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Abstract 

The specific details of the lateral diffusion dynamics in cellular plasma membrane are an 
open topic in modern biophysics. Many studies have documented several different 
behaviours, including free (Brownian) motion, confined diffusion, transiently confined (hop) 
diffusion, anomalous diffusion, and combinations thereof. Here we have employed 
Interferometric Scattering Microscopy (ISCAT) to explore the lateral diffusion dynamics in 
the plasma membrane of living cells of a biotinylated lipid analogue that had been labelled 
with streptavidin-coated gold nanoparticles (20 and 40nm in diameter) at a sampling rate of 
2kHz. The data was analysed with an unbiased statistics-driven mean squared displacement 
analysis pipeline that was designed to identify both the most likely diffusion mode for a 
specific data set, and the best fit parameters of the most likely model. We found that the 
prevalent diffusion mode of the tracked lipids, independent of the particle size, is 
compartmentalized diffusion, although the use of the larger tags resulted in tighter 
confinement and reduced diffusion rates. Through our analysis and comparison with 
simulated data, we quantify significant physical parameters, such as average compartment 
size, dynamic localization uncertainty, and the diffusion rates. We hereby further demonstrate 
the use of a confinement strength metric that makes it possible to compare diffusivity 
measurements across techniques and experimental conditions.   

Statement of Significance 

This work offers new details on the data analysis of lipid diffusion on cellular membranes in 
vitro, through Interferometric Scattering microscopy. With this technique, we performed 
single particle tracking (SPT) experiments at 2kHz sampling rate. We analyzed the data 
through an unbiased statistics-driven protocol. The data shows that the diffusion motion of 
the tracked lipids follows mainly the “hopping” diffusion behaviour, whereby transient 
confinement zones hinder the particle dynamics. Matching the experimental data with 
diffusion simulations, we have been able to verify the physical parameters inferred by the 
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experimental data analysis. Finally, we showcase a framework to compare SPT data with 
other techniques, to offer a complete overview of plasma membrane dynamics. 

 

Introduction 

A  dominant feature of lipid  diffusion in the cellular plasma membrane, highlighted through 
single-particle tracking (SPT) (1–6) and super-resolution STED microscopy (6–8), is the 
presence of transient confinements (9,10). In compartmentalized diffusion, the molecules 
diffuse within compartments of a corralled surface, with a probability of "hopping” into a 
neighbouring compartment. This is compatible with the picket-fence model of the cellular 
plasma membrane, where the cortical actin meshwork, in interplay with linked picket-like 
transmembrane structures such as proteins, induces the compartmentalization (11). In fact, 
several possible mechanisms have been identified as the origin of such diffusion 
heterogeneities, such as structural properties of the cellular membranes (12,13), or the role of 
transmembrane proteins, such as CD44, in affixing the actin cytoskeleton to the plasma 
membrane (14). Resolving such characteristics requires both high spatial resolution, as 
compartment sizes are usually below 200 nm in size (15), and high temporal resolution for 
distinguishing intra- from inter-corral dynamics. This is only accessible to few experimental 
techniques (16–19), amongst which optical microscopy has proven particularly successful, 
and even more so through single molecule and super-resolution microscopy techniques. 
However, these sampling conditions introduces major challenges to observation techniques 
such as SPT, and explains why some details of this diffusion mode are still under debate 
(8,10). 

Fluorescence-based SPT has the advantage of preserving the specificity characterizing 
fluorescence imaging while minimizing potential labelling artefacts. However, conventional 
fluorescence microscopy has not yet achieved framerates faster than 2kHz for studies on live 
cells (20,21). At the state of the art, however, the fastest sampling rates (up to 50kHz) have 
been reported in scattering detection-based experiments, through the use of larger 
nanoparticle tags and advanced camera equipment (22). Recent evolutions of Interference 
Reflection Microscopy (23,24), namely Interferometric Scattering (ISCAT) and Coherent 
Brightfield (COBRI) Microscopy, also managed to approach such levels of temporal 
resolution in SPT on cell membranes in recent years (25–30).  

In ISCAT microscopy the reflected and backscattered originated by the coherent incident 
light generate an interference figure on the camera sensor (31). The imaging contrast is 
mainly given by the phase difference term between the incident and reflected field. This 
results in increased Signal to Noise (SNR) ratios compared to darkfield and brightfield 
microscopy (32). While this has allowed the use of smaller tags to probe particle motion, 
(25,33,34), the use of gold nanoparticles carries the obvious advantage of unparalleled 
scattering capabilities, leading to high signal-to-noise ratios. Although crosslinking is likely 
to happen (35), it has already be shown that it would only slow down the diffusion without 
altering the diffusion mode(36). Given the relative simplicity of the experimental setup and 
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the data analysis, ISCAT has already been employed to perform SPT experiments on model 
and cellular membranes (25,26,42,27,28,36–41).  

The analysis of SPT data is largely reliant on the relation between the Mean Squared 
Displacement (MSD), the diffusion coefficient (D) and the time interval at which the 
displacements are calculated � �� (43–45).  This relation does not account for inevitable 
experimental errors, such as the dynamic particle localization uncertainty, and motion blur 
effects that result from finite camera integration of continuously moving objects. In fact, it 
has already been shown that particle detection in the context of a finite localization 
uncertainty produces a positive offset to the MSD curve (46–48) while the effect of motion 
blur translates to a negative offset that is proportional to the time interval  �� (49). A 
collective consequence of these artefacts can be an underestimation of the localization 
uncertainty. The effect of this, in the case of slower sampling (� �� ≥ 10 ms) where the actual 
displacement of each molecule between successive localizations is typically much larger than 
the localization uncertainty, is negligible (36). However, with faster sampling rates (� �� ≤ 5 
ms), where the actual displacement of each molecule between successive frames becomes 
comparable to (or even smaller than) the localization uncertainty, this effect  is likely to cause 
misleading conclusions (6).  

In this work, we employed ISCAT microscopy to detect single particle trajectories of 
biotinylated lipid analogues tagged with streptavidin-coated gold nanoparticles (Figure 1), in 
order to quantitatively describe the compartmentalization of the plasma membrane. To this 
end, we propose and validate a novel analysis pipeline to analyse single particle trajectories 
on plasma membrane, and to address the complexities thereof (10). One of the distinguishing 
features of this analysis pipeline is, first of all, the estimation of the dynamic localization 
uncertainty through the trajectories themselves. Further, we implement a statistics-driven 
method to classify the single particle trajectories amongst several plausible diffusion modes. 
Notably, we choose to compare the well-known anomalous diffusion model, against other 
models obtained from the analytical solution of particle diffusion in a corralled environment 
(50–52). Using our analysis pipeline, we show that the most suitable models to describe the 
diffusive motion of the tracked nanoparticle-tagged lipids are indeed these last models, 
describing compartmentalized (hop) diffusion, with a characteristic compartment size of ≈ 
100 nm. We confirmed the accuracy of our conclusion by comparing the results obtained 
through our data analysis pipeline to simulated particle diffusion on a two-dimensional 
lattice. Finally, we adopt the confinement strength (Sconf) metric, which allows straight-
forward comparisons between the present results with other related studies from the same or 
other related techniques. The use of this metric shows that the diffusive motion herein 
described appears to not be cell line-specific, as demonstrated by comparison with the data 
from past experiments (6,8). 

Materials and Methods 

Lipids and cell line 
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Atto488-labelled DOPE(1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine) was purchased 
from Atto-Tec. DSPE-PEG(2000)-Biotin (DSPE: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine, 2kDa PEG linker between the phospholipid polar head and the biotin), 
henceforth referred to simply as DSPE-PEG-Biotin, was purchased from Avanti Polar Lipids. 
Lipid stock solutions were stored at -20C in chloroform. Gold Nanoparticles of 20 nm and 40 
nm diameter (Ø), streptavidin coated, where purchased from BBI solution in stocks, the 
concentration of which is expressed as 10 OD (optical density). PtK2 cells derived from rat 
kangaroo (Potorus tridactylis) kidney tissue (53) were available in the laboratory. These were 
cultured following known protocols, growing them in Dulbecco Modified Eagle Serum 
(DMEM, Sigma Aldrich), supplemented with ~15% FBS (Fetal Bovine Serum),  L-
Glutamine, and Penicillin-Streptomycin (54). Before labelling and experiments, the cells 
were grown in sterile single-use flasks, placed in a 37C incubator in water vapour-saturated 
atmosphere with 5% CO2. 

Cell membrane labelling 

PtK2 cells were seeded and left to proliferate on methylated-spirits cleaned glass supports 
(25mm diameter, #1.5 thickness coverslips), and used at a stage where they did not yet reach 
confluency. A sufficient separation between the cells is deemed necessary to ensure that the 
membrane of each cell was not affected by the presence of neighbouring cells that may cause 
deformation. This translates to an estimated 50-70% confluency. Before the labelling, to 
allow a more comfortable and secure application of the labelling protocol, the glass supports 
were mounted in a water-tight steel chamber (Attofluor chambers, Thermo Scientific). The 
cell labelling procedure was adapted from the protocol described in (55). A stock solution of 
DSPE-PEG-Biotin in 1:1 Chloroform-Methanol at 10mg/ml was desiccated via nitrogen gas 
flow, and the lipid suspended again in absolute ethanol to a concentration of 20 mg/ml. This 
was diluted in L15 medium to a final concentration of 0.2mg/ml, and incubated at 37C for 
20-30 minutes. In the same buffer, a small concentration of Atto488-DOPE was dissolved, in 
order to facilitate detection of the labelled cells by using the fluorescent channel of the 
ISCAT microscope. After the incubation with the biotinylated lipids, the cells were washed 
with fresh L15 buffer, and incubated for 10-15 minutes at 37C with a solution of 0.6uM of 
streptavidin-coated 20nm or 40 nm diameter (Ø) gold nanoparticles in L15 buffer. 
Afterwards, the cells were once again rinsed with fresh L15 buffer, and used for the 
experiments. This protocol produced a sparse labelling of cells (~1-2 nanoparticles per cell, 
with multiple labelled cells). 

