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 2 

ABSTRACT 49 

Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA 50 

sequencing (RNA-seq) studies is often employed to understand functional consequences of 51 

regulatory variants. However, the high cost of RNA-Seq limits sample size, sequencing depth, 52 

and therefore, discovery power. In this work, we demonstrate that, given a fixed budget, eQTL 53 

discovery power can be increased by lowering the sequencing depth per sample and increasing 54 

the number of individuals sequenced in the assay. We perform RNA-Seq of whole blood tissue 55 

across 1490 individuals at low-coverage (5.9 million reads/sample) and show that the effective 56 

power is higher than that of an RNA-Seq study of 570 individuals at high-coverage (13.9 million 57 

reads/sample). Next, we leverage synthetic datasets derived from real RNA-Seq data to explore 58 

the interplay of coverage and number individuals in eQTL studies, and show that a 10-fold 59 

reduction in coverage leads to only a 2.5-fold reduction in statistical power. Our study suggests 60 

that lowering coverage while increasing the number of individuals is an effective approach to 61 

increase discovery power in RNA-Seq studies. 62 

KEYWORDS 63 

RNA-Seq, Gene expression, Association testing 64 

 65 

BACKGROUND 66 

The vast majority of risk loci identified in genome-wide association studies (GWAS) are difficult to 67 

interpret as they lie in noncoding regions of the genome. Variants that regulate gene expression 68 

abundance, as measured through expression quantitative trait locus (eQTL) studies, provide 69 

insightful information about the functional interpretation of GWAS signals 1-2. By integrating eQTL 70 

associations with GWAS, we can hope to identify target genes that are driving the GWAS signal 71 

at a locus 3-6. RNA sequencing (RNA-Seq) is the state-of-the-art assay for measuring gene 72 
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expression in bulk tissue and is therefore the assay of choice for eQTL mapping 7-8. However, the 73 

high cost of RNA-Seq often limits the sample size and therefore reduces the discovery power of 74 

eQTL studies based on RNA-Seq 2,6,9.  75 

Traditional RNA-Seq study design prioritizes sequencing depth per individual (targeted levels of 76 

coverage in the range of 30-50 million reads) over the number of individuals (samples) included 77 

in the study 10-12. However, given that high levels of coverage per individual limits the sample size 78 

of a study, this results in a loss of statistical power in eQTL mapping. Previous studies have 79 

established that the low-coverage whole genome sequencing of a larger number of individuals 80 

attains increased power of association compared to higher-coverage studies of smaller sample 81 

sizes in GWAS 13-17. This raises the hypothesis that, similarly as for whole genome sequencing 82 

and GWAS, lower coverage RNA-seq with a considerable increase in the number of individuals 83 

sequenced could increase power of discovery in eQTL studies 18-21. Currently, there is no 84 

systematic approach for determining the optimal sample size (in terms of number of sequenced 85 

individuals) and coverage to maximize eQTL discovery power. 86 

In this work, we perform RNA-Seq in 1490 individuals at a lower coverage (average mapped read 87 

depth of 5.9 million reads/sample) and find that eQTL discovery power is better than that of an 88 

experiment with a similar budget, but with fewer individuals and higher coverage. Compared to 89 

high-coverage RNA-Seq, we find a high degree of consistency in both the gene expression as 90 

well as eQTL effects. We assess the interplay of coverage per sample and accuracy of expression 91 

estimates using synthetic RNA-Seq datasets generated by the down-sampling of real high-92 

coverage data. Our analyses show that a sequencing experiment conducted with a target 93 

coverage of 10 million reads/sample has an average correlation per-gene of 0.40, when compared 94 

to an experiment conducted with a target coverage of 50 million reads/sample. We provide 95 

evidence to show that under a fixed budget, sequencing at lower coverage levels (< 10 million 96 
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reads/sample) and increased sample size can boost the effective sample size per unit of cost 97 

compared to standard approaches of eQTL study design. 98 

RESULTS 99 

Low-coverage RNA-sequencing is accurate for eQTL mapping 100 

To validate the utility of low-coverage RNA-sequencing, we sequenced whole blood tissue from 101 

N = 1490 unrelated individuals (Methods) (Supplementary Figure 1A and Supplementary 102 

