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Abstract 
When making a turn at a familiar intersection, we know what items and landmarks will come into 

view. These perceptual expectations, or predictions, come from our knowledge of the context, 

however it9s unclear how memory and perceptual systems interact to support the prediction and 

reactivation of sensory details in cortex. To address this, human participants learned the spatial layout 

of animals positioned in a cross maze. During fMRI, participants navigated between animals to reach 

a target, and in the process saw a predictable sequence of five animal images. Critically, to isolate 

activity patterns related to item predictions, rather than bottom-up inputs, one quarter of trials ended 

early, with a blank screen presented instead. Using multivariate pattern similarity analysis, we reveal 

that activity patterns in early visual cortex, posterior medial regions, and the posterior hippocampus 

showed greater similarity when seeing the same item compared to different items. Further, item 

effects in posterior hippocampus were specific to the sequence context. Critically, activity patterns 

associated with seeing an item in visual cortex and posterior medial cortex, were also related to 

activity patterns when an item was expected, but omitted, suggesting sequence predictions were 

reinstated in these regions. Finally, multivariate connectivity showed that patterns in the posterior 

hippocampus at one position in the sequence were related to patterns in early visual cortex and 

posterior medial cortex at a later position. Together, our results support the idea that hippocampal 

representations facilitate sensory processing by modulating visual cortical activity in anticipation of 

expected items.  

Introduction 
Our knowledge of how the world is structured has a powerful influence on our perceptions (Bar, 2004; 

de Lange et al., 2018; Oliva and Torralba, 2007; Summerfield and Egner, 2009). This is illustrated across 

a diverse range of phenomena, including visual illusions such as the Kanizsa triangle and enhanced 

object recognition when items appear in the correct spatial context (Davenport and Potter, 2004; 

Munneke et al., 2013; Palmer, 1975; Võ et al., 2019), which indicates that information we learn 

through experience can alter perceptual processes, and allow predictions about future states we may 

encounter (Bar, 2009; Eichenbaum and Fortin, 2009). Perceptual expectations, or predictions, can take 

different forms, with one useful distinction being between predictions of future states dependant on 
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temporal continuity (such as a train moving from one location in space to another as it9s driven), and 
predictions of future states relating to upcoming items or events that are not currently in view (such 

as when turning a corner while navigating a familiar route), thus relying on memory processes and 

learned contextual associations. This latter form of perceptual expectation must depend on 

coordinated responses between perceptual and memory systems, however the neural 

implementation of prediction in this regard is elusive, especially in terms of how memory systems 

might moderate expectations to reactivate relevant perceptual details in cortex. 

Expecting to see a specific visual stimulus generates responses in early visual cortex that resembles 

activity when perceiving the same stimulus, with suggestions that expectations result in stimulus 

templates being evoked in primary sensory regions (Kok et al., 2014, 2012). This premise is additionally 

supported by work showing that when items are expected, but not actually shown, activity in visual 

areas is similar to if the item did appear, despite the absence of any visual input (Eagleman and Dragoi, 

2012). Such evidence is taken to suggest that stimulus representations in visual areas are sharpened 

by expectations, through a process of supressing activity that is inconsistent with the expectation (de 

Lange et al., 2018). 

To make accurate predictions requires that we have previously encountered similar situations and 

learned what is likely to occur next. Statistical learning approaches argue that we acquire knowledge 

about how the world is structured through repeated experiences (Sherman et al., 2020; Shapiro et al., 

2017), with this learned information utilised for navigation and guiding predictions of future states 

(Barron et al., 2020; Stachenfeld et al., 2017; Turk-Browne, 2019). In humans, the hippocampus has 

been shown to represent predictions of future states (Brown et al., 2016; Eichenbaum and Fortin, 

2009), in addition to representing learned sequences of visual events in a distinct manner (Ezzyat and 

Davachi, 2014; Hsieh et al., 2014), together suggesting the hippocampus might be a primary source of 

top-down predictions that could result in the reactivation of expected sensory details in cortex. This 

is supported by recent evidence from Kok and Turk-Browne (2018), who showed that when an 

auditory cue is predictive of a subsequent visual item, hippocampal responses reflected the predicted 

stimulus and visual regions reflected the perceived stimulus. Such studies are beginning to reveal how 

memory and perceptual systems reflect aspects of prediction and perception, suggesting that the 

hippocampus has a top-down effect on future states in cortex. It is clear that the learned prior context 

must guide the prediction of future states, however direct empirical support for this contextually 

dependent hippocampal-cortical interaction remains limited. 