Interferometric Scattering and Total Internal Reflection Microscope setup 

ISCAT experiments were performed on a custom built, following the protocol in (56), that 
has been previously described (36) with some useful modifications. The output from a 660nm 
solid-state laser diode (OdicForce) was scanned in two directions (equivalent to the x and y 
on the sample plane) by two acousto-optic deflectors (AOD, Gooch & Housego and AA 
Opto-Electronics). The scanned output was then linearly polarized, relayed to the back focal 
plane of the objective via a two-lens telecentric system, passed through a polarizing beam 
splitter and circularly polarized by a quarter wave plate (B.Halle). The light was finally 
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focused by a Plan Apochromatic 60x, 1.42NA oil immersion objective (Olympus), mounted 
in an inverted geometry. As stated in the introduction, the reflected component by the glass-
sample interface and the back-scattered component by the sample were collected by the same 
objective, and reflected onto the detection path by a polarizing beam-splitter. The final image 
is obtained by focusing these two interfering beams onto the CMOS camera sensor 
(Photonfocus MV-D1024-160-CL-8) to acquire time lapses with an effective magnification 
of 333x (31.8nm effective pixel size). 

In addition to this imaging mode, the microscope was also equipped with a total internal 
reflection fluorescence-capable channel. A 462nm wavelength solid state laser diode output 
was focused on the back aperture of the objective. TIR illumination condition was achieved 
via a movable mirror, until the reflection of the illumination beam was visible on the other 
side of the back-aperture. The fluorescence signal was separated from this reflection by 
means of an appropriately placed dichroic mirror, and imaged onto a difference CMOS 
camera (PointGrey Grasshopper 3). The labelling of cells with a fluorescent lipid analogue 
ensured that the sample could be correctly identified in a second, independent way. However, 
this part of the setup was not optimized to perform fluorescence imaging experiments, and it 
was used merely as a guide for the user. 

Stabilization of the imaging plane was achieved by a piezo-actuated objective positioner 
(PiezoSystem Jena) in open-loop configuration. This ensured enough stability in the focus to 
perform the intended measurements. A summarizing scheme for the imaging setup is given in 
Supplemental Figure S1. 

Imaging conditions 

The glass support with the cells was positioned on the microscope stage while still inside the 
steel chamber used for labelling. The deformation in the support induced by the O-ring 
present in the steel chamber produced a drift in the apparent z position of the sample when 
changing area of imaging, but once readjusted, the sample was stable enough to allow 
prolonged observation times and correct recording, also thanks to the piezo-actuated 
objective positioner (MiPos, PiezoSystem Jena). The cells were imaged in L15 medium at a 
temperature of 37C, in room atmosphere and humidity, thanks to a temperature control dish 
(Warner Instruments). The laser power area density used to illuminate the cells for ISCAT 
imaging was 17.5 kW/cm2, and given the illumination wavelength used (660nm), 
temperature-induced artefacts can be ruled out (30). Although the aforementioned power 
density might seem high, it has been shown in similar cell lines that prolonged exposures to 
even higher power densities, at the same wavelength of our experiments, are well tolerated by 
this kind of sample (57). Using the CMOS camera previously mentioned, we collected 2000 
frames long movies in a 200x200 px2 region of interest, with 0.227ms exposure time, 
resulting in 2kHz sampling rate and roughly 41μm2 imaging area. Although similar samples 
and experiments have been carried out at much faster sampling rates, it has been shown that 
similar sets of parameters are sufficient to describe the scenario herein considered (3). An 
evaluation of localization precision with these conditions has been derived by measuring the 
FWHM of the distribution of relative distances of two immobilized gold nanoparticles on 
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glass, according to the procedure in (26,58,59), giving the value of 2.6nm. More details on 
the estimation of the localization uncertainty are given in Supplemental Note 1. 

Trajectory detection 

Single Particle Tracking data analysis requires the trajectories of the particles to be extracted 
from the collected movies. The movies were collected in TDMS file format with a LabView 
software (courtesy of the Kukura Laboratory, University of Oxford), and converted to TIFF 
image stacks with a home-written MatLab code, based on the ConvertTDMS function by 
Brad Humphreys (https://www.github.com/humphreysb/ConvertTDMS, last retrieved March 
23, 2020). Before particle tracking, all the movies were elaborated by subtracting the median 
filter, as previously elucidated (36). In addition to this, the average intensity projection of the 
movie was obtained and subtracted from every movie frame, in order to separate the moving 
fraction of the sample from the static background (Supplemental Figure S2). Image 
processing was performed using the FIJI platform (60). Tracking was performed using the 
Spot Detection function in Imaris 9.5 (Bitplane, Oxford Instruments). Subsequent trajectories 
were imported in text format for post-processing in Mathematica (version 12.0.0.0; Wolfram 
Research) with custom written codes. 

Analysis of Single Particle Trajectories 

We hereby give a short overview of the analysis pipeline for the analysis of single particle 
trajectories. For a more complete overview of the methodology adopted, see Supplemental 
Note 2. All the analysis routines herein described, can be easily reconstructed using the 
Python package reported in (61). 

The protocol employed for this study is a refinement of that presented in (6,10). We calculate 
the apparent diffusion coefficient Dapp(tn) curve for each particle trajectory, defined as: 

�������� � 	
�����
4 �� �1 � 2�� �  � ����� � ����

�� �1 � 2�� �                       ���. 1�  

where MSD(tn) corresponds to the time-averaged mean squared displacement, tn is the n-th 
time interval, defined as multiples of the time interval between successive localizations t0, R 
is the motion blur correction factor (6,49,62), D(tn) is the artefact-corrected time-dependent 
diffusion coefficient, and ��� is the average dynamic localization uncertainty. In our 

workflow, we have set R = (1/6)(0.227ms/0.5ms) for full frame averaging, for imaging with a 
camera exposure time of 0.227ms with a frame rate of 2 kHz (49,62). We have furthermore 
restricted our analysis to truncated trajectory segments of 500 localizations each, to allow for 
constant statistical sampling of the Dapp curves. Summary statistics of the number of raw 
trajectories, and the number of segments obtained from the truncation are reported in Table 1.  

Our experimental data suffered from slight environmental vibration artefact with a frequency 
corresponding roughly to that of a common fan frequency of about 8500 rpm. This was most 
clearly visible in the control trajectory data of immobile gold particles on glass 
(Supplemental Figure S3). Prior to the quantitative analysis, we thus removed the influence 
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of these environmental vibrations by median filtering in Fourier space the frequencies 
ranging from 140-160 Hz from the MSD curves of each single particle trajectory. A 
comparison between the original and the vibration corrected data is shown in Supplemental 
Figure S3, and the parameters for corrections are given in Supplemental Table S1. 

By substituting the expressions of D(tn) shown in Table 2, corresponding to different 
plausible diffusive motion models (10) in Eq. 1, we obtain a set of functions to fit the  
experimental Dapp curves, both at the ensemble average and the single trajectory level. We 
shall henceforth refer to Table 1 as a reference for the models in questions. In these model 
fits, we have included a model for free (Brownian) diffusion (Eq. 2), whereby the diffusion is 
described only by the diffusion coefficient D. Two models for confined diffusion, the 
approximate version (Eq. 4.1) (52,63) and the exact expression for confined diffusion within 
permeable square corrals of size L (Eq. 4.2) (50,51) are also included. In these models, the 
diffusion coefficient is named Dµ, to indicate that this motion happens within a restricted 
confinement zone. Notably, the exact formulation contains an infinite sum, which cannot be 
fit to data analytically. Thus, for this study, we restrict this formula to the case in which k≤39, 
which converges well to the approximate form (Eq. 4.1) for t>0.5ms. The compartmentalized 
diffusion models, as it is evident from Eqs. 5.1 and 5.2, are the linear combination of time-
independent free (Brownian) motion (Eq. 2) and time-dependent confined diffusion (Eqs. 4.1 
and 4.2). The presence of the scaling factor (Dµ-DM/Dµ) in Eqs. 5.1 and 5.2 was first 
introduced in (51) in order to ensure that the intra-compartmental diffusion coefficient (limit 
of Dapp(tn) for t→0) is defined as Dµ while the inter-compartmental diffusion coefficient 
(limit of Dapp(tn) for t→∞) is defined as DM. We point out that in the analysis adopted, we 
included the localization uncertainty δxy, as a free parameter in the fitting routine, in order to 
better estimate for the dynamic nature of this parameter in the detected particle tracks. 