Figure 1B). We target a sequencing coverage of 9.5 million reads per sample, yielding M = 5.9 103 

million reads mapped to RefSeq genes on average (sd across samples of 1.96 million, 104 

Supplementary Figure 2). We refer to this dataset as the lower-coverage RNA-Seq, or the M=5.9 105 

million reads/sample dataset. We contrast this dataset with an RNA-Seq dataset obtained with a 106 

similar budget, but with 2.4-fold higher coverage (M = 13.9 reads) across N = 570 individuals 107 

(Supplementary Figure 1C and Supplementary Figure 1D) 22. We refer to this as the higher-108 

coverage whole blood RNA-Seq, or the M = 13.9 million reads/sample dataset (Table 1).  109 

First, we assess the number of genes quantified in the two datasets. We observe 40459 genes 110 

with at least one mapped read on average across samples in the whole blood high-coverage 111 

dataset, and 27308 genes with at least one mapped read on average across samples in the whole 112 

blood low-coverage dataset. Notably, when restricting to protein coding genes with at least one 113 

mapped read in both the high-coverage and low-coverage datasets, we find more similar numbers 114 

between the data sets, with 18329 and 15605 genes quantified, respectively. This is likely due to 115 

the very sparse abundance of the non-protein coding genes, making them less likely to be 116 

detected in a lower coverage dataset. Indeed, we observe similar effects across the high vs low 117 

coverage datasets when assessing the genes with sufficient expression to be included in eQTL 118 

analysis (TPM > 0.1 in 20% of individuals, see Methods): 26566 genes (15496 protein coding 119 

genes) in high coverage data versus 19039 (13339 protein coding genes) in low coverage data. 120 
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Most importantly we observe a high correlation in the abundance levels across the two data sets 121 

thus demonstrating that high and low coverage recover similar expression (R2= 0.91, Figure 1A).  122 

Next, we investigate the power of low-coverage RNA-Seq for eQTL mapping. We conducted cis-123 

eQTL mapping with a 1 Mb window using FastQTL, restricting to the 1490 unrelated individuals 124 

in the low-coverage RNA-Seq data (Methods), to identify 7587 genes (eGenes) with a significant 125 

association at FDR correction level of 5%. As expected, eQTL distribution is concentrated at 126 

transcription start sites (TSS), with 73% of eGenes TSS within 250kb of the associated SNP 127 

(eSNP). Repeating this approach using the high-coverage whole blood data in 570 individuals, 128 

we only find 5971 genes with a significant association at FDR correction level of 5%. 4969 of the 129 

7587 eGenes found using the low-coverage data are also significant in the high-coverage data. 130 

Of these, 2151 of the eGenes are protein coding eGenes that share the same associated eSNP, 131 

and we see an extremely high level of concordance between effect sizes for these eGenes across 132 

the two datasets (R2 = 0.93, Figure 1B). This further indicates that low-coverage RNA-Seq is 133 

robust in capturing eQTL effect sizes. 1002 genes were found to be eGenes in the high-coverage 134 

eQTL analysis but not in the low-coverage analysis, with 573 (of the 1002) not passing expression 135 

levels (TPM >0.1 in 20% individuals) to be included in the low-coverage eQTL analysis; only 234 136 

of the 573 were protein coding genes. Similar concordance is observed at the level of p-values 137 

for the associations in both datasets (Figure 1C). Comparing the p-values for eGenes detected 138 

in both eQTL analyses, the corresponding regression line has a slope of 0.39, consistent with 139 

lower-coverage dataset having superior statistical power to detect associations over lower-140 

coverage dataset, and consistent with overall number of significant eQTL discoveries. We report 141 

the results from using typed SNPs in these eQTL analyses (Methods), but observe similar 142 

patterns when using the full set of imputed SNPs. 143 

To further validate the performance of eQTL analysis using lower coverage RNA-Seq (coverage 144 

5.9M, n = 1490), we compared the resulting eQTLs to the ones found by GTEx consortium in 145 
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whole blood 12 (Supplementary Figure 3). Restricting to the 12247 protein coding genes with 146 

sufficient expression to be included in both studies (> 0.1 TPM in 20% of samples) we find that 147 

