.13

UMich_SAD 57 0.4, 0.6 24.02, 4.75 57 0.35, 0.65 26.56, 9.02

UMich_SZG 23 0.43, 0.57 32.09, 11.09 22 0.55, 0.45 31.64, 8.63

UTO 101 0.56, 0.44 35.01, 17.31 101 0.49, 0.51 35.39, 16.53

Appendix 0 Table 3. Clinical Sample Description

Site Patient N %F/M Age (m, s.d)

ABIDE_GU 47 0.17, 0.83 10.94, 1.53

ABIDE_KKI 77 0.25, 0.75 10.23, 1.5

ABIDE_NYU 127 0.13, 0.87 12.83, 6.86

ABIDE_USM 74 0.03, 0.97 21.61, 7.78
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Appendix 0 Table 3. Clinical Sample Description

Site Patient N %F/M Age (m, s.d)

ADD200_KKI 22 0.45, 0.55 10.22, 1.56

ADD200_NYU 52 0.27, 0.73 10.05, 1.67

CNP-35343.0 63 0.48, 0.52 35.33, 9.75

CNP-35426.0 59 0.25, 0.75 34.63, 9.35

COI 69 0.58, 0.42 45.07, 12.62

delta 111 0.43, 0.57 45.23, 13.18

HCP_EP_BWH 23 0.35, 0.65 22.39, 4.26

HCP_EP_IU 59 0.37, 0.63 22.97, 3.84

HCP_EP_McL 31 0.48, 0.52 23.56, 3.46

HCP_EP_MGH 10 0.3, 0.7 20.32, 2.99

HKH 33 0.39, 0.61 44.82, 11.47

HRC 16 0.63, 0.38 40.5, 11.48

HUH 57 0.44, 0.56 43.33, 12.18

KCL 104 0.72, 0.28 31.44, 11.86

KTT 47 0.45, 0.55 37.89, 9.79

KUT 61 0.49, 0.51 41.7, 11.18

SWA 134 0.14, 0.86 33.62, 8.73

TOP 531 0.48, 0.52 32.42, 10.45

UMich_SZG 70 0.51, 0.49 32.77, 9.77

UTO 108 0.36, 0.64 36.1, 11.5

Appendix 0 Table 4. mQC Sample Description, per site, in the train and test sets.

Site Train N %F/M Age (m, s.d) Test N %F/M Age (m, s.d)

ABCD_01 180 0.53, 0.47 9.88, 0.62 179 0.47, 0.53 9.93, 0.63

ABCD_02 267 0.47, 0.53 10.12, 0.6 266 0.45, 0.55 10.02, 0.64

ABCD_03 282 0.49, 0.51 9.87, 0.61 282 0.45, 0.55 9.9, 0.62

ABCD_04 275 0.48, 0.52 9.87, 0.63 276 0.5, 0.5 9.79, 0.66

ABCD_05 169 0.51, 0.49 9.94, 0.65 170 0.52, 0.48 9.86, 0.6

ABCD_06 280 0.5, 0.5 9.97, 0.59 279 0.51, 0.49 9.93, 0.59

ABCD_07 160 0.43, 0.57 9.88, 0.6 160 0.51, 0.49 9.85, 0.65

ABCD_08 132 0.42, 0.58 9.98, 0.63 131 0.52, 0.48 10.01, 0.6

ABCD_09 197 0.5, 0.5 9.96, 0.6 197 0.5, 0.5 9.97, 0.63

ABCD_10 248 0.46, 0.54 9.9, 0.63 249 0.51, 0.49 9.83, 0.61

ABCD_11 203 0.44, 0.56 9.81, 0.63 203 0.55, 0.45 9.82, 0.63

ABCD_12 79 0.48, 0.52 9.97, 0.57 79 0.48, 0.52 9.79, 0.61

ABCD_13 240 0.5, 0.5 9.83, 0.62 240 0.51, 0.49 9.82, 0.59

ABCD_14 285 0.41, 0.59 10.2, 0.56 285 0.51, 0.49 10.21, 0.57

ABCD_15 188 0.49, 0.51 9.88, 0.59 188 0.41, 0.59 9.93, 0.61

ABCD_16 459 0.43, 0.57 9.9, 0.66 459 0.47, 0.51 9.91, 0.65

ABCD_17 264 0.51, 0.49 9.78, 0.62 265 0.47, 0.53 9.87, 0.64

ABCD_18 139 0.43, 0.57 9.99, 0.62 139 0.48, 0.52 9.92, 0.64

ABCD_19 254 0.5, 0.5 10.11, 0.55 254 0.52, 0.48 10.02, 0.54

ABCD_20 314 0.51, 0.49 10.08, 0.48 314 0.49, 0.51 10.04, 0.5

ABCD_21 239 0.47, 0.53 9.93, 0.62 239 0.44, 0.56 9.9, 0.62
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Appendix 0 Table 4. mQC Sample Description, per site, in the train and test sets.

Site Train N %F/M Age (m, s.d) Test N %F/M Age (m, s.d)

CAMCAN 306 0.49, 0.51 52.83, 18.39 307 0.53, 0.53 53.56, 18.16

CMI-HBN_RU 170 0.35, 0.65 11.3, 3.4 170 0.38, 0.62 10.5, 3.7

CMI-HBN_SI 141 0.41, 0.59 12.1, 3.9 141 0.47, 0.53 11.4, 3.7

CNP-35343.0 44 0.39, 0.61 33.43, 9.5 43 0.58, 0.42 30.53, 8.26

CNP-35426.0 10 0.7, 0.3 28.7, 6.15 9 0.44, 0.56 29.33, 9.71

delta 24 0.42, 0.58 50.92, 8.48 23 0.3, 0.7 49.57, 9.44

ON_ds001734 54 0.57, 0.43 25.61, 3.8 54 0.54, 0.46 25.48, 3.4

ON_ds002236 37 0.46, 0.54 11.55, 2.02 37 0.51, 0.49 11.79, 2.17

ON_ds002330 33 0.52, 0.48 27.09, 4.24 33 0.61, 0.39 26.15, 4.39

ON_ds002345 104 0.66, 0.34 21.61, 4.36 103 0.6, 0.5 21.79, 5.06

ON_ds002731 29 0.48, 0.52 21.38, 1.7 30 0.47, 0.53 21.13, 1.17

ON_ds002837 43 0.53, 0.47 26.3, 9.05 43 0.44, 0.56 27.16, 11.06

HCP_A_MGH 85 0.56, 0.44 60.03, 15.91 85 0.44, 0.56 59.02, 14.68

HCP_A_UCLA 60 0.57, 0.43 55.35, 13.24 61 0.61, 0.39 50.91, 11.6

HCP_A_UM 101 0.59, 0.41 61.78, 16.25 100 0.58, 0.42 60.44, 15.59

HCP_A_WU 88 0.63, 0.38 58.93, 13.48 88 0.63, 0.38 58.25, 13.25

HCP_D_MGH 106 0.52, 0.48 13.94, 3.79 106 0.49, 0.51 13.74, 3.97

HCP_D_UCLA 63 0.46, 0.54 13.41, 3.76 62 0.5, 0.5 14.86, 3.85

HCP_D_UM 78 0.6, 0.4 13.61, 3.64 78 0.49, 0.51 12.93, 3.64

HCP_D_WU 76 0.43, 0.57 13.61, 3.74 75 0.53, 0.47 14.32, 3.94

HCP_EP_BWH 15 0.33, 0.67 22.59, 4 16 0.31, 0.69 22.55, 4.14

HCP_EP_IU 42 0.38, 0.62 23.12, 4.02 41 0.41, 0.59 23.43, 3.68

HCP_EP_McL 22 0.32, 0.68 23.87, 2.94 22 0.14, 0.36 24.2, 4.16

HCP_EP_MGH 10 0.3, 0.7 27.56, 5.58 11 1.09, 0.91 21.03, 2.99

HCP_YA 556 0.54, 0.46 28.96, 3.66 556 0.55, 0.45 28.65, 3.73

IXI 276 0.58, 0.42 48.7, 16.25 277 0.55, 0.45 48.76, 16.73

KCL 20 0.8, 0.2 32.8, 13.23 20 0.45, 0.55 34.75, 14.25

NKI-RS 229 0.66, 0.34 43.98, 20.32 228 0.63, 0.37 43.26, 20.56

Oasis3 199 0.36, 0.64 67.65, 10.93 198 0.3, 0.7 68.58, 10.07

PNC 631 0.52, 0.48 14.53, 3.38 631 0.52, 0.48 14.53, 3.42

TOP 187 0.52, 0.48 33.7, 9.5 188 0.36, 0.64 33.25, 9.72

ukb-11025.0 1867 0.53, 0.47 62.21, 7.45 1868 0.51, 0.49 62.43, 7.49

ukb-11027.0 1117 0.53, 0.47 63.24, 7.47 1117 0.56, 0.44 63.06, 7.39

UMich_CWS 14 0.64, 0.36 5.44, 1.18 15 0.53, 0.47 5.24, 1.13

UMich_IMPs 107 0.52, 0.48 12.96, 3.54 107 0.58, 0.42 12.78, 3.3

UMich_MTwins 300 0.48, 0.52 14.37, 2.04 300 0.44, 0.56 14.19, 2.06

UMich_SAD 57 0.35, 0.65 26.33, 7.65 57 0.4, 0.6 24.25, 6.82

UMich_SZG 22 0.45, 0.55 35.73, 9.82 23 0.52, 0.48 28.17, 8.54

Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G&S_frontomargin_thickness 0.27 -0.16 0.07 0.92

