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ABSTRACT

Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA
sequencing (RNA-seq) studies is often employed to understand functional consequences of
regulatory variants. However, the high cost of RNA-Seq limits sample size, sequencing depth,
and therefore, discovery power. In this work, we demonstrate that, given a fixed budget, eQTL
discovery power can be increased by lowering the sequencing depth per sample and increasing
the number of individuals sequenced in the assay. We perform RNA-Seq of whole blood tissue
across 1490 individuals at low-coverage (5.9 million reads/sample) and show that the effective
power is higher than that of an RNA-Seq study of 570 individuals at high-coverage (13.9 million
reads/sample). Next, we leverage synthetic datasets derived from real RNA-Seq data to explore
the interplay of coverage and number individuals in eQTL studies, and show that a 10-fold
reduction in coverage leads to only a 2.5-fold reduction in statistical power. Our study suggests
that lowering coverage while increasing the number of individuals is an effective approach to

increase discovery power in RNA-Seq studies.
KEYWORDS

RNA-Seq, Gene expression, Association testing

BACKGROUND

The vast majority of risk loci identified in genome-wide association studies (GWAS) are difficult to
interpret as they lie in noncoding regions of the genome. Variants that regulate gene expression
abundance, as measured through expression quantitative trait locus (eQTL) studies, provide
insightful information about the functional interpretation of GWAS signals 2. By integrating eQTL
associations with GWAS, we can hope to identify target genes that are driving the GWAS signal

at a locus *5. RNA sequencing (RNA-Seq) is the state-of-the-art assay for measuring gene
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expression in bulk tissue and is therefore the assay of choice for eQTL mapping 2. However, the
high cost of RNA-Seq often limits the sample size and therefore reduces the discovery power of

eQTL studies based on RNA-Seq 2°°,

Traditional RNA-Seq study design prioritizes sequencing depth per individual (targeted levels of
coverage in the range of 30-50 million reads) over the number of individuals (samples) included
in the study '>'2. However, given that high levels of coverage per individual limits the sample size
of a study, this results in a loss of statistical power in eQTL mapping. Previous studies have
established that the low-coverage whole genome sequencing of a larger number of individuals
attains increased power of association compared to higher-coverage studies of smaller sample
sizes in GWAS " This raises the hypothesis that, similarly as for whole genome sequencing
and GWAS, lower coverage RNA-seq with a considerable increase in the number of individuals

sequenced could increase power of discovery in eQTL studies '8’

. Currently, there is no
systematic approach for determining the optimal sample size (in terms of number of sequenced

individuals) and coverage to maximize eQTL discovery power.

In this work, we perform RNA-Seq in 1490 individuals at a lower coverage (average mapped read
depth of 5.9 million reads/sample) and find that eQTL discovery power is better than that of an
experiment with a similar budget, but with fewer individuals and higher coverage. Compared to
high-coverage RNA-Seq, we find a high degree of consistency in both the gene expression as
well as eQTL effects. We assess the interplay of coverage per sample and accuracy of expression
estimates using synthetic RNA-Seq datasets generated by the down-sampling of real high-
coverage data. Our analyses show that a sequencing experiment conducted with a target
coverage of 10 million reads/sample has an average correlation per-gene of 0.40, when compared
to an experiment conducted with a target coverage of 50 million reads/sample. We provide

evidence to show that under a fixed budget, sequencing at lower coverage levels (< 10 million
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97 reads/sample) and increased sample size can boost the effective sample size per unit of cost

98 compared to standard approaches of eQTL study design.
99 RESULTS
100 Low-coverage RNA-sequencing is accurate for eQTL mapping

101  To validate the utility of low-coverage RNA-sequencing, we sequenced whole blood tissue from
102 N = 1490 unrelated individuals (Methods) (Supplementary Figure 1A and Supplementary
103  Figure 1B). We target a sequencing coverage of 9.5 million reads per sample, yielding M = 5.9
104  million reads mapped to RefSeq genes on average (sd across samples of 1.96 million,
105 Supplementary Figure 2). We refer to this dataset as the lower-coverage RNA-Seq, or the M=5.9
106  million reads/sample dataset. We contrast this dataset with an RNA-Seq dataset obtained with a
107  similar budget, but with 2.4-fold higher coverage (M = 13.9 reads) across N = 570 individuals
108  (Supplementary Figure 1C and Supplementary Figure 1D) ?2. We refer to this as the higher-

109 coverage whole blood RNA-Seq, or the M = 13.9 million reads/sample dataset (Table 1).