4529 out of the 5957 protein coding genes (76%) with a significant association using the lower-148 

coverage data also had a significant association in GTEx, correcting at an FDR level of 5%. 149 

Further restricting to eGenes with the same leading SNP in both of these datasets (140 genes) 150 

(Figure 1D), we observe a correlation (R2) of 0.85 between their effect sizes. Looking into the 151 

1428 protein coding genes with a significant association in eQTL analysis using the lower-152 

coverage RNA-Seq but not in GTEx using an FDR cutoff of 5%, we observe that 372 have 153 

significant association in GTEx using an FDR cutoff of 10%. To further ensure that these eGenes 154 

are not false positives, we compare the set of 1428 genes with eQTL analysis conducted by the 155 

eQTLGen Consortium 23 and find that all but 190 of these genes have been found to have a 156 

significant association in eQTLGen. This suggests that the additional associations found using 157 

lower-coverage data that are not found in GTEx are not false positives, but fall just below the 158 

significance threshold in the GTEx analysis. 159 

Finally, we explore the impact of RNA-Seq at lower coverages for cell type expression 160 

estimation. We use Cibersort 24 to compare cell-type proportion estimates between the lower-161 

coverage data and higher-coverage data (Methods). We find that the median estimated cell 162 

type proportions are conserved across both datasets, suggesting that deconvolution of cell type 163 

specific signal from gene expression profiles of whole blood samples is not impacted when 164 

coverage is reduced by half (Supplementary Figure 7). 165 

Impact of RNA-seq coverage on eQTL power 166 

Having demonstrated the accuracy of low-coverage RNA-Seq in eQTL mapping in real data, we 167 

next focused on exploring the interplay of number of individuals and coverage for optimizing 168 

power for discovery. As simulating RNA-Seq data is challenging 25-26, we down-sample reads from 169 

higher-coverage RNA-Seq data to create synthetic datasets at various coverages (Methods). We 170 
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observe that with just a fraction of the reads, it is still possible to estimate gene expression (Figure 171 

2A). For example, using just 10% of the data (5.0 million reads/sample) retains a per gene R2 of 172 

0.40, on average. The results from our analyses using these synthetic lower-coverage RNA-Seq 173 

datasets suggest that under simplified settings of no per-sample library preparation cost, the 174 

statistical power in an association study can be increased up to fourfold by spending more 175 

resources on increasing sample size and fewer resources on increasing coverage. In practice, 176 

increasing the number of samples in an RNA-Seq study leads to increased library preparation 177 

costs, making the increase in obtainable statistical association power less obvious.  178 

It has been established that statistical power in association studies is a function of sample size, 179 

phenotype measurement accuracy, and genotype measurement accuracy 13,19,29. This means that 180 

the power of a study with sample size N and estimated gene expression is approximately the 181 

same as the power of a study with sample size N, using the true gene expression measurements 182 

(Methods). In this scenario, R2 is the correlation between the true expression and the expression 183 

estimates. We therefore report the squared correlation (R2) between synthetic datasets at various 184 

coverages and the full data at an average of 50 million reads/sample (which is assumed to be the 185 

true gene expression). While these results show the mean R2 for all genes obtained under one 186 

synthetic dataset (one draw) per coverage level, we find that the synthetic datasets are consistent 187 

across multiple draws at the same coverage level (Supplementary Figure 4A) and each show 188 

similar correlations with the ground truth gene expression (Supplementary Figure 4B). 189 

Next, we quantified how well lower-coverage RNA-Seq can be used to detect eGenes 30. We 190 

explore the number of genes with significant associations after FDR correction at 5% under 191 

various levels of simulated coverage (Figure 2B). Using synthetic data, as the number of reads 192 

per sample decreases, we find that many eGenes are still detectable. For example, at 10 million 193 

reads per sample, just 20% of the full coverage, 60% of the eGenes are still detected. In the 194 

context of eQTL studies, synthetic RNA-Seq supports the idea that sequencing at lower 195 
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coverages over a higher number of individuals is a promising approach to boosting statistical 196 

power. 197 

Finally, we explore the estimation accuracy in the synthetic data as a function of relative gene 198 

expression abundance, since less abundant genes may not be captured altogether at lower 199 

sequencing coverages. We stratify genes into five groups based on their relative expression in 200 

the full dataset (M=50.3 million reads/sample) and report the R2 for genes in each of these groups 201 

in synthetic data (Figure 2C). We observe that in the synthetic RNA-Seq dataset at 10 million 202 

reads/sample, we capture expression of highly expressed genes better than lower expressed 203 

genes. Specifically, for genes in the lowest through the highest quintiles of relative gene 204 

abundance, we find the average correlation (R2) to the ground truth of expression to be 0.36, 0.44, 205 