Model fits were performed using a weighted nonlinear least-squares fitting routine 
(NonLinearModelFit[] in Mathematica version 12.0.0.0, Wolfram Research). The Dapp curves 
for the model fits were sampled non-linearly, in order to ensure that the points at larger time 
lags are not overwhelmingly weighted compared to the fewer points at the earliest time lags. 
This is done as the first few time points are more informative on short-lived events, such as 
transient confinements. The sampling is thus operated by converting the time axis to a 
logarithmic scale, and sampling in intervals of length �log�� � � log�� ���/�0.5 � �/���, 
where T is the maximum time range considered for the analysis. We have chosen to perform 
our analysis at five different time ranges, that is, five different values of T (5 ms, 10 ms, 25 
ms, 50 ms, 75 ms and 100 ms), in order to cover a variety of time regimes with our study. 

The most suitable model to describe each particle track is then selected through minimization 
of the Bayesian Information Criterion (64) for each model whose parameter estimates 
converge to a non-zero magnitude with a p<0.05 significance level. The condition R2>0.9 is 
taken as fit quality metric, especially at the single trajectory level where the Dapp curves tend 
to be most affected by measurement error. 

Compartmentalization metrics 
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The average confinement time τConf (6,65,66), which is a metric that represents the average 
residence time of a resides inside a compartment, can be defined as:  

�	
�� � ��
4 ��

                                                   ��. 7                    
Finally, we include the so-called anomalous diffusion model (Eq. 6), given its widespread 
adoption in the field. This is a modification to the free diffusion law, whereby the diffusion 
coefficient has a power-law dependence on time. Accordingly, the multiplication factor is 
not, in fact, a diffusion coefficient, given the dimensionality mismatch with this quantity, but 
has rather been called “Transport Coefficient”. In order to quantitatively describe the 
compartmentalization of the cell membrane, we have adopted another dimensionless quantity, 
first introduced in (51), called confinement strength, which we indicate as SConf, and is 
defined as: 




�� � �	
��
!�� 4��" #$ � �� ��

%                    (Eq. 8) 

This quantity can be defined as the residence time of a particle, normalized to the time that a 
freely diffusing particle would spend in the same region, if it also diffuses at the same rate. 
The two extreme cases for this metric is the case of free Brownian diffusion where Dµ=DM 

and SConf=1, and the case of confined diffusion where DM=0 and SConf=∞ while the ratio 
varies continuously in the case of compartmentalized diffusion. Regrettably though , the 
confinement strength metric cannot readily be used in the case of anomalous diffusion as the 
limits of t->0 and t->∞ diverge to respectively Dµ->∞ and DM->∞. 

 

Monte Carlo simulations of 2D diffusion in a heterogeneous lattice. 

Monte Carlo simulations were performed using custom written routines in MatLab as 
previously described (8), which can be easily replicated using the Python package described 
in (61). In brief, in these simulations, we generated fluorescence time traces of 2-dimensional 
diffusion of single molecules in a heterogeneous corralled environment. The corrals are 
randomly generated via a Voronoi tessellation algorithm, with randomly selected seeds, to 
simulate the heterogeneity of the cellular membrane environment. The simulation area was a 
square with side lengths of 8 to 20�μm (the dimensions of the area are not influential) and 
the compartmentalisation of this area was implemented as a Voronoi mesh on a uniform 
random distribution of seed points. We defined the square root of the average compartment 
area as the average compartment size or length L. The average compartment size (L), defined 
as the square root of the average compartment area, the hopping probability (Phop) and the 
free diffusion coefficient (DS) completely described our simulation model. Within a 
compartment the molecules were assumed to diffuse freely while crossing from one 
compartment to another is regulated by a “hopping probability” Phop. This was implemented 
in the following way: if the diffusion motion (with diffusion coefficient DS) would make the 
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lipid to cross the compartment boundary, a random number is generated, and the movement 
takes place only if this number is above the threshold defined by Phop. In all other cases, a 
new displacement is calculated, where the molecule would be diffusing in the same 
compartment. In the special case of free Brownian diffusion (i.e. Phop =1) each collision with 
a compartment boundary results in a molecule crossing to the adjacent compartment. When 
Phop<1, e.g.  for Phop=1/40, only 1 out of 40 collisions with a compartment boundary results in 
a molecule crossing to the adjacent compartment. For each condition (DS, LS, and Phop), we 
simulated N=100 trajectories with 0.5 ms time steps (i.e. a sampling rate of 2 kHz) and a time 
span of 250 ms (i.e. 500 displacements per trajectory). Subsequently, we added a localization 
offset δrS to each localization in the simulated trajectory {xi,yi}, to simulate the effects of a 
fixed localization uncertainty in experimental data. These trajectories were subsequently 
analysed by use of same data analysis pipeline as for the experimental ISCAT data, except 
that the camera blur correction factor was set to R=0, for obvious reasons. 

 

Results and Discussion 

Labelling and imaging of cells 

In this work, we have used ISCAT microscopy to investigate the lateral diffusion in 
the apical plasma membrane of live PtK2 cells of artificially incorporated biotinylated 
phospholipids, DSPE-PEG2000-Biotin, tagged with either Ø20 nm or Ø40 nm streptavidin-
coated gold nanoparticles. In order to avoid false detections, whereby a moving particle could 
be detected, for example, diffusing outside of a cell, the cell membranes were also labelled 
with a fluorescent lipid (Atto488-DOPE), and simultaneously imaged using the TIRF channel 
present in our setup (see Materials and Methods). The movies of diffusing particles where 
then recorded only in the areas where a fluorescent signal corresponding to a cell was 
detected. 

ISCAT microscopy enables the collection of long, continuous single particle trajectories at 2 
kHz frame rates 

The main challenge in the data analysis of diffusing particles is the stochastic nature 
of this phenomenon. Consequently, the robustness in the determination of descriptive 
physical parameters of any such process by SPT is significantly improved by the availability 
of long, preferably continuous single particle trajectories. Furthermore, the sampling 
frequency of the data acquisition needs to be sufficiently rapid to resolve permanent or 
transient confinements into compartments in the tens to hundreds nanometres range (1,2,11). 
Using our ISCAT set-up, we have been able to acquire long, continuous, trajectories of 
diffusing biotinylated lipid analogues (DSPE-PEG(2000)-Biotin), inserted in the plasma 
membrane of live PtK2 cells, while labelled with either Ø20nm or Ø40nm streptavidin-
coated gold particles at a sampling frequency of 2 kHz. This sampling frequency adopted was 
deemed adequate for detecting transitions in the diffusion mode of the tagged lipids due to 
the compartmentalization of the plasma membrane, which previous studies at faster frame 
rates detected in the millisecond time range, with compartment sizes in the hundreds of 
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nanometres (2,3). The ensembles of the track segments are visualized in Fig. 2a for Ø20nm 
and Fig. 2b for Ø40nm gold nanoparticles. Although this visualization cannot give detailed 
information on the diffusion mode, or physical quantities thereof, it is still apparent that the 
gold particle-labelled DSPE lipids on PtK2 cells diffuse from the centre in a broadly 
symmetrical manner, reflecting the stochastic nature of the long-term motion of the tracked 
particles.  

The analysis of the ensemble average Dapp(tn) curves are largely invariant for analysis 
time regimes 0.5ms ≤ tn≤ T with 10 ms ≤T ≤ 100 ms 

Once all the trajectories were collected, we applied the data analysis pipeline to our 
ISCAT tracking data of Ø20 nm and Ø40 nm streptavidin-coated gold particle-tagged DSPE-
PEG2000-biotin lipids on PtK2 cell membranes, and to the same gold particles immobilized 
on a glass surface. Initially, we decided to analyse the ensemble averages, divided by probe, 
of the Dapp(tn) curves obtained from each trajectory, calculated as in Eq. 1. One of the 
challenges in the analysis of SPT data is that there is no consensus regarding the amount of 
points of a MSD curve to be analysed in order to properly describe the diffusion motion of 
the tracked particle (67). For this reason, we evaluated the dependence on the fit results upon 
the analysis time range for six different time intervals, 0.5ms ≤ tn≤ T, where T was set to 5ms, 
10ms, 25ms, 50ms, 75ms, or 100ms. At the employed sampling frequency of 2kHz, this 
corresponds to 10 (2%), 20 (4%), 50 (10%), 100 (20%), 150 (30%), and 200 (40%) points of 
the 500 localization long segments extracted from the full-length trajectories.  

To reiterate, we then fitted the models in Table 1 to the ensemble averages Dapp(tn) 
curves obtained from each kind of sample. From our analysis, we found out that the most 
likely model to describe the time-dependence of the ensemble averages Dapp(tn) curves for 
both the Ø20 nm and Ø40 nm gold particle-tagged lipids is the compartmentalized diffusion 
model, in the formulation given by Powles and co-workers (50) (Eq. 5.2), with the 
simplification that the first 17 terms are considered for the infinite sum (Fig. 2c,d). The 
resulting fit parameters are reported in Table 3. The second most likely model is the 
approximate form of the same model (Eq. 5.1), with a significant relative likelihood value. A 
full summary of the fit parameters for these two models, for every time range, is given in 
Supplemental Tables S2 and S3. The other models, being much more unlikely according to 
our selected fit quality metrics, were not included.  