110 First, we assess the number of genes quantified in the two datasets. We observe 40459 genes
111  with at least one mapped read on average across samples in the whole blood high-coverage
112  dataset, and 27308 genes with at least one mapped read on average across samples in the whole
113  blood low-coverage dataset. Notably, when restricting to protein coding genes with at least one
114  mapped read in both the high-coverage and low-coverage datasets, we find more similar numbers
115  between the data sets, with 18329 and 15605 genes quantified, respectively. This is likely due to
116 the very sparse abundance of the non-protein coding genes, making them less likely to be
117  detected in a lower coverage dataset. Indeed, we observe similar effects across the high vs low
118 coverage datasets when assessing the genes with sufficient expression to be included in eQTL
119  analysis (TPM > 0.1 in 20% of individuals, see Methods): 26566 genes (15496 protein coding

120 genes) in high coverage data versus 19039 (13339 protein coding genes) in low coverage data.
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121 Most importantly we observe a high correlation in the abundance levels across the two data sets

122  thus demonstrating that high and low coverage recover similar expression (R?= 0.91, Figure 1A).

123 Next, we investigate the power of low-coverage RNA-Seq for eQTL mapping. We conducted cis-
124  eQTL mapping with a 1 Mb window using FastQTL, restricting to the 1490 unrelated individuals
125 in the low-coverage RNA-Seq data (Methods), to identify 7587 genes (eGenes) with a significant
126  association at FDR correction level of 5%. As expected, eQTL distribution is concentrated at
127  transcription start sites (TSS), with 73% of eGenes TSS within 250kb of the associated SNP
128 (eSNP). Repeating this approach using the high-coverage whole blood data in 570 individuals,
129  we only find 5971 genes with a significant association at FDR correction level of 5%. 4969 of the
130 7587 eGenes found using the low-coverage data are also significant in the high-coverage data.
131  Of these, 2151 of the eGenes are protein coding eGenes that share the same associated eSNP,
132  and we see an extremely high level of concordance between effect sizes for these eGenes across
133  the two datasets (R? = 0.93, Figure 1B). This further indicates that low-coverage RNA-Seq is
134  robust in capturing eQTL effect sizes. 1002 genes were found to be eGenes in the high-coverage
135 eQTL analysis but not in the low-coverage analysis, with 573 (of the 1002) not passing expression
136 levels (TPM >0.1 in 20% individuals) to be included in the low-coverage eQTL analysis; only 234
137  of the 573 were protein coding genes. Similar concordance is observed at the level of p-values
138 for the associations in both datasets (Figure 1C). Comparing the p-values for eGenes detected
139 in both eQTL analyses, the corresponding regression line has a slope of 0.39, consistent with
140 lower-coverage dataset having superior statistical power to detect associations over lower-
141  coverage dataset, and consistent with overall number of significant eQTL discoveries. We report
142  the results from using typed SNPs in these eQTL analyses (Methods), but observe similar

143  patterns when using the full set of imputed SNPs.

144  To further validate the performance of eQTL analysis using lower coverage RNA-Seq (coverage

145 5.9M, n = 1490), we compared the resulting eQTLs to the ones found by GTEx consortium in
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146  whole blood '* (Supplementary Figure 3). Restricting to the 12247 protein coding genes with
147  sufficient expression to be included in both studies (> 0.1 TPM in 20% of samples) we find that
148 4529 out of the 5957 protein coding genes (76%) with a significant association using the lower-
149 coverage data also had a significant association in GTEX, correcting at an FDR level of 5%.
150  Further restricting to eGenes with the same leading SNP in both of these datasets (140 genes)
151  (Figure 1D), we observe a correlation (R?) of 0.85 between their effect sizes. Looking into the
152 1428 protein coding genes with a significant association in eQTL analysis using the lower-
153  coverage RNA-Seq but not in GTEx using an FDR cutoff of 5%, we observe that 372 have
154  significant association in GTEx using an FDR cutoff of 10%. To further ensure that these eGenes
155 are not false positives, we compare the set of 1428 genes with eQTL analysis conducted by the
156  eQTLGen Consortium 2 and find that all but 190 of these genes have been found to have a
157  significant association in eQTLGen. This suggests that the additional associations found using
158 lower-coverage data that are not found in GTEx are not false positives, but fall just below the

159 significance threshold in the GTEx analysis.