0.61, 0.73, 0.86, respectively. We observe the same effect for synthetic datasets at coverages of 206 

1 million reads/sample and 25 million reads/sample (Supplementary Figure 5A and 207 

Supplementary Figure 5B). These results suggest that the ability to achieve similar power in 208 

eQTL analysis studies will differ per gene, and is a function of relative expression. We further 209 

investigate the properties of genes with quantification accuracy influenced by coverage levels of 210 

sequencing and find that that protein coding genes are more accurately quantified at lower 211 

coverage levels (Supplementary Figure 6A). Conversely, the number of transcripts per gene, 212 

gene length, and GC content do not appear to be factors that broadly influence the gene 213 

quantification accuracy when sequencing coverage is reduced (Supplementary Figure 6B, 214 

Supplementary Figure 6C, and Supplementary Figure 6D). 215 

Optimal association power for eQTLs is attained at lower coverage with a larger number 216 

of samples 217 

In the context of reducing experimental costs, we explored the trade-off between the number of 218 

samples sequenced and the average coverage per sample. We evaluated the expected effective 219 

sample size obtained with lower coverage per sample and compared this with a conventional 220 
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approach of 50 million reads/sample. We down-sample reads (as described in Section 1 and 221 

Methods) from a high-coverage RNA-Seq experiment derived from Fibroblast tissue in order to 222 

create lower-coverage RNA-Seq synthetic data. This is done to match actual low coverage 223 

sequencing as closely as possible. To evaluate the relationship between cost, coverage, and 224 

sample size, we use the following equation to model the budget:  � = � 7 � +	
(7)7*

+
 225 

Where B is the cost/budget (in US dollars), a is the library preparation cost per sample, b is the 226 

target coverage of each sample (in millions of reads), c is the cost per lane (which contains d 227 

million reads), and d is the number of reads per sequencing lane (in millions). We compute the 228 

effective sample size of an eQTL study as a function of average coverage, which determines the 229 

number of samples sequenced under a fixed budget (Figure 3A). As an example, at a fixed 230 

budget of $300,000, the highest effective sample size is achieved by sequencing 2045 individuals 231 

using 10 million reads per sample, which leads to a corresponding effective sample size of 1107. 232 

An experiment achieving the sample effective sample size, using 50 million reads per sample, 233 

would cost $426,564 (N = 1107, R2
 = 1.0). Therefore, by lowering the coverage of each sample 234 

and increasing sample size, we achieve the same effective sample size at just 70.3% of the cost. 235 

In practice, it is common to observe a considerable discrepancy between the target number of 236 

reads in an experiment and the number of reads that successfully map to genes. This can be 237 

attributed to different library prep techniques, quality of samples, or tissue type. To show how 238 

mapping rate can influence the effective sample size of an experiment, we model effective sample 239 

size with varying levels of mapping rates (Methods). As expected, we observe that as the 240 

mapping rate increases, there is a corresponding increase in effective sample size (Figure 3C). 241 

We provide a webtool as a practical approach for selecting cost-effective designs for maximizing 242 

eQTL power: https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/. 243 
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With a budget of ~$300k and an expected mapping rate of 0.60 (chosen based on mapping rate 244 

of similar experiments using TruSeq Stranded plus rRNA and GlobinZero in whole blood tissue), 245 

we see the maximum effective sample size would be achieved at a target coverage of 7 million 246 

reads per sample, including 2227 individuals in the study. We estimate that achieving the same 247 

effective sample size using data with 50 million reads per sample would cost ~$500k (N = 1328), 248 

or 1.78x the cost of sequencing 2227 individuals at a coverage of 7 million reads/sample.  To 249 

explore other cost scenarios we provide a webtool we created a webtool where one can enter 250 

budget, costs, and other details about the experiment, in order to see how to achieve optimal 251 

effective sample size (https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/). 252 