lh_G&S_occipital_inf_thickness 0.21 -0.11 0.10 0.30

lh_G&S_paracentral_thickness 0.21 -0.10 -0.05 0.25
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Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G&S_subcentral_thickness 0.26 -0.13 0.02 0.35

lh_G&S_transv_frontopol_thickness 0.25 -0.13 0.20 1.09

lh_G&S_cingul-Ant_thickness 0.28 -0.16 0.11 0.80

lh_G&S_cingul-Mid-Ant_thickness 0.23 -0.11 -0.44 0.90

lh_G&S_cingul-Mid-Post_thickness 0.33 -0.20 -0.13 0.64

lh_G_cingul-Post-dorsal_thickness 0.30 -0.15 -0.10 0.65

lh_G_cingul-Post-ventral_thickness 0.35 -0.21 0.02 0.18

lh_G_cuneus_thickness 0.39 -0.25 0.45 1.61

lh_G_front_inf-Opercular_thickness 0.32 -0.17 -0.14 0.65

lh_G_front_inf-Orbital_thickness 0.27 -0.14 -0.08 0.82

lh_G_front_inf-Triangul_thickness 0.35 -0.20 -0.05 0.68

lh_G_front_middle_thickness 0.39 -0.25 -0.26 0.82

lh_G_front_sup_thickness 0.39 -0.23 -0.18 0.62

lh_G_Ins_lg&S_cent_ins_thickness 0.13 -0.07 0.05 0.15

lh_G_insular_short_thickness 0.12 -0.06 -0.22 0.36

lh_G_occipital_middle_thickness 0.23 -0.13 -0.24 0.98

lh_G_occipital_sup_thickness 0.22 -0.12 0.17 0.41

lh_G_oc-temp_lat-fusifor_thickness 0.26 -0.12 -0.22 0.66

lh_G_oc-temp_med-Lingual_thickness 0.49 -0.35 0.19 0.57

lh_G_oc-temp_med-Parahip_thickness 0.14 -0.07 -0.21 0.24

lh_G_orbital_thickness 0.32 -0.19 -0.09 0.70

lh_G_pariet_inf-Angular_thickness 0.37 -0.23 -0.32 1.15

lh_G_pariet_inf-Supramar_thickness 0.34 -0.20 -0.21 0.65

lh_G_parietal_sup_thickness 0.35 -0.22 -0.14 0.55

lh_G_postcentral_thickness 0.22 -0.12 0.11 0.38

lh_G_precentral_thickness 0.23 -0.12 -0.50 1.04

lh_G_precuneus_thickness 0.34 -0.21 -0.09 0.43

lh_G_rectus_thickness 0.24 -0.11 -0.11 0.99

lh_G_subcallosal_thickness 0.23 -0.13 0.06 0.41

lh_G_temp_sup-G_T_transv_thickness 0.24 -0.13 0.16 0.24

lh_G_temp_sup-Lateral_thickness 0.23 -0.11 -0.08 0.36

lh_G_temp_sup-Plan_polar_thickness 0.14 -0.08 -0.27 0.41

lh_G_temp_sup-Plan_tempo_thickness 0.25 -0.12 -0.04 0.33

lh_G_temporal_inf_thickness 0.29 -0.14 -0.09 0.51

lh_G_temporal_middle_thickness 0.29 -0.17 -0.24 0.78

lh_Lat_Fis-ant-Horizont_thickness 0.16 -0.07 0.88 2.04

lh_Lat_Fis-ant-Vertical_thickness 0.21 -0.10 0.46 1.22

lh_Lat_Fis-post_thickness 0.30 -0.17 0.07 0.73

lh_Pole_occipital_thickness 0.15 -0.07 0.16 0.63

lh_Pole_temporal_thickness 0.18 -0.09 -0.31 0.77

lh_S_calcarine_thickness 0.51 -0.36 0.30 0.97

lh_S_central_thickness 0.30 -0.16 -0.03 0.63

lh_S_cingul-Marginalis_thickness 0.36 -0.22 -0.10 0.66

lh_S_circular_insula_ant_thickness 0.23 -0.10 0.02 0.60

lh_S_circular_insula_inf_thickness 0.28 -0.14 0.05 0.28

lh_S_circular_insula_sup_thickness 0.39 -0.23 -0.22 0.97
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Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_S_collat_transv_ant_thickness 0.11 -0.04 0.27 1.02

lh_S_collat_transv_post_thickness 0.19 -0.10 0.45 0.86

lh_S_front_inf_thickness 0.42 -0.25 -0.18 1.03

lh_S_front_middle_thickness 0.39 -0.23 0.08 1.40

lh_S_front_sup_thickness 0.43 -0.27 -0.29 1.11

lh_S_interm_prim-Jensen_thickness 0.16 -0.08 1.08 2.10

lh_S_intrapariet&P_trans_thickness 0.41 -0.25 -0.19 1.08

lh_S_oc_middle&Lunatus_thickness 0.27 -0.15 0.23 1.56

lh_S_oc_sup&transversal_thickness 0.32 -0.18 -0.06 0.67

lh_S_occipital_ant_thickness 0.19 -0.10 0.17 0.55

lh_S_oc-temp_lat_thickness 0.19 -0.10 0.22 0.77

lh_S_oc-temp_med&Lingual_thickness 0.32 -0.19 0.05 0.31

lh_S_orbital_lateral_thickness 0.24 -0.11 0.70 2.36

lh_S_orbital_med-olfact_thickness 0.20 -0.11 0.76 3.94

lh_S_orbital-H_Shaped_thickness 0.35 -0.19 0.11 0.75

lh_S_parieto_occipital_thickness 0.38 -0.22 -0.03 0.52

lh_S_pericallosal_thickness 0.10 -0.05 0.67 0.88

lh_S_postcentral_thickness 0.41 -0.25 -0.10 0.68

lh_S_precentral-inf-part_thickness 0.36 -0.21 -0.28 0.92

lh_S_precentral-sup-part_thickness 0.29 -0.17 -0.29 0.85

lh_S_suborbital_thickness 0.13 -0.06 0.64 1.53

lh_S_subparietal_thickness 0.29 -0.16 0.11 0.97

lh_S_temporal_inf_thickness 0.20 -0.11 0.14 0.79

lh_S_temporal_sup_thickness 0.41 -0.25 -0.22 0.68

lh_S_temporal_transverse_thickness 0.13 -0.07 0.49 0.20

lh_MeanThickness_thickness 0.46 -0.29 -0.30 0.62

rh_G&S_frontomargin_thickness 0.27 -0.13 0.36 1.60

rh_G&S_occipital_inf_thickness 0.12 -0.04 0.12 0.23

rh_G&S_paracentral_thickness 0.21 -0.10 0.05 0.40

rh_G&S_subcentral_thickness 0.25 -0.12 0.05 0.27

rh_G&S_transv_frontopol_thickness 0.29 -0.15 0.25 1.11

rh_G&S_cingul-Ant_thickness 0.36 -0.21 0.06 1.17

rh_G&S_cingul-Mid-Ant_thickness 0.25 -0.13 -0.36 0.92

rh_G&S_cingul-Mid-Post_thickness 0.31 -0.18 -0.16 0.63

rh_G_cingul-Post-dorsal_thickness 0.30 -0.17 -0.39 1.59

rh_G_cingul-Post-ventral_thickness 0.25 -0.14 0.00 0.31

rh_G_cuneus_thickness 0.50 -0.36 0.52 2.00

rh_G_front_inf-Opercular_thickness 0.33 -0.18 -0.14 0.55

rh_G_front_inf-Orbital_thickness 0.25 -0.13 0.00 0.66

rh_G_front_inf-Triangul_thickness 0.35 -0.19 -0.06 0.65

rh_G_front_middle_thickness 0.39 -0.25 -0.24 0.96

rh_G_front_sup_thickness 0.38 -0.24 -0.23 0.69

rh_G_Ins_lg&S_cent_ins_thickness 0.09 -0.04 0.02 0.02

rh_G_insular_short_thickness 0.13 -0.07 -0.01 0.11

rh_G_occipital_middle_thickness 0.25 -0.14 -0.21 1.03

rh_G_occipital_sup_thickness 0.26 -0.15 0.08 0.47
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Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_G_oc-temp_lat-fusifor_thickness 0.20 -0.08 -0.11 0.47