160 Finally, we explore the impact of RNA-Seq at lower coverages for cell type expression

161  estimation. We use Cibersort > to compare cell-type proportion estimates between the lower-
162  coverage data and higher-coverage data (Methods). We find that the median estimated cell
163  type proportions are conserved across both datasets, suggesting that deconvolution of cell type
164  specific signal from gene expression profiles of whole blood samples is not impacted when

165 coverage is reduced by half (Supplementary Figure 7).
166  Impact of RNA-seq coverage on eQTL power

167 Having demonstrated the accuracy of low-coverage RNA-Seq in eQTL mapping in real data, we

168 next focused on exploring the interplay of number of individuals and coverage for optimizing

25-26

169  power for discovery. As simulating RNA-Seq data is challenging , we down-sample reads from

170  higher-coverage RNA-Seq data to create synthetic datasets at various coverages (Methods). We
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171  observe that with just a fraction of the reads, it is still possible to estimate gene expression (Figure
172 2A). For example, using just 10% of the data (5.0 million reads/sample) retains a per gene R? of
173  0.40, on average. The results from our analyses using these synthetic lower-coverage RNA-Seq
174  datasets suggest that under simplified settings of no per-sample library preparation cost, the
175  statistical power in an association study can be increased up to fourfold by spending more
176  resources on increasing sample size and fewer resources on increasing coverage. In practice,
177  increasing the number of samples in an RNA-Seq study leads to increased library preparation

178  costs, making the increase in obtainable statistical association power less obvious.

179 It has been established that statistical power in association studies is a function of sample size,
180  phenotype measurement accuracy, and genotype measurement accuracy '>'%2?°, This means that
181 the power of a study with sample size N and estimated gene expression is approximately the
182  same as the power of a study with sample size N, using the true gene expression measurements
183  (Methods). In this scenario, R? is the correlation between the true expression and the expression
184  estimates. We therefore report the squared correlation (R?) between synthetic datasets at various
185 coverages and the full data at an average of 50 million reads/sample (which is assumed to be the
186  true gene expression). While these results show the mean R? for all genes obtained under one
187  synthetic dataset (one draw) per coverage level, we find that the synthetic datasets are consistent
188  across multiple draws at the same coverage level (Supplementary Figure 4A) and each show

189  similar correlations with the ground truth gene expression (Supplementary Figure 4B).

190  Next, we quantified how well lower-coverage RNA-Seq can be used to detect eGenes *°. We
191 explore the number of genes with significant associations after FDR correction at 5% under
192  various levels of simulated coverage (Figure 2B). Using synthetic data, as the number of reads
193  per sample decreases, we find that many eGenes are still detectable. For example, at 10 million
194  reads per sample, just 20% of the full coverage, 60% of the eGenes are still detected. In the

195 context of eQTL studies, synthetic RNA-Seq supports the idea that sequencing at lower
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196 coverages over a higher number of individuals is a promising approach to boosting statistical

197 power.