DISCUSSION 253 

In this work, we generate RNA-Seq data at a lower coverage than typically used in eQTL studies 254 

(5.9M reads/sample) and demonstrate how this approach boosts effective sample size per unit 255 

cost in an association study. To further validate this approach, we use synthetic RNA-Seq data to 256 

show that the optimal level of coverage in an RNA-Seq project for the purpose of identifying eQTL 257 

associations is lower than is commonly practiced 10-12. Based on our findings, we recommend 258 

increasing sample size while lowering sequencing depth per sample in order to achieve optimal 259 

statistical power in association studies. 260 

We conclude with some notes, caveats, and future directions. First, synthetic RNA-Seq via 261 

downsampling reads is potentially limited in several ways. These synthetic datasets of lower 262 

coverage RNA-Seq are created by uniformly sampling from real RNA-Seq data with an average 263 

of 50 million reads mapped per sample. However, in practice, it is possible that sequencing biases 264 

are not captured by uniform sampling due to the different experimental setup compared to the 265 

dataset from which we sample 27. Additionally, these synthetic datasets are based on data 266 

obtained from fibroblast tissue with different transcriptomic profiles from whole blood, potentially 267 

influencing the sequencing depth required to detect associations with gene expression. Finally, 268 
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this approach is optimized for eQTL discovery. Other mechanisms that are detected using RNA-269 

Seq, such as RNA splicing, have different mechanisms and will likely have different optimal 270 

coverages for detection. The fact that we identify different sets of eGenes depending on which 271 

gene expression measurements we consider (GTEX vs eQTLGen vs lower-coverage RNA-Seq), 272 

shows that we need to increase cohort sizes in order to fully understand the connection between 273 

genetics and gene expression in blood. Furthermore, the results in Figure 3A (figure showing 274 

effective sample size at various coverages) indicate that even including 1490 individuals under 275 

this fixed budget is not enough to achieve the optimal effective sample size. Current approaches 276 

are not sufficient to understand the full landscape of eQTLs in whole blood tissue, even while only 277 

considering a single genetic ancestry group. We compare the eGenes identified by GTEx, 278 

eQTLGen, and the lower-coverage RNA-Seq (Supplementary Figure 8) and find that no single 279 

study is sufficient in capturing all of the associations in whole blood. As observed in GWAS, much 280 

larger sample sizes including far more ancestral diversity in these samples will enable discovery 281 

of novel associations in transcriptomics. Including non-European populations and considering the 282 

temporal aspect of gene expression will help us gain a more complete understanding of the blood 283 

transcriptome landscape in the entire population. 284 

CONCLUSIONS 285 

In summary, we show that reducing coverage and increasing the number of samples in an eQTL 286 

study is a valid approach for increasing effective sample size of the association study. We use 287 

both real and synthetic RNA-Seq data to confirm the benefit of increased sample sizes in eQTL 288 

studies. This approach can be applied to any dataset for which genotypes are available and will 289 

help scientists optimize resources when measuring gene expression for the purpose of integration 290 

with genetics. We provide an online tool to assist with improved design of eQTL studies at 291 

https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/.  292 

 293 
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METHODS 294 

Cohort Description 295 

The samples included are from a study with individuals ascertained for bipolar disorder (BP). The 296 

cohort consists of 916 individuals with BP, 358 controls, and 216 relatives of the individuals with 297 

BP. 298 

Connection between effect size and R2  299 

If g is the genotype at the SNP that we are testing for associations, and is the effect size of that 300 

SNP when regressing on the true gene expression, y, and is the effect size of that SNP when 301 

regressing on the estimated gene expression, �-. The relationship between y and y/ is as follows 302 

that  �1 = ����(�, �/). It follows that the estimates of effect size for a SNP on the true gene 303 

expression, �8, are related to the estimate of effect size for a SNP on the estimated gene 304 

expression, ³:; as ³	<= = ���(�, �-) = ���(�, �� + �) = ���(�, ��) + ���(�, �) = �³; where 	� is a 305 

random variable with mean 0 and variance 1. The association test statistics at low-coverage is 306 