While much of the focus has been on primary sensory regions and the hippocampus, a network of 

posterior brain regions have also been implicated in processing item and context-based reactivations 

and expectations, including the parahippocampal cortex, precuneus/posterior cingulate cortex and 

angular gyrus (Bar and Aminoff, 2003; Caplette et al., 2020; Jonker et al., 2018; Lee and Kuhl, 2016; 

Livne and Bar, 2016; Long and Kuhl, 2021). For instance, Capalette et al., (2020) compared activation 

when an object could be predicted following a visual scene, against trials when the object could not 

be predicted, finding that the precuneus was more active when predictions could be made, suggesting 

that the region may play a role in integrating contextual and object details. These posterior regions 

comprise a posterior medial (PM) network, implicated in processing contextual and episodic details 

(Ranganath and Ritchey, 2012; Ritchey and Cooper, 2020), which displays connectivity with the 

posterior hippocampus (Barnett et al., 2021, 2019). In contrast, the anterior hippocampus has 

connectivity with an anterior temporal (AT) network including the perirhinal cortex, temporal pole, 

amygdala and orbitofrontal cortex, and is thought to represent item and object information, but not 

contextual details (Ranganath and Ritchey, 2012; Ritchey and Cooper, 2020). This differing 

connectivity profile of the hippocampus has been linked to differential functional properties of 
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anterior and posterior hippocampus (Poppenk et al., 2013), leading us to predict that context and 

contextually-driven reactivations will be present in the posterior hippocampus and PM network, in 

addition to the reactivation of sensory details in primary visual cortex. A further unexplored question 

is how the hippocampus, PM network and visual cortex interact to support the prediction and 

reactivation of sensory patterns in cortex. 

To explore these issues, we conducted an fMRI study where participants navigated through a learned 

space and saw predictable sequences of objects. The learned space was comprised of objects 

positioned in a cross-maze, which was used to create sequence trials containing the items that would 

be seen when navigating from one end-point to another (Figure 1AB). Critically, a quarter of the 

sequence trials terminated early, where a participant expected to see a specific item given the past 

items, but instead a blank screen was presented. These catch trials resulted in activity patterns driven 

only by the expectations without any bottom-up visual input. Using multivariate pattern similarity 

analysis, our design allows us to ask (1) which regions represent information about the currently 

viewed item in the sequence context, (2) are these item representations specific to a given sequence 

context, and (3) do regions reflecting item information also represent information about the expected 

item, revealed using the catch trials. To more specifically test how the hippocampus interacts with 

other regions to enable such predictions, we employed multivariate representational connectivity 

(Anzellotti and Coutanche, 2018; Kriegeskorte et al., 2008; Pillet et al., 2020) to test whether the 

representational similarity structure in the hippocampus at one point in the sequence related to the 

structure in cortical regions at a later point in the sequence, which would provide evidence that 

hippocampal representations relate to the reactivation of expected future activity patterns in cortex. 

 

 

Figure 1. Experimental design and analysis. A) Participants learned the spatial layout of 9 animals in two 

distinct zoos. B) During fMRI, participants navigated between two animals, seeing a predictable sequence of 

images. C) Item effects were established by comparing activity patterns when seeing the same item in the same 

sequence and same zoo (red arrow), with patterns for different items within the same sequence context and 

zoo (grey arrows). D) Item expectation effects were established by comparing activity patterns between the 

blank period (catch trial) and the item that was expected given the sequence context (red arrow), against activity 

patterns for different blank and seen items (grey arrows). 
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Results 

Behavioural learning and task performance 

The experiment was conducted in two parts, a pre-fMRI learning session and a sequence navigation 

task during fMRI. During the pre-fMRI session, participants were required to learn the identities and 

locations of nine different animals in two related zoos (Figure 1A). The same animals were found in 

both zoos and animal transitions were maintained by mirror-reversing and rotating 90 degrees anti-

clockwise one map to create the other. This ensures that the same sequences of animals could be 

seen in both zoos. During the pre-fMRI learning session, participants completed various behavioural 

tasks to learn the animals and their locations within each zoo. Participants completed map creation, 

exploration and navigation trials for each zoo, before a final behavioural test requiring navigation trials 

for both contexts. Navigation trials required participants to make a series of five moves between a 

start and goal animal, where start and goal animals were always end points of a maze arm (Figure 1B). 

Only the current-position animal was shown, and making the correct response resulted in seeing the 

next animal image in sequence. Correctly navigated trials therefore resulted in seeing a sequence of 

five animals in a predictable order. Participants were required to meet criterion performance (85% 

correct) before beginning the scanning session on the same day. 

During the fMRI scanning session, participants completed six runs of navigation trials, where each run 

consisted of blocks of eight trials from each zoo. In each zoo, there were 12 different navigation trials, 

with each full sequence of five animal items being repeated three times. As the same animals were 

found in both zoos, with the same transitions, identical visual sequences were seen in both zoos. 

During scanning, participants showed a high level of performance for both zoos (San Francisco: mean 

= 94.3%, SD = 6%, San Diego: mean = 95.0%, SD = 5%) with no statistical differences seen between 

them (t(22) = 1.11, p = 0.28). This high level of performance during both learning and scanning 

indicates that the sequences were well-known and therefore participants would be able to predict 

what animal was to appear next (although they were not instructed to do this). 

