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Abstract

Tumour spheroids are common in vitro experimental models of avascular tumour growth.
Compared with traditional two-dimensional culture, tumour spheroids more closely mimic
the avascular tumour microenvironment where spatial differences in nutrient availability
strongly influence growth. We show that spheroids initiated using significantly different
numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a
limiting structure; in agreement with untested predictions of classical mathematical models
of tumour spheroids. We develop a novel mathematical and statistical framework to study
the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle
indicators, enabling us to discriminate between arrested and cycling cells and identify an
arrested region. Our analysis shows that transient spheroid structure is independent of initial
spheroid size, and the limiting structure can be independent of seeding density. Standard
experimental protocols compare spheroid size as a function of time; however, our analysis
suggests that comparing spheroid structure as a function of overall size produces results
that are relatively insensitive to variability in spheroid size. Our experimental observations
are made using two melanoma cell lines, but our modelling framework applies across a wide

range of spheroid culture conditions and cell lines.
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1 Introduction

Three-dimensional tumour spheroids provide an accessible and biologically realistic in witro
model of early avascular tumour growth [1,2]. Spheroids play a vital role in cancer therapy
development, where the effect of a putative drug on spheroid growth is an indicator of efficacy
[3-10]. In this context, reproducibility and uniformity in spheroid sizes is paramount [11-13], yet
variability in the initial and final spheroid size is rarely accounted for, meaning subtle differences
go undetected. We address this by developing a mathematical and statistical framework to study
spheroid structure as a function of size, allowing us to ascertain whether initial spheroid size
significantly affects growth dynamics.

Compared with traditional two-dimensional cell culture, spheroids closely mimic an avascu-
lar tumour microenvironment where spatial differences in the availability of nutrients strongly
influence growth [14]. We observe that spheroids grow to a limiting size that is independent of
the number of cells used to initiate the experiment (Fig. la—f), leading us to hypothesise that
spheroids have a limiting structure [15]. This behaviour is consistent with untested predictions
of mathematical models of tumour progression [16-25] (Fig. 1g). Many mathematical models
assume that spheroid growth eventually ceases due to a balance between growth at the spheroid
periphery and mass loss at the spheroid centre, driven by the spatial distribution of nutrients
and metabolites (Fig. 1h) [16,26]. We analyse highly detailed experimental data from a large
number of spheroids to answer fundamental biological and theoretical questions. Firstly, we
study the effect of initial spheroid size on the transient and limiting spheroid structure. The
initial size of spheroids is often highly variable [14], yet is rarely accounted for in statistical
analysis. Secondly, we study the relationship between spheroid size and structure using a math-
ematical model that describes growth inhibition due to the spatial distribution of nutrients and
metabolites.

We study spheroids grown at three seeding densities from human melanoma cells [27, 28]
transduced with the fluorescent ubiquitination cell cycle indicator (FUCCI) [29-32]. FUCCI
technology discriminates between cells in different stages of the cell cycle, namely gap 1 (before
synthesis) and gap 2 (after DNA replication), allowing us to identify regions containing actively
cycling cells, and regions where the majority of the cells are viable but in cell cycle arrest.
We grow spheroids for up to 24 days to allow sufficient time to observe growth inhibition. We
summarise experimental images using three measurements of spheroid structure: (1) the overall
size of each spheroid; (2) the size of the inhibited region (which we define as the region where
the majority of cells are in gap 1); and, (3) the size of the necrotic core.

It is widely accepted that the eventual inhibition of spheroid growth arises through three
phases (Fig. 1g,i) [22,24,33]. During phase 1, for spheroids that are sufficiently small, we observe
cycling cells throughout. In phase 2, spheroids develop to a size where cells in the spheroid centre
remain viable but enter cell cycle arrest, potentially due to a higher concentration of metabolites
in the spheroid centre [34,35]. Finally, during phase 3 the spheroid develops a necrotic core.
Eventually, the loss of cells within the spheroid balances growth at the spheroid periphery,
stalling net overall growth.

Whether spheroids reach the size required for necrosis to develop relates to experimental

design choices such as the experimental duration and initial seeding density, among many other
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Figure 1. (a—f) Growth of WM983b and WM793b spheroids over three weeks, initiated using approx-
imately 2500, 5000 and 10000 cells. The solid curve represents average outer radius and the coloured
region corresponds to a 95% prediction interval (mean 4 1.96std). (c—f) Size distribution of WM983b
spheroids at day 10, 14, 18 and 21 for each initial seeding density. (g—h) Dynamics of the Greenspan
model [16], which describes three phases of growth and the development of a stable spheroid structure
under assumptions of nutrient and waste diffusion. We denote by R the spheroid radius, ¢ the relative
radius of the arrested region and 7 the relative radius of the necrotic core. (i) Optical sections showing
three phases of growth in the experimental data (WM983b spheroids initiated with 2500 cells at day 3,
7 and 14). Colouring indicates cell nuclei positive for mKO2 (magenta), which indicates cells in gap 1;
cell nuclei positive for mAG (green), which indicates cells in gap 2; and cell nuclei stained with DRAQ7
(blue), which indicates necrosis.
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factors. Our hypothesis is that, provided the availability of nutrients is maintained in the
cell culture, the structure of a spheroid is eventually a function of spheroid size, independent
of the initial seeding density. This presents us with a technical challenge and a biological
opportunity for protocol refinement. For example, we find that the initial aggregation of cells
into spheroids occurs over several days [33], a timescale similar to that of cell proliferation.
Therefore, the growth of spheroids over a short experimental duration may be significantly
influenced by differences in initial seeding density, potentially confounding differences due to
variations in cell behaviour between experimental conditions and limiting the reproducibility of
experiments. Our analysis of late-time spheroid structure circumvents this by studying structure
as function of overall size instead of time. The primary benefit of this approach is that inferences
are insensitive to variations in the initial seeding density.