198 Finally, we explore the estimation accuracy in the synthetic data as a function of relative gene
199 expression abundance, since less abundant genes may not be captured altogether at lower
200 sequencing coverages. We stratify genes into five groups based on their relative expression in
201  the full dataset (M=50.3 million reads/sample) and report the R? for genes in each of these groups
202  in synthetic data (Figure 2C). We observe that in the synthetic RNA-Seq dataset at 10 million
203  reads/sample, we capture expression of highly expressed genes better than lower expressed
204  genes. Specifically, for genes in the lowest through the highest quintiles of relative gene
205 abundance, we find the average correlation (R?) to the ground truth of expression to be 0.36, 0.44,
206 0.61, 0.73, 0.86, respectively. We observe the same effect for synthetic datasets at coverages of
207 1 million reads/sample and 25 million reads/sample (Supplementary Figure 5A and
208 Supplementary Figure 5B). These results suggest that the ability to achieve similar power in
209 eQTL analysis studies will differ per gene, and is a function of relative expression. We further
210 investigate the properties of genes with quantification accuracy influenced by coverage levels of
211  sequencing and find that that protein coding genes are more accurately quantified at lower
212 coverage levels (Supplementary Figure 6A). Conversely, the number of transcripts per gene,
213  gene length, and GC content do not appear to be factors that broadly influence the gene
214  quantification accuracy when sequencing coverage is reduced (Supplementary Figure 6B,

215  Supplementary Figure 6C, and Supplementary Figure 6D).

216  Optimal association power for eQTLs is attained at lower coverage with a larger number

217  of samples

218 In the context of reducing experimental costs, we explored the trade-off between the number of
219 samples sequenced and the average coverage per sample. We evaluated the expected effective

220 sample size obtained with lower coverage per sample and compared this with a conventional
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221 approach of 50 million reads/sample. We down-sample reads (as described in Section 1 and
222  Methods) from a high-coverage RNA-Seq experiment derived from Fibroblast tissue in order to
223  create lower-coverage RNA-Seq synthetic data. This is done to match actual low coverage

224  sequencing as closely as possible. To evaluate the relationship between cost, coverage, and

nxbxc
d

225  sample size, we use the following equation to model the budget: B = n x a +

226  Where B is the cost/budget (in US dollars), a is the library preparation cost per sample, b is the
227  target coverage of each sample (in millions of reads), c is the cost per lane (which contains d
228 million reads), and d is the number of reads per sequencing lane (in millions). We compute the
229  effective sample size of an eQTL study as a function of average coverage, which determines the
230 number of samples sequenced under a fixed budget (Figure 3A). As an example, at a fixed
231  budget of $300,000, the highest effective sample size is achieved by sequencing 2045 individuals
232 using 10 million reads per sample, which leads to a corresponding effective sample size of 1107.
233 An experiment achieving the sample effective sample size, using 50 million reads per sample,
234  would cost $426,564 (N = 1107, R?= 1.0). Therefore, by lowering the coverage of each sample

235 and increasing sample size, we achieve the same effective sample size at just 70.3% of the cost.

236 In practice, it is common to observe a considerable discrepancy between the target number of
237 reads in an experiment and the number of reads that successfully map to genes. This can be
238  attributed to different library prep techniques, quality of samples, or tissue type. To show how
239  mapping rate can influence the effective sample size of an experiment, we model effective sample
240 size with varying levels of mapping rates (Methods). As expected, we observe that as the
241  mapping rate increases, there is a corresponding increase in effective sample size (Figure 3C).
242 We provide a webtool as a practical approach for selecting cost-effective designs for maximizing

243  eQTL power: https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/.
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244  With a budget of ~$300k and an expected mapping rate of 0.60 (chosen based on mapping rate
245  of similar experiments using TruSeq Stranded plus rRNA and GlobinZero in whole blood tissue),
246  we see the maximum effective sample size would be achieved at a target coverage of 7 million
247  reads per sample, including 2227 individuals in the study. We estimate that achieving the same
248  effective sample size using data with 50 million reads per sample would cost ~$500k (N = 1328),
249  or 1.78x the cost of sequencing 2227 individuals at a coverage of 7 million reads/sample. To
250 explore other cost scenarios we provide a webtool we created a webtool where one can enter
251  budget, costs, and other details about the experiment, in order to see how to achieve optimal

252  effective sample size (https://tomschwarz.shinyapps.io/RNASegCoverageCalculator/).

253 DISCUSSION

254  In this work, we generate RNA-Seq data at a lower coverage than typically used in eQTL studies
255  (5.9M reads/sample) and demonstrate how this approach boosts effective sample size per unit
256  costin an association study. To further validate this approach, we use synthetic RNA-Seq data to
257  show that the optimal level of coverage in an RNA-Seq project for the purpose of identifying eQTL
258  associations is lower than is commonly practiced '*'?. Based on our findings, we recommend
259 increasing sample size while lowering sequencing depth per sample in order to achieve optimal

260 statistical power in association studies.