Item, sequence and expectation effects in the early visual cortex and hippocampus 

Our initial analysis of the fMRI data focussed on the early visual cortex and the hippocampus, both of 

which are suggested to support sensory expectations and predictions (e.g. Hindy et al., 2016; Kok and 

Turk-Browne, 2018). Given the different connectivity profiles, we additionally divided the 

hippocampus into a posterior and anterior section (Poppenk et al., 2013). Using multivariate pattern 

similarity analysis, we tested the extent to which these regions represented information about: (1) the 

currently viewed item, (2) the specific sequence context, and, (3) the next item that was expected in 

the sequence. 

On each scanning navigation trial, participants made a series of five moves between a start and a goal 

animal, seeing a sequence of five animals. To address our questions at the level of individual items, 

fMRI single-trial beta values were estimated for each item in each sequence. Our analyses focussed 

on the item in position 4 of the sequence, first because position 4 items are always preceded by the 

same image in all sequences, meaning any impact of the preceding item on voxel patterns due to 

autocorrelation is controlled for. Second, one quarter of position 4 trials were omitted with the trial 

ending early, allowing us to study the impact of expectations through these catch trials. Third, position 

4 is also situated after a key decision point (position 3), where it is possible to see multiple different 

animals following the central item (the rabbit), with the decision made at this point determines the 

next image. Therefore, position 4 allows us to both examine item-level effects, while controlling for 

autocorrelation and recent visual effects, and predictive effects generated from the central decision 

point. 
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We first determined if early visual cortex and the hippocampus were sensitive to information about 

the currently viewed item. To do this, we contrasted voxel pattern similarity (PS) for repetitions of the 

same item and compared this to PS between different items (Figure 1C). In order to control for 

sequence effects, PS was restricted to trials from the same sequence context and zoo, meaning that 

we are asking whether the items are dissociable within a specific sequence. Significant item effects 

were seen in V1/V2 (mean = 0.052, t(22) = 5.26, p < 0.0001) and the posterior hippocampus (mean = 

0.011, t(22) = 2.02, p = 0.028), but not the anterior hippocampus (mean = 0.010, t(22) = 1.37, p = 0.09; 

Figure 2A).  

 

 

Figure 2. Pattern similarity results for early visual cortex and the hippocampus. A. Item effects showing 

difference in pattern similarity between same item pairs and different item pairs. B. Sequence effects in the 

posterior hippocampus showing changes in pattern similarity for same item pairs according to the sequence. C. 

Item expectation effects showing the difference in pattern similarity when the same item was omitted or seen, 

and when the omitted and seen item were different. Error bars show 95% confidence intervals around the mean. 

 

These item-level representations may reflect the visual appearance of the object, however, given past 

research showing the hippocampus is sensitive to contextual and sequence information (Ezzyat and 

Davachi, 2014; Hsieh et al., 2014), we next asked if these item effects were dissociable across the 

different sequences. Here, we are interested in the sequence-level contexts, and not potential global 

zoo differences, meaning our analyses focussed on differences between the sequences without 

considering the two zoos. We compared PS between the same-items in the same sequence, to PS for 

the same-items when found in different sequences. As our analysis only included items in position 4, 

and PS is calculated between same items pairs, any differences we see are driven purely by 

information pertaining to the sequence, and not by visual details of item or temporal order. Significant 

sequence effects were found in the posterior hippocampus, where patterns were more similar for 

same-items from the same sequence (mean = 0.041) compared to same-items across different 

sequences (mean = 0.030; t(22) = 2.52, p = 0.0196). No significant sequence effects were observed in 

V1/V2 (t(22) = 1.81, p = 0.085) or the anterior hippocampus (t(22) = 1.22, p = 0.23). These results show 

that the posterior hippocampus not only represents information about the current item, but that 

these representations are further reflective of the specific sequence the item occurred in. 

In the above analysis, we characterized representations of presented objects within a learned 

sequence. In well-learned sequences, upcoming items are known, and according to predictive models 
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of perception, being able to predict upcoming items should impact neural processing by generating 

expectations about what is about to happen (Bar, 2004; de Lange et al., 2018; Trapp and Bar, 2015; 

Turk-Browne, 2019). To test this hypothesis, we focused our next analyses on catch trials (see Figure 

1D), in which each sequence was terminated early, such that, after position 3, a blank screen was 

shown for six seconds, followed by the onset of the next navigation trial. In other words, on every 

catch trial, there was no motor response or external visual stimulation, and the preceding image was 

matched for all sequences. Thus, any representational content during a catch trial would be expected 

to be driven by memory-driven predictions in the absence of bottom-up input. 

To test whether the regions that were sensitive to perceived items also carried information about 

expected items in the absence of sensory input, we assessed PS between presented items and activity 

when an item was expected but omitted from the sequence. PS was calculated between items and 

the catch trials when they were the same item, and compared to when the presented and catch trials 

were different (Figure 1D). Significant item expectation effects were seen in V1/V2 (mean = 0.008, 

t(22) = 2.25, p = 0.018) but not the posterior hippocampus (mean = 0.002, t(22) = 0.58, p = 0.28; Figure 

2C). Our analyses clearly show that activity patterns in early visual regions are not only shaped by the 

bottom-up visual input, but that contextually-predicted item information is reactivated which matches 

the expected visual input. 