We take a likelihood-based approach to estimating parameters [36]; employ profile likelihood
analysis to produce approximate confidence intervals [37-39]; and develop a likelihood-ratio-
based hypothesis test to assess consistency in results between seeding densities. Firstly, we
work solely with a statistical model that describes the average sizes of the spheroid, inhibited
region and necrotic core at each observation time. Secondly, we apply a simple mechanistic
model that describes spheroid progression due to a balance between growth at the spheroid
periphery and mass loss due to necrosis in the spheroid centre. Following the seminal work of
Greenspan [16], we assume that nutrients and wastes from living cells are at diffusive equilibrium,
leading to a functional relationship between spheroid size and inner structure. Comparing model
predictions to experimental observations allows us to assess whether the underlying assumptions
of the Greenspan model are appropriate, providing valuable information for model refinement.
As we are primarily interested in spheroid structure and model validation, we focus our analysis
on comparing the structure at different observation times and seeding densities rather than a
more typical approach that calibrates the mathematical to all data simultaneously [25].

We are motivated to work with a simple mathematical model instead of a more complex (and
potentially more biologically realistic) alternative [20,40-43] for two reasons. Firstly, complex
models are often highly parameterised [44-46]. Given the practical difficulties in extracting de-
tailed measurements from spheroids, we do not expect to be able to reliably estimate parameters
in many complex models; that is, we expect parameters to be practically non-identifiable [37].
Working with a simple model avoids over-parameterisation allowing for a better comparison be-
tween experimental conditions. Secondly, Greenspan’s model encapsulates our central hypothe-
sis that spheroid structure is purely a function of spheroid size, and captures the key features of
spheroid growth seen in the experimental data with a low-dimensional, interpretable, parameter

space.

2 Methods

2.1 Experimental methods

The human melanoma cell lines WM793b [27] and WM983b [28] were genotypically char-
acterised [47-49], grown as described in [33] supplemented with 1% penicillin-streptomycin

(ThermoFisher, Massachusetts, United States), and authenticated by short tandem repeat fin-
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gerprinting (QIMR Berghofer Medical Research Institute, Herston, Australia). All cell lines
were transduced with fluorescent ubiquitination-based cell cycle indicator (FUCCI) constructs
as described in [30,33]. Wells within a flat-bottomed 96-well plate were prepared with 50 pL
non-adherent 1.5% agarose to prevent cell-to-substrate attachment and promote the formation
of a single centrally located spheroid [32]. Cells were seeded into each well at a density of ap-
proximately 2500, 5000 and 10000 cells in 200 pL. of medium. A medium change was performed
every 2 to 4 days.

Spheroids were harvested and fixed with 4% paraformaldehyde at day 3, 4, 5, 7, 10, 12, 14, 16,
18, 21 and 24; mounted in 2% low melting agarose; placed in a refractive-index-matched clearing
solution [32]; and imaged using fluorescent confocal microscopy to obtain high-resolution images
at the equator of each spheroid (Olympus FV3000, Olympus, Tokyo, Japan). To minimise vari-
ability due to the vertical position of each image, spheroids are fixed in place using an agarose
gel, and equatorial images are defined as the cross-section with the largest cross-sectional area.
To obtain the result in Fig. 1i, we selectively stain spheroids with DRAQ7™M (ThermoFisher,
Massachusetts, United States), which indicates necrosis [31,32]. Staining, fixation, and mi-
croscopy are repeated to obtain at least 20 WM983b spheroids at day 18 (spheroids initially
seeded with 5000 and 10000 cells) and day 21 (spheroids seeded with 2500 cells); and at least
10 spheroids for all other conditions. Data are then randomly subsampled to obtain exactly
10 and 20 spheroids for each initial condition and observation day where possible. Time-lapse
phase-contrast and fluorescent channel images are obtained at 6 hour intervals for up to 24

spheroids for each initial condition using an Incucyte S3 (Sartorius, Goettingen, Germany).

2.2 Data processing

We apply a semi-automated data processing algorithm to summarise experimental images with
three measurements (Fig. 1h) [50]. Firstly, we calculate the outer radius, R, based on a sphere
with the same cross-sectional area as the image obtained. Secondly, the radius of the inhibited
region, R;. We calculate the radius of the inhibited region by determining the average distance
from the spheroid periphery where the signal from mAG (FUCCI green), which indicates cells
in gap 2, falls below a threshold value, taken to be 20% of the maximum area-averaged green
signal. We find this choice leads to accurate results (Fig. 2). Finally, the radius of the necrotic
core, Ry, which is identified using texture recognition (stdfilt, [51]). The regions identified
using the algorithm are shown in Fig. 2. Full details of the image processing algorithms are

available in [50] and additional images are available as supplementary material.

2.3 Mathematical model

Following [16], we make two minimal assumptions regarding growth inhibition and necrosis
(Fig. 1h). Firstly, that growth inhibition, or cell cycle arrest, is a result of a chemical inhibitor
that originates from the metabolic waste of living cells [52]. This inhibitor is produced by living
cells at rate Bproa [mold~1] and diffuses with diffusivity Saig [nm?d~!]. At the outer boundary
of the spheroid, we assume that the concentration of inhibitor is zero. Cells enter arrest in
3
].

regions where the inhibitor concentration is greater than (. [mol pm™ Secondly, cycling

cells require nutrients that are plentifully available in the surrounding medium at concentration
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Figure 2. Late-time progression of WM983b spheroids, randomly sampled from the 10 spheroids imaged
from each condition (additional images in Supplementary file 2). Overlaid are the three boundaries
identified by the image processing algorithm: the entire spheroid, the inhibited region and the necrotic
region. Each image shows a 800 x 800 pm field of view. Colouring indicates cell nuclei positive for mKO2
(magenta), which indicates cells in gap 1; and cell nuclei positive for mAG (green), which indicates cells
in gap 2.