261  We conclude with some notes, caveats, and future directions. First, synthetic RNA-Seq via
262  downsampling reads is potentially limited in several ways. These synthetic datasets of lower
263  coverage RNA-Seq are created by uniformly sampling from real RNA-Seq data with an average
264  of 50 million reads mapped per sample. However, in practice, it is possible that sequencing biases
265 are not captured by uniform sampling due to the different experimental setup compared to the
266  dataset from which we sample ?’. Additionally, these synthetic datasets are based on data
267  obtained from fibroblast tissue with different transcriptomic profiles from whole blood, potentially

268 influencing the sequencing depth required to detect associations with gene expression. Finally,

10
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269 this approach is optimized for eQTL discovery. Other mechanisms that are detected using RNA-
270  Seq, such as RNA splicing, have different mechanisms and will likely have different optimal
271  coverages for detection. The fact that we identify different sets of eGenes depending on which
272  gene expression measurements we consider (GTEX vs eQTLGen vs lower-coverage RNA-Seq),
273  shows that we need to increase cohort sizes in order to fully understand the connection between
274  genetics and gene expression in blood. Furthermore, the results in Figure 3A (figure showing
275  effective sample size at various coverages) indicate that even including 1490 individuals under
276 this fixed budget is not enough to achieve the optimal effective sample size. Current approaches
277  are not sufficient to understand the full landscape of eQTLs in whole blood tissue, even while only
278 considering a single genetic ancestry group. We compare the eGenes identified by GTEXx,
279  eQTLGen, and the lower-coverage RNA-Seq (Supplementary Figure 8) and find that no single
280  study is sufficient in capturing all of the associations in whole blood. As observed in GWAS, much
281 larger sample sizes including far more ancestral diversity in these samples will enable discovery
282  of novel associations in transcriptomics. Including non-European populations and considering the
283  temporal aspect of gene expression will help us gain a more complete understanding of the blood

284  transcriptome landscape in the entire population.
285 CONCLUSIONS

286 In summary, we show that reducing coverage and increasing the number of samples in an eQTL
287  study is a valid approach for increasing effective sample size of the association study. We use
288  both real and synthetic RNA-Seq data to confirm the benefit of increased sample sizes in eQTL
289  studies. This approach can be applied to any dataset for which genotypes are available and will
290 help scientists optimize resources when measuring gene expression for the purpose of integration
291  with genetics. We provide an online tool to assist with improved design of eQTL studies at

292 https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/.

293
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294 METHODS

295 Cohort Description

296  The samples included are from a study with individuals ascertained for bipolar disorder (BP). The
297  cohort consists of 916 individuals with BP, 358 controls, and 216 relatives of the individuals with
298 BP.

299  Connection between effect size and R?

300 If g is the genotype at the SNP that we are testing for associations, and is the effect size of that
301 SNP when regressing on the true gene expression, y, and is the effect size of that SNP when
302 regressing on the estimated gene expression, . The relationship between y and ¥ is as follows

303 that r% = corr(y,¥). It follows that the estimates of effect size for a SNP on the true gene

304 expression, f3, are related to the estimate of effect size for a SNP on the estimated gene

~

305 expression, f§ as § = cov(g,¥) = cov(g,ry + €) = cov(g,ry) + cov(g,e) = rp where ¢is a
306 random variable with mean 0 and variance 1. The association test statistics at low-coverage is

307 «x

gmundchorz(g,y) thus implying that the association statistic at low coverage

308 IS Xiow-coverage = Ncor?(g,5) = N B = N(rB)? = r? x Ncor?(g,y) = X ground

309 Budget model

310 We modeled the cost of a large-scale bulk RNA-Seq experiment based on parameters from two
311  differentlibrary prep techniques: (1) TruSeq Stranded plus rRNA and GlobinZero and (2) TruSeq
312  Stranded polyA selected, both from the UCLA Neuroscience Genomics core. Cost, or B, is a
313  function of the following: a, the library preparation cost per sample, b, which is the target coverage
314  of each sample (in millions of reads). ¢, the cost per lane (which contains d million reads), and d