�BCDE(+ = ����1(�, �) thus implying that the association statistic at low coverage 307 

is  	�GDHI*DJKCLBK = ����1(�, �-) = �³:;1 = �(�³;)1 = �1 7 ����1(�, �) = 	 �1�BCDE(+ 308 

Budget model 309 

We modeled the cost of a large-scale bulk RNA-Seq experiment based on parameters from two 310 

different library prep techniques: (1) TruSeq Stranded plus rRNA and GlobinZero and (2)  TruSeq 311 

Stranded polyA selected, both from the UCLA Neuroscience Genomics core. Cost, or B, is a 312 

function of the following: a, the library preparation cost per sample, b, which is the target coverage 313 

of each sample (in millions of reads). c, the cost per lane (which contains d million reads), and d 314 

is the number of reads per sequencing lane (in millions). Altogether, we model the budget as � =315 

� 7 � +	
(7)7*

+
 316 

Genotyping pipeline  317 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.08.455466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455466
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Genotypes for the low-coverage whole blood samples were obtained from the following platforms: 318 

OmniExpressExome (N = 810), PSYCH (N = 523), and COEX (N = 163). Given that the SNP-319 

genotype data for both the fibroblast and whole blood samples came from numerous studies using 320 

various genotyping platforms (including GSA, Illumina550, OmniExpress Exome, COEX, and 321 

PsychChip) the number of overlapping SNPs across all platforms was < 80k, prompting us to 322 

perform imputation separately for each genotyping platform. Genotypes were first filtered for 323 

Hardy-Weinberg equilibrium p value < 1.0e-6 for controls and p value < 1.0e-10 for cases, with 324 

minor allele frequency (MAF) > 0.01, leaving 148613 typed SNPs. 325 

Genotypes were imputed using the 1000 Genomes Project phase 3 reference panel 33 by 326 

chromosome using RICOPILI v.1 34 separately per genotyping platform, then subsequently 327 

merged. Imputation quality was assessed by filtering variants where genotype probability > 0.8 328 

and INFO score > 0.1, resulting in 2289732 autosomal SNPs. We restricted to only autosomal 329 

due to sex chromosome dosage, as commonly done 12. 330 

Synthetic low coverage RNA-Seq 331 

We use high-coverage RNA-Seq (average of 50 million reads/sample, TruSeq Stranded plus 332 

rRNA and GlobinZero library prep) from a set of 152 cell lines derived from human fibroblast cells. 333 

We assume this to be the ground truth of gene expression. We used seqtk 334 

(https://github.com/lh3/seqtk) to randomly sample reads at various coverages, uniformly. We 335 

performed five iterations of downsampling at each level of coverage in order to account for 336 

potential variability in the sampling and sequencing errors. 337 

RNA-Seq processing pipeline 338 

We used FASTQC to visually inspect the read quality from the lower-coverage whole blood RNA-339 

Seq (5.9M reads/sample) and the higher-coverage fibroblast RNA-Seq (13.9M reads/sample). 340 

We then used kallisto to pseudoalign reads to the GRCh37 transcriptome and quantify estimates 341 

for transcript expression. We aggregated transcript counts using scripts from the GTEX 342 

consortium (https://github.com/broadinstitute/gtex-pipeline) 12.  343 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.08.455466doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.08.455466
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

cis-eQTL mapping 344 

Excluding related individuals (pi_hat > 0.2) from the analysis, we perform cis-eQTL analysis 345 

mapping using FastQTL 30, using a defined window of 1 Mb both up and downstream of every 346 

gene9s TSS, for sufficiently expressed genes.  We run the eQTL analysis in permutation pass 347 

mode (1000 permutations, and perform multiple testing corrections using the q-value FDR 348 

procedure, correcting at 5% unless otherwise specified. We then restrict our associations to the 349 

top (or leading) SNP per eGene. 350 

Cell type proportion estimation 351 

We estimate the proportion of cell types of both the lower-coverage and higher-coverage bulk 352 

whole blood RNA-seq datasets using CIBERSORTx 35 with batch correction applied and LM22 353 

signature matrix as the reference gene expression profile. The LM22 signature matrix uses 547 354 

genes to distinguish between 22 human hematopoietic cell phenotypes. 355 

R2 adjustment 356 

To account for the variability in mapping rate across different library prep techniques 37 and 357 

different tissue types, we look at the mean R2 at the expected coverage, which is calculated as 358 

expected coverage =  target coverage * estimated mapping rate. Using mean R2 values from 359 

comparing lower-coverage synthetic RNA-Seq to higher-coverage RNA-Seq real data, we fit a 360 

log curve to estimate the adjusted mean R2 (RL+N
1 ) at the expected coverage.  361 