Weo [mol pm~3]. The nutrient is consumed by cycling cells at a constant rate weons [mold~!] and
diffuses with diffusivity wqig [pm2 dfl]. Cells die in regions where the nutrient concentration is
less than wei¢ [mol pm=3].

In regions where the nutrient concentration is sufficiently high and the inhibitor concen-
tration sufficiently low, we assume that cells proliferate exponentially at the per-volume rate
s [d7!]. Furthermore, we assume that cell debris is lost from the necrotic core at the per-volume
rate A [d™1].

It is convenient to define two non-dimensional parameters

2 _ Wcons % /Bcritﬁdiff <1, (1)
Wdiff (Woo - Wcrit) Bprod
and \
vy=—->0. (2)
S

The parameter ) quantifies the balance between nutrient and inhibitor concentration and -~
quantifies the balance between cell growth and the loss due to necrosis. The restriction @ < 1
arises since we observe an inhibited region form before the necrotic region [16]. Since the resul-
tant equations depend only on () and -, the constituents of ), namely Byrod, Bdiff; Berits Weonss

Wdiffs Woo and werit, cannot be uniquely identified unless prior knowledge from other experi-
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ments is considered [53], perhaps in a Bayesian framework [54]. In contrast, the constituents of
v, namely A and s, can be identified if information relating to the per-volume cell proliferation
rate s is available, perhaps from phase 1 spheroid growth data.

We take the standard approach and model the spheroid as a single spherical mass [16,21].
We denote by R the radius of the spheroid, ¢ = R;/R the relative radius of the inhibited
region, and 77 = R, /R the relative radius of the necrotic core (Fig. 1h). We note that R > 0
and 0 < n < ¢ < 1. Noting that nutrient and inhibitor diffusion occurs much faster than cell

proliferation, we assume that the chemical species are in diffusive equilibrium, leading to

dR s 3 5 3
—=201-¢)R - Z+p’R. 3
at 3 (1-¢%) 37" (3)
Growth in Mass loss from
cycling region necrotic core

A distinguishing feature of Greenspan’s model is that the inner structure of the spheroid,

quantified by (¢,n), is determined solely by the spheroid radius, and not by time. We denote

0= fs(¢>777; RaQ)RC)7 (4)

as a function describing this relationship, and refer to the relationship between the spheroid
radius, R, and the inner structure, (¢,n), as the structural model. Here, we define R, as the
radius at which necrosis first occurs. For R < R, nutrient is available throughout the spheroid
above the critical concentration werit.

During phases 1 and 2, there is no necrotic core (n = 0) and the solution to Eq. 4 is given
by

22
$? = max <O, 1- QR§C> , R<R.. (5)
During phase 3, R > R. and f; is given by
2R3 — 3R*n? + R? — R?
R?¢3 + (Q*R? — R*(1+2%))¢ + 20°R

To investigate the limiting structure of spheroids, we consider the solution to the mathe-
matical model where the outer radius is no longer increasing: the dynamics have reached a
steady-state. Experimental observations suggest that this occurs during phase 3. We denote

R= tlim R(t) the limiting radius and (¢,7) the associated limiting structure. The steady-state
—00

{O: 1—(53_’77737
0 — fs(¢§7ﬁ; RuQaRC)’

subject to R > R.. By defining p = 7/¢ € (0,1), we find a semi-analytical solution to the

model is the solution of

(7)

steady-state model (Appendix 1).
The behaviour in the steady-state model is characterised by three parameters, 8 = (Q, Rc, 7).
We denote the solution to Eq. 7 (i.e., the steady-state model) as

m(0) : (Q, Re,v) — (R, ¢, 7). (8)
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Equation 8 can be thought of as a map from the parameter space to the limiting structure
of the spheroid. This demonstrates that the parameters are identifiable only when all three
variables, (R, ¢,7), are observed, since the two-dimensional observation space (R,7) cannot
uniquely map to the entire three-dimensional parameter space (@, R¢,7). As a consequence,
the model parameters cannot be uniquely identified from steady-state information unless phase
3 information that includes measurements of the inhibited region—using FUCCI or another
marker of cell cycle arrest—is considered alongside measurements of necrotic core and overall

spheroid size.

2.3.1 Statistical model

While the mathematical model is deterministic, experimental observations of spheroid structure
can be highly variable. To account for this, we take the standard approach and assume that
the mathematical model describes the expected behaviour and experimental observations are
multivariate normally distributed [36]. Aside from accounting for biological variability, the
observation process captures variability introduced during imaging and image processing.

Denoting x; = (R;, ¢i,m;) as experimental observation i of the spheroid size and structure,

we assume that
X4 ~ f(X; M, Z) = N(“: Z)? (9)

where p = (R, ¢,n) is the mean of each component of x, N(,X) denotes a multivariate
normal distribution with mean p and covariance Y. To account for increased variability at later
time points (Fig. la-b), we estimate ¥ as the sample covariance associated with experimental
observations of x; at each time, t. For steady-state analysis, we calculate the covariance using
the pooled sample covariance from all seeding densities.

We refer to Eq. 9 as the statistical model. To connect experimental observations to the

mathematical model, we substitute g = m(@) in Eq. 9.

2.4 Inference

We take a likelihood-based approach to parameter inference and sensitivity analysis. Given a

set of observations X = {x;}! ;, the log-likelihood function is
0(0; %) = Zlogf(xi; m(0), z), (10)

where f(x;p,) is the multivariate normal probability density function (Eq. 9). Although
we take a purely likelihood-based approach to inference, we note that our implementation
is equivalent to a Bayesian approach where uniform priors encode existing knowledge about
parameters, a common choice [55,56].

We apply maximum likelihood estimation to obtain point estimates of the parameters for a

given set of experimental observations. The maximum likelihood estimate (MLE) is given by

~

0 = argmax ((0; X). (11)
0
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We solve Eq. 11 numerically to within machine precision using a local optimisation routine
[57,58]. In Fig. 3, we show point estimates obtained for a bivariate problem using maximum

likelihood estimation.