315 is the number of reads per sequencing lane (in millions). Altogether, we model the budget as B =

nxbx*c
d

316 n*a-+

317 Genotyping pipeline

12
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318 Genotypes for the low-coverage whole blood samples were obtained from the following platforms:
319 OmniExpressExome (N = 810), PSYCH (N = 523), and COEX (N = 163). Given that the SNP-
320 genotype data for both the fibroblast and whole blood samples came from numerous studies using
321  various genotyping platforms (including GSA, lllumina550, OmniExpress Exome, COEX, and
322  PsychChip) the number of overlapping SNPs across all platforms was < 80k, prompting us to
323  perform imputation separately for each genotyping platform. Genotypes were first filtered for
324  Hardy-Weinberg equilibrium p value < 1.0e-6 for controls and p value < 1.0e-10 for cases, with
325  minor allele frequency (MAF) > 0.01, leaving 148613 typed SNPs.

326  Genotypes were imputed using the 1000 Genomes Project phase 3 reference panel ** by

327 chromosome using RICOPILI v.1 3

separately per genotyping platform, then subsequently
328 merged. Imputation quality was assessed by filtering variants where genotype probability > 0.8
329 and INFO score > 0.1, resulting in 2289732 autosomal SNPs. We restricted to only autosomal
330 due to sex chromosome dosage, as commonly done "2,

331  Synthetic low coverage RNA-Seq

332  We use high-coverage RNA-Seq (average of 50 million reads/sample, TruSeq Stranded plus
333  rRNA and GlobinZero library prep) from a set of 152 cell lines derived from human fibroblast cells.
334 We assume this to be the ground truth of gene expression. We used seqtk
335  (https://github.com/Ih3/seqtk) to randomly sample reads at various coverages, uniformly. We
336 performed five iterations of downsampling at each level of coverage in order to account for
337  potential variability in the sampling and sequencing errors.

338 RNA-Seq processing pipeline

339 We used FASTQC to visually inspect the read quality from the lower-coverage whole blood RNA-
340 Seq (5.9M reads/sample) and the higher-coverage fibroblast RNA-Seq (13.9M reads/sample).
341  We then used kallisto to pseudoalign reads to the GRCh37 transcriptome and quantify estimates

342  for transcript expression. We aggregated transcript counts using scripts from the GTEX

343  consortium (https://github.com/broadinstitute/gtex-pipeline) 2.
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344  cis-eQTL mapping

345  Excluding related individuals (pi_hat > 0.2) from the analysis, we perform cis-eQTL analysis
346  mapping using FastQTL *°, using a defined window of 1 Mb both up and downstream of every
347 gene’s TSS, for sufficiently expressed genes. We run the eQTL analysis in permutation pass
348 mode (1000 permutations, and perform multiple testing corrections using the g-value FDR
349  procedure, correcting at 5% unless otherwise specified. We then restrict our associations to the
350 top (or leading) SNP per eGene.

351 Cell type proportion estimation

352  We estimate the proportion of cell types of both the lower-coverage and higher-coverage bulk
353  whole blood RNA-seq datasets using CIBERSORTx *° with batch correction applied and LM22
354  signature matrix as the reference gene expression profile. The LM22 signature matrix uses 547
355 genes to distinguish between 22 human hematopoietic cell phenotypes.

356 R?adjustment

357 To account for the variability in mapping rate across different library prep techniques * and
358 different tissue types, we look at the mean R? at the expected coverage, which is calculated as
359  expected coverage = target coverage * estimated mapping rate. Using mean R?values from
360 comparing lower-coverage synthetic RNA-Seq to higher-coverage RNA-Seq real data, we fit a

361 log curve to estimate the adjusted mean R? (Rid]-) at the expected coverage.