Together, our analysis of early visual cortex and the hippocampus reveals that while item information 

is present in both regions, only item representations in the posterior hippocampus were modulated 

by the sequence the item was in, and only in the early visual cortex did we find evidence of item 

patterns being reactivated when they were expected, but failed to appear. 

Item and expectation effects in the posterior medial cortex 

As discussed earlier, a wider network of regions beyond the hippocampus have been implicated in 

memory-guided predictions and contextual reactivations (Bar and Aminoff, 2003; Caplette et al., 2020; 

Jonker et al., 2018; Lee and Kuhl, 2016; Livne and Bar, 2016; Long and Kuhl, 2021). The PM network is 

functionally connected to the posterior hippocampus, and associated with reactivation of 

contextually-relevant object information, whilst the AT network is connected to the anterior 

hippocampus and is thought to represent item information (Ranganath and Ritchey, 2012). As such, 

we next repeated our analysis of item, sequence and expectation effects across regions in the PM 

network - parahippocampal cortex (PHC), posterior medial cortex (PMC; precuneus/posterior 

cingulate cortex) and the angular gyrus - and the AT network - the temporal pole and perirhinal cortex 

(PRC). 

Item effects were calculated by comparing PS between same-item pairs with PS for different item 

pairs, within the same sequence. Significant item effects were seen in PMC (mean = 0.026, t(22) = 

3.11, p = 0.0128) and the PHC (mean = 0.016, t(22) = 2.80, p = 0.013), but not the angular gyrus (mean 

= 0.010, t(22) = 1.44, p = 0.10), temporal pole (mean = 0.11, t(22) = 1.74, p = 0.080) or PRC (mean = 

0.005, t(22) = .95, p = 0.17; Figure 3A). This suggests that in addition to the early visual cortex and 

posterior hippocampus, regions of the PM network – the PMC and PHC - also represent the currently 

viewed item during navigation. 

We next asked whether these regions represented the same items in a distinct manner across 

sequences by comparing PS for same-item pairs from the same sequence, against same-item pairs 

across different sequences. This analysis revealed no significant sequence effects (all p9s > 0.05, fdr 
corrected). Finally, we tested whether the regions that showed item effects also showed effects of 

expected items in the absence of bottom-up visual input by comparing PS for when items and catch 

trials were the same item, to when the presented and catch trials were different. Significant item 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455275
http://creativecommons.org/licenses/by/4.0/


7 

 

expectation effects were in the PMC (mean = 0.016, t(22) = 2.96, p = 0.0041) but not the PHC (mean 

= -0.001, t(22) = 0.27, p = 0.39; Figure 3B). 

 

 

Figure 3. Pattern similarity results for regions of the PM and AT networks. A. Item effects showing difference 

in pattern similarity between same item pairs and different item pairs. FDR correction applied to p-values. B. 

Item expectation effects showing the difference in pattern similarity when the same item was omitted or seen, 

and when the omitted and seen item were different. Error bars show 95% confidence intervals around the mean. 

 

In addition to hypothesis-driven ROI analyses, we further conducted an exploratory searchlight 

analysis to identify other potential areas carrying information about perceived and predicted stimuli. 

Results from this analysis, reported in the Supplementary Information, showed strong item and 

expectation effects in posterior aspects of the visual cortex, consistent with our findings in the V1/V2 

ROI analyses. 

Overall, our data point to a representation of the current item in a network of regions in early visual, 

PM and the posterior hippocampus, with item representations in the posterior hippocampus being 

further specific to the sequence context. Crucially, representations in early visual cortex and the PMC 

reflect the expected item in the absence of any bottom-up input, suggesting they are a site of top-

down effects based on contextual expectations. 

Hippocampal and cortical interactions support reactivation 

An important question arising from our results, is by what mechanism are visual details of the items 

being reactivated in early visual cortex and PMC? Motivated by the role of the hippocampus in 

representing sequence knowledge, cortical reinstatement and the prediction of future states 

(Eichenbaum and Fortin, 2009; Hindy et al., 2016; Kok et al., 2019; Stachenfeld et al., 2017; Turk-

Browne, 2019), we next tested the hypothesis that hippocampal pattern information related to future 

information states in visual cortex and PMC - regions showing item expectation effects, which may 

suggest the hippocampus supports the prediction and reactivation of sensory patterns in cortex. We 

reasoned that, if this is the case, the fidelity of a hippocampal sequence representations at one state 

(as indexed by PS across same-sequence pairs) should be predictive of the fidelity of the cortical 

sequence representation at the next position. We focused on position 3 in the sequence, as this is a 

critical decision point where one must choose amongst three possible states. Thus, we expected that 

hippocampal predictions about future states may be enhanced at this decision point (Johnson and 

Redish, 2007; Pfeiffer and Foster, 2013; Singer and Frank, 2009). If so, representations in the 
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hippocampus at position 3 should share information with the patterns in cortex at position 4, where 

item representations and expectation effects are seen (Figure 4A). 