2.4.1 Confidence regions and hypothesis tests

We take a log-likelihood based approach to compute confidence regions and marginal univariate
confidence intervals for model parameters [38]. In a large sample limit, Wilks’ Theorem provides

a limiting distribution for the log-likelihood ratio statistic, such that
2(0(6) — £(8)] ~ *(v) (12)

where v = dim(@) and x?(v) is the x? distribution with v degrees of freedom. Therefore, an

approximate « level confidence region is given by

Au,a
2 )

0:0(0)>0(6) - (13)

where A, , is the a level quantile of the x*(v) distribution.

Hypothesis tests

To compare parameters between initial conditions, we perform likelihood-ratio-based hypothesis
test based on the distribution provided in Eq. 13 [38]. We denote by 6, the MLE computed
using data from all initial seeding densities, Xy, simultaneously. Similarly, to compare parameter
estimates from spheroids initially seeded with 2500 and 5000 cells, we denote by O the MLE
using a subset of data from spheroids seeded using N € {2500, 5000} cells. The test statistic is
given by

T =2 (—ﬁ(én + Zaém) ~ () (14)
N

where v is number of additional parameters in the case where a different parameter combina-
tion is used to describe each initial condition. An approximate p-value is therefore given by

1 — Fy2()(T), where F,2(,) is the cumulative distribution function for the x?(v) distribution.

Marginal confidence intervals

The profile likelihood method [37,59] allows for the construction of univariate confidence interval
of each parameter. Firstly, we partition the parameter space such that @ = (¢, \) where 9
is the parameter of interest and A is a vector containing the remaining parameters. Taking
the supremum of the log-likelihood function over A and normalising using the MLE gives the

normalised profile log-likelihood

p(1h; X) = sup £(1h, A; X) — £(6; X), 0, < 0. (15)
A

An approximate 95% confidence interval is given by Eq. 13 as the region where gp(w; X) >
—Aj0.95/2 ~ —1.92 [38]. We compute the profile log-likelihood numerically using a local opti-
misation routine [57] with either the MLE, or the nearest profiled point [59] as an initial guess.

In Fig. 3, we show profile likelihoods for a bivariate problem.
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Figure 3. We calculate approximate confidence intervals (CI) using profile likelihood and confidence
regions (CR) using contours of the normalised likelihood function. Results demonstrate estimates of
@ and R, using the structural model, Eq. 6, and data from WM983b spheroids at day 14 initiated
using 5000 cells. Point estimates are calculated using the maximum likelihood estimate (white marker).
The boundaries of regions are defined as contours of the log-likelihood function. Univariate confidence
intervals are constructed by profiling the log-likelihood and using a threshold of approximately —1.92 for
a 95% confidence interval.

Confidence regions
We construct two-dimensional confidence regions using Eq. 13 (we construct three-dimensional
confidence regions using a sequence of two-dimensional slices). First, we find a point on the
boundary of the region, denoted 6y such that £(8y) = £() — Ay /2, using bisection to machine
precision. Next, we integrate along the likelihood annihilating field; that is, we move in a
direction perpendicular to the gradient of the likelihood to obtain a set of points on the level
set £(0) = £(6y), given by
% = <(1) 01) Vol(0), 6(0)=0y. (16)

This calculation is demonstrated for a bivariate problem in Fig. 3.

The gradient for the statistical model, V,¢(u), can be calculated to within machine precision

using automatic differentiation [60]. For the mathematical model, we apply the identity
Vol(0) = Jm(0)V ul(m(6)), (17)

where J,(0) is calculated analytically (Appendix 1).

10
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Figure 4. Estimates of parameters using the structural model with data from various time points.
In (a—c), parameters are the mean of each observation: (R,¢,n). In (d-e), parameters are those in
the structural model: (R, @, R.). In (f), estimates of « are obtained by calibrating observations to the
steady-state model. As estimates Q and R. can be derived from the structural model (Eq. 6), which
applies at any time during phase 3, we expect to see similar parameter estimates across observation
times. As estimates of « can only be obtained from the steady-state model, which assumes the outer
radius is no longer increasing, we do not expect to see similar parameter estimates across observation
times. Bars indicate an approximate 95% confidence interval.

3 Results

To assess the limiting structure of spheroids and the effect of initial seeding density, we analyse
confocal sections of a large number of spheroids across three seeding densities using the WM983b
cell line. We show a subset of these images in Fig. 2 and summarise images with three concentric
annular measurements: the spheroid radius, R; the relative radius of the inhibited region, ¢; and
the relative radius of the necrotic core, n (Fig. 1h). In addition to spheroids from different initial
conditions tending towards a similar overall size (as seen from time-lapse data in Fig. la—f),
these results show that spheroids develop similar structures by day 21.

First, we fit the statistical model to the experimental data by estimating the mean of each
measurement, denoted pu = (R, ¢,n). We obtain a maximum likelihood estimate and an approx-
imate 95% confidence interval for each initial condition at observation days 12 to 21 (Fig. 4a—c).
On average, spheroids of all seeding densities increase in size from day 12 to day 18. In agreement
with earlier observations from time-lapse data in Fig. le-h, we see that spheroids initiated at
different seeding densities tend toward similar limiting sizes. Between days 18 to 21, spheroids
seeded with 5000 and 10000 cells decrease in average size, potentially indicating a period of

decay after a limiting size is reached.
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Figure 4b and c show estimates relating to the sizes of the inhibited region, ¢, and necrotic
core, 1. We see remarkable consistency in ¢ across seeding densities, tending toward a value of
90% in all cases: this corresponds to an actively cycling region with volume approximately 27%
of the total spheroid volume. The necrotic core increases significantly in size from days 12 to
21, and late time estimates of 7 are quantitively similar between seeding densities.