In Fig.2c, we reported the ensemble average of the Dapp curves for the trajectories 
collected. It is evident to see how these curves diverge at short time intervals. This is 
intuitive, given that the expression in Eq 1 has a term with the time lag, tn, at the 
denominator. The fact that the localization uncertainty has an influence on the detected 
diffusion coefficient of moving particles is well known (62,68). Nevertheless, we have 
highlighted, by showing the Dapp curves of immobilized gold nanoparticles, how the 
localization uncertainty affects all the trajectories, leading to potential overestimation of 
diffusivity. It is also not sufficient to subtract a constant offset from the curves, as it is usually 
done in relevant literature (e.g., (2)) since it is demonstrable (62) how the localization 
uncertainty is variable depending on the diffusion coefficient. Given the uncertainty in 
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estimating, aprioristically or globally, a diffusion coefficient for particles that undergo 
transient compartmentalization, we have thus opted to introduce the localization uncertainty 
δxy as a fit parameter, to have a more precise estimation of its value. Once the model fit has 
been performed, the δxy can be subtracted, and the localization uncertainty-corrected Dapp 
curves obtained. In Fig.2d, we report the results of this operation. We would like to point out 
how this operation, applied to the Dapp curves of the immobilized gold nanoparticles on glass, 
produces a flat line at 0 μm2/s. Naturally, the model that best fits the immobilized gold 
nanoparticles Dapp curves is the Immobile particle one (Eq. 7), for which the fit parameters 
are reported in Supplemental Tables S4 and S5. Finally, we report that the fit-derived δxy 

values for the diffusing gold-tagged lipids are consistently larger than those for the 
immobilized gold nanoparticles (Fig.3d). This should further drive the point that this critical 
parameter ought not to be established a priori for a single particle tracking experiment, as that 
will inevitably lead to an underestimation. 

From Fig. 3, it is possible to appreciate that the fit parameters are somewhat stable for 
analysis time ranges longer than 10 ms. Shorter analysis time ranges cannot fully capture the 
compartmentalization dynamics of the target gold-tagged DSPE lipids. Thus, we report 
(Table 3) only the values of the fit parameters for the ensemble averages obtained through the 
compartmentalized diffusion models at the analysis time range 0.5ms ≤ tn≤ 50ms to offer a 
representation of the compartmentalization dynamics observed on the PtK2 cell membrane. 
This corresponds to approximately 20% of the total data points in each trajectory segment 
considered by our analysis, putting this choice below the “rule of thumb”, which prescribes 
not to use more than 25% of the total track duration (67,69), and the approach adopted by 
Kusumi and co-workers, using only the first few points for the analysis (70,71). 

The magnitude of the diffusive motion parameters, but not the motion type, are dependent on 
the probe size    

The fit parameters here reported paint an interesting picture of the dynamics of the 
gold-tagged DSPE lipids on the PtK2 cell membrane. First of all, we notice that the 
difference in size produces a generalized reduction in the diffusivity of the target lipids, both 
in the DM and Dµ parameters. Nevertheless, it is remarkable that the model describing the 
diffusion is still the same, which would suggest that the introduction of a large tag only slows 
down the particle dynamic, without introducing artefacts in the detected diffusion motion. 
This conclusion is consistent with our previous findings (36), which show a similar effect in 
model membranes (i.e. Supported Lipid Bilayers) and live cells (6–8). 

The detected compartment sizes L differ slightly between the two probe sizes 
(L=100±2.3nm for the Ø40nm gold nanoparticle-tagged lipids, and L=110±3.5nm for the 
Ø20nm gold nanoparticle-tagged ones), and, most notably, differ by a factor larger than two 
from reported results on a similar system (2,3). One reason from this can be attributed to the 
fundamental difference in the data analysis strategy here adopted, and specifically, the 
handling of the localization uncertainty. In the present study, this quantity is handled as a fit 
parameter. In fact, a finite localization uncertainty can lead to very strong artefacts on the 
apparent diffusion coefficient Dapp(tn), especially when short frame times are involved, as it 
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can be deduced from Eq. 1. The localization uncertainties estimated this way cannot be 
compared to those reported in similar studies, due to the difference in the estimation methods 
(see Supplemental Note 1), nevertheless they fall close to accepted values from comparable 
observations, that is, δr = 13.5±0.2 nm and δr = 14.2±0.2 nm for the Ø40nm and Ø20nm gold-
tagged DSPE respectively. 

In Table 3, we also included the confinement time τConf (Eq. 7), a quantity also known 
as average residency time within a compartment. Being directly related to the L and DM 
parameters (Eq. 7), this quantity obviously differs between the two samples here considered, 
and would agree with the observation that generally the diffusion rate of the lipids tagged 
with the larger Ø40nm gold nanoparticle experience is overall slower, as can be intuitively 
understood. However, we find that a more fitting quantity to describe the 
compartmentalization of the plasma membrane is represented by the confinement strength 
(Eq. 8), first introduced in (51), and here reported as SConf. Interestingly, the calculated values 
of this metric are quite close between the Ø20 nm and Ø40 nm gold-tagged DSPE (2.2±0.1 
and 2.6±0.2, respectively). This, again, would indicate that while the size of the gold 
nanoparticle probe could have an influence on the detected motion of the target DSPE lipid, 
but it doesn’t fundamentally alter the lateral diffusion dynamics of lipids in the plasma 
membrane. This conclusion is consistent with our previous findings (36), and is compatible 
with the observation that the viscosity of the water-based medium into which the gold 
nanoparticle extends offers less restriction to diffusion than the high-viscosity, obstacle-rich 
cellular membrane environment (72). 

The single trajectory analysis reveals the full heterogeneity of the lipid motion on the plasma 
membrane of Ptk2 cells  

The analysis of the ensemble average Dapp, exposed in the previous section, provides 
an efficient and immediate way to evaluate the overall most likely diffusion model for all the 
trajectories detected. Most landmark SPT studies on similar samples are restricted to such 
data analysis, often with much smaller sample sizes than the present work (e.g., (1,2)). 
However, SPT, as an analysis method, has the potential to reveal the extent of diffusion 
heterogeneity down to the single trajectory level. We thus applied our analysis pipeline to 
each single molecule track. In order to streamline the analysis, we took the decision of only 
adopting the “exact” models from Table 2, where the decision is possible. The distributions 
of the fit parameters results are visualized in Figure 4, while the summary statistics are 
reported in Table 4. From Fig.4a-b, it is possible to see that the relative fractions of the most 
representative models stabilize for time intervals 0.5ms ≤ tn≤ T with 25 ≤ T ≤ 100 ms.  

Our analysis showed that the relative fractions of the most likely lateral motion model 
of the single trajectories, for both species of nanoparticles, were roughly constant in the time 
analysis ranges of 0.5ms ≤ tn≤ T for 10 ≤ T ≤ 100 ms (Fig. 4a-b). The exact confined 
diffusion model appears more dominant at the shortest time window (0.5ms ≤ tn≤ 5ms), as 
this short analysis time interval may not be sufficient to fully capture the transition from 
intra-compartmental diffusion to inter-compartmental diffusion. Therefore, we further 
elaborate on this single particle trajectory analysis for the results obtained using as time range 
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0.5ms ≤ tn≤ 50ms, for consistency with the analysis of the ensemble average Dapp(tn) curves. 
We report the exact fractions of trajectories best described by each model in Table 4. To fully 
appreciate the differences between these distributions, we have compared the parameters 
across samples through the Kolmogorov-Smirnov (KS) test, but comparing only among 
populations of the same models.  

First of all, we compare the magnitude of the diffusion coefficients Dµ and DM across 
the different models, and samples (Fig. 4c-d). For the trajectories classified via the free 
diffusion model, it is very easy to appreciate how the values for the diffusion coefficient D 
are significantly different, with the Ø20 nm gold nanoparticles-tagged DSPE diffusing faster 
(D = 0.4±0.3µm2/s) than the Ø40 nm gold nanoparticles-tagged DSPE (D = 0.3±0.2µm2/s). 
The significance of the difference carries over to the values for Dµ for both the confined and 
compartmentalized diffusion models, but not to the DM for the compartmentalized diffusion 
model (DM = 0.3±0.2µm2/s and DM = 0.2±0.1µm2/s for the Ø20 nm and Ø40 nm gold 
nanoparticles-tagged DSPE, respectively).  

The distributions of the parameter L (Fig. 4e) suggest that there may be two distinct 
levels of compartmentalization in the plasma membrane of live cells. One level of 
compartmentalization is highlighted by the fraction of trajectory classified as 
Compartmentalized diffusion (Eq. 5.2). In this case, we can see that L=130±50 nm for the 
Ø20 nm gold nanoparticles-tagged DSPE, and L=120±40 nm for the Ø40 nm gold 
nanoparticles-tagged DSPE. In fact, the particles best described as purely confined (Eq. 4.2), 
experience confinements on quite large spatial scales, specifically L=580±450 nm for the 
Ø20 nm gold nanoparticles, and L=400±250 nm for Ø40 nm gold nanoparticles. The lipid 
trajectories best described by this model exhibit a macroscopic diffusion coefficient DM = 0, 
thus representing a fraction of particles that eventually becomes immobilized when observed 
for 250ms. The distributions of these values are significantly different (p<0.05), under the KS 
test (Table 4). 

A very interesting result emerges when observing the distribution of the 
compartmentalization metrics τConf and SConf which, again, can only be calculated in the case 
of compartmentalized diffusion. While the distributions of τConf (Fig. 4f) across samples is not 
significantly different, the distributions of Sconf, instead, is (Table 4).  

