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Abstract 

Individual subjects can be accurately identified in a database based on their functional 

connectome (FC), i.e. the whole-brain patterns of synchrony in fluctuations of brain 

activation as measured with functional MRI (fMRI). Accurate identification requires a 

representation of brain function to be simultaneously reliable (i.e. low intraindividual 

variability) and idiosyncratic (i.e. high interindividual variability), hence calling it a 

"fingerprint". Importantly, several studies have shown lower test-retest reliability (i.e. higher 

intraindividual variability) of the global FC compared to local representations of brain function 

such as regional homogeneity (ReHo) and (fractional) amplitude of low-frequency 

fluctuations ((f)ALFF). Therefore, here, with resting-state and task fMRI-data from the 

Human Connectome Project and the enhanced Nathan Kline Institute, we demonstrate that 

the local functional fingerprint, and especially regional homogeneity (ReHo), achieves near-

perfect identification accuracies using four different ways to quantify identification. This 

finding is replicable across various parcellations as well as resilient to confounding effects. 

Moreover, using a machine-learning setup, we show that the small intraindividual ReHo 

fingerprint variability across sessions is meaningful for explaining individual-level 

intelligence. Further analyses reveal that the attention networks and the Default Mode 

Network contributed the most to the individual "uniqueness" of the ReHo fingerprint. Last, 

with another publicly available dataset, we show that ReHo is also stable in individuals with 

schizophrenia and that its (in)stability across sessions relates to intelligence scores. 

Altogether, our findings suggest that the ReHo fingerprint is a good candidate for further 

exploration of applicability in precision medicine. 
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Introduction 

Large variability across individuals (i.e., interindividual variability) is seen in phenotypic traits, 

including physical traits and cognitive abilities, as well as brain organization. Identifying the 

variability in functional brain organization across individuals that is predictive of cognitive and 

clinical properties at the individual level is important for developing viable biomarkers for 

precision medicine and precision psychiatry specifically (1). Precision psychiatry is the 

tailoring of treatment to the individual. It requires trait-like representations of brain function 

that are simultaneously reliable (i.e., show low intraindividual variability) and idiosyncratic 

(i.e., show high interindividual variability), i.e., representations that are stable within an 

individual but vary across individuals. Intraindividual stability independent of an individual's 

current state is a prerequisite for clinical application, as biomarkers should reflect underlying 

traits or disease and not the current state. Representations should also be idiosyncratic or 

unique for an individual, as the interindividual variability in these representations can then be 

utilized for the prediction of individual-level behavior with machine learning algorithms (2). 

Thus, a trait-like state-independent neural fingerprint that captures interindividual differences 

can shed light on fundamental brain organization as well as facilitate translational 

applications. 

 Until now, the functional connectome (FC) has been the choice to predict cognition 

and behavior. It reflects whole-brain patterns of synchrony in fluctuations of the blood-

oxygen-level-dependent (BOLD) signal, as measured with functional magnetic resonance 

imaging (fMRI). The FC is usually calculated as the Pearson's correlations between the time 

courses of all possible pairs of regions. It has been termed a functional connectome 

"fingerprint" as it is highly stable and sufficiently unique to identify an individual across 

sessions (3, 4). The FC has also been shown to capture interindividual differences (5, 6): the 

variability in the FC fingerprint has been associated with development, aging, intelligence, 

and psychiatric disorders (7311). More specifically, it can be indicative of psychiatric 

disorders such as schizophrenia, depression, or attention deficit disorder (10). Hence, it 

fulfills the previously mentioned properties of low intraindividual variability and high 

interindividual variability subsequently called "fingerprint properties" in this manuscript.  

 However, even though the FC is most commonly used for the prediction of cognitive 

and clinical properties, several studies have shown lower test-retest reliability of global 

measures of brain function as opposed to local measures such as regional homogeneity 

(ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) (123

14). Specifically, local metrics show lower intraindividual variability, suggesting that these 

metrics are less dynamic than global metrics (13). Therefore, here, we compared the FC 

baseline "fingerprint" to local functional "fingerprints" within predefined brain regions based 
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on the 264 Power coordinates (15). We quantified fingerprint properties within the 

identification framework in which identification is the ability to identify an individual in a new 

database. Using the resting-state and task fMRI data of the Human Connectome Project 