Next, we calibrate the mathematical model to identify any mechanistic differences between
seeding densities. Parameters ) and R, can be estimated using the structural model (Eq. 6) at
any time point. To estimate v we must invoke the steady-state model (Eq. 7), which assumes
that the overall growth of the spheroid has ceased. Therefore, we expect to see consistency in
estimates of 2 and R, between observation days but do not expect the same for estimates of ~.

Results in Fig. 4d show remarkable consistency in estimates of @) across seeding densities
until day 18, suggesting that the balance between nutrient availability and waste concentration
(Eq. 1) is maintained throughout the experiment and is similar between seeding densities.
Between days 18 and 21, estimates of ) for spheroids initially seeded with 5000 and 10000 cells
increase significantly, suggesting a behavioural change during this time; we attribute this to a
final period of decay. Estimates of R. do not show the consistency between observation days
we might expect if f; (Eq. 6) holds for the experimental data. Rather, estimates of R, decrease
between days 12 to 21, indicating f; may be misspecified. Results in Fig. 4f show that estimates
of v decrease with time to a similar value for all seeding densities. We interpret this asymptotic
decrease as an indication that spheroids approach a limiting structure since estimates of v are
strictly only valid when growth has ceased. Closer inspection of results in Fig. 4f show a delay
in estimates of v between spheroids seeded with 2500 cells and the other seeding densities.
Whereas the larger spheroids reach a limiting size by day 18, the smaller spheroids are still
growing. It is not until day 21 that estimates of « are comparable across all seeding densities.

Next, we analyse the limiting structure of spheroids across each initial seeding density. As
spheroids initially seeded with 5000 and 10000 cells decrease in average size from day 18 to day
21, we compare day 18 data from these high densities to day 21 data from spheroids initially
seeded with 2500 cells. Results in Fig. ba—c show profile log-likelihoods for each parameter in
the mathematical model. In Fig. 5d and e, we show 3D confidence regions for parameters in
the statistical and mathematical models, respectively. We see that both profile log-likelihoods
and 3D confidence regions overlap, indicating that parameter estimates are consistent between
seeding densities.

To compare quantitatively parameter estimates between seeding densities, we tabulate max-
imum likelihood estimates, approximate 95% confidence intervals, and results of a likelihood-
ratio-based hypothesis test for both models in Table 1. The late-time sizes of spheroids initiated
with 5000 and 10000 cells are statistically consistent (p = 0.62), as is their structure (p = 0.69).
We find evidence to suggest that spheroids seeded with 2500 cells, even at day 21, are smaller
(p = 0.04); however, the overall size and structure of the spheroids seeded with 2500 and 5000
cells are statistically consistent (p = 0.20). We find no significant differences in model param-
eters between seeding densities and note that the conclusion of overall statistical consistency
between seeding densities is identical for the mathematical model.

Next, we investigate the relationship between spheroid structure and spheroid size from day
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Figure 5. Comparison of WM983b spheroids between each initial seeding density at day 18 (spheroids
seeded with 5000 or 10000 cells) and day 21 (2500). (a—c) Profile likelihoods for each parameter, which
are used to compute approximate confidence intervals (Table 1). (d) 95% confidence region for the full
parameter space. 95% confidence regions for (d) the mean of each observation at steady state (R, ,7)
and (e) the model parameters (Q, Rc, 7).

Parameter 02500 05000 610000 P2500,5000 | P5000,10000
R 340.0 (331.0,349.0) | 353.0 (344.0,361.0) | 356.0 (347.0,365.0) 0.0420 0.617
10} 0.899 (0.889,0.908) | 0.895 (0.886,0.905) | 0.901 (0.891,0.911) 0.617 0.406
7 0.719 (0.674,0.764) | 0.716 (0.671,0.761) | 0.742 (0.696,0.788) 0.940 0.438
i 0.202 0.687
Q 0.75  (0.696,0.811) | 0.758 (0.704,0.818) | 0.771 (0.711,0.838) | 0.854 0.767
Rerit 149.0 (127.0,171.0) | 156.0 (133.0,178.0) | 145.0 (121.0,168.0) 0.672 0.503
0 0.737 (0.598,0.916) | 0.768 (0.624,0.953) | 0.657 (0.532,0.816) 0.792 0.308
(7] 0.202 0.687

Table 1. Parameter estimates and approximate confidence intervals for each initial conditions. Also
shown are p-values for likelihood-ratio-based hypothesis tests for equivalence between seeding densities.
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Figure 6. Data from days 3 to 21 (WM983b) and days 4 to 24 (WMT793b) for all initial conditions.
Solid curves in (a) show the solution to the mathematical model (Eq. 6) using the maximum likelihood
estimate calculated using the steady-state data (Table 1). Solid curves in (c¢) show the solution to the
mathematical model (Eq. 6) using using the maximum likelihood estimate calculated using day 24 data.
In (b) and (d), we fit a linear model to phase 3 data (indicated by coloured markers). The p value
corresponds to a hypothesis test where the linear model parameters are the equivalent for all initial
conditions. Shown in black is the best fit linear model.
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3 to day 21 (Fig. 6a). We again see evidence of a period of eventual decay that occurs after
a limiting size has been reached in our experiments. To validate the structural relationship
suggested by Greenspan’s model, we plot the solution to the structural model (Eq. 6) using
parameters estimated using the steady-state model (Table 1). The overall trend throughout
all three phases of growth in the mathematical model—made only using information from days
18 and 21—is remarkably consistent with experimental measurements Fig. 6a. We find an
explanation for the inconsistent estimates of R. observed in Fig. 4e. During phase 3, the
mathematical model predicts a non-linear relationship between R, ¢ and n (Eq. 6). In contrast,
the trend in the data is close to linear. We confirm this in Fig. 6b by calibrating a linear model

of the form
(R(7),¢(7),n(7)) = (Re, derit, 0) + 74, (18)

to phase 3 data using a total least squares approach that accounts for uncertainty in the in-
dependent variable 7 (Appendix 2). Here, 7 = 0 at the start of phase 3. Performing an
approximate likelihood-ratio-based hypothesis test confirms that the behaviour in spheroids of
all initial conditions is statistically consistent (p = 0.56). That is, the spheroid structure where
necrosis first occurs (at 7 = 0), (Re¢, Perit, 0), and the direction in which it develops, q, do not
appear to depend on the initial seeding density.