362 Effective Sample Size

363  Under a fixed-budget setting, we calculate effective sample size (N, ) for a given coverage using
364 the adjusted mean R? (Rfld]-) and the number of samples included at a given coverage level (N)
365 Nesr= Rigi*N
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400 SUPPLEMENTAL INFORMATION

401

402  Supplementary Figure 1: Distribution of ancestry among samples. (S1A) MDS plot of 2000
403 samples in 5.9M read/sample cohort. (S1B) Distribution of ancestry among sample in 5.9M
404  read/sample cohort. (§1C) MDS plot of 759 samples in 13.9M read/sample cohort: Genotype PC1
405 and PC2 are projected onto PCs from 1000 Genomes Project. (S1D) Distribution of ancestry
406 among sample in 13.9M read/sample cohort.

407

408 Supplementary Figure 2: Number of pseudoaligned reads per sample. (S2A) Number of
409 pseudoaligned reads per sample in low-coverage RNA-Seq. (S2B) Number of pseudoaligned
410 reads per sample in high-coverage RNA-Seq.

411

412  Supplementary Figure 3: Real data p-value comparison scatterplot with GTEX

413

414  Supplementary Figure 4: Variability in correlations in synthetic data. (S4A) Scatterplot of log
415 TPM of different draws in synthetic data. (S4B) Distribution of correlations observed between
416  synthetic lower-coverage RNA-Seq and ground truth.

417

418 Supplementary Figure 5: Using synthetic data, how well do we capture expression as a function
419  of average expression in a given gene. (S5A) Correlation as a function of relative expression, at
420 25 million reads/sample. (S5B) Correlation as a function of relative expression, at 1 million
421  reads/sample.

422

423  Supplementary Figure 6: Using synthetic data, how well do we capture expression in different
424  gene categories. (S6A) Using synthetic data, how well do we capture expression as a function of
425  whether a gene is protein coding or not. (86B) Using synthetic data, how well do we capture
426  expression as a function of number of isoforms in a given gene. (S6C) Using synthetic RNA-Seq,
427  how well do we capture expression as a function of gene length in a given gene Gene expression
428  estimation accuracy simulated at 10 million reads/sample as a function of relative gene length.
429  (S6D) Using synthetic RNA-Seq, how well do we capture expression as a function of GC content.
430

431  Supplementary Figure 7: Estimation of cell-type proportions.

432

433  Supplementary Figure 8: Overlap of significant eGenes using RNA-Seq from three different
434  datasets

435
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519
520 DISPLAY ITEMS
521
522
Referred to as: Coverage Tissue Number of | Library prep method
(million reads samples
per sample)
Lower- 5.9 Whole 1490 TruSeq Stranded plus rRNA
Coverage or M=5.9M blood and GlobinZero

reads/sample
(Whole Blood)

Higher- 13.9 Whole 570 Meta-analysis of (1) TruSeq
Coverage or blood Stranded plus rRNA and
M=13.9M GlobinZero and (2) TruSeq
reads/sample Stranded polyA selected

(Whole Blood) =

High- 50.3 Fibroblast | 155 TruSeq Stranded polyA
selected
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coverage

(Fibroblast)

GTEX™ 82 Whole 670 TruSeq Non-stranded polyA
blood selected

eQTLGen™ N/A Whole 31684 Meta-analysis consisting of
blood RNA-Seq and microarray

Table 1: RNA-Seq datasets discussed in this paper
The coverage refers to the average number of reads that successfully map to the transcriptome,
except for GTEX, which refers to the median number of total reads per sample (average

mapped not available). Further description of sample overlaps among cohorts in
Supplementary Note.
Cost per lane | Cost per sample
Scenario 1 | $1790 $87
Scenario 2 | $1790 $30
Scenario 3 | $1790 $150
Scenario 4 | $1000 $150

Table 2: Sequencing cost scenarios (Figure 3)

The cost parameters corresponding to the effective sample size scenarios in Figure 3. Cost per
sample reflects the cost of library prep to include an additional sample. Cost per lane reflects the
cost per sequencing lane, which allows for 300 million reads.

20


https://doi.org/10.1101/2021.08.08.455466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.08.455466; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

-log p-values
13.9M reads/sample

=
o

v
o

N
=)
L

w
o

N
=]
L

« Not an eGene
. eGene in 5.9M

. eGenein 13.9M
« eGenein 5.9M and 13.9M

effect size

GTEX

1.04

o
w

o
=}
!