We find that the anomalous diffusion model (Eq. 5), best describes an almost constant 
portion, around 40%, of the single particle trajectories. Given that this fraction is seemingly 
unaffected by the analysis time interval, might indicate a certain lack of sensitivity of this 
model for the exact diffusion behaviour of the target molecule. While the coefficients of 
transport Γ are very significantly across the two probe species (Fig. 4g), we report that this 
difference does not carry over the anomaly coefficient α (Fig.4h). In fact, the difference 
between the relative distributions of the Γ parameter is significant (P>0.05), under the KS 
test, while those of α are not. 

This single trajectory analysis has revealed that, underneath what is revealed by the 
the analysis of the ensemble average Dapp(tn) curves, there is a wealth of complexity that 
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should not be overlooked. The study of the ensemble averages offers undoubtable 
advantages, such as a less noisy signal, or the convenience of quickly summarizing the 
collective behaviour of a sample. Nevertheless, the ensemble average diffusivity should, at 
least, be performed on a sizeable sample size, in order to include as much of the 
heterogeneity observed herein as possible (72). 

Validation of data analysis by comparison to simulated diffusion on a heterogenous lattice  

Apparent compartmentalization and trappings can appear in diffusion, as a result of 
the natural variability in random walks. This has been known since the first observation of 
single particle diffusion (73,74). More recently, it has been suggested that Monte Carlo 
simulations of diffusions should be used as control for the experimental data (74,75). 
Therefore, we compared the results from our experiments to simulated trajectories on a 
compartmentalized surface as described in the Materials and Methods section, and in 
(6,8,76). This procedure enabled us to directly compare our observations with our hypothesis 
for the mechanisms generating the heterogeneities of diffusion on the plasma membrane, 
namely its compartmentalization. In order for the simulations to be as realistic as possible, we 
generated trajectories of particles diffusing on a randomly generated environments with semi 
permeable corrals designed by a Voronoi tessellation algorithm, with an indicative 
compartment cross section L as control parameter.  

We simulated 100 tracks on such environments, with different sets of input 
parameters (see Materials and Methods), chosen to match as closely as possible the ensemble 
average Dapp curves of the experimental data (data not shown). The experimental ensemble 
average ISCAT data for Ø20 nm gold tagged DSPE could be well approximated by simulated 
data with the following parameters: PHop=0.06, DS=1.0 μm2/s, LS=120 nm, and δr S=16 nm. 
On the other hand, the data for Ø40 nm gold tagged DSPE could be very well approximated 
by simulations with parameters PHop=0.04, DS= 0.8 μm2/s, LS=120 nm, and δr S=16 nm. We 
then analysed the ensemble average Dapp curves obtained from the simulated trajectories with 
the same data analysis pipeline as the ensemble average of experimental data. Unsurprisingly, 
the simulated trajectories were also well described by the compartmentalized diffusion 
models (Eq. 5.2). We report in Table 5, the fit parameters related to the 0.5 ms ≤ T ≤ 50 ms 
time interval, with the fit parameter of the corresponding experimental data in the same time 
range. The fit parameters for the other time ranges are reported, for completeness, in 
graphical form in Fig. 5, and in Supplemental Tables S6 and S7. The closeness between the 
model fit parameters between the simulations and the experimental data is quite striking, 
especially considering that the generation of the simulated trajectories only stems from a very 
elementary description of the environment, i.e., its division in somewhat regularly sized, but 
not shaped, compartments. In particular, the compartmentalization metrics τConf and Sconf 
appear to be very closely matched, which highlights how well the compartmentalization 
model matches the sample as probed by our experiments. However, we must point out how 
the Phop and the DS differ between the simulated datasets. This might be due to the larger Ø40 
nm gold nanoparticles slowing down the detected DSPE lipid diffusion dynamics, and in 
doing so, altering also the probability of the particle to change compartments. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2022. ; https://doi.org/10.1101/2021.08.06.455401doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455401
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

The simulation framework laid out in this work, proves useful also in appreciating the 
effect of environmental parameters on the detected diffusion. In Fig. 6a-b, we show what the 
application of a constant offset δS to each localization, as a substitute for the localization 
uncertainty δxy, has on the ensemble average Dapp curves. It is evident that, when the offset δS 
is larger, then the Dapp diverges at short tn. These simulations were performed using the same 
frame time as the experimental data as interval between localizations, but it is easy to extend 
this reasoning to the case of faster framerates. This effect is fortunately easy to correct (Fig. 
6b): when the diffusion models are fit to the simulated Dapp curves, and a δxy value is obtained 
as for the experimental data, this can then be subtracted to reliably obtain the true D(tn) 
curves. Given that the localization uncertainty increases for moving particles (62,68), when 
the localization uncertainty is estimated from immobilized probes (e.g., (1,2)), this will 
inevitably lead to some degree of overestimation of the diffusion coefficient. 

We also evaluated the effect of different Phop on the Dapp(tn) curves detected (Fig. 6c-
d). In this instance, we can see how weak compartmentalization (Phop>1/4) is essentially 
indistinguishable in behaviour from free diffusion (Phop=1), only resulting in a net decrease in 
the observed diffusivity compared to the a priori established DS. On the other hand, the 
compartmentalization dynamics start becoming more apparent for lower values of Phop, which 
present a more noticeable transition between the two diffusion regimes, macroscopic and 
microscopic. Once again, we must point out how striking the difference is between the 
original (Fig. 6c) and the localization uncertainty-corrected datasets (Fig. 6d). 

Finally, another observation can be extracted from the simulation data. In fact, the 
datasets thus originate also present trajectories which are best described by different diffusion 
modes, apart from the compartmentalized one. This is to be expected, given the stochastic 
nature of the simulated trajectories (72,77). However, we observed how the L parameters 
originating from these trajectories are much larger than those obtained from the trajectories 
best described by compartmentalized diffusion models (unpublished data). This might serve 
to explain the same differences obtained from the single particle trajectories, which evidently 
originate from particles that are, by accident, “trapped” during the observation time. This 
only reinforces the concept that single particle diffusion data ought to be carefully analysed at 
multiple levels. 

The confinement strength metric enables direct comparison of cell membrane diffusion 
across different techniques 

We have thus far adopted the SConf metric (Eq. 8) as a tool to compare the observed 
compartmentalization dynamics across gold nanoparticle size, and in relation with the Monte 
Carlo simulations used to confirm our observation. However, it is also possible to use this 
parameter to draw the connection between simulated data and the experimental data not only 
from this work, but also from studies of lipid diffusion in related literature (6–8). In our 
simulation framework, this parameter is strongly connected, but not equivalent, to the 
“hopping probability” PHop, and it should provide with a representative descriptor of the 
physical landscape where the tracked particles are diffusing. By calculating this metric for the 
ensemble average data presented in this work, we obtain the values Sconf=2.2± 0.1 for the 
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lipids tagged with the Ø20 nm gold nanoparticles, and Sconf=2.6 ± 0.1 for the lipids tagged 
with the Ø40 nm gold nanoparticles (Table 5). From these results, we can confirm our 
observation that the larger probe size has a stronger influence on the detected motion of the 
target particle, resulting in a higher measured confinement strength. Nevertheless, when we 
compare these values with the Sconf obtained from the analysis of the ensemble average 
DApp(tn) data from the matching simulated trajectories (Table 5), we find a close resemblance 
with the corresponding values obtained from the experimental data. 

In the broader context of comparison of the present data with relevant literature, the 
Sconf parameter also shows its potential to classify the diffusion motion of target lipids on 
cellular membranes. In particular, we found that it is possible to quite effectively extend this 
framework to other methods to detect diffusion dynamics, such as Fluorescence Correlation 
Spectroscopy (FCS), and its combination with super-resolution STED microscopy (STED-
FCS). However, while in the present case the values of Dµ and DM are readily available from 
the compartmentalized model fits such is not the case for techniques such as (STED-)FCS. 
Thus, different definitions must be found. For the experiments reported in (7,8), where 
diffusion is detected via STED-FCS, we set the equivalent of the parameter Dµ as the 
diffusion coefficient detected via STED-FCS with the smallest detection spot (i.e., with the 
highest depletion laser power), whereas the DM would be the diffusion coefficient detected 
using the conventional diffraction limited spot. A special case is represented by the 
experiment in (6), in which the diffusion of a fluorescent lipid analogue (Atto647N-DPPE), is 
detected by conventional FCS on the surface of Ptk2 cells, in the presence and absence of 
CK666, which inhibits Arp2/3 mediated actin crosslinking, and thus the 
compartmentalization of the plasma membrane. In this case, we consider the DM is the 
diffusion coefficient measured on the cells treated with the drug, where the diffusion should 
be unrestricted, whereas the Dµ is the same parameter measured in the absence of the drug, 
and thus in a compartmentalized environment. 

In Figure 6, we plotted the values for Sconf obtained from the experiment thus far 
presented and from the aforementioned related studies against the values of PHop estimated by 
matching simulations. In fact, in the present study and in (6–8), the experimental data was 
matched to the same kind of simulations described in this study. Thus, while it is not possible 
to give a direct estimation of the parameter Phop from the experiments, it is possible to give a 
close estimate, that can be related to the Sconf. To these points, we overlaid the values of Sconf 
derived from the the analysis of the ensemble average Dapp(tn) curves of simulated trajectories 
with different values of PHop (other simulation parameters: DS=1.0 μm2/s, LS=120 nm, and δr 

S=20 nm) (Fig. 7). Corresponding relevant parameters are reported, for completeness, in 
Table 6.  