In Fig. 6¢ and 6d, we perform a similar analysis on spheroids grown from WMT793b cells.
Whereas WMO983b spheroids approach a limiting size by the conclusion of the experiment
(Fig. 1a), spheroids grown from the WM793b do not (Fig. 1b). Results in Appendix 3 ex-
amine parameter estimates from the mathematical and statistical models through time for the
WMT793b spheroids, demonstrating that the outer radius increases monotonically until day 24
for all initial conditions. These results also suggest consistency in estimates of () across obser-
vation days and seeding densities. Performing a likelihood-ratio-based hypothesis test indicates

that phase 3 is independent of the initial seeding density (p = 0.36).

4 Discussion

Time-lapse measurements of WM983b spheroids over a 21-day experiment show a cessation in
overall growth as the spheroids reach a limiting size. Consistent with largely untested predictions
of classical mathematical models [16,20,21], these limiting sizes appear to be independent of the
initial seeding density. Motivated by these observations, we develop a quantitative framework
to study spheroid structure as a function of overall size. We aim to answer two fundamental
questions: Do these spheroids have a limiting structure? Is the late-time behaviour independent
of the initial seeding density?

We find compelling evidence that WM983b spheroids have a limiting structure that is in-
dependent of the initial seeding density. This assumption is routinely invoked in mathematical
models of tumour structure but is yet to be experimentally verified. Given that we observe
spheroids to eventually reduce in size, we compare structural measurements at days when the
average outer radius for each initial seeding density is largest. First, we establish that spheroids
seeded with 5000 and 10000 cells have similar limiting sizes (353 pm and 356 pm, respectively;
p = 0.62) and that spheroids seeded with 2500 cells are slightly smaller at late time (340 pm;
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p = 0.04). This result highlights one of the challenges in determining the limiting structure of
spheroids: it is unclear whether there is a difference or whether the smaller spheroids would
continue to grow given additional time. Despite this discrepancy, we find a statistically consis-
tent limiting structure, with a necrotic core of 73% of the outer radius and an inhibited region
of 90% of the outer radius, indicating a proliferative periphery approximately 35pm (two to
three cell diameters) thick.

By examining spheroid structure throughout the entire experiment (Fig. 6), we establish a
relationship between spheroid structure and size that is independent of initial seeding density.
This result is significant as it suggests that variability in size and structure may be primarily at-
tributable to time. For example, spheroids that are smaller than average on a given observation
day may have been seeded at a lower density. Statistical techniques, such as ODE-constrained
mixed effects models, can be applied to elucidate sources of intrinsic variability, such as vari-
ability in the initial seeding density [61,62]. It is common in the literature to compare spheroids
with and without a putative drug after a fixed number of days [12]. However, our analysis
suggests that comparing the structure of spheroids of a fixed size may be more insightful; this
approach obviates variability due to initial seeding density, increasing the sensitivity of statis-
tical tests to small effects. A corollary is that since inferences relating to spheroid structure
are independent of spheroid size, experiments can be initiated with a larger number of cells to
decrease the time until spheroids reach phase 3.

Given our observations of WMO983b spheroids across seeding densities, an apparent con-
clusion of our analysis is that statistically consistent phase 3 behaviour implies a statistically
consistent limiting structure. If true, this suggests that an experimentalist only has to investi-
gate phase 3 behaviour to reach a conclusion relating to the limiting structure. Analysis of both
the mathematical model and experimental results for WM793b spheroids indicate that this is
not the case. In the mathematical model, fs (Eq. 6) characterises the structure solely in terms
of parameters ) and R., whereas v—which relates to the ratio of cell proliferation and loss due
to necrosis (Eq. 2)—determines the steady-state. We see this for WM793b spheroids, as phase
3 behaviour is independent of the initial seeding density (Fig. 6d), but time-lapse data of the
overall growth (Fig. 1b) gives no indication that spheroids of different densities will tend toward
the same limiting size.

As fs determines the relationship between spheroid size and structure at any time point, we
expect estimates of Q and R, to be similar when calibrated to data from different days. This is
the case for estimates of @ (Fig. 4d), but estimates of R, decrease with time (Fig. 4e). While
the mathematical model captures the same overall behaviour observed in the experiments, it
is evident from the discrepancy observed during phase 3 (Fig. 6a) that fs is misspecified. Our
assumptions of nutrient and waste at diffusive equilibrium and a hard threshold for growth
inhibition and necrosis give rise to fs that is cubic in ¢ and 7. Since the empirical relationship
for the cell lines we investigate is approximately linear, the model underestimates the radius
at which phase 3 begins, R.. At the loss of mechanistic insight, one approach to rectify this
discrepancy is to construct a purely phenomenological relationship where fs is piecewise linear.
A second approach is to revisit fundamental modelling assumptions to develop a mechanistic

description of the relationship between spheroid structure and overall size that is consistent
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with our experimental observations for these cell lines.

Our observations for WM983b and WM793b melanoma cell lines do not preclude a form of
fs that is cubic for other cell lines or experimental conditions. In our framework, the behaviour
of spheroids is characterised by the empirical relationship between spheroid size and structure.
Therefore, despite misspecification in parameter estimates of R., we can compare spheroids
grown with WM793b and WM983b cell lines by comparing the structural relationship observed
in the experimental data (Fig. 6a and 6¢). In this case, we observe that radius at which the
necrotic core develops is much smaller in WM983b spheroids than for WM793b spheroids.
While we cannot elucidate the biological factors that lead to this difference from our analysis,
we postulate that differences in the diffusion or consumption of nutrients by cells of each cell
line may contribute.