rh_G_oc-temp_med-Lingual_thickness 0.54 -0.41 0.20 0.59

rh_G_oc-temp_med-Parahip_thickness 0.15 -0.07 -0.20 0.29

rh_G_orbital_thickness 0.29 -0.15 -0.04 0.47

rh_G_pariet_inf-Angular_thickness 0.33 -0.20 -0.30 0.91

rh_G_pariet_inf-Supramar_thickness 0.32 -0.19 -0.28 0.71

rh_G_parietal_sup_thickness 0.34 -0.20 -0.08 0.46

rh_G_postcentral_thickness 0.20 -0.11 0.09 0.49

rh_G_precentral_thickness 0.21 -0.10 -0.58 1.14

rh_G_precuneus_thickness 0.33 -0.20 0.00 0.42

rh_G_rectus_thickness 0.21 -0.09 0.07 1.04

rh_G_subcallosal_thickness 0.11 -0.05 0.39 0.48

rh_G_temp_sup-G_T_transv_thickness 0.21 -0.11 0.10 0.38

rh_G_temp_sup-Lateral_thickness 0.25 -0.12 -0.13 0.58

rh_G_temp_sup-Plan_polar_thickness 0.15 -0.07 -0.13 0.19

rh_G_temp_sup-Plan_tempo_thickness 0.27 -0.13 -0.02 0.40

rh_G_temporal_inf_thickness 0.25 -0.14 -0.17 0.50

rh_G_temporal_middle_thickness 0.31 -0.17 -0.26 0.95

rh_Lat_Fis-ant-Horizont_thickness 0.22 -0.10 0.46 1.08

rh_Lat_Fis-ant-Vertical_thickness 0.17 -0.08 0.68 1.71

rh_Lat_Fis-post_thickness 0.33 -0.19 0.04 1.10

rh_Pole_occipital_thickness 0.19 -0.10 0.20 0.40

rh_Pole_temporal_thickness 0.17 -0.08 -0.31 0.86

rh_S_calcarine_thickness 0.51 -0.36 0.32 1.14

rh_S_central_thickness 0.29 -0.16 0.04 0.70

rh_S_cingul-Marginalis_thickness 0.36 -0.21 -0.13 0.75

rh_S_circular_insula_ant_thickness 0.21 -0.09 0.12 0.42

rh_S_circular_insula_inf_thickness 0.26 -0.13 0.15 0.41

rh_S_circular_insula_sup_thickness 0.38 -0.23 -0.19 0.91

rh_S_collat_transv_ant_thickness 0.14 -0.05 0.57 1.52

rh_S_collat_transv_post_thickness 0.20 -0.10 0.28 0.73

rh_S_front_inf_thickness 0.41 -0.25 -0.26 1.47

rh_S_front_middle_thickness 0.43 -0.26 -0.13 1.32

rh_S_front_sup_thickness 0.42 -0.25 -0.28 1.26

rh_S_interm_prim-Jensen_thickness 0.25 -0.12 0.47 1.29

rh_S_intrapariet&P_trans_thickness 0.41 -0.25 -0.14 0.85

rh_S_oc_middle&Lunatus_thickness 0.23 -0.12 0.32 1.20

rh_S_oc_sup&transversal_thickness 0.31 -0.17 0.05 0.98

rh_S_occipital_ant_thickness 0.17 -0.09 0.24 0.39

rh_S_oc-temp_lat_thickness 0.17 -0.08 0.41 1.05

rh_S_oc-temp_med&Lingual_thickness 0.33 -0.20 0.08 0.59

rh_S_orbital_lateral_thickness 0.29 -0.16 0.48 2.19

rh_S_orbital_med-olfact_thickness 0.24 -0.13 0.49 2.50

rh_S_orbital-H_Shaped_thickness 0.39 -0.21 0.09 0.91

rh_S_parieto_occipital_thickness 0.34 -0.20 -0.05 0.53

rh_S_pericallosal_thickness 0.10 -0.05 0.82 1.07
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Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_S_postcentral_thickness 0.39 -0.23 -0.08 0.50

rh_S_precentral-inf-part_thickness 0.33 -0.19 -0.37 1.19

rh_S_precentral-sup-part_thickness 0.26 -0.15 -0.55 1.79

rh_S_suborbital_thickness 0.11 -0.06 0.31 0.21

rh_S_subparietal_thickness 0.27 -0.15 0.18 0.76

rh_S_temporal_inf_thickness 0.18 -0.10 0.20 1.13

rh_S_temporal_sup_thickness 0.41 -0.25 -0.18 0.70

rh_S_temporal_transverse_thickness 0.14 -0.07 0.25 0.18

rh_MeanThickness_thickness 0.45 -0.29 -0.24 0.59

Left-Lateral-Ventricle 0.40 -0.34 0.47 0.54

Left-Inf-Lat-Vent 0.30 -0.19 0.26 0.79

Left-Cerebellum-White-Matter 0.31 -0.20 0.32 2.15

Left-Cerebellum-Cortex 0.34 -0.20 -0.33 2.69

Left-Thalamus-Proper 0.58 -0.43 0.13 1.57

Left-Caudate 0.32 -0.19 0.06 1.24

Left-Putamen 0.46 -0.30 -0.22 2.02

Left-Pallidum 0.42 -0.29 -0.08 1.15

3rd-Ventricle 0.47 -0.37 0.68 1.15

4th-Ventricle 0.09 -0.05 0.35 0.48

Brain-Stem 0.37 -0.24 0.03 1.04

Left-Hippocampus 0.26 -0.15 -0.18 1.48

Left-Amygdala 0.28 -0.16 -0.16 1.40

CSF 0.28 -0.18 0.57 1.36

Left-Accumbens-area 0.60 -0.43 -0.20 1.23

Left-VentralDC 0.32 -0.19 0.10 0.55

Left-vessel 0.17 -0.09 0.12 0.72

Left-choroid-plexus 0.60 -0.42 -0.10 0.21

Right-Lateral-Ventricle 0.41 -0.35 0.46 0.56

Right-Inf-Lat-Vent 0.25 -0.14 0.14 0.71

Right-Cerebellum-White-Matter 0.29 -0.19 0.57 2.83

Right-Cerebellum-Cortex 0.32 -0.20 -0.31 2.77

Right-Thalamus-Proper 0.58 -0.42 0.08 0.94

Right-Caudate 0.33 -0.19 0.08 1.09

Right-Putamen 0.43 -0.28 -0.16 2.11

Right-Pallidum 0.35 -0.22 -0.03 0.80

Right-Hippocampus 0.25 -0.15 -0.14 1.02

Right-Amygdala 0.29 -0.17 -0.10 1.12

Right-Accumbens-area 0.42 -0.27 -0.04 1.02

Right-VentralDC 0.33 -0.19 0.12 0.64

Right-vessel 0.24 -0.11 0.08 1.40

Right-choroid-plexus 0.68 -0.45 -0.04 0.25

SubCortGrayVol 0.61 -0.42 -0.07 0.97

TotalGrayVol 0.60 -0.45 -0.16 1.40

SupraTentorialVol 0.35 -0.21 -0.03 0.52

SupraTentorialVolNotVent 0.37 -0.23 -0.05 0.54

avg_thickness 0.48 -0.31 -0.27 0.71
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Appendix 0 Table 5. Full Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

EstimatedTotalIntraCranialVol 0.33 -0.20 -0.38 2.41

Appendix 0 Table 6. mQC Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G&S_frontomargin_thickness 0.26 -0.15 0.24 1.18