 

 

Figure 4. Cross region and position multivariate connectivity. A. (i) Participants navigate the sequence up to 

position 3, the central decision point of the cross-maze. (ii) From here it is possible to see 3 different animals, 

one of which is the correct next item for this sequence. (iii) If hippocampal representations are predictive of 

future states, then the hippocampal representation at position 3 will also contain some information about the 

correct future state (position 4). If so, representations in the hippocampus at position 3 should share information 

with the patterns in cortex at position 4, where item representations and expectation effects are seen. This is 

tested using multivariate connectivity. B) First, posterior hippocampal activity patterns are extracted for each 

rabbit item (position 3) for each repetition of each sequence. Pattern similarity is calculated between each 

repetition of the same-sequence pairs, resulting in a correlation vector, analogous to an unwrapped 

representational similarity matrix, but limited to same-sequence pairs. Following this, similarity is calculated 

between same sequence/item-pairs at position 4 for repetitions from the same sequence taken from a second 

region (e.g. V1/V2), producing a second similarity vector. Multivariate connectivity is calculated as the partial 

correlation between the two similarity vectors from the two regions/positions while controlling for the similarity 

of region 2 at position 3. C) Posterior hippocampus was significantly correlated with later similarity patterns in 

V1/V2 and PMC. Error bars show 95% CI around the mean. 

 

To test this, we first calculated hippocampal PS between same sequence pairs at position 3, which is 

the central decision point in the sequence (where all items are rabbits; Figure 4B). We next calculated 

PS in cortical ROIs, V1/V2 and PMC, in all same sequence trial pairs at position 4. These ROIs were 

specifically chosen as they showed item expectation effects, suggesting they are a target for item 

reactivation. In order to provide control over auto-correlated effects between position 3 and 4 within 

a single region, we calculated the partial correlation between position 3 posterior hippocampal PS and 

position 4 PS from cortical regions while controlling for position 3 PS from the same cortical region. 

This analysis thus allows us to ask whether information in the hippocampus at position 3 is related to 

cortical information at the next point in the sequence. We find significant partial correlations between 

position 3 representations in posterior hippocampus and position 4 representations in V1/V2 (mean 

pxy = 0.089, t(22) = 4.51, p < 0.0001) and PMC (mean pxy = 0.063, t(22) = 2.77, p = 0.0056; Figure 4C). 

These results show that hippocampal responses reflect information about the upcoming states that 
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later emerge in early visual and PMC, and is consistent with a predictive role of the hippocampus in 

supporting cortical reinstatement of expected future items. 

 

Discussion 
In this study, we sought to uncover how the hippocampus, PM network and early visual cortex interact 

to support the prediction and reactivation of sensory details in cortex. Our results revealed that the 

human hippocampus and posterior cortical regions – the posterior medial cortex 

(precuneus/posterior cingulate cortex) and early visual regions, work together to represent, predict 

and reactivate expected sensory details of future events. After learning the locations of nine animals 

within a cross maze structure, participants moved through the maze during fMRI where they saw 

predictable sequences of animal images. Importantly, in our paradigm, one quarter of the sequences 

ended early, meaning that the next image in the sequence was expected but not shown, allowing us 

to investigate the nature of top-down expectations in the absence of any visual input. Pattern 

similarity (PS) analysis revealed complementary roles for the hippocampus and neocortical areas 

during navigation. Specifically, the posterior hippocampus carried information about items and 

sequence contexts, whereas visual cortical areas showed significant representations of the currently 

processed item, as well as predicted items that were not shown in a sequence. Furthermore, we found 

that the fidelity of hippocampal PS predicted subsequent item-specific representations in early visual 

cortex and the PMC. These findings show that hippocampal representations are used to generate 

expectations of future inputs via top-down modulation to the neocortex. 

Hippocampal memories guide the reactivation of upcoming sensory details 

Using multivariate connectivity, we tested if the representational similarity structure seen in the 

hippocampus was related to representational similarity seen in V1/V2 and PMC, with the inference 

being that correlated representational states between regions indicates representations are shared 

between the regions (Pillet et al., 2020). Importantly, we calculated multivariate connectivity between 

the hippocampus at position 3 in the sequence (a rabbit image in all sequences) and V1/V2 and PMC 

at position 4, meaning that in addition to testing for shared representations across regions, we further 

tested the idea that information is shared between past hippocampal responses and future cortical 

responses. Using this approach, we observed a significant relationship between the posterior 

hippocampus at position 3 with both V1/V2 and PMC at position 4. These results argue that the 

hippocampus is a top-down source of predictive effects, which are then reactivated in cortex. Note 

that this effect cannot be driven by a concurrent strong representation of the current item in both 

regions, as our analysis controls for effects in the cortical regions at position 3. This means there is 

some element of representational similarity in the hippocampus at position 3 that can explain future 

representational similarity seen at position 4 in cortex, over and above that explained by the cortical 

regions at position 3 themselves. These results align with the view that hippocampal memories guide 

prediction of upcoming sensory events.  