We have restricted our analysis of spheroid structure to three measurements that quantify
the sizes of the spheroid, inhibited region and necrotic core. While the spheroid and necrotic core
sizes are objective measurements, the boundary of the inhibited region is not. Our approach
is to identify the distance from the spheroid periphery where the density of cells in gap 2
falls below 20% of the maximum. We find this semi-automated approach produces excellent
results and enables high-throughput analysis of hundreds of spheroids; however, it does not take
advantage of all the information available in the experimental images. Mathematical models that
explicitly include variation in cell density through space [20,63] may be appropriate, however
are typically heavily parameterised, limiting the insight obtainable from typical experimental
data. The mass-balance model coupled to a model describing the relationship between spheroid
size and structure avoids these issues and, despite model simplicity, we are still able to gain

useful biological insight.

5 Conclusion

Reproducibility and size uniformity are paramount in practical applications of spheroid models.
Yet, the effect of intentional or unintentional variability in spheroid size on the inner structure
that develops is not well understood. We present a quantitative framework to analyse spheroid
structure as a function of overall size, finding that the outer radius characterises the inner struc-
ture of spheroids grown from two melanoma cell lines. Further, we find that the initial seeding
density has little effect on the structure that develops. These results attest to the reproducibility
of spheroids as an in vitro research tool. While we analyse data from two melanoma cell lines,
our focus on commonly reported spheroid measurements allows our framework to be applied
more generally to a other cell lines and culture conditions. It is routine to compare spheroid
size and structure of spheroids at a pre-determined time, our results suggest a refined protocol
that compares the structure of spheroids at a pre-determined overall size.

Given the prominence of spheroids in experimental research, there is a surprising scarcity of
experimentally validated mathematical models that can be applied to interpret data from these
experiments. We find that one of the earliest and simplest models of tumour progression—
the seminal model of Greenspan [16]—can give valuable insights with a parameter space that

matches the level of detail available from spheroid structure data. Given that we establish an
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empirical relationship between spheroid size and structure independent of both time and the
initial spheroid size, we suggest future theoretical work to identify mechanisms that give rise
to this relationship, perhaps through equation learning [64]. To aid in validating theoretical

models of spheroid growth, we make our highly detailed experimental data freely available.

Data availability

Code, data, and interactive figures are available as a Julia module on GitHub at
github.com/ap-browning/Spheroids. Code used to process the experimental images is avail-
able on Zenodo [50].

Additional files

e Supplementary file 1. Spheroid count per experimental condition (harvest day, seeding

density and cell line).

e Supplementary file 2. Additional cross-sectional confocal images of spheroids; 10 per

experimental condition (harvest day, seeding density and cell line).

e Supplementary file 3. Reproduction of Fig. 5 using data from day 21 for all initial seeding

densities.
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Appendix 1

Steady-state model solution

The steady-state, denoted (R,®,7) is given by setting dR/dt = 0 (Eq. 3 in the main text)

yielding the non-linear system of equations
0=1-¢" =,
0 =2R*7® — 3R*7* + R* — R?, (19)
0= R?¢> + (Q°R2 — R*(1 +27°)) ¢ + 27°R>.

Applying the substitution p = 7/¢, where 0 < p < 1, and algebraic manipulation allows the
solution to Egs. 19 to be expressed as the root of f(p;@,), where

12
Q) = cmp™, (20)
m=0
and where
co =3Q* - 3Q" + Q°,
Cc1 = 0,
Cy = _9Q27
c3 = 18Q% — 18Q* + 6Q° — 2v + 9Q%*y — 9Q* + 3Q°~,
Cq4 = 27Q47

cs = —36Q% — 9Q*7,

cs = 36Q°% — 36Q* — 15Q° — 6 + 36Q%y — 36Q*y
+12Q% — 3% +9Q%y* — 9Q"7* + 3Q°?,

cr = 54Q" + 27Q%,

s = —36Q% — 36Q°,

co = 24Q% — 24Q* + 8Q° + 36Q%y — 36Q*y — 15Q5y — 6+ + 18Q2%?
—18Q" + 6Q%* — v + 3Q%y* — 3Q" + Q%°,

c1o = 54Q",
c11 = —36Q%,
C12 = 8’}/.

Since p is subject to the constraint 0 < p < 1, we solve 0 = f(p; Q,7) using bisection!,
which is guaranteed to converge provided there exists only one root in the interval 0 < p < 1.
In Fig. Ala, we demonstrate that in the parameter region of interest (0 < @ < 1, v > 0) there
exists only a single solution to Eq. 20. We do this by finding all 12 roots of Eq. 202 and counting

Tmplemented to within machine precision using Roots. j1
2Implemented by finding the eigenvalues of the characteristic matrix using Polynomials.j1
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the number of real roots where 0 < p < 1.

The solution to Eq. 19 is then given by

_ _ R,

R= fR(pv ¢7 0) = (1 — qu)\/ma (21&)
_ 1

¢ = fs(p,0) = At (21b)
n= fn(pv 95) = p¢7 (21C)

where 6 = (Q, Rc,7).
In Fig. Alb, we compare a numerical solution to the transient model to the semi-analytical
solution for the steady state showing an excellent match. All algorithms used to produce the

results relating to the mathematical model are available on Github in Module/Greenspan. j1.

(a)zo . ' (b)
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Figure A1l. (a) Number of solutions to Eq. 20 subject to the constraint 0 < p < 1. Dashed line indicates
the region of interest, where v > 0 and 0 < @ < 1. (b) Comparison between a long-term solution to the
transient model and the semi-analytical solution to the steady state, where Q = 0.8, v = 1, R, = 150,
s =1 and Ry = 100.