(HCP) and four different ways to quantify identification, including the novel "ranking 

accuracy" and "forensic identification accuracy", we found near-perfect identification 

accuracies when using ReHo, followed by ALFF, fALFF, and the FC. We extensively 

checked for replicability of these findings across various parcellations and for resilience 

against confounding effects. Next, four follow-up analyses were conducted. First, using a 

novel optimization formulation, we investigated which regions contributed most to making the 

ReHo fingerprint "unique" at the individual level. Second, the previously mentioned 

fingerprint properties of reliability and idiosyncrasy are necessary but not sufficient for clinical 

applicability, given that fingerprints should also capture interindividual variance related to 

actual behavior (5, 16). We tested this by using both the fingerprints themselves and the 

fingerprint stability - i.e., their invariance across sessions - to predict crystallized and fluid 

intelligence in a machine-learning setup. This allowed us to test whether the (small) 

intraindividual fingerprint variability across sessions is still meaningful for explaining cognitive 

properties at the individual level. Third, to demonstrate applicability in a clinical sample, we 

investigated fingerprints and the correlation between fingerprint stability and intelligence in 

individuals with schizophrenia and matched healthy controls of the OpenNeuro.ds000115 

sample (17). Finally, to address the question of neural origins of the BOLD signal (18), using 

data from the enhanced Nathan Kline Institute (eNKI) sample, we compared fingerprints 

between rs-fMRI and breath-holding scans that are known to capture cerebrovascular 

signals (19). Altogether, our findings suggest that measures of local neural activity, and 

especially ReHo, show high specificity, sensitivity, and robustness as a neural fingerprint.  

Results 

Analyses were performed using data from 399 unrelated subjects with two resting-state and 

seven task-based scans (acquired within 2 days) from the S1200 release of the Human 

Connectome Project (HCP) Young Adult sample (20324). The brain was parcellated into 264 

spherical regions with a 3-mm radius around the Power coordinates (15) (as analyses 

showed that smaller regions of interest (ROIs) yielded better identification accuracies - 

Supplementary Fig. S1). The global FC fingerprint was calculated as the Pearson 

correlations between the mean time series of each pair of ROIs (3) (Fig. 1). Furthermore, 

three local fingerprints were calculated: ReHo (25), ALFF (26), and fALFF (27). Here, the 

often-reported FC fingerprint reflects the similarity between the mean time series of each 

pair of spatially distant ROIs (i.e. interregional similarity), while ReHo reflects the 
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synchronization of the voxels' time series within a ROI (i.e. intraregional similarity), and 

(f)ALFF reflects BOLD-fluctuations within a ROI (i.e. amplitude of intraregional activity). 

Thus, distinct aspects of intrinsic brain function are captured by each of these measures. 

Next, identification accuracies, i.e., the fraction of correctly identified subjects, were 

calculated across all pairs of sessions. We observed near-perfect identification accuracies 

when using ReHo (mean accuracy: 99.6%), followed by ALFF (96%), fALFF (93%), and FC 

(84%) (Figure 2A), suggesting low intraindividual variability and high individual specificity. 

Next, we investigated whether our findings hold for different ways of performing 

identification.  

Highly accurate individual identification based on local functional 

fingerprints irrespective of identification performance quantification 

First, we quantified the identification performance using the often-reported differential 

identifiability ("Idiff") score. This score is the difference between the average within-subject 

and average between-subject similarity of a fingerprint; a higher Idiff indicates a better 

fingerprint (9). Idiff scores were consistent with the accuracy results; the highest Idiff for 

ReHo (mean: 53), followed by ALFF (mean: 47), fALFF (mean: 38), and FC (mean: 10) 

(Supplementary Fig. S2; for general interest, additional results using a second parcellation 

(Dosenbach (28)) are also reported). For those two conventional quantifications of 

identification performance, it is assumed that there is one fingerprint of a subject in the base 

database and one in the target database, and only the most similar fingerprint is considered 

a match. Here, we explored two alternative scenarios in which either multiple fingerprints or 

no fingerprint from the same subject exists in the target database. The first scenario was 

approached with a new score that we call "ranking accuracy", which quantifies the degree to 

which fingerprints of all sessions of a subject are consistently ranked higher (i.e., show 

higher identification accuracy) than fingerprints of other subjects. This stricter measure 

yielded the same pattern of results (Figure 2B). For the second scenario in which there is the 

possibility of a "no-match", we calculated the <forensic identification= accuracy. The results 

clearly demonstrate the superiority of the local fingerprints (Fig. 2C). 
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Figure 1. Schematic representation of identification methods. d - iii) Note that at rank 2, the 