The values of Sconf thus obtained can be used to relate amongst each other 
measurements originating from vastly different experiments, both in terms of technique and 
probe used. For example, it is possible to compare a mostly freely diffusing probe, such as 
Atto 647N-DPPE on Ptk2 cells measured (6) (Sconf=1), with a mostly confined probe, such as 
Biotin-cap-DPPE tagged with streptavidin-coated quantum dots on the membrane of IA32 
MEF cells (6) (Sconf=10±0.8), despite the first one being measured with STED-FCS, and the 
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latter through fluoresce-based SPT. This metric is more effective than the confinement time 
τConf, since the ratio between the microscopic and macroscopic diffusion coefficients (Eq. 8) 
manages to normalize over the influence of the probe, which might reduce the diffusivity of 
the target molecule through phenomena unrelated to the lateral diffusion.  

This metric might in the future prove useful when comparing measurements across 
techniques on the same sample, or when comparing how different lipids feel the influence of 
membrane compartmentalization in a different way, due to their properties (e.g., degree of 
saturation, etc.) 

Conclusions 

In this work, we have adopted ISCAT microscopy as a method to probe the 
compartmentalization of the living cell membrane, through Single Particle Tracking studies 
of gold nanoparticle-tagged, biotinylated lipid analogues (DSPE). We defined and 
significantly expanded a data analysis pipeline framework for analysis of single particle 
trajectories that has previously been presented in (6). One of the main purposes of the present 
work was to present a clear data analysis methodology, grounded in theory and mindful of 
localization uncertainty artefacts, which could be implemented to analyse similar dataset. The 
data analysis methodology we presented here is based on the observation of the apparent 
diffusion coefficient Dapp(tn), a quantity derived directly from the raw mean squared 
displacements (MSD) (Eq. 1), after suitably correcting it for motion blur (68) and 
environmental oscillations. With this revised analysis protocol, we are also able to correct the 
raw apparent diffusion coefficient Dapp(tn) from the effect of the localization uncertainty, 
which we estimated as a fit parameter in our data analysis routine. The importance of such 
correction has been highlighted in Fig. 6. 

From the formulation of the diffusive motion models adopted (Eq. 2-7), we have been 
able to directly extract the physical properties underlying the plasma membrane environment, 
effectively using the tracked particles as a probe. In particular, from the results of the data 
analysis on the ensemble averaged Dapp(tn) data, the compartmentalized diffusion model, as 
defined by (50,51), emerges as the most descriptive of the models considered. This model 
(Eq. 5.2) is representative of an environment where the diffusing particles are divided into 
compartments surrounded by a partially permeable barrier. Thus, the movement of the 
particles can be separated into a short-range, time-decaying component, typical of the faster 
motion inside the compartments, and a long-range, time-invariant component that is 
representative of the slower motion between compartments. The analysis of the ensemble 
average Dapp(tn) of the trajectories also revealed that the larger Ø40 nm gold nanoparticles, 
while noticeably slowing down the lipid dynamics observed, do not alter the diffusion mode 
significantly in the case considered.  We also analysed each of the single trajectories, taken 
singularly, following the same protocol. This revealed a high degree of heterogeneity in the 
diffusion modes detected, and the physical parameters extracted. Nevertheless, the adopted 
protocol is also completely viable for single particle trajectory, thus revealing an analysis 
method that could prove very informative, as it can directly address relevant physical 
parameters relative to the structure of the plasma membrane. 
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Another strategy we employed to further our understanding of the plasma membrane 
environment is to compare the experimental data to simulated trajectories. To this end, we 
employed a simulation framework in which a two-dimensional space is corralled into 
compartments of fixed average size LS and random shape, over which Brownian particles 
diffuse at a fixed rate DS and have a probability of “hopping” from one compartment to the 
other PHop. This is effectively a direct implementation of the “hop” diffusion model described 
analytically in (50). With an appropriate choice of initial parameters, we thus obtained sets of 
trajectories, that we analysed with the same analysis pipeline as the experimental data. The fit 
parameters obtained from the Dapp(tn) data of these simulated datasets closely match those 
obtained from the experiments, and so do the resulting fit parameters. We thus have cross-
validated the conclusions made from the experimental data, and confirmed the model of 
plasma membrane herein considered. 

We should note that the results for lipid diffusions on PTK2 cell membranes here 
reported are in stark contrast with similar observations made in the past (1,2), albeit at faster 
frame rates (40-50kHz), and using a piece-wise analysis strategy, where the first points of the 
MSD curve where analysed separately from the rest. In particular, in the work of Murase et 
al. (2), for similar experimental conditions, the compartment size was estimated at 44nm, 
with an average residence time of 1.5ms. The origin of this differences can be attributed to, 
first of all, the differences in the estimation of the localization uncertainty. This is because it 
directly affects the estimation of the apparent diffusion coefficient of the particle. Secondly, 
the estimation of these quantities is made through very different means, and thus a direct 
comparison between the quantities is very challenging.  

The simulation framework also allows us to incorporate this work in a broader 
context, involving more studies and data from comparable experiments (6–8). For this, we 
extended the definition of confinement strength (Sconf), originally proposed in (51) to be 
compatible with FCS and STED-FCS. Using this parameter, we were able to correlate the 
results obtained with other similar diffusivity measurements in different cell lines, conditions 
and techniques, to sets of simulated trajectories specifically generated. A clear pattern 
emerged, where the Sconf of the experimental data approaches the Sconf obtained from 
matching simulations, where the Phop is chosen for best matching the Dapp(tn) of simulated and 
experimental trajectories. While this result may seem obvious, we would like to stress that 
this result emerges from considering the compartmentalization as the only source of diffusion 
heterogeneity for an otherwise Brownian-diffusing particle. Finally, although the procedure 
should be refined in order to attain wider applicability, it retains the potential to be a defining 
feature for future plasma membrane diffusivity experiments, being technique-agnostic and 
providing an interesting descriptor for the physical characteristics of the cell membrane 
environment.  

The results here described confirm that the semi-permeable compartmentalization of 
the cellular membrane is largely responsible for the deviation of the observed diffusion from 
pure Brownian behaviour. However, additional phenomena might contribute to these 
observations, such as membrane topology (12,13,78), the presence of membrane proteins 
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such as CD44 (14), and naturally, the presence of lipid nanodomains. Clearly, additional 
observations would be needed to discern between these contributions effectively. 
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Figure 1. Scheme for the labelling of the cell surface. The scattering tags, gold 
nanoparticles of two different diameters (20nm and 40nm) target the biotinylated lipids 
inserted in the cellular membrane, owing to their streptavidin coating. The possible, although 
not certain, effects of cross linking are also highlighted (dashed line).  
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Figure 2. Experimental ISCAT tracking data. a) Superimposed trajectories from time-
lapse image acquisitions of diffusing DSPE-PEG(2000)-Biotin lipid analogues in the plasma 
membrane of Ptk2 cells labelled with Ø20 nm diameter, streptavidin-coated gold 
nanoparticles, and (right) the same gold nanoparticles immobilized on glass (acquisition 
frame rate = 2kHz). All trajectories were truncated to 250ms (n=500 displacements) long 
segments, re-mapped to start at the same position. The color scale indicates the time of each 
localization (blue to red). b) Same as in a) except that lipid analogues were labelled with the 
Ø40nm streptavidin-coated gold nanoparticles. c) Comparison between the ensemble average 
of the Dapp(tn) curves obtained from diffusion of Ø20nm gold-tagged lipids on PtK2 cell 
membranes (green triangles) and Ø40 nm gold-tagged lipids on PtK2 cell membranes (blue 
circles), and the same size nanoparticles immobilized on glass (Ø20 nm (green squares); Ø40 
nm (blue diamonds)). The most likely model of diffusion was the exact compartmentalized 
diffusion with localization uncertainty (Eq. 5.2) for both nanoparticle sizes, and localization 
uncertainty (Eq. 7) for Ø20 nm, respectively free diffusion, with a low magnitude diffusion 
coefficient, with localization uncertainty (Eq. 2) for Ø40 nm gold nanoparticles nanoparticles 
immobilized on glass (dashed lines). The fit results are shown in Table 3. d) Same data 
shown in a), but where the localization uncertainty δxy has been subtracted. Estimation of the 
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localization uncertainty is performed by leaving δxy as a free parameter when the most likely 
model is fit to the data in each case (Table 3). The most likely model fits for each curve, 
corrected for localization uncertainty, are also reported in dashed lines. 
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Figure 3. Average Trajectory Analysis Parameters 

 

    