—0.51

« eGenein 13.9M
104 ° eGene in 5.9M and 13.9M

s

o

=9 9

Q

SE g os

I3 &g

5o wa

=T +~ T

& © v ©

0 g9 oo

os Vs

3o a

o m m

Cr—i (ol

] -0.5

O

T T T T T T T T -1.04 T T T T T
-2 0 2 4 6 8 10 12 -1.0 -0.5 0.0 0.5 1.0
Gene expression (-log TPM) effect size
5.9M reads/sample 5.9M reads/sample

« Not an eGene
eGene in 5.9M
« eGene in GTEX
« eGenein 5.9M and GTEX

& & ® ¥ B § % R s oo o5 1o
-log p-values effect size

540 5.9M reads/sample 5.9M reads/sample
541  Figure 1: Concordance of eQTL discovery when using lower-coverage RNA-Seq vs higher-
542  coverage RNA-Seq (1A): Restricting to the 20735 genes with sufficient expression levels to be
543 included in eQTL analysis in both the 5.9M read/sample and 13.9M read/sample dataset,
544  comparison of the median expression (log TPM) across samples, of every gene. R? = 0.91.
545  (1B): In real data, scatterplot of effect sizes of most significant eQTL hits for the 2151 protein
546  coding genes with the same eQTL hit in both eQTL analyses performed (low-coverage and
547  high-coverage). On the x-axis, we show the effect sizes for these genes using low-coverage
548 RNA-Seq, on the y-axis we show the effect sizes for these genes using high-coverage RNA-
549  Seq. (1C): Real data p-value comparison scatterplot: In real data, scatterplot of -log p-values of
550 most significant eQTL hit for 13950 genes included in both eQTL analyses performed (low-
551 coverage and high-coverage). On the x-axis, we show the -log p-values for these genes using
552  low-coverage RNA-Seq, on the y-axis we show the -log p-values for these genes using high-
553  coverage RNA-Seq. The dotted line shows y = x, while the solid line shows the line of best fit for
554  the 3985 protein-coding eGenes with a significant eQTL hit in both datasets. (1D): In real data,
555  scatterplot of effect sizes of the most significant eQTL hit for the 140 eGenes with the same
556 leading SNP identified in both eQTL analyses performed (lower-coverage RNA-Seq with 5.9M
557 reads/sample and GTEX). On the x-axis, we show the effect size for these eGenes from eQTL
558 analysis conducted using the 1490 individuals of EUR ancestry and imputed genotypes, and on
559 the y-axis we show the effect sizes for these eGenes from eQTL analysis published by the
560 GTEX Consortium.
561
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Figure 2: Synthetic lower-coverage RNA-Seq captures expression signal (2A): On the x-axis, we
show the level of simulated coverage, and on the y-axis we show the mean Pearson correlation
of every gene. We calculate this value by finding the R? values for the TPM values of each of
45,910 genes across 155 samples between the high coverage data (average of 50 million reads
per sample) and the simulated data, and reporting the mean R? value per gene. (2B): For a fixed
number of individuals, absolute number and percentage of eGenes captured at 5% FDR, for
synthetic RNA-Seq at varying levels of coverage. (2C): Gene expression accuracy as a function
of relative gene expression observed in actual RNA-Seq data with 50 million reads/sample.
23,540 genes (with average expression < 0.1 TPM) are divided into five ascending quintiles of
expression based on their average expression in 155 samples.
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579  Figure 3: Effective sample size under various budget parameters. (3A): Effective sample size

580 in RNA-Seq under a fixed budget ($300,000) as a function of the number of samples and the
581 resulting coverage. Cost assumptions: $87 per library prep per sample, $1790 per lane of
582  sequencing (300 million reads). (3B): Effective sample size in RNA-Seq under a fixed budget
583  ($300,000) as a function of the number of samples and the resulting coverage. Cost assumptions
584  vary and are reflected in Table 2. (3C): Effective sample size under a fixed budget ($300,000) as
585 a function of the number of samples and the results coverage. A global mapping rate parameter
586 is used to simulate actual experimental conditions (Methods).
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