24


https://doi.org/10.1101/2021.08.05.455334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455334; this version posted November 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Jacobian of the steady-state model

In the main document, we denote the solution to Eq. 19 as m(6). Here, we demonstrate how

given a value (R, ¢,7) = m(0), we can obtain an analytical expression for the model Jacobian,

om

s (22)

Im(0) =

Given p, we can form an analytical expression for Eq. 22. Noting that the coefficients of

Eq. 20 are functions of 8, we consider

9 12 9 12
56,0 =0= mzo 3 (cmp™) = e (cip?) + mzo o (enp™),
m—190pP
=p +cip = +z_:m P laCi
m;ﬁz

—P+_Zcmmp 17

which yields

dp ' ~<8f>_1
— = =—p' | = ) 23
8CZ‘ 212_0 M p™™ 1 P 8p ( )
Therefore,
% Op Oc
d6 ~ 0c o0’

where ¢ = (¢, c1, ..., c12); Op/0c = (0p/0cy, ...,0p/0ci2) and Oc/00 is the Jacobian of ¢ with
respect to 6.

Therefore, we have that

d¢ _ 9fs  0fsdp
0~ 8¢ | op d6’ (24)

and it follows that

dp _ 0f,dé  of,dp (25)
40~ 94 d0 ' 9p d6’

dR _ dfrd¢  dfrdp _Ofr
@_a$d0+apd0+aa' (26)

Therefore, an analytical expression for Jp,(0) (Eq. 22) is given by

(4R dé dj
Tm (6) = <d0 e’ d9> (27)
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Appendix 2

Total squares regression

In typical least-squares estimation we fit a model of the form
Y = a+bx; + ey, (28)

where e,,; ~ N (0, 0y) is assumed to be a normally distributed error component in y component
[65], and (a,b) are model parameters. Least-squares and maximum likelihood estimates (a, b)

can then be found by minimising the sum-square error
(d,b) = argmin Z(yl — (a+bx;))% (29)

We demonstrate this in Fig. A3. In typical least squares estimation, we minimise the vertical
distance between the data points and the regression line (blue dashed).
In the main document, we fit a linear model to data of the form (R, ¢,n), where each

component contains an error term. In two-dimensions, this is akin to a model of the form
Vi = a+bx; + ey + begy (30)

where we have included an additional error term &,; ~ N(0,0,), assumed to be a normally
distributed error component in x;. In this case, the least squares estimate is given by minimising
the total perpendicular distance between the data points and the regression line (Fig. A3, blue
solid) [65].

In the main paper, we fit a linear model of the form

(R(T)a ¢(7-)7 77(7—)) = (RCa bes 0) +7q, (31)

parameterised by R, ¢. and a unit vector q.
If we denote yo = (Rc, ¢¢,0) and y1 = (Re, ¢¢,0) + q, then the shortest distance between

observation x; = (R;, ¢i, ;) is given by

[(xi = yo) x (i =y
[yo — y1ll

d(xzv RC7 ¢C7 Q) = y (32)
where || - || denotes the Frobenius norm, and x denotes the vector cross product.

Therefore, least-squares estimates of the parameters can then be found by minimising the
sum-square error

min d(xi; Re, ¢c, q)- 33
in, 3 dli e 60.) (33)

Approximating the likelihood

To implement a log-likelihood-ratio based hypothesis test, we must approximate the likelihood

at the parameter estimates. To do this, we note that the total square error, denoted 5?, is of
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the form

2 2 2 2
g; = 1€y, + c2gy; + C3E5 5, (34)

2 02 and o2, respectively.

where €, €4, and €, ; are normally distributed with variances o, Y

2 _ 2 _ 2 2
If o7 = o0y = 0%, ¢

Satterthwaite equation [66], a special case of the gamma distribution. Therefore, we approxi-

would have an approximate chi-squared distribution by the Welch-

mate the distribution of €7 by fitting a gamma-distribution to the observed square error when
a total squares estimate is fit to the combined data (Fig. A3b).
Therefore, the approximate log-likelihood is given by

E(RCv(bm(AI) = Zlogff (dQ(Xi;ngvafn) ) (35)
where fr(-) is the probability density function of the fitted gamma function.

Log-likelihood-ratio based test

We denote 6y = (Rc, ¢c,q) the maximum likelihood estimate when the data from all ini-
tial conditions is pooled, and Oy = (Rc, ¢, q) the estimates from initial condition N €
{2500, 5000, 10000}. As the models must be nested for the likelihood-ratio test, we estimate the
noise model, fr(-), using the estimates from the pooled data.

The test-statistic is given by

~

A = £(02500) + £(B5000) + £(810000) — £(60), (36)

where A\ ~ x2, and

A~

VvV = dim(ég500) + dim(é5000) + dim(éIOOOO) — dim(Bg) = 8. (37)

Our implementation of this test is provided on GitHub in Module/Inference in the function

1m_orthogonal_test.
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Figure A2. (a) Comparison between typical least-squares error (blue dashed), and total-least-squares
error (blue solid). (b) Square error observed in the data and fitted gamma distribution

27


https://doi.org/10.1101/2021.08.05.455334
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455334; this version posted November 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Appendix 3

Results for WM793b
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Figure A3. Estimates of parameters using the structural model with data from various time points.

In (a—c), parameters are the mean of each observation: (R, ¢,n).

In (d-e), parameters are those in

the structural model: (R, @, R.). In (f), estimates of v are obtained by calibrating observations to the
steady-state model. As estimates @@ and R. can be derived from the structural model, which applies
at any time during phase 3, we expect to see consistent estimates across observation times. Given that
WM793b spheroids initiated with 2500 cells do not reach phase 3 until day 14, we exclude day 12 for
these spheroids from the mathematical analysis. As estimates of 7 can only be derived from the steady-
state model, which assumes the outer radius is no longer increasing, we only expect consistency for later
observation days. Bars indicate an approximate 95% confidence interval.
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