Effective Sample Size  362 

Under a fixed-budget setting, we calculate effective sample size (�KOO) for a given coverage using 363 

the adjusted mean R2 (�L+N
1 ) and the number of samples included at a given coverage level (N) 364 

�KOO =	�L+N
1 7 �  365 
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Supplementary Figure 1: Distribution of ancestry among samples. (S1A) MDS plot of 2000 402 

samples in 5.9M read/sample cohort. (S1B) Distribution of ancestry among sample in 5.9M 403 

read/sample cohort. (S1C) MDS plot of 759 samples in 13.9M read/sample cohort: Genotype PC1 404 

and PC2 are projected onto PCs from 1000 Genomes Project. (S1D) Distribution of ancestry 405 

among sample in 13.9M read/sample cohort. 406 

 407 

Supplementary Figure 2: Number of pseudoaligned reads per sample. (S2A) Number of 408 

pseudoaligned reads per sample in low-coverage RNA-Seq. (S2B) Number of pseudoaligned 409 

reads per sample in high-coverage RNA-Seq. 410 

 411 

Supplementary Figure 3: Real data p-value comparison scatterplot with GTEX 412 

 413 

Supplementary Figure 4: Variability in correlations in synthetic data. (S4A) Scatterplot of log 414 

TPM of different draws in synthetic data. (S4B) Distribution of correlations observed between 415 

synthetic lower-coverage RNA-Seq and ground truth. 416 

 417 

Supplementary Figure 5: Using synthetic data, how well do we capture expression as a function 418 

of average expression in a given gene. (S5A) Correlation as a function of relative expression, at 419 

25 million reads/sample. (S5B) Correlation as a function of relative expression, at 1 million 420 

reads/sample. 421 

 422 

Supplementary Figure 6: Using synthetic data, how well do we capture expression in different 423 

gene categories. (S6A) Using synthetic data, how well do we capture expression as a function of 424 

whether a gene is protein coding or not. (S6B) Using synthetic data, how well do we capture 425 

expression as a function of number of isoforms in a given gene. (S6C) Using synthetic RNA-Seq, 426 

how well do we capture expression as a function of gene length in a given gene Gene expression 427 

estimation accuracy simulated at 10 million reads/sample as a function of relative gene length. 428 

(S6D) Using synthetic RNA-Seq, how well do we capture expression as a function of GC content. 429 

 430 

Supplementary Figure 7: Estimation of cell-type proportions.  431 

 432 

Supplementary Figure 8: Overlap of significant eGenes using RNA-Seq from three different 433 

datasets 434 

 435 
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 519 

DISPLAY ITEMS 520 

 521 

 522 

Referred to as:  Coverage 
(million reads 
per sample) 

Tissue Number of 
samples 

Library prep method 

Lower- 
Coverage or M=5.9M 
reads/sample 
(Whole Blood) 

5.9 Whole 
blood 

1490 TruSeq Stranded plus rRNA 
and GlobinZero 

Higher- 
Coverage or 
M=13.9M 
reads/sample 
(Whole Blood) 19 

13.9 Whole 
blood 

570 Meta-analysis of (1) TruSeq 
Stranded plus rRNA and 
GlobinZero and (2) TruSeq 
Stranded polyA selected 

High- 50.3 Fibroblast 155 TruSeq Stranded polyA 
selected 
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 20 

coverage 
(Fibroblast) 

GTEX12 82 Whole 
blood 

670 TruSeq Non-stranded polyA 
selected 

eQTLGen13 N/A Whole 
blood 

31684 Meta-analysis consisting of 
RNA-Seq and microarray 

  523 

Table 1: RNA-Seq datasets discussed in this paper 524 

The coverage refers to the average number of reads that successfully map to the transcriptome, 525 

except for GTEX, which refers to the median number of total reads per sample (average 526 

mapped not available). Further description of sample overlaps among cohorts in 527 