ranking accuracy is similar to the conventional identification accuracy. 
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Figure 2. A) Comparison of identification accuracies of fingerprints in the Human 
Connectome Project (HCP) sample. B) Comparison of identification accuracies based on the 
ranking of fingerprints in the HCP sample. Note that at rank 2, the ranking accuracy is similar 
to the conventional identification accuracy, where the FC fingerprint performs relatively 
similarly to the local fingerprints, but the difference between them becomes evident at higher 
ranks. C) Forensic identification performance using fingerprint dissimilarity as a feature 
(LogReg) or the pattern of distances between the fingerprint elements as features (LASSO). 
For the FC, the nearly zero true-positive and false-positive rates with feature space 1 
(fingerprint dissimilarity; left of Fig. 2C) indicate that it failed to match any of the test 
subjects, while the high true-positive and false-positive rates with feature space 2 (pattern of 
distances between fingerprint elements; right of Fig. 2C) indicate that it matched many 
fingerprints (true positives) but also many false matches (false positives). Abbreviations: 
ReHo = regional homogeneity; ALFF = amplitude of low frequency fluctuations; fALFF = 
fractional ALFF; FC = functional connectome; RS = resting state; LogReg = logistic 
regression; TP = true positive rate; FP = false positive rate.  

Better identification performance of local functional fingerprints is 

replicable across parcellations and samples and resilient to confounding 

effects 

Additionally, we performed extensive evaluations to establish replicability and specificity of 

our results obtained with the Power 3-mm ROIs. First, we tested three other parcellations, 

namely, Dosenbach (28), Shen (29), and Schaefer with 300 ROIs (30), which also showed 

higher identification accuracies for the local fingerprints (Fig. S3). Similar to our results with 

the Power spheres, the Dosenbach parcellation showed the highest identification accuracies 
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for ReHo (94%), followed by ALFF (92%), fALFF (79%), and FC (78%). With the Shen and 

Schaefer parcellations, the results followed a similar pattern with a slight difference in the 

order: the highest identification accuracies were found for ALFF (77% and 79%), followed by 

ReHo (68% and 62%), FC (52% and 53%), and fALFF (37% and 48%). Second, we 

investigated the effect of removing confounds, i.e., sex, age, and total intracranial volume, 

from the fingerprints. Removal of these confounds increased overall accuracy while retaining 

the result pattern - highest accuracy with ReHo (Fig. S4). Last, replication on the smaller 

Finn et al. (2015) HCP sample (n=125) showed similar results with some minor differences 

(see Supplementary Materials for details; Fig. S5 & S6). 

The attention networks and the Default Mode Network contribute most to 

individual uniqueness 

Some brain networks contribute more to the "uniqueness" of the FC fingerprint than others 

(3, 31). Encouraged by the high accuracy of the ReHo fingerprint, we investigated the 

contribution of each ROI in making the ReHo fingerprint unique. Next, each region was 

assigned to one of the seven Yeo networks based on the mode of the network membership 

of the voxels within that ROI (32). Given that identification accuracies were lowest for the 

motor task and highest between the resting state sessions (3), data from these three 

sessions were used. We found that the ROIs contributing most to uniqueness were located 

in dorsal- and ventral-attention networks followed by the DMN, while the limbic network 

contained the fewest individual-specific ROIs (Fig. 3). 

Figure 3. Contribution of regions of interest (ROIs) in making the ReHo fingerprint individual-
specific. A) Relationship between ReHo and averaged (across all optimization runs) Z-
scored importance weights of ROIs. The average ReHo across subjects showed an inverse 
U-shaped relationship with the weights, with higher weights indicating higher individual 
uniqueness. B) The proportion of ROIs in Yeo's 7 networks. Abbreviations: ReHo = regional 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2021.08.03.454862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454862
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

homogeneity; RS1 = resting-state fMRI session day 1; RS2 = resting-state fMRI session day 
2; Motor = fMRI motor task. 