How might these predictive effects come about? One line of research to illustrate the link between 

the hippocampus and learning and prediction, is that of statistical learning. Studies of statistical 

learning argue that the hippocampus enables us to learn the structure of our environment, which can 

then be used to predict upcoming events to help guide behaviour (Kourtzi and Welchman, 2019; 

Schapiro et al., 2014; Sherman et al., 2020; Turk-Browne, 2019). Human fMRI data indeed points to 

the hippocampus for representing the temporal order of learned object sequences (Hsieh et al., 2014) 

and for predicting future states during navigation in learned environments (Brown et al., 2016). 
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Further, hippocampal place cells have been shown to reactivate prospective future locations along a 

navigational path, a phenomenon termed preplay (Johnson and Redish, 2007; Lisman and Redish, 

2009). Such hippocampal predictions are also captured through differing computational accounts, that 

predict future states based on the current state and past learned experiences (Mattar and Daw, 2018; 

Stachenfeld et al., 2017). Regardless, together with our results, this points to a mechanism whereby 

the hippocampus is engaged in predicting upcoming events, through reinstating learned details. 

Learning paradigms have further been employed to reveal the instantiation of visual predictions, 

where after learning sequences of visual gratings, the orientation of an expected grating can be 

decoded from early visual cortex (Luft et al., 2015). In conjunction with our data, these studies point 

to the hippocampus being a source of top-down modulation on early visual regions. Predictions about 

upcoming items could be reactivated in the hippocampus, through pattern completion (McClelland et 

al., 1995), with information about the expected sensory details then reactivated in cortex. In humans, 

evidence is emerging linking hippocampal pattern completion to visual predictions in sensory regions 

(Hindy et al., 2016; Kok and Turk-Browne, 2018). For example, Hindy et al., (2016) used high resolution 

fMRI after participants learned sequences of cue-response-outcome associations. Using multivariate 

classifiers trained on either the full sequence (cue-response-outcome) or the outcome alone, and 

applied to cue-response trials, they showed that hippocampal subfields CA1 and CA2/3DG contained 

information about the full sequence, while V1 and V2 contained information about an expected 

perceptual outcome. Further, Hindy et al., (2016) showed that sequence decoding in the hippocampus 

was related to outcome decoding in visual cortex, providing evidence that hippocampal responses 

were linked to the reactivation of predicted sensory details in visual cortex. These results parallel our 

hippocampal sequence effects and early visual cortex item expectation effects. However, much of the 

previous evidence focussed only on the hippocampus and visual cortex, while prediction was also part 

of the task. Here, participants navigated through learned environments which resulted in seeing 

sequences of visual objects in a task that does not overtly emphasise prediction. This allowed us to 

further establish the top-down nature of hippocampal representations with visual cortex, but we also 

extend past research by showing top-down effects in the contextually sensitive posterior medial 

cortex, and during a task that involved goal-directed navigation, rather than cue-outcome predictions. 

Our data further adds to a broad literature highlighting a top-down modulatory role of the human 

hippocampus on visual cortex, and beyond, during memory-guided behaviours such as retrieval 

(Barron et al., 2020; Bosch et al., 2014; Staresina and Wimber, 2019; Warren et al., 2019), navigation 

(Bridge et al., 2017; Sherrill et al., 2013; Watrous and Ekstrom, 2014) and attention (Aly and Turk-

Browne, 2016a, 2016b; Günseli and Aly, 2020). 

Predicted sensory details are reactivated in early visual and PM cortex 

A critical question we addressed was which regions represented expected items in the absence of any 

bottom-up input, finding that both V1/V2 and the PMC showed item expectation effects. These 

findings were possible due to the catch trials included in the paradigm, where, after position 3 in the 

sequence, the final two items of the sequence were omitted and replaced by an extended blank 

screen. This meant that we could evaluate representations of what was expected, but did not appear. 

Such expectation effects require the retrieval of information based on past learned experiences with 

a given sequence context, and the reactivation of the expected sensory patterns. 

Previous studies have reported the reactivation of expected sensory details in primary visual regions 

for abstract stimuli (Alink et al., 2010; Eagleman and Dragoi, 2012; Kok et al., 2014, 2012), with our 

results showing this effect generalises to more complex meaningful items. Going beyond these 

studies, our results revealed item expectation effects outside of primary visual cortex - in the PMC. 

The design of our study did not permit us to dissociate between visual and PMC representations, 
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though the extant literature speaks to this issue. For example, recent fMRI research shows the PMC 

becomes more engaged when item predictions can be made from a preceding visual scene. Caplette 

et al., (2020) showed visual scenes followed by objects which were either predictable given general 

knowledge about a scene (e.g. a beachball is consistent with a beach scene) or the object was not 

predictable following a scrambled scene. They showed increased activity in the precuneus for objects 

that could be predicted, suggesting the precuneus is integrating information about the context specific 

predictions and the object. In our paradigm, like the early visual cortex, the PMC showed expectation 

effects when an item was expected, but never shown. Such expectation effects in the PMC have also 

been observed during speech following a predictive context (Scharinger et al., 2016). Such findings 

suggest that the PMC might play a role in prediction that transcends sensory modalities, consistent 

with the idea that PMC representations may be relatively abstract or semantic in nature (Ranganath 

and Ritchey, 2012).  