Supplementary Note. 528 

 529 

 530 

  531 

  Cost per lane Cost per sample 

Scenario 1 $1790 $87 

Scenario 2 $1790 $30 

Scenario 3 $1790 $150 

Scenario 4 $1000 $150 

 532 

Table 2: Sequencing cost scenarios (Figure 3) 533 

The cost parameters corresponding to the effective sample size scenarios in Figure 3. Cost per 534 

sample reflects the cost of library prep to include an additional sample. Cost per lane reflects the 535 

cost per sequencing lane, which allows for 300 million reads.  536 

  537 

 538 

 539 
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 540 

Figure 1: Concordance of eQTL discovery when using lower-coverage RNA-Seq vs higher-541 

coverage RNA-Seq (1A): Restricting to the 20735 genes with sufficient expression levels to be 542 

included in eQTL analysis in both the 5.9M read/sample and 13.9M read/sample dataset, 543 

comparison of the median expression (log TPM) across samples, of every gene. R2 = 0.91. 544 

(1B): In real data, scatterplot of effect sizes of most significant eQTL hits for the 2151 protein 545 

coding genes with the same eQTL hit in both eQTL analyses performed (low-coverage and 546 

high-coverage). On the x-axis, we show the effect sizes for these genes using low-coverage 547 

RNA-Seq, on the y-axis we show the effect sizes for these genes using high-coverage RNA-548 

Seq. (1C): Real data p-value comparison scatterplot: In real data, scatterplot of -log p-values of 549 

most significant eQTL hit for 13950 genes included in both eQTL analyses performed (low-550 

coverage and high-coverage). On the x-axis, we show the -log p-values for these genes using 551 

low-coverage RNA-Seq, on the y-axis we show the -log p-values for these genes using high-552 

coverage RNA-Seq. The dotted line shows y = x, while the solid line shows the line of best fit for 553 

the 3985 protein-coding eGenes with a significant eQTL hit in both datasets. (1D): In real data, 554 

scatterplot of effect sizes of the most significant eQTL hit for the 140 eGenes with the same 555 

leading SNP identified in both eQTL analyses performed (lower-coverage RNA-Seq with 5.9M 556 

reads/sample and GTEX). On the x-axis, we show the effect size for these eGenes from eQTL 557 

analysis conducted using the 1490 individuals of EUR ancestry and imputed genotypes, and on 558 

the y-axis we show the effect sizes for these eGenes from eQTL analysis published by the 559 

GTEX Consortium. 560 

 561 

 562 

 563 
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 564 

 565 

Figure 2: Synthetic lower-coverage RNA-Seq captures expression signal (2A): On the x-axis, we 566 

show the level of simulated coverage, and on the y-axis we show the mean Pearson correlation 567 

of every gene. We calculate this value by finding the R2 values for the TPM values of each of 568 

45,910 genes across 155 samples between the high coverage data (average of 50 million reads 569 

per sample) and the simulated data, and reporting the mean R2 value per gene. (2B): For a fixed 570 

number of individuals, absolute number and percentage of eGenes captured at 5% FDR, for 571 

synthetic RNA-Seq at varying levels of coverage. (2C): Gene expression accuracy as a function 572 

of relative gene expression observed in actual RNA-Seq data with 50 million reads/sample. 573 

23,540 genes (with average expression < 0.1 TPM) are divided into five ascending quintiles of 574 

expression based on their average expression in 155 samples. 575 

  576 

 577 
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 578 

Figure 3: Effective sample size under various budget parameters. (3A): Effective sample size 579 

in RNA-Seq under a fixed budget ($300,000) as a function of the number of samples and the 580 

resulting coverage. Cost assumptions: $87 per library prep per sample, $1790 per lane of 581 

sequencing (300 million reads). (3B): Effective sample size in RNA-Seq under a fixed budget 582 

($300,000) as a function of the number of samples and the resulting coverage. Cost assumptions 583 

vary and are reflected in Table 2. (3C): Effective sample size under a fixed budget ($300,000) as 584 

a function of the number of samples and the results coverage. A global mapping rate parameter 585 

is used to simulate actual experimental conditions (Methods). 586 
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