Fingerprints and fingerprint stability capture interindividual differences 

Next, for real-world and especially clinical application, representations of brain function 

should not only be reliable and idiosyncratic but should also capture interindividual 

differences in behavior or cognition. Interestingly, earlier studies have shown that the 

variation in the FC fingerprint measured across fMRI sessions, thus reflective of (task-

related) reconfiguration, is lower in individuals with higher intelligence (33, 34). Therefore, 

we chose to predict intelligence. First, we investigated the use of fingerprints to predict 

intelligence in the HCP dataset (findings are reported when the median Pearson correlation 

between predicted and actual intelligence is higher than 0.15). We found that the ReHo 

fingerprint was predictive of crystallized (RS2 session, Social Cognition task) and fluid 

intelligence (Language task), the ALFF fingerprint was predictive of crystallized (Language 

task) and fluid intelligence (RS2 session, Motor task), the fALFF fingerprint of crystallized 

(Motor task) and fluid intelligence (Motor task), while the FC fingerprint was not predictive 

(Fig. S7-S15). Next, in contrast to previous studies using only the fingerprint itself to predict 

cognition, we also examined the use of the stability of the fingerprints for the prediction of 

intelligence. This allowed us to test whether the (small) intraindividual fingerprint variability 

across sessions is still meaningful for explaining cognitive properties at the individual level. 

We observed that the stability of ReHo was predictive of crystallized intelligence, ALFF 

stability predicted both crystallized and fluid intelligence, while the stability of fALFF and FC 

was generally not predictive (Fig. 4A). A closer inspection of the LASSO weights for the 

ReHo features for predicting crystallized intelligence revealed that in individuals with higher 

crystallized intelligence the ReHo fingerprint was more stable between the resting state and 

the other sessions but less so between the language task and the other sessions. In 

addition, for the prediction of crystallized intelligence, high positive coefficients were 

observed for ALFF stability of the motor, language, and gambling tasks. For fluid 

intelligence, the motor and relational processing task9s ALFF stability received a high 

positive coefficient, and the social cognition task stability a negative coefficient.  

Local fingerprints are also stable in a clinical sample 

In addition to the healthy population, neural fingerprints also need to be stable within clinical 

samples if they are to be used as clinical biomarkers. Studies have shown local 

abnormalities in schizophrenia (35337), but it is unclear whether these abnormalities are 

stable. Kaufman et al. (2018) previously showed decreased FC fingerprint stability in 
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patients with schizophrenia by combining three datasets (10). Here, we used the publicly 

available OpenNeuro.ds000115 (17) part of this previously reported sample, which includes 

21 individuals with schizophrenia (SZ) and 20 healthy controls (see details in Supplementary 

Materials). fMRI data from the 0- and 2-back tasks obtained on the same day were used. No 

rs-fMRI data is available for this sample. ROIs were again created with 3-mm radius spheres 

around the Power coordinates (15). Identification accuracies for ReHo and ALFF were 100% 

for both controls and patients (analyzed separately), while they were lower in SZ for fALFF 

(65% in SZ; 88% in HC) and FC (99% in SZ; 100% in HC). This suggests that the ReHo and 

ALFF fingerprints are also stable in patients with schizophrenia. 

 Next, we investigated the association between the stability of the fingerprints and 

intelligence in the schizophrenia sample and their matched healthy controls. Machine 

learning analysis was not attempted here due to the small sample size. Stability was 

calculated as the correlation between the fingerprints of the 0-back and 2-back task 

sessions. We correlated the stability of the fingerprints with the Wechsler Adult Intelligence 

Scale (WAIS) Matrix Reasoning and Vocabulary subtest scores in both the SZ and HC 

groups. In the SZ group, the stability of the ReHo, ALFF, and FC fingerprints showed a high 

negative correlation with the WAIS Matrix Reasoning subtest (all r < -0.50, Fig. 4B), while in 

the HC group, only ALFF stability showed a positive correlation with WAIS Vocabulary 

subtest scores (r = 0.48).  

 
Figure 4. A) Prediction of crystallized and fluid intelligence using the stability of fingerprints 
of the nine sessions of the Human Connectome Project sample. Each boxplot shows the 
prediction performance across five cross-validation runs. B) Scatterplot between the WAIS 
Matrix Reasoning scores and the stability of the task fingerprints in the SZ sample of the 
OpenNeuro.ds000115 dataset. Abbreviations: ReHo = regional homogeneity; ALFF = 
amplitude of low frequency fluctuations; fALFF = fractional ALFF; FC = functional 
connectome. 
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ReHo represents a neural fingerprint 

Altogether, thus far, our findings suggest that ReHo is most stable within an individual and 

captures brain-behavior associations. However, its high individual specificity might be driven 

by stable nonneural signals (i.e., artifacts, breathing, cardiovascular effects). Indeed, earlier 

studies have shown high stability of motion and cardiac pulsatility and that test-retest 

reliability of individual edges within the FC is reduced after artifact removal (7). Therefore, as 

a last follow-up analysis, we investigated the contribution of vascular activity to local and 

global fingerprints. Previous research showed that breathholding is a reliable estimate of the 

influence of vascular activity on BOLD signals (38), as it induces hypercapnia: an increase in 

carbon dioxide causes increased cerebral blood flow. This was investigated with the resting-

state and breath-holding fMRI sessions (TR of 1400 ms) provided in the enhanced Nathan 

Kline Institute dataset (eNKI; n=478; see Supplementary Materials for details) (39), as the 

HCP does not provide breath-holding fMRI data. The breath-holding paradigm consists of 

alternating breathing in, out, and breath-holding, causing a global change in oxygenation. 