The item expectation effects we see are driven by the differentiation of activity patterns to different 

expected animals. Several lines of evidence have shown that when an item is highly predictable, there 

is both an increase in stimulus decoding, and decrease in activity magnitude (Alink et al., 2010; Kok et 

al., 2012). The stimulus-specific nature of our expectation effects, observed without the occluding 

impact of perceiving a stimulus, are consistent with models where predictions result in a sharpening 

of neural representations, resulting in reduced BOLD signals, as a consequence of top-down 

constraints (de Lange et al., 2018). In our study, the reactivated patterns were specific enough to 

distinguish between different expected animal images. Yet what is less clear is the level of detail and 

nature of information that was reactivated. As we hypothesise above, it is likely that low-level visual 

details are reactivated in early visual areas, and higher-level visual, semantic and contextual signals in 

the PMC. In real life situations, our expectations are less constrained than in the current paradigm, 

and so predictions are unlikely to be related to a specific perceptual stimulus. Rather, real-world 

predictions must be more general than the stimulus-templates hypothesised to be reactivated in 

primary visual regions. As such, important future work should investigate how the specificity of 

mnemonic expectations modulates the strength and mechanism of hippocampal guided predictions. 

 

It is long established that our past experiences impact our current perceptions. The current study 

provides novel insights into the mechanisms of how top-down expectations can influence the visual 

processing of objects. The current results advance our understanding of how the hippocampus and 

posterior cortical regions work together to support perceptual expectations and predictions of future 

states based on learned contexts. Further, our results help to bridge between research on the cortical 

manifestation of expectations, and research on predictive and contextual representations in the 

hippocampus. 

 

Methods 
Participants: Thirty healthy individuals participated in the study. All participants had normal or 

corrected-to-normal vision and were right handed. Data from one participant was excluded due to 

technical complications with the fMRI scanner, one subject was excluded due to incomplete 

behavioural data, two subjects were excluded due to poor behavioral performance in the scanner, 

and one subject was removed from the scanner before the experiment was completed. Prior to data 

analysis, to ensure data quality, we conducted a univariate analysis to look at motor and visual 

activation during the task compared to an implicit baseline. Two subjects showed little to no activation 
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in these regions and were excluded from further analysis. This resulted in twenty-three participants 

reported here (11 male, 12 female, all right handed). Written informed consent was obtained from 

each participant prior to the experiment, and the study was approved by The Institutional Review 

Board at the University of California, Davis. 

Stimuli: The stimuli consisted of nine common animal images. Each animal was represented by a 

colour photograph, presented in isolation on a grey background. The nine animals were positioned 

into a cross maze with two animals per arm and one in the central location, creating the first zoo called 

8San Francisco Zoo9. A second zoo was created, 8San Diego Zoo9, by mirror-reversing and rotating 90 

degrees anti-clockwise one zoo map to create the other. Therefore, both zoo contexts contained the 

same animals with the same transitional structure but a different global layout. 

Procedure 

Training: Participants initially underwent a training session in order to learn the animals and their 

locations within the two zoos. To achieve this, participants completed map construction, exploration 

and navigation trials for one zoo, with the process then repeated for the second (zoo order counter-

balanced across participants). During map construction, participants were shown the zoo layout and 

asked to arrange the animal images shown on screen into the correct positions. During exploration, 

participants were shown the animal at the centre of the maze and were free to move 

up/down/left/right to see how moving in different directions resulting in seeing a different animal. 

After making 9 moves, the exploration reset to the centre animal to begin again. Exploration continued 

until each animal was seen at least four times. Next, participants navigated between positions in the 

maze. They were shown a cue image indicating a start and a goal animal, followed by seeing the start 

animal. The participant had to select the correct moves to reach the goal animal. Start and goal 

animals were always located at the end points of an arm, and participants had a maximum of four 

moves. If participants did not reach criterion during navigation, they repeated map construction and 

navigation. After completing training with one zoo, the procedure was repeated with the second zoo. 

After successfully completing training with both zoos, participants completed a final navigation task 

including trials from both zoos and presented with the same structure and timings of the fMRI 

navigation task (see below). All training and navigation tasks were presented using Psychtoolbox and 

Matlab. 

fMRI: During fMRI scanning, participants performed the navigation task for both zoos in a blocked 

fashion across six scanning runs. In each run, participants were told which zoo they were in and 

completed eight navigation trials for one zoo before switching to the other zoo. A navigation trial 

consisted of seeing a cue screen showing the start and goal animal for 3 seconds, followed by a blank 

screen for 3 seconds. The start animal was then displayed for 2 seconds followed by a 3 second blank 

screen. After a response, the relevant animal was shown for 2 seconds followed by a 3 second blank 

screen, with the process continuing for a maximum of four moves. After four responses were made, 

the participant was shown a feedback screen. The participant was required to make their response 

within 2 seconds of the animal appearing, otherwise the move was judged as incorrect and they were 

shown a text screen indicating 8wrong move9 for 2 seconds followed by a 3 second blank screen, and 
the animal was shown again. 