Figure 3. Comparison of results emerging from the analysis of the ensemble average 
Dapp(tn) curves. a–f) The ensemble average Dapp(tn) curves obtained from the trajectories of 
Ø20 nm gold-tagged DSPE lipids on PTK2 cell membranes (black open triangles), Ø40 nm 
gold-tagged DSPE lipids on PTK2 cell membranes (blue filled triangles), and the same 
nanoparticles immobilized on glass (Ø20 nm (black filled squares); Ø40 nm (blue open 
triangles)) were analysed at different time intervals (0.5 ≤ tn ≤ T ms with T= 5, 10, 25, 50, 75, 
and 100 ms). We plot here the resulting fit parameters, obtained from the fitting the most 
likely diffusion model to the data, and the resulting confinement strength metrics. The values 
shown here shown here are: a) the unhindered diffusion coefficient at time t=0, Dµ, b) Time-
independent (“free”) diffusion coefficient DM, c) the confinement size L, d) the confinement 
time τConf=L2/(4 DM), e) the localization uncertainty δxy, and the confinement strength SConf = 
Dµ / DM.  
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Figure 4. Model fitting of the Apparent Diffusion Coefficient curves for each single 
trajectory. a-b) Visual representation of the relative fractions of the ensemble of trajectories 
divided by most likely diffusion model at different analysis time ranges (T, with the notation 
for time range 0.5 ≤ tn ≤ T), for DSPE lipids labelled with Ø20 nm gold nanoparticles (a) and 
Ø40 nm gold nanoparticles (b). The models are: anomalous diffusion (Eq. 6, dark red), exact 
compartmentalized diffusion (Eq. 5.2, blue), exact confined diffusion (Eq. 4.2, green), free 
diffusion (Eq. 2, bright red). In black, the fraction of trajectories for which no model offers a 
good plot under the chosen fit quality metrics. c) Distributions of the fit parameter Dµ 

obtained by fitting the most likely model for each trajectory. The empty bars correspond to 
the Ø20 nm gold-tagged DSPE lipids, while the full bars to the Ø40 nm gold-tagged DSPE 
lipids. The models included are exact compartmentalized diffusion (Eq. 5.2, blue), exact 
confined diffusion (Eq. 4.2, green), free diffusion (Eq. 2, bright red). The anomalous 
diffusion model is not included, since it doesn’t incorporate a diffusion coefficient in its 
formulation. The free diffusion model is included to allow a comparison between all models 
containing diffusion coefficients. d) Distributions of the fit parameter DM, obtained as in c). 
The models represented are only exact compartmentalized diffusion (Eq. 5.2, blue) and free 
diffusion (Eq. 2, bright red). e) Distributions of the fit parameter L, obtained as in c). The 
models represented are only exact compartmentalized diffusion (Eq. 5.2, blue) and exact 
confined diffusion (Eq. 4.2, green), in which this parameter appears. f) Distributions of the 
τConf metric calculated for the trajectories whose most likely model is the exact 
compartmentalized diffusion (Eq. 5.2), divided by probe (empty bars for Ø20 nm gold-tagged 
DSPE lipids, full bars for the Ø40 nm gold-tagged DSPE lipids). g) Distributions of the fit 
parameter Γ for the ensembles of single trajectories best described by the anomalous 
diffusion model (Eq. 6). The trajectories are divided by the probe employed (empty bars for 
Ø20 nm gold-tagged DSPE lipids, full bars for the Ø40 nm gold-tagged DSPE lipids). h) 
Distributions of the fit parameter αfor the ensembles of single trajectories best described by 
the anomalous diffusion model (Eq. 6). The trajectories are divided by the probe employed 
(empty bars for Ø20 nm gold-tagged DSPE lipids, full bars for the Ø40 nm gold-tagged 
DSPE lipids).  
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Figure 5. Comparison between average fit parameters between experimental data and 
matching simulated data. a–f) The ensemble average Dapp(tn) curves obtained from the 
trajectories of Ø20 nm gold-tagged DSPE lipids on PTK2 cell membranes (black diamonds), 
simulated trajectory data for compartmentalized diffusion in a heterogenous lattice with 
simulated parameters PHop=0.06, D=1.1 μm2/s, L=120 nm, and δr=16 nm (red triangles), Ø40 
nm gold-tagged DSPE lipids on PTK2 cell membranes (black circles), and simulated 
trajectory data with simulated parameters PHop=0.04, D=0.8 μm2/s, L=120 nm, and δr=16 nm 
(green squares) were analysed at different time intervals (0.5 ≤ tn ≤ T ms with T= 5, 10, 25, 
50, 75, and 100 ms). The most likely model of diffusion for all data sets and time intervals 
was the exact compartmentalized diffusion (Eq. 5.2) with localization uncertainty. We plot 
here the resulting fit parameters, obtained from the fitting the most likely diffusion model to 
the data, and the resulting confinement strength metrics. The values shown here shown here 
are: a) the unhindered diffusion coefficient at time t=0, Dµ, b) Time-independent (“free”) 
diffusion coefficient DM, c) the confinement size L, d) the confinement time τConf=L2/(4 DM), 
e) the localization uncertainty δxy, and the confinement strength SConf = Dµ / DM.  
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Figure 6. Effect of the localization offset δrS and Phop on the simulated diffusion of 
particles. a) Ensemble average Dapp(tn) curves of sets of 100 simulated trajectories where a 
constant offset δrS (see legend) has been added to each localization before calculating the 
Dapp. The trajectories were simulated as described in the Materials and Methods, with the rest 
of the simulation parameters being: PHop=1/20, DS = 1.0 μm2/s and LS = 120 nm. b) Same data 
as in a), after subtraction with a localization uncertainty δxy obtained from fitting the 
ensemble average curves with model for compartmentalized diffusion (Eq. 5.1) to the Dapp(tn) 
curves in a). c) Ensemble average Dapp(tn) curves of sets of 100 simulated trajectories, with 
different values of Phop (see legend). The trajectories were simulated as described in the 
Materials and Methods, with the rest of the simulation parameters being: δr S=20 nm, DS = 1.0 
μm2/s and LS = 120 nm. d) Same data as in c), after subtraction with a localization uncertainty 
δxy obtained from fitting the ensemble average curves with model for compartmentalized 
diffusion (Eq. 5.1) to the Dapp(tn) curves in c).  
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Figure 7. Comparison of ISCAT experimental results to our previous lateral diffusion in 
plasma membrane of live cells by STED-FCS, FCS, and SPT. To put the results from this 
study into context with previous related studies, we have plotted the confinement strength 
SConf=Dµ/DM, as determined by comparative analysis of simulated trajectory data for 
compartmentalized diffusion, versus the hopping probability, PHop, for data as indicated in the 
legend. All data is also reported in Table 6. 
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Sample ����������	�
  Trajectory Length (±s.t.d.) ����������	�

���  

DSPE -PEG2000-biotin / sAv-Au (Ø20nm) 

on Ptk2 cells 

92 1430 ± 970 229 

DSPE-PEG2000-Biotin / sAv-Au (Ø40nm) 

on Ptk2 cells 

165 1510 ± 1040 433 

sAv-Au (Ø20nm) immobilized on glass 4 4000 ± 0 32 

sAv-Au (Ø40nm) immobilized on glass 4 4000 ± 1 31 

 

Table 1 – Summary statistics for the trajectories analysed in this study. N
����������� refers to the total number of trajectories per sample, 

while N
�����������
���  refers to the corresponding number of 500 localization-long segments extracted from the raw trajectories. In this instance, the 

gold nanoparticles are referred to as sAv-Au (Ø20nm) or sAv-Au (Ø40nm), as a reminder of the streptavidin (sAv) coating present on the probe.
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Diffusion Model Diffusion coefficient 

����� � 	
�����
4 ��           �� � � ����  

2 – Free (Brownian) Diffusion ����� � D  

3 - Directed motion ����� � 
���4  

4.1 - Confined Diffusion (approximate) ����� � ��12 �� �1 � ��� �� 12 �� ���� �� 
4.2 – Confined Diffusion (exact) ����� � ��12 �� �1 � 96��

� 1��
��� �� �� �� ��  �� �� 

�

�� ,",�,..

! 

5.1 – Compartmentalized (Hop) Diffusion (approximate) ����� � �$ " �� � �$��

��12 �� �1 � ��� �� 12 �� ���� �� 
5.2 - Compartmentalized (Hop) Diffusion (exact) ����� � �$ " �� � �$��

��12 �� �1 � 96��
� 1��

��� �� �� �� ��  �� �� 
�

�� ,",�,..

! 

6 - Anomalous Diffusion 
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7 – Immobile particle ����� � 0 

 

Table 2. Mathematical expressions for the models considered for the analysis. The following parameters are defined for all diffusion models 
as follows: MSD is the mean squared displacement, D is the diffusion coefficient, tn is the product of the number of experimental data points, n, 
and the interval between two consecutive frames, tlag, v is the directed flow velocity, L is the average compartment size, Dµ is the unhindered, 
intra-compartmental diffusion coefficient within a confining compartment, DM is the hindered, inter-compartmental diffusion coefficient 
between confining compartments, # is a transport coefficient, and α is an the anomaly coefficient where α < 1 for sub-diffusion and α>1 for 
super-diffusion.  
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Sample Dμ  (±S.E.) 

(μm2/s) 

DM (±S.E.) 

(μm2/s) 

L (±S.E.) 

(nm) 

δxy (±S.E.) (nm) τConf (ms) SConf  

 

Ø20nm Gold 

nanoparticle-tagged DSPE 

0.87±0.02 0.398±0.004 110 ±3.0 14.2±0.2 7.5±0.4 2.2±0.0 

Ø40nm Gold 

nanoparticle-tagged DSPE 

0.67±0.02 0.256±0.003 100 ±2.3 13.5±0.2 10±0.6 2.6±0.1 

 

Table 3. Fit Parameters for the exact Compartmentalized diffusion model fit to the ensemble average Dapp(tn) curves for the gold-tagged 
DSPE biotinylated lipids. The model fit to the data is presented in Table 1, Eq. 5.2, together with an explanation of the fit parameter. The errors 
reported for the Dμ, DM, L and δxy refer to the Standard Error of the Fit, as exported from the fitting routine implemented in Mathematica, with 
the same number of significant digits as the fit parameter. The error for the derived metrics confinement time τConf (Eq. 7) and confinement 
strength SConf (Eq. 8) is obtained with standard rules of error propagation. The fit parameters here reported refer to model fitting performed on 
the analysis time range 0.5 ≤ n δt ≤ 50 ms. 