We only used the breath-holding blocks to derive the fingerprints. We observed the highest 

identification accuracies between resting-state and breath-holding with ALFF (99%), followed 

by ReHo (87%), FC (72%), and fALFF (44%). Identification accuracies for ALFF and ReHo 

both reduced slightly when regressing out variance explained by ReHo and ALFF, 

respectively (ALFF: from 99% to 98%; ReHo: from 87% to 86%). This result suggests that 

the vascular signal in resting-state fMRI is captured with all fingerprints, but especially with 

ALFF. 

Discussion 

Here, we compared fingerprint properties of three local fingerprints with the commonly 

reported FC fingerprint, as higher reliability (lower intraindividual variability) of these local 

measures has been shown as compared to the FC. Using a publicly available dataset and 

four different measures of identification performance, different parcellations and ROI sizes, 

our findings show high accuracy of local functional fingerprints, especially when using ReHo. 

Next, four follow-up analyses were conducted. First, we show that the attention networks 

and the DMN contained the highest number of individual-specific ROIs in the ReHo 

fingerprint. Second, we demonstrate that intelligence can be predicted with local fingerprints 

and that even though the intraindividual variability of local fingerprints is small, it is 

meaningful given that it captures interindividual differences in intelligence. Third, we show 

the potential for the application of local fingerprints in clinical populations, as the ReHo 

fingerprint was highly accurate in individuals with schizophrenia, and its stability correlated 
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with intelligence. Finally, analyses using breath-holding data suggest that the ReHo 

fingerprint largely reflects neuronal signals and that it can indeed be deemed a <neural 

fingerprint=. As such, our findings suggest the ReHo fingerprint as a candidate for further 

exploration: it has good fingerprint properties and is predictive of interindividual differences in 

cognition.  

"Fingerprinting" with local fingerprints versus the functional connectome 

fingerprint 

ReHo quantifies the synchronization among the voxelwise time series within a ROI, and its 

stability across sessions appears to reflect the existence of regions that work relatively 

uniformly across mental states (i.e., tasks). The FC, on the contrary, captures dynamic and 

state-dependent interactions between regions and might be less suitable for answering 

identifiability questions. One other explanation for our finding of higher accuracy of the local 

fingerprints could be that first-order statistics such as ReHo and (f)ALFF might show different 

patterns of interindividual variation compared to second-order statistics such as the FC (40). 

Moreover, for local metrics the values are averaged for a region, which reduces noise (41). 

To the best of our knowledge, no studies have reported identification accuracies for ReHo or 

(f)ALFF fingerprints thus far. Two studies reported identification accuracies for a different 

measure of local brain function called BOLD variance (3) or BOLD variability (BV) (42). The 

BV fingerprint reflects the BOLD variance per region, i.e., regional fluctuations similar to the 

ALFF fingerprint but in the full frequency range. Both of these studies showed lower 

identification accuracies of the BV fingerprint compared to the FC fingerprint, suggesting that 

not all local fingerprints have better fingerprint properties than the FC and that the BV 

fingerprint captures processes different from ALFF.  

The attention networks and the Default Mode Network contribute most to 

individual "uniqueness" 

Previous studies predominantly showed the contribution of frontoparietal regions or "higher-

order networks" (i.e., frontal, parietal and temporal lobes) to FC identifiability (3, 8, 9, 43, 44). 