lh_G&S_occipital_inf_thickness 0.19 -0.11 0.06 0.41

lh_G&S_paracentral_thickness 0.29 -0.16 -0.02 0.48

lh_G&S_subcentral_thickness 0.27 -0.15 -0.01 0.48

lh_G&S_transv_frontopol_thickness 0.31 -0.16 0.27 1.43

lh_G&S_cingul-Ant_thickness 0.27 -0.15 0.09 0.80

lh_G&S_cingul-Mid-Ant_thickness 0.29 -0.17 -0.35 1.26

lh_G&S_cingul-Mid-Post_thickness 0.37 -0.23 -0.08 0.67

lh_G_cingul-Post-dorsal_thickness 0.33 -0.18 -0.04 0.50

lh_G_cingul-Post-ventral_thickness 0.37 -0.23 0.00 0.27

lh_G_cuneus_thickness 0.41 -0.26 0.24 0.58

lh_G_front_inf-Opercular_thickness 0.38 -0.24 -0.12 0.66

lh_G_front_inf-Orbital_thickness 0.34 -0.19 -0.06 0.90

lh_G_front_inf-Triangul_thickness 0.42 -0.26 -0.01 0.57

lh_G_front_middle_thickness 0.47 -0.32 -0.17 0.70

lh_G_front_sup_thickness 0.45 -0.30 -0.12 0.49

lh_G_Ins_lg&S_cent_ins_thickness 0.13 -0.07 0.04 0.15

lh_G_insular_short_thickness 0.15 -0.08 -0.24 0.33

lh_G_occipital_middle_thickness 0.27 -0.16 -0.32 1.45

lh_G_occipital_sup_thickness 0.27 -0.16 0.15 0.46

lh_G_oc-temp_lat-fusifor_thickness 0.26 -0.17 -0.15 0.62

lh_G_oc-temp_med-Lingual_thickness 0.50 -0.37 0.10 0.43

lh_G_oc-temp_med-Parahip_thickness 0.14 -0.08 -0.12 0.26

lh_G_orbital_thickness 0.36 -0.23 -0.01 0.49

lh_G_pariet_inf-Angular_thickness 0.44 -0.30 -0.36 1.37

lh_G_pariet_inf-Supramar_thickness 0.38 -0.24 -0.21 0.77

lh_G_parietal_sup_thickness 0.45 -0.30 -0.14 0.63

lh_G_postcentral_thickness 0.28 -0.16 0.15 0.64

lh_G_precentral_thickness 0.26 -0.14 -0.49 1.38

lh_G_precuneus_thickness 0.41 -0.26 -0.06 0.52

lh_G_rectus_thickness 0.24 -0.13 -0.18 0.86

lh_G_subcallosal_thickness 0.24 -0.15 0.03 0.43

lh_G_temp_sup-G_T_transv_thickness 0.30 -0.17 0.05 0.21

lh_G_temp_sup-Lateral_thickness 0.25 -0.12 -0.05 0.28

lh_G_temp_sup-Plan_polar_thickness 0.18 -0.12 -0.19 0.55

lh_G_temp_sup-Plan_tempo_thickness 0.27 -0.15 -0.04 0.40

lh_G_temporal_inf_thickness 0.25 -0.12 -0.14 0.53

lh_G_temporal_middle_thickness 0.34 -0.21 -0.20 0.94

lh_Lat_Fis-ant-Horizont_thickness 0.18 -0.08 0.73 1.73

lh_Lat_Fis-ant-Vertical_thickness 0.20 -0.10 0.45 1.21
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Appendix 0 Table 6. mQC Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_Lat_Fis-post_thickness 0.31 -0.18 0.01 0.65

lh_Pole_occipital_thickness 0.19 -0.10 0.10 0.77

lh_Pole_temporal_thickness 0.13 -0.06 -0.21 0.63

lh_S_calcarine_thickness 0.53 -0.39 0.19 0.35

lh_S_central_thickness 0.31 -0.18 -0.07 0.76

lh_S_cingul-Marginalis_thickness 0.42 -0.27 -0.15 0.77

lh_S_circular_insula_ant_thickness 0.22 -0.12 -0.14 0.73

lh_S_circular_insula_inf_thickness 0.30 -0.17 0.09 0.41

lh_S_circular_insula_sup_thickness 0.37 -0.23 -0.29 0.98

lh_S_collat_transv_ant_thickness 0.10 -0.05 0.46 1.59

lh_S_collat_transv_post_thickness 0.20 -0.11 0.40 1.20

lh_S_front_inf_thickness 0.40 -0.25 -0.35 1.29

lh_S_front_middle_thickness 0.36 -0.22 -0.04 1.11

lh_S_front_sup_thickness 0.40 -0.26 -0.36 1.40

lh_S_interm_prim-Jensen_thickness 0.13 -0.06 1.19 2.64

lh_S_intrapariet&P_trans_thickness 0.43 -0.27 -0.33 1.20

lh_S_oc_middle&Lunatus_thickness 0.24 -0.14 0.05 1.21

lh_S_oc_sup&transversal_thickness 0.32 -0.19 -0.17 0.71

lh_S_occipital_ant_thickness 0.18 -0.10 0.15 0.52

lh_S_oc-temp_lat_thickness 0.16 -0.08 0.30 0.91

lh_S_oc-temp_med&Lingual_thickness 0.33 -0.20 0.11 0.47

lh_S_orbital_lateral_thickness 0.21 -0.11 0.59 1.87

lh_S_orbital_med-olfact_thickness 0.21 -0.08 0.97 5.28

lh_S_orbital-H_Shaped_thickness 0.32 -0.23 0.14 0.62

lh_S_parieto_occipital_thickness 0.40 -0.25 -0.07 0.70

lh_S_pericallosal_thickness 0.11 -0.08 0.70 1.01

lh_S_postcentral_thickness 0.44 -0.28 -0.18 0.88

lh_S_precentral-inf-part_thickness 0.34 -0.21 -0.27 1.15

lh_S_precentral-sup-part_thickness 0.28 -0.17 -0.29 1.16

lh_S_suborbital_thickness 0.13 -0.05 0.57 1.45

lh_S_subparietal_thickness 0.30 -0.18 0.03 0.85

lh_S_temporal_inf_thickness 0.20 -0.11 0.32 1.32

lh_S_temporal_sup_thickness 0.42 -0.27 -0.19 0.79

lh_S_temporal_transverse_thickness 0.14 -0.07 0.57 0.49

lh_MeanThickness_thickness 0.50 -0.34 -0.35 0.88

rh_G&S_frontomargin_thickness 0.25 -0.14 0.22 1.07

rh_G&S_occipital_inf_thickness 0.13 -0.05 0.14 0.31

rh_G&S_paracentral_thickness 0.29 -0.16 0.03 0.57

rh_G&S_subcentral_thickness 0.26 -0.14 0.09 0.32

rh_G&S_transv_frontopol_thickness 0.33 -0.18 0.22 0.86

rh_G&S_cingul-Ant_thickness 0.33 -0.19 -0.02 1.00

rh_G&S_cingul-Mid-Ant_thickness 0.31 -0.18 -0.25 0.82

rh_G&S_cingul-Mid-Post_thickness 0.33 -0.20 -0.15 0.66

rh_G_cingul-Post-dorsal_thickness 0.31 -0.18 -0.39 1.41

rh_G_cingul-Post-ventral_thickness 0.24 -0.14 -0.04 0.43

rh_G_cuneus_thickness 0.51 -0.38 0.45 1.66
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Appendix 0 Table 6. mQC Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_G_front_inf-Opercular_thickness 0.39 -0.25 -0.06 0.49