Participants competed navigation trials for the twelve possible start and goal animal combinations in 

each zoo, with each navigation trial being repeated 3 times resulting in 72 full navigation trials. An 

additional 24 catch navigation trials were included where each navigation trial was terminated early, 

after the third animal (the central animal if correct responses were made), and instead of seeing the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455275
http://creativecommons.org/licenses/by/4.0/


13 

 

fourth animal, participants saw an additional blank screen lasting six seconds before a new trial began. 

The order of zoos was counterbalanced both across runs and between participants. 

Scanning acquisition: MRI data were acquired on a 3T Siemens Skyra MRI using a 32-channel head 

coil. Anatomical images were collected using a T1-weighted magnetization prepared rapid acquisition 

gradient echo (MPRAGE) pulse sequence image (TR = 1800ms; TE = 29.6 ms; flip-angle = 7 degrees; 1 

mm3 isotropic voxels; 208 axial slices, TR=2100ms, TE=2.98ms, FOV = 256mm). Functional images were 

collected with a multi-band gradient echo planar imaging sequence (TR = 1222 ms; TE = 24 ms; flip 

angle = 67 degrees; matrix=64x64, FOV=192mm; multi-band factor = 2; 3 mm3 isotropic spatial 

resolution). 

Preprocessing: Preprocessing used SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). Functional images 

underwent slice time correction, spatial realignment and smoothing using a 4mm FWHM Gaussian 

kernal. To detect fast motion events, the ART repair toolbox (Mazaika et al., 2009) was used. These 

spike events were used as nuisance variables within the GLMs. Single item beta images were obtained 

by running a separate GLM for each object (LSS model; Mumford et al., 2012). For each GLM, the item 

of interest was entered as a single regressor with 1 event, with an additional regressor for all other 

events. All events were modelled as a 2 second boxcar and convolved with a canonical HRF. Additional 

regressors were included for each spike event identified, 12 motion regressors (6 for realignment and 

6 for the derivatives of each of the realignment parameters), and a drift term using a 128s cutoff. This 

resulted in five images per full navigation trial (e.g. zebra, chicken, rabbit, horse, tiger) and 4 images 

for each catch navigation trial (e.g. zebra, chicken, rabbit, omitted item). 

Pattern Similarity Analysis 

ROI PS: Our initial analyses focussed on anatomical regions of interest (ROIs) in early visual cortex 

and the hippocampus. A V1/V2 region was created from the functional atlas of visual cortex developed 

by Rosenke et al. (2021), where V1 and V2 were combined into a single region, and inverse normalised 

to native space. Probabalistic maps of the hippocampal head, body and tail were obtained from the 

multistudy group template (Yushkevich et al., 2015). These maps were warped to MNI space using 

DARTEL and thresholded at 0.5. The resulting maps were then reverse normalized to each participants 

native space using Advanced Normalization Tools. The anterior hippocampus was defined as the 

hippocampal head, and the posterior hippocampus as the combined body and tail sections. This 

division closely follows recommended anterior–posterior divisions (Poppenk et al., 2013). In addition, 

ROIs of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) were obtained from the 

multistudy group template (Yushkevich et al., 2015), and the temporal pole and PMC (combined 

precuneus and posterior cingulate cortex) were generated using FreeSurfer (version 6) and warped to 

each participants native space. 

For item effects, pattern similarity was calculated using all grey matter voxels within each ROI and 

tested using a one-sampled t-test against zero. Item expectation effects were also tested in the ROIs 

showing significant item effects, and were based on pattern similarity between the expected-but-

omitted beta image and the beta image of trials where the same item was seen. Specifically, pattern 

similarity was calculated between each omitted item and the position 4 trials where the same item 

was seen. Pattern similarity was then averaged across pairs where the omitted item was due to be the 

same as the seen item. This was contrasted with pattern similarity where the omitted item was 

different to the seen item. To test for effects of sequence, PS was calculated between pairs of trials 

that shared the same item and the same sequence context (ignoring the zoo context) and contrasted 

with PS for the same-items from a different sequence. All pattern similarity values were calculated 
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between pairs of items using Pearson9s correlation, excluding items where an incorrect response was 
made and excluding pairs of trials that occurred in the same scanning run (Mumford et al., 2012). 

Between region PS: We also tested the degree to which PS in one region related to PS in another 

region at a different position in the trial. Here, we tested whether PS in the hippocampus at position 

3 in the sequence was related to PS at position 4 in cortical regions that showed item expectation 

effects. To do this, we used a partial correlation analysis whereby hippocampal PS from position 3 was 

correlated with position 4 PS from a second region, while controlling for PS from the second region at 

position 3. The analysis tells us if past information in the hippocampus can explain future information 

in cortex, over and above that explained by past information in that same cortical region. Our analysis 

focused on PS between trials from the same sequence, and same zoo (excluding across sequence/zoo 

PS). 
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