 

 

 

 

Probe Model N (%) Fit Parameters (mean ± st.d.) Metrics (mean ± st.d.) 
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Table 4. Summary statistics of the fit parameters of the single trajectory analysis for the two species of probes targeting biotinylated 
DSPE Lipids. The diffusion models mentioned in the “Model” column were fit to the Dapp curves derived from each single 500 localization 
segment derived from the original particle trajectories, divided by probe size, for the gold nanoparticle-tagged DSPE lipids. In the column N 
(%), we report the number of single particle trajectories, and the fraction of the total number of 500-localization segments that it represents 
(Table 1). The number of fit parameters in the eponymous column is, of course, variable, and reflects the equation mentioned in the Model 

   D (μm2/s) ** Sconf τConf (ms) 

Ø20nm Gold nanoparticle Free diffusion (Eq. 2) 15 (6.8%) 0.43 (±0.3) n.d. n.d. 

Ø40nm Gold nanoparticle 32 (7.7%) 0.29 (±0.2) n.d. n.d. 

   Dμ (μm2/s) ** L (nm) ** Sconf τConf (ms) 

Ø20nm Gold nanoparticle Confined Diffusion 

(Eq. 4.2) 

29 (13.1%) 0.61 (±0.31) 580 (±450) n.d. n.d. 

Ø40nm Gold nanoparticle 60 (14.4%) 0.44 (±0.22) 400 (±250) n.d. n.d. 

   Dμ (μm2/s) DM (μm2/s) ** L (nm) ** Sconf ** τConf (ms) 

Ø20nm Gold nanoparticle Compartmentalized 

Diffusion (Eq. 5.2) 

88 (39.6%) 0.8 (±0.4) 0.3 (±0.2) 130 (±50) 3.0 30 (±30) 

Ø40nm Gold nanoparticle 174 (39.6%) 0.9 (±0.6) 0.2 (±0.1) 120 (±40) 4.0 24 (±25) 

   Γ (μm2/sα) ** α Sconf τConf (ms) 

Ø20nm Gold nanoparticle Anomalous Diffusion 

(Eq. 6) 

90 (40.5%) 0.8 (±0.4) 0.8 (±0.2) n.d. n.d. 

Ø40nm Gold nanoparticle 149 (35.9%) 0.6 (±0.4) 0.9 (±0.3) n.d. n.d. 
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column. We indicate with the ** notation, the fit parameters whose distribution is different according to the Kolmogorov-Smirnov test, with a 
level of significance <0.05. The fit parameters here reported refer to model fitting performed on the analysis time range 0.5 ≤ n δt ≤ 50 ms. 
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(μm2/s) (μm2/s) (nm)  

Ø20nm Gold 

nanoparticle-tagged DSPE 

0.87 ± 0.02 0.40 ± 0.00† 110 ± 3.0 14.2 ± 0.2 7.5 ± 0.4 2.2 ± 0.1 

Phop = 0.06, DS = 1.1 

μm2/s, LS = 120nm, δr S = 

16 nm 

0.86 ± 0.02 0.37 ± 0.00† 106 ± 2.0 13.8 ± 0.2 7.6 ± 0.3 2.3 ± 0.1 

Ø40nm Gold 

nanoparticle-tagged DSPE 

0.67 ± 0.02 0.26 ± 0.00† 100 ± 2.3 13.5 ± 0.2 10 ± 0.6 2.6 ± 0.1 

Phop = 0.04, DS = 0.8 

μm2/s, LS = 120nm, δr S = 

16 nm 

0.71 ± 0.01 0.25 ± 0.00† 99 ± 1.0 12.9 ± 0.1 9.9 ± 0.4 2.9 ± 0.1 

 

Table 5. Comparison between experimental data and matching simulations. Exact Compartmentalized Diffusion model (Eq. 5.2) fit 
parameters of the ensemble average Apparent Diffusion Coefficient curves of the experimental data, and the fit parameters obtained from the 
corresponding matching simulations. Model fitting is performed on the analysis time range 0.5 ≤ n δt ≤ 50 ms. †Values of uncertainty <0.005, 
reported with two significant digits for consistency. 
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Method Probe Cell 

line 

Analysis Analysis Time 

Range 

Dµ (μm2/s) DM 

(μm2/s) 

L 

(nm) 

SConf τConf (ms) 

ISCAT1 

 

biotin-

PEG2000-

DSPE / 

sAv-Au 

(Ø20nm) 

 

Ptk2 

 

Ensemble 

Average 

0.5 ≤ tn ≤ 50 ms 0.87±0.02 0.40±0.00† 110±3 2.2±0.1 7.5±0.4 

Compartmenta

lized Diffusion 

Subset 

(119/225 

trajectories) 

 

0.95±0.05 0.28±0.02 145±5 3.4±0.2 19±1 

Simulation 

PHop=0.06; 

DS=1.1 

μm2/s; 

LS=120 nm; 

- 

 

- 

 

Ensemble 

Average 

0.5 ≤ tn ≤ 50 ms 0.86±0.02 0.37±0.00† 106±2 2.33±0.0

5 

7.6±0.3 

Compartmenta

lized Diffusion 

Subset (70/100 

0.82±0.01 0.32±0.01 115±4 2.6±0.1 10±0.7 
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δr S=16 nm1 trajectories) 

ISCAT1 

 

biotin-

PEG2000-

DSPE / 

sAv-Au 

(Ø40nm) 

 

Ptk2 

 

Ensemble 

Average 

0.5 ≤ tn ≤ 50 ms 0.63±0.02 0.24±0.00† 98±4 2.6±0.1 10±0.5 

Compartmenta

lized Diffusion 

Subset 

(283/422 

trajectories) 

0.82±0.03 0.21±0.01 122±2 3.9 ± 0.2 18±1 

Simulation 

PHop=0.03; 

DS=1.0 

μm2/s; 

LS=120 nm; 

δr S=12 nm1 

- 

 

- 

 

Ensemble 

Average 

0.5 ≤ tn ≤ 50 ms 0.65±0.02 0.22±0.00† 100±2 3.0±0.1 11±0.3 

Compartmenta

lized Diffusion 

Subset (80/100 

trajectories) 

 

0.66±0.01 0.19±0.01 117±4 3.5±0.1 18±1 

STED-FCS2 Atto647N- IA32 Ensemble ≈ 0.5 ≤ tD ≤ ≈ 30 0.80±0.03 ≈ 0.4 150±12 ≈ 2.0 3 14±2 
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DPPE MEF 

(Ink4a/

Arf (-/-

)) 

Average 

 

ms 

STED-FCS2 Atto647N-

DPPE 

NRK Ensemble 

Average 

≈ 0.5 ≤ tD ≤ ≈ 30 

ms 

0.80±0.03 ≈ 0.3 80±8 ≈ 2.7 3 5.3±0.5 

FCS (+/-

CK-666)4 

Atto647N-

DPPE 

Ptk2 Ensemble 

Average 

≈ 0.5 ≤ tD ≤ ≈ 30 

ms 

≈ 0.70 

(+CK666) 

≈ 0.40  

(-CK666) 

N/A ≈ 1.8 4 N/A 

STED-FCS 

5 

Atto647N-

DPPE 

Ptk2 Ensemble 

Average 

≈ 0.5 ≤ tD ≤ ≈ 30 

ms 

≈ 0.40  ≈ 0.40  

 

N/A ≈ 1.0 3 0 

SPT 6 biotin-cap-

DPPE / 

sAv-

QD655 

IA32 

MEF 

(Ink4a/

Arf (-/-

)) 

Ensemble 

Average 

≈ 0.6 ≤ tn ≤ 50 ms 0.78±0.06  0.078±0.001  110±2 10±0.8 3 39 ± 1 
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Table 6. Comparison of values for Diffusion coefficients, Sconf, τConf and other relevant parameters obtained from the diffusion 
experiments and simulations from this study, with those obtained from related literature. 1 Data featured in this work. 2 Data featured in 
(8). 3 For STED-FCS measurements, we consider Dµ the diffusion coefficient calculated from data acquired at the highest available STED power 
(corresponding to an approximate lateral resolution of 50 nm for the specific studies), whereas we have defined DM as the diffusion coefficient 
calculated from data acquired at confocal lateral resolution (~250 nm). Thus, the confinement strength, SConf, for STED-FCS is defined as SConf 
=Dµ/DM=DSTED/DConfocal. 

4 For conventional FCS measurements with and without Arp2/3 specific inhibitor CK-666, we have defined Dµ as the 
diffusion coefficient calculated from measurements in the presence of 100�μM CK-666, whereas DM is the extracted diffusion coefficient for 
data acquired in the absence of CK-666. Thus, the confinement strength, SConf, for FCS in this case is defined as SConf =Dµ/DM 
=DConfocal

+CK666/DConfocal
-CK666. 5 Data featured in (7). 6 Data featured in (6). †Values of uncertainty <0.005, reported with two significant digits for 

consistency.
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