rh_G_front_inf-Orbital_thickness 0.31 -0.18 0.01 0.64

rh_G_front_inf-Triangul_thickness 0.40 -0.25 -0.03 0.56

rh_G_front_middle_thickness 0.47 -0.32 -0.30 0.87

rh_G_front_sup_thickness 0.43 -0.28 -0.26 0.67

rh_G_Ins_lg&S_cent_ins_thickness 0.11 -0.05 0.05 0.04

rh_G_insular_short_thickness 0.14 -0.09 -0.02 0.10

rh_G_occipital_middle_thickness 0.32 -0.19 -0.24 1.28

rh_G_occipital_sup_thickness 0.33 -0.21 -0.02 0.47

rh_G_oc-temp_lat-fusifor_thickness 0.22 -0.12 -0.01 0.49

rh_G_oc-temp_med-Lingual_thickness 0.53 -0.42 0.25 0.90

rh_G_oc-temp_med-Parahip_thickness 0.15 -0.08 -0.08 0.22

rh_G_orbital_thickness 0.32 -0.17 0.04 0.50

rh_G_pariet_inf-Angular_thickness 0.40 -0.23 -0.29 1.00

rh_G_pariet_inf-Supramar_thickness 0.36 -0.22 -0.19 0.45

rh_G_parietal_sup_thickness 0.43 -0.28 -0.07 0.41

rh_G_postcentral_thickness 0.26 -0.14 0.16 0.61

rh_G_precentral_thickness 0.24 -0.14 -0.67 1.73

rh_G_precuneus_thickness 0.40 -0.25 -0.01 0.45

rh_G_rectus_thickness 0.20 -0.09 0.00 0.96

rh_G_subcallosal_thickness 0.11 -0.06 0.31 0.17

rh_G_temp_sup-G_T_transv_thickness 0.26 -0.14 0.07 0.41

rh_G_temp_sup-Lateral_thickness 0.26 -0.12 -0.08 0.42

rh_G_temp_sup-Plan_polar_thickness 0.17 -0.10 -0.04 0.27

rh_G_temp_sup-Plan_tempo_thickness 0.27 -0.15 0.03 0.41

rh_G_temporal_inf_thickness 0.23 -0.13 -0.05 0.48

rh_G_temporal_middle_thickness 0.36 -0.22 -0.20 0.70

rh_Lat_Fis-ant-Horizont_thickness 0.23 -0.12 0.34 1.04

rh_Lat_Fis-ant-Vertical_thickness 0.14 -0.07 0.65 1.48

rh_Lat_Fis-post_thickness 0.33 -0.20 -0.02 1.14

rh_Pole_occipital_thickness 0.24 -0.13 0.12 0.47

rh_Pole_temporal_thickness 0.14 -0.05 -0.15 0.54

rh_S_calcarine_thickness 0.52 -0.38 0.33 1.28

rh_S_central_thickness 0.33 -0.19 0.04 0.94

rh_S_cingul-Marginalis_thickness 0.40 -0.24 -0.20 0.75

rh_S_circular_insula_ant_thickness 0.19 -0.09 0.01 0.49

rh_S_circular_insula_inf_thickness 0.27 -0.15 0.20 0.64

rh_S_circular_insula_sup_thickness 0.35 -0.21 -0.24 0.92

rh_S_collat_transv_ant_thickness 0.12 -0.05 0.56 1.43

rh_S_collat_transv_post_thickness 0.21 -0.11 0.31 0.87

rh_S_front_inf_thickness 0.39 -0.24 -0.43 1.77

rh_S_front_middle_thickness 0.39 -0.24 -0.31 1.31

rh_S_front_sup_thickness 0.37 -0.24 -0.32 1.43

rh_S_interm_prim-Jensen_thickness 0.24 -0.13 0.57 1.72

rh_S_intrapariet&P_trans_thickness 0.43 -0.27 -0.21 0.92

rh_S_oc_middle&Lunatus_thickness 0.21 -0.12 0.14 0.74
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Appendix 0 Table 6. mQC Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_S_oc_sup&transversal_thickness 0.31 -0.18 -0.02 0.92

rh_S_occipital_ant_thickness 0.18 -0.09 0.28 0.60

rh_S_oc-temp_lat_thickness 0.13 -0.07 0.47 1.53

rh_S_oc-temp_med&Lingual_thickness 0.36 -0.25 0.16 0.44

rh_S_orbital_lateral_thickness 0.25 -0.14 0.13 1.71

rh_S_orbital_med-olfact_thickness 0.20 -0.08 0.70 3.90

rh_S_orbital-H_Shaped_thickness 0.33 -0.21 0.15 0.83

rh_S_parieto_occipital_thickness 0.39 -0.24 -0.12 0.61

rh_S_pericallosal_thickness 0.11 -0.09 0.87 1.37

rh_S_postcentral_thickness 0.42 -0.26 -0.08 0.76

rh_S_precentral-inf-part_thickness 0.30 -0.18 -0.43 1.41

rh_S_precentral-sup-part_thickness 0.24 -0.14 -0.57 1.78

rh_S_suborbital_thickness 0.09 -0.05 0.66 0.75

rh_S_subparietal_thickness 0.28 -0.17 0.07 0.71

rh_S_temporal_inf_thickness 0.17 -0.09 0.18 0.86

rh_S_temporal_sup_thickness 0.42 -0.26 -0.17 0.65

rh_S_temporal_transverse_thickness 0.15 -0.08 0.20 0.28

rh_MeanThickness_thickness 0.49 -0.34 -0.29 0.73

Left-Lateral-Ventricle 0.42 -0.43 0.60 0.71

Left-Inf-Lat-Vent 0.26 -0.17 0.30 0.86

Left-Cerebellum-White-Matter 0.25 -0.16 0.53 2.21

Left-Cerebellum-Cortex 0.31 -0.19 -0.40 4.09

Left-Thalamus-Proper 0.61 -0.54 0.23 1.15

Left-Caudate 0.32 -0.23 0.12 0.59

Left-Putamen 0.49 -0.38 -0.18 0.96

Left-Pallidum 0.42 -0.30 -0.04 0.73

3rd-Ventricle 0.50 -0.50 0.73 1.34

4th-Ventricle 0.08 -0.04 0.32 0.34

Brain-Stem 0.38 -0.26 0.08 0.36

Left-Hippocampus 0.26 -0.14 -0.08 0.80

Left-Amygdala 0.29 -0.16 -0.07 0.82

CSF 0.28 -0.20 0.69 1.97

Left-Accumbens-area 0.60 -0.49 -0.04 0.39

Left-VentralDC 0.29 -0.17 0.16 0.33

Left-vessel 0.14 -0.08 0.10 0.73

Left-choroid-plexus 0.57 -0.42 -0.02 0.43

Right-Lateral-Ventricle 0.43 -0.44 0.57 0.65

Right-Inf-Lat-Vent 0.20 -0.12 0.16 0.76

Right-Cerebellum-White-Matter 0.28 -0.19 0.69 2.88

Right-Cerebellum-Cortex 0.29 -0.17 -0.38 4.57

Right-Thalamus-Proper 0.58 -0.48 0.18 0.77

Right-Caudate 0.33 -0.23 0.17 0.57

Right-Putamen 0.45 -0.34 -0.08 0.81

Right-Pallidum 0.29 -0.18 0.05 0.60

Right-Hippocampus 0.25 -0.15 -0.06 0.61

Right-Amygdala 0.29 -0.17 -0.01 0.38
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Appendix 0 Table 6. mQC Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

Right-Accumbens-area 0.36 -0.26 0.07 0.50

Right-VentralDC 0.30 -0.17 0.17 0.50

Right-vessel 0.23 -0.11 0.14 1.27

Right-choroid-plexus 0.61 -0.40 0.00 0.43

SubCortGrayVol 0.47 -0.34 0.00 0.23

TotalGrayVol 0.62 -0.49 -0.10 0.22

SupraTentorialVol 0.35 -0.20 0.00 0.18

SupraTentorialVolNotVent 0.37 -0.23 -0.01 0.17

avg_thickness 0.51 -0.36 -0.32 0.82

EstimatedTotalIntraCranialVol 0.36 -0.22 -0.28 1.54

Appendix 0 Table 7. Patient Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G&S_frontomargin 0.45 -0.94 0.69 3.04

lh_G&S_occipital_inf 0.38 -0.78 0.15 0.67

lh_G&S_paracentral 0.39 -0.37 0.00 0.32

lh_G&S_subcentral 0.46 -0.95 -0.05 0.76

lh_G&S_transv_frontopol 0.39 -0.52 0.75 2.31

lh_G&S_cingul-Ant 0.49 -1.05 0.29 1.35

lh_G&S_cingul-Mid-Ant 0.43 -0.35 0.00 1.07

lh_G&S_cingul-Mid-Post 0.58 -0.99 0.11 0.76

lh_G_cingul-Post-dorsal 0.53 -0.91 -0.11 1.35

lh_G_cingul-Post-ventral 0.48 -0.34 0.13 0.72

lh_G_cuneus 0.52 -0.41 0.66 1.85

lh_G_front_inf-Opercular 0.53 -1.10 -0.16 0.96

lh_G_front_inf-Orbital 0.41 -0.55 -0.10 1.09

lh_G_front_inf-Triangul 0.56 -0.96 -0.08 1.01

lh_G_front_middle 0.52 -1.12 -0.18 1.03

lh_G_front_sup 0.54 -1.02 -0.22 1.25

lh_G_Ins_lg&S_cent_ins 0.26 -0.14 -0.17 0.83

lh_G_insular_short 0.28 -0.18 -0.29 1.84

lh_G_occipital_middle 0.47 -0.79 -0.31 1.49

lh_G_occipital_sup 0.36 -0.42 0.32 0.78

lh_G_oc-temp_lat-fusifor 0.40 -0.97 -0.26 1.79

lh_G_oc-temp_med-Lingual 0.56 -0.38 0.56 2.02

lh_G_oc-temp_med-Parahip 0.24 -0.17 -0.41 0.89

lh_G_orbital 0.58 -0.79 -0.11 1.29

lh_G_pariet_inf-Angular 0.57 -1.06 -0.38 2.15

lh_G_pariet_inf-Supramar 0.55 -1.23 -0.28 1.27

lh_G_parietal_sup 0.48 -1.06 -0.07 1.17

lh_G_postcentral 0.37 -0.66 0.12 1.03

lh_G_precentral 0.43 -0.61 -0.59 1.59

lh_G_precuneus 0.58 -1.03 -0.06 0.69

lh_G_rectus 0.35 -0.65 0.89 5.08
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Appendix 0 Table 7. Patient Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G_subcallosal 0.25 -0.14 0.00 0.78

lh_G_temp_sup-G_T_transv 0.39 -0.44 0.11 0.13

lh_G_temp_sup-Lateral 0.41 -0.60 -0.27 1.14

lh_G_temp_sup-Plan_polar 0.33 -0.22 -0.49 1.06

lh_G_temp_sup-Plan_tempo 0.45 -0.86 0.03 0.46

lh_G_temporal_inf 0.31 -0.96 -0.33 1.41

lh_G_temporal_middle 0.45 -0.71 -0.42 1.50

lh_Lat_Fis-ant-Horizont 0.39 -0.64 0.72 1.41

lh_Lat_Fis-ant-Vertical 0.39 -0.90 0.60 1.42

lh_Lat_Fis-post 0.60 -1.04 0.15 0.38

lh_Pole_occipital 0.34 -0.26 0.74 3.35

lh_Pole_temporal 0.22 -0.50 -0.80 2.17

lh_S_calcarine 0.65 -0.69 0.79 2.83

lh_S_central 0.59 -0.96 0.27 1.98

lh_S_cingul-Marginalis 0.58 -1.21 0.20 0.92

lh_S_circular_insula_ant 0.49 -0.85 0.13 0.64

lh_S_circular_insula_inf 0.53 -0.57 0.04 0.66

lh_S_circular_insula_sup 0.65 -1.45 -0.02 0.49

lh_S_collat_transv_ant 0.32 -0.48 0.47 1.42

lh_S_collat_transv_post 0.37 -0.56 0.81 3.55

lh_S_front_inf 0.65 -1.69 0.08 0.84

lh_S_front_middle 0.53 -1.35 0.54 2.68

lh_S_front_sup 0.52 -1.55 -0.02 1.28

lh_S_interm_prim-Jensen 0.25 -0.52 1.16 2.69

lh_S_intrapariet&P_trans 0.62 -1.66 0.08 1.31

lh_S_oc_middle&Lunatus 0.41 -0.89 0.84 3.98

lh_S_oc_sup&transversal 0.50 -1.12 0.25 0.76

lh_S_occipital_ant 0.40 -0.75 0.79 5.01

lh_S_oc-temp_lat 0.37 -0.80 0.64 3.14

lh_S_oc-temp_med&Lingual 0.56 -0.75 0.06 0.84

lh_S_orbital_lateral 0.39 -0.80 1.03 3.80

lh_S_orbital_med-olfact 0.39 -0.41 1.73 8.42

lh_S_orbital-H_Shaped 0.53 -1.14 0.16 1.27

lh_S_parieto_occipital 0.64 -1.08 0.19 0.50

lh_S_pericallosal 0.24 -0.13 0.92 1.75

lh_S_postcentral 0.63 -1.53 0.09 0.51

lh_S_precentral-inf-part 0.58 -1.57 -0.01 0.83

lh_S_precentral-sup-part 0.48 -1.14 -0.21 0.90

lh_S_suborbital 0.32 -0.38 1.31 6.09

lh_S_subparietal 0.51 -1.12 0.56 2.81

lh_S_temporal_inf 0.45 -0.66 0.54 5.47

lh_S_temporal_sup 0.67 -1.45 -0.23 0.73

lh_S_temporal_transverse 0.30 -0.32 0.31 0.61

lh_MeanThickness 0.71 -1.60 -0.31 1.10

rh_G&S_frontomargin 0.42 -0.80 1.16 5.18

rh_G&S_occipital_inf 0.30 -0.53 0.21 0.49
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Appendix 0 Table 7. Patient Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_G&S_paracentral 0.38 -0.35 0.18 0.76

rh_G&S_subcentral 0.45 -0.85 0.13 0.27

rh_G&S_transv_frontopol 0.42 -0.62 0.69 2.37

rh_G&S_cingul-Ant 0.62 -1.29 0.40 2.06

rh_G&S_cingul-Mid-Ant 0.53 -0.70 0.12 2.43

rh_G&S_cingul-Mid-Post 0.59 -1.07 0.18 0.79

rh_G_cingul-Post-dorsal 0.51 -0.99 -0.37 2.26

rh_G_cingul-Post-ventral 0.26 -0.16 0.11 0.49

rh_G_cuneus 0.46 -0.31 0.90 3.93

rh_G_front_inf-Opercular 0.51 -1.05 0.02 0.50

rh_G_front_inf-Orbital 0.39 -0.50 0.16 0.86

rh_G_front_inf-Triangul 0.51 -0.82 0.18 1.45

rh_G_front_middle 0.53 -1.00 -0.38 1.33

rh_G_front_sup 0.56 -0.99 -0.18 1.39

rh_G_Ins_lg&S_cent_ins 0.21 -0.11 -0.07 0.45

rh_G_insular_short 0.25 -0.14 -0.06 0.08

rh_G_occipital_middle 0.48 -0.91 -0.23 1.89

rh_G_occipital_sup 0.41 -0.46 0.05 0.95

rh_G_oc-temp_lat-fusifor 0.38 -0.71 -0.15 1.09

rh_G_oc-temp_med-Lingual 0.50 -0.35 0.66 2.67

rh_G_oc-temp_med-Parahip 0.27 -0.20 -0.42 0.77

rh_G_orbital 0.54 -0.68 0.05 0.70

rh_G_pariet_inf-Angular 0.53 -1.01 -0.38 1.72

rh_G_pariet_inf-Supramar 0.53 -1.16 -0.29 0.92

rh_G_parietal_sup 0.43 -0.98 -0.11 0.91

rh_G_postcentral 0.36 -0.53 0.19 0.40

rh_G_precentral 0.43 -0.52 -0.69 1.66

rh_G_precuneus 0.55 -0.98 -0.02 0.44

rh_G_rectus 0.35 -0.56 0.60 2.12

rh_G_subcallosal 0.12 -0.06 0.02 0.44

rh_G_temp_sup-G_T_transv 0.41 -0.47 0.12 0.17

rh_G_temp_sup-Lateral 0.43 -0.66 -0.29 1.16

rh_G_temp_sup-Plan_polar 0.37 -0.27 -0.19 0.81

rh_G_temp_sup-Plan_tempo 0.50 -1.00 0.09 0.25

rh_G_temporal_inf 0.36 -0.90 -0.37 1.54

rh_G_temporal_middle 0.43 -0.81 -0.38 1.23

rh_Lat_Fis-ant-Horizont 0.43 -0.83 0.62 1.68

rh_Lat_Fis-ant-Vertical 0.30 -0.64 0.84 2.23

rh_Lat_Fis-post 0.61 -1.07 0.04 0.35

rh_Pole_occipital 0.41 -0.26 0.51 1.54

rh_Pole_temporal 0.24 -0.46 -0.79 2.02

rh_S_calcarine 0.65 -0.72 0.66 1.99

rh_S_central 0.63 -0.92 0.28 1.03

rh_S_cingul-Marginalis 0.61 -1.33 0.08 0.77

rh_S_circular_insula_ant 0.42 -0.76 0.34 1.12

rh_S_circular_insula_inf 0.53 -0.58 0.29 0.60
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Appendix 0 Table 7. Patient Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_S_circular_insula_sup 0.63 -1.44 0.11 1.12

rh_S_collat_transv_ant 0.33 -0.62 0.48 1.46

rh_S_collat_transv_post 0.40 -0.59 0.51 1.40

rh_S_front_inf 0.63 -1.60 0.39 2.23

rh_S_front_middle 0.58 -1.43 0.46 1.66

rh_S_front_sup 0.54 -1.49 -0.11 0.59

rh_S_interm_prim-Jensen 0.42 -0.99 0.44 1.51

rh_S_intrapariet&P_trans 0.60 -1.57 0.10 0.83

rh_S_oc_middle&Lunatus 0.37 -0.81 0.45 1.80

rh_S_oc_sup&transversal 0.49 -1.03 0.12 0.96

rh_S_occipital_ant 0.39 -0.75 0.12 1.65

rh_S_oc-temp_lat 0.36 -0.76 0.34 2.53

rh_S_oc-temp_med&Lingual 0.52 -0.57 0.05 0.72

rh_S_orbital_lateral 0.45 -0.98 1.28 7.26

rh_S_orbital_med-olfact 0.49 -0.63 0.79 3.40

rh_S_orbital-H_Shaped 0.55 -1.24 0.36 1.10

rh_S_parieto_occipital 0.62 -1.10 0.16 0.45

rh_S_pericallosal 0.27 -0.16 0.81 1.41

rh_S_postcentral 0.61 -1.38 0.14 0.37

rh_S_precentral-inf-part 0.57 -1.47 -0.06 0.57

rh_S_precentral-sup-part 0.45 -0.96 -0.34 1.31

rh_S_suborbital 0.25 -0.25 0.53 0.60

rh_S_subparietal 0.52 -1.04 0.24 0.54

rh_S_temporal_inf 0.42 -0.71 0.32 1.94

rh_S_temporal_sup 0.63 -1.57 -0.19 0.83

rh_S_temporal_transverse 0.32 -0.35 0.36 1.16

MeanThickness 0.71 -1.54 -0.18 0.84

Left-Lateral-Ventricle 0.37 -0.26 0.55 0.51

Left-Inf-Lat-Vent 0.27 -0.31 0.87 1.78

Left-Cerebellum-White-Matter 0.16 -0.22 -0.65 4.87

Left-Cerebellum-Cortex 0.27 -0.18 -1.75 14.02

Left-Thalamus-Proper 0.40 -0.22 -0.62 8.90

Left-Caudate 0.13 -0.07 -0.16 3.70

Left-Putamen 0.33 -0.18 -0.85 5.61

Left-Pallidum 0.47 -0.44 -0.57 5.08

3rd-Ventricle 0.38 -0.22 0.79 1.34

4th-Ventricle 0.01 0.00 0.30 1.42

Brain-Stem 0.13 -0.06 -0.64 6.30

Left-Hippocampus 0.35 -0.31 -1.54 8.88

Left-Amygdala 0.35 -0.28 -1.20 6.45

CSF 0.26 -0.16 0.50 2.88

Left-Accumbens-area 0.51 -0.53 -0.75 4.13

Left-VentralDC 0.40 -0.30 -0.64 7.99

Left-vessel 0.35 -0.28 0.00 1.58

Left-choroid-plexus 0.73 -0.55 0.20 1.13

Right-Lateral-Ventricle 0.39 -0.26 0.49 0.69
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Appendix 0 Table 7. Patient Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

Right-Inf-Lat-Vent 0.24 -0.26 0.88 2.16

Right-Cerebellum-White-Matter 0.12 -0.16 -0.67 6.55

Right-Cerebellum-Cortex 0.25 -0.22 -1.80 16.41

Right-Thalamus-Proper 0.49 -0.32 -0.39 4.50

Right-Caudate 0.18 -0.10 0.09 2.29

Right-Putamen 0.36 -0.21 -0.91 4.40

Right-Pallidum 0.39 -0.38 -0.45 3.92

Right-Hippocampus 0.37 -0.31 -1.12 4.22

Right-Amygdala 0.36 -0.38 -0.94 3.38

Right-Accumbens-area 0.38 -0.23 -0.48 1.92

Right-VentralDC 0.40 -0.32 -0.31 5.74

Right-vessel 0.38 -0.25 -0.31 2.34

Right-choroid-plexus 0.80 -0.85 0.17 0.89

SubCortGrayVol 0.43 -0.23 -0.99 9.58

TotalGrayVol 0.54 -0.52 -0.37 2.99

SupraTentorialVolNotVent 0.33 -0.27 -0.06 1.69

avg_thickness 0.72 -1.66 -0.22 0.82

EstimatedTotalIntraCranialVol 0.26 -0.16 0.23 1.33

Appendix 0 Table 8. Transfer Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G&S_frontomargin_thickness 0.20 -0.62 -0.26 0.66

lh_G&S_occipital_inf_thickness 0.02 -0.43 0.66 2.95

lh_G&S_paracentral_thickness 0.26 -0.37 0.31 1.72

lh_G&S_subcentral_thickness 0.20 -0.44 0.22 0.61

lh_G&S_transv_frontopol_thickness 0.13 -0.15 0.47 0.74

lh_G&S_cingul-Ant_thickness 0.20 -0.42 0.52 1.24

lh_G&S_cingul-Mid-Ant_thickness 0.25 -0.28 0.29 0.04

lh_G&S_cingul-Mid-Post_thickness 0.24 -0.43 -0.16 0.55

lh_G_cingul-Post-dorsal_thickness 0.23 -0.34 -0.36 1.32

lh_G_cingul-Post-ventral_thickness 0.08 -0.08 0.38 0.79

lh_G_cuneus_thickness 0.61 -0.54 0.79 2.43

lh_G_front_inf-Opercular_thickness 0.33 -0.50 0.41 0.91

lh_G_front_inf-Orbital_thickness 0.20 -0.19 0.36 1.36

lh_G_front_inf-Triangul_thickness 0.19 -0.39 0.25 0.12

lh_G_front_middle_thickness 0.31 -0.58 0.38 1.08

lh_G_front_sup_thickness 0.50 -0.59 0.30 0.29

lh_G_Ins_lg&S_cent_ins_thickness 0.23 -0.10 -0.08 0.24

lh_G_insular_short_thickness 0.33 -0.16 -0.01 0.60

lh_G_occipital_middle_thickness 0.22 -0.51 0.10 -0.05

lh_G_occipital_sup_thickness 0.24 -0.27 0.58 3.04

lh_G_oc-temp_lat-fusifor_thickness 0.25 -0.73 0.02 0.48

lh_G_oc-temp_med-Lingual_thickness 0.52 -0.46 0.32 0.15

lh_G_oc-temp_med-Parahip_thickness 0.23 -0.12 0.21 0.32
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Appendix 0 Table 8. Transfer Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_G_orbital_thickness 0.42 -0.44 -0.15 0.29

lh_G_pariet_inf-Angular_thickness 0.19 -0.55 0.17 0.77

lh_G_pariet_inf-Supramar_thickness 0.17 -0.70 -0.02 0.62

lh_G_parietal_sup_thickness 0.26 -0.78 -0.06 1.43

lh_G_postcentral_thickness 0.14 -0.59 0.19 0.61

lh_G_precentral_thickness 0.46 -0.56 -0.75 4.87

lh_G_precuneus_thickness 0.22 -0.70 0.15 0.60

lh_G_rectus_thickness 0.25 -0.53 0.68 1.98

lh_G_subcallosal_thickness 0.07 0.00 0.03 0.48

lh_G_temp_sup-G_T_transv_thickness 0.14 -0.18 0.75 3.76

lh_G_temp_sup-Lateral_thickness 0.29 -0.31 -0.20 0.76

lh_G_temp_sup-Plan_polar_thickness 0.43 -0.28 -0.21 0.88

lh_G_temp_sup-Plan_tempo_thickness 0.19 -0.53 0.48 1.16

lh_G_temporal_inf_thickness 0.52 -1.24 0.35 0.45

lh_G_temporal_middle_thickness 0.23 -0.26 0.03 -0.15

lh_Lat_Fis-ant-Horizont_thickness 0.07 -0.31 0.72 0.82

lh_Lat_Fis-ant-Vertical_thickness 0.19 -0.41 0.53 3.39

lh_Lat_Fis-post_thickness 0.24 -0.35 0.25 0.39

lh_Pole_occipital_thickness 0.48 -0.33 0.51 2.73

lh_Pole_temporal_thickness 0.56 -0.60 0.12 0.00

lh_S_calcarine_thickness 0.48 -0.46 0.28 0.10

lh_S_central_thickness 0.40 -0.82 0.44 0.47

lh_S_cingul-Marginalis_thickness 0.28 -0.82 0.29 0.85

lh_S_circular_insula_ant_thickness 0.28 -0.51 0.37 0.90

lh_S_circular_insula_inf_thickness 0.17 -0.20 0.33 0.95

lh_S_circular_insula_sup_thickness 0.29 -0.63 0.35 0.59

lh_S_collat_transv_ant_thickness 0.30 -0.39 0.56 0.99

lh_S_collat_transv_post_thickness 0.10 -0.37 0.96 2.42

lh_S_front_inf_thickness 0.36 -1.20 0.18 0.66

lh_S_front_middle_thickness 0.26 -0.98 0.41 0.59

lh_S_front_sup_thickness 0.43 -1.03 0.19 0.64

lh_S_interm_prim-Jensen_thickness 0.00 -0.25 1.28 2.68

lh_S_intrapariet&P_trans_thickness 0.38 -1.30 -0.06 0.93

lh_S_oc_middle&Lunatus_thickness 0.18 -0.72 0.53 1.23

lh_S_oc_sup&transversal_thickness 0.18 -0.92 0.52 0.86

lh_S_occipital_ant_thickness 0.15 -0.55 0.49 0.95

lh_S_oc-temp_lat_thickness 0.22 -0.57 0.96 3.70

lh_S_oc-temp_med&Lingual_thickness 0.24 -0.25 1.03 3.51

lh_S_orbital_lateral_thickness 0.11 -0.48 0.88 1.31

lh_S_orbital_med-olfact_thickness 0.45 -0.36 0.73 1.45

lh_S_orbital-H_Shaped_thickness 0.22 -0.56 0.58 1.69

lh_S_parieto_occipital_thickness 0.29 -0.76 0.26 0.37

lh_S_pericallosal_thickness 0.13 -0.04 0.85 1.45

lh_S_postcentral_thickness 0.35 -1.12 0.38 0.68

lh_S_precentral-inf-part_thickness 0.30 -0.89 0.13 1.01

lh_S_precentral-sup-part_thickness 0.25 -0.55 -0.41 1.67
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Appendix 0 Table 8. Transfer Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

lh_S_suborbital_thickness 0.03 -0.05 0.94 2.64

lh_S_subparietal_thickness 0.14 -0.71 0.28 0.22

lh_S_temporal_inf_thickness 0.30 -0.31 0.38 1.28

lh_S_temporal_sup_thickness 0.31 -0.86 0.30 0.52

lh_S_temporal_transverse_thickness 0.07 -0.11 0.43 -0.18

lh_MeanThickness_thickness 0.37 -1.00 0.10 0.53

rh_G&S_frontomargin_thickness 0.24 -0.75 0.62 1.55

rh_G&S_occipital_inf_thickness 0.14 -0.34 0.16 0.04

rh_G&S_paracentral_thickness 0.25 -0.38 0.27 1.05

rh_G&S_subcentral_thickness 0.20 -0.39 0.24 0.34

rh_G&S_transv_frontopol_thickness 0.21 -0.34 0.27 1.76

rh_G&S_cingul-Ant_thickness 0.38 -0.95 0.30 0.65

rh_G&S_cingul-Mid-Ant_thickness 0.33 -0.44 -0.04 0.76

rh_G&S_cingul-Mid-Post_thickness 0.25 -0.50 -0.01 0.95

rh_G_cingul-Post-dorsal_thickness 0.14 -0.46 -0.12 1.48

rh_G_cingul-Post-ventral_thickness 0.07 -0.03 0.22 0.85

rh_G_cuneus_thickness 0.56 -0.45 0.36 0.47

rh_G_front_inf-Opercular_thickness 0.29 -0.47 0.04 1.12

rh_G_front_inf-Orbital_thickness 0.14 -0.18 -0.16 1.11

rh_G_front_inf-Triangul_thickness 0.23 -0.38 0.28 0.31

rh_G_front_middle_thickness 0.33 -0.65 0.00 0.30

rh_G_front_sup_thickness 0.44 -0.62 0.22 0.80

rh_G_Ins_lg&S_cent_ins_thickness 0.13 -0.07 -0.09 -0.15

rh_G_insular_short_thickness 0.18 -0.06 0.09 0.11

rh_G_occipital_middle_thickness 0.22 -0.50 0.33 0.48

rh_G_occipital_sup_thickness 0.23 -0.37 0.26 1.06

rh_G_oc-temp_lat-fusifor_thickness 0.36 -0.59 0.43 0.67

rh_G_oc-temp_med-Lingual_thickness 0.46 -0.41 0.30 0.27

rh_G_oc-temp_med-Parahip_thickness 0.49 -0.31 0.17 0.46

rh_G_orbital_thickness 0.36 -0.46 0.18 0.33

rh_G_pariet_inf-Angular_thickness 0.26 -0.56 -0.17 1.04

rh_G_pariet_inf-Supramar_thickness 0.24 -0.62 0.07 0.85

rh_G_parietal_sup_thickness 0.22 -0.71 -0.13 0.82

rh_G_postcentral_thickness 0.19 -0.49 0.20 0.39

rh_G_precentral_thickness 0.40 -0.39 -1.28 6.69

rh_G_precuneus_thickness 0.24 -0.72 -0.17 1.05

rh_G_rectus_thickness 0.17 -0.55 0.06 0.76

rh_G_subcallosal_thickness 0.06 0.01 0.35 0.39

rh_G_temp_sup-G_T_transv_thickness 0.17 -0.27 -0.06 -0.04

rh_G_temp_sup-Lateral_thickness 0.31 -0.42 0.08 0.22

rh_G_temp_sup-Plan_polar_thickness 0.43 -0.23 -0.08 0.58

rh_G_temp_sup-Plan_tempo_thickness 0.16 -0.61 0.29 0.73

rh_G_temporal_inf_thickness 0.60 -1.13 0.00 0.29

rh_G_temporal_middle_thickness 0.44 -0.51 0.01 0.39

rh_Lat_Fis-ant-Horizont_thickness 0.25 -0.69 0.49 0.97

rh_Lat_Fis-ant-Vertical_thickness 0.10 -0.31 0.98 2.21
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Appendix 0 Table 8. Transfer Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

rh_Lat_Fis-post_thickness 0.23 -0.38 0.22 0.00

rh_Pole_occipital_thickness 0.49 -0.34 0.36 1.42

rh_Pole_temporal_thickness 0.52 -0.55 -0.03 0.14

rh_S_calcarine_thickness 0.48 -0.44 0.12 0.47

rh_S_central_thickness 0.44 -0.79 0.08 0.61

rh_S_cingul-Marginalis_thickness 0.33 -0.91 0.19 1.28

rh_S_circular_insula_ant_thickness 0.25 -0.50 0.42 1.03

rh_S_circular_insula_inf_thickness 0.16 -0.18 0.49 1.98

rh_S_circular_insula_sup_thickness 0.32 -0.72 0.45 1.10

rh_S_collat_transv_ant_thickness 0.38 -0.36 0.55 0.76

rh_S_collat_transv_post_thickness 0.18 -0.35 0.49 1.90

rh_S_front_inf_thickness 0.27 -1.09 0.15 0.54

rh_S_front_middle_thickness 0.44 -1.37 0.23 0.37

rh_S_front_sup_thickness 0.43 -1.07 0.20 0.26

rh_S_interm_prim-Jensen_thickness 0.12 -0.52 0.61 1.22

rh_S_intrapariet&P_trans_thickness 0.42 -1.20 -0.47 1.95

rh_S_oc_middle&Lunatus_thickness 0.09 -0.50 0.95 3.38

rh_S_oc_sup&transversal_thickness 0.23 -0.80 0.32 0.45

rh_S_occipital_ant_thickness 0.20 -0.53 0.25 0.46

rh_S_oc-temp_lat_thickness 0.38 -0.52 0.14 2.55

rh_S_oc-temp_med&Lingual_thickness 0.27 -0.22 0.40 1.44

rh_S_orbital_lateral_thickness 0.22 -0.71 0.45 1.13

rh_S_orbital_med-olfact_thickness 0.27 -0.40 0.67 2.15

rh_S_orbital-H_Shaped_thickness 0.27 -1.14 0.40 0.61

rh_S_parieto_occipital_thickness 0.33 -0.78 -0.07 0.02

rh_S_pericallosal_thickness 0.20 -0.08 1.09 3.12

rh_S_postcentral_thickness 0.41 -1.06 0.12 0.46

rh_S_precentral-inf-part_thickness 0.30 -0.87 -0.14 2.32

rh_S_precentral-sup-part_thickness 0.26 -0.51 -0.68 3.83

rh_S_suborbital_thickness 0.15 -0.22 0.56 0.63

rh_S_subparietal_thickness 0.08 -0.60 -0.34 3.01

rh_S_temporal_inf_thickness 0.45 -0.50 0.72 1.74

rh_S_temporal_sup_thickness 0.32 -0.98 0.12 0.16

rh_S_temporal_transverse_thickness 0.12 -0.08 0.23 0.24

rh_MeanThickness_thickness 0.39 -1.05 0.03 0.52

Left-Lateral-Ventricle 0.14 -0.24 0.64 0.87

Left-Inf-Lat-Vent 0.08 -0.15 0.10 0.66

Left-Cerebellum-White-Matter 0.21 -0.19 -0.10 3.01

Left-Cerebellum-Cortex 0.38 -0.29 -0.84 2.33

Left-Thalamus-Proper 0.39 -0.29 0.12 0.11

Left-Caudate 0.19 -0.19 0.00 -0.05

Left-Putamen 0.36 -0.34 -0.22 0.95

Left-Pallidum 0.34 -0.23 0.19 -0.21

3rd-Ventricle 0.27 -0.29 0.96 3.49

4th-Ventricle 0.09 0.09 0.51 6.31

Brain-Stem 0.33 -0.17 0.06 0.59
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Appendix 0 Table 8. Transfer Test Set Evaluation Metrics

ROI EV MSLL Skew Kurtosis

Left-Hippocampus 0.31 -0.19 0.14 0.05

Left-Amygdala 0.33 -0.23 0.33 0.41

CSF 0.08 -0.11 0.89 2.50

Left-Accumbens-area 0.35 -0.68 0.12 0.78

Left-VentralDC 0.36 -0.27 0.29 0.59

Left-vessel 0.00 0.03 -1.25 8.40

Left-choroid-plexus 0.08 -0.28 0.10 0.84

Right-Lateral-Ventricle 0.16 -0.26 0.76 1.64

Right-Inf-Lat-Vent 0.02 -0.03 -0.26 1.39

Right-Cerebellum-White-Matter 0.19 -0.19 -0.19 3.03

Right-Cerebellum-Cortex 0.41 -0.37 -0.80 2.55

Right-Thalamus-Proper 0.42 -0.26 0.04 1.34

Right-Caudate 0.20 -0.18 0.24 0.51

Right-Putamen 0.35 -0.31 -0.42 1.96

Right-Pallidum 0.24 -0.17 0.11 0.10

Right-Hippocampus 0.29 -0.19 0.13 0.00

Right-Amygdala 0.36 -0.16 0.50 4.22

Right-Accumbens-area 0.35 -0.49 0.20 0.52

Right-VentralDC 0.38 -0.28 0.41 1.70

Right-vessel 0.08 -0.02 -0.63 5.50

Right-choroid-plexus 0.15 -0.27 -0.37 1.01

SubCortGrayVol 0.43 -0.32 0.47 1.32

TotalGrayVol 0.51 -0.36 -0.23 0.49

SupraTentorialVol 0.39 -0.19 0.00 0.28

SupraTentorialVolNotVent 0.39 -0.18 0.03 0.31

avg_thickness 0.39 -1.06 0.06 0.56

EstimatedTotalIntraCranialVol 0.46 -0.37 -0.17 0.92
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