For example, one study found that ROIs contributing most to the "uniqueness" of the FC 

were located in the default mode, attention, and executive control networks (44). Here, we 

investigated "uniqueness" for the ReHo fingerprint by optimally weighting ReHo features 

higher in some brain regions to enhance the fingerprint efficacy, thereby revealing brain 

regions that contribute more to individual uniqueness. Next, each region was assigned to 

one of the previously described seven networks based on the mode of the network 
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membership of the voxels within that ROI (32). We found that regions in the dorsal- and 

ventral-attention networks and the DMN contributed most to identifiability, while the limbic 

network contributed the least. However, some critical considerations should be noted. First, 

limbic regions in these networks are smaller than ROIs within the other networks and 

therefore might be affected more by normalization errors that induce noise. Second, they are 

also affected most by magnetic susceptibility artifacts causing a reduced signal-to-noise ratio 

leading to reduced homogeneity (45), which can make the ReHo fingerprint more noisy and 

hence less specific in these regions. Last, the nature of the fMRI sessions used to 

investigate uniqueness (the motor task and resting state sessions) might also influence the 

contribution of certain ROIs to the uniqueness of the fingerprint, although the motor task has 

been shown to mostly modulate the motor cortex (46).  

 Previous research has indeed shown greater interindividual variability of multimodal 

association networks (i.e., default, dorsal attention and executive control) (41, 47, 48), while 

unimodal networks (i.e., visual and sensorimotor) had lower interindividual variability (41). 

On the other hand, the DMN, attention, and subcortical systems have been shown to be 

relatively less dynamically diverse (49) and thus show lower intraindividual variability, while 

unimodal networks have higher intraindividual variability (41). It appears that higher-order 

networks are affected more by genetic and environmental factors (41, 50), while lower-order 

networks are influenced more by situational or task demands (41). Altogether, our findings 

suggest that not only the distributed connectivity but also the local brain function within 

higher-order brain networks contributes most to the "uniqueness" of a brain. These networks 

that are stable within an individual but highly variable across individuals might provide a 

fundamental backbone of functional brain organization implicated in cognition as well as in 

disease (49). Future studies might use the localizing power of local fingerprints to attempt 

pinpointing "uniqueness" to even smaller regions.  

Fingerprints and fingerprint stability capture interindividual differences 

Our findings thus far showed that the ReHo fingerprint is an accurate neural fingerprint. 

Next, we showed that the local fingerprints are predictive of crystallized and fluid intelligence, 

while the FC fingerprint is only predictive of fluid intelligence. Previous studies also 

significantly predicted fluid intelligence from the FC fingerprint itself (3) and from the strength 

of the dynamic FC fingerprint (51), a high-resolution FC fingerprint (52), and a FC fingerprint 

refined using an autoencoder network (43). These studies did not attempt to predict 

crystallized intelligence (i.e., composite score of the Picture Vocabulary Test and Oral 

Reading Recognition Test). Only the last-mentioned study investigated one crystallized 

intelligence subtest, the Picture Vocabulary Test - measuring language comprehension - and 
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found that the refined FCs could significantly predict it (43). The predictiveness of local 

fingerprints have not been thoroughly investigated, although a few studies found significant 

associations between (voxelwise) whole-brain ReHo or ALFF and intelligence (53, 54). In 

short, our findings suggest that different fingerprints will be more appropriate for predicting 

different traits, just as some fMRI tasks are more appropriate for capturing interindividual 

differences in specific traits (55). 

 Overall, the fingerprints based on the Motor fMRI task data appeared to be most 

predictive of intelligence, which is also the session with the lowest identification accuracies. 

Indeed, it has been shown that reliability is not correlated with predictiveness (56) (of FC 

edges in the referenced study), conceivably because behavior is not static but dynamic (5). 

Therefore, we next tested whether the subtle differences in the fingerprints across sessions 

are still informative of individual-level intelligence. Using a machine learning framework, we 

predicted intelligence with the stability of the fingerprints across sessions. Our results 

showed that the stability of ReHo could predict crystallized intelligence but not fluid 

intelligence. On the other hand, ALFF stability could predict both crystallized and fluid 

intelligence, while the stability of fALFF and FC were not predictive. Thus, even though local 

fingerprints are highly similar across sessions, the (small) variation due to differing mental 

states is still predictive of individual-level cognition. 

 Our findings suggest that intraregional information processing, as captured with 

ReHo, is stable across tasks or mental states. This stability of information processing within 

a region is associated more with the more static form of intelligence that is conceptualized 

with crystallized intelligence than with the more dynamic ability to reason and solve new 

problems referred to as fluid intelligence, which might be associated more with brain 

dynamics or interactions between regions. In a previous study in which functional 

connectivity patterns were also more predictive of crystallized than fluid intelligence, the 

authors suggested that this might be explained by the strong mapping between brain 

anatomy and language, while fluid intelligence might rely on the functioning of multiple 

(partly) overlapping brain networks that are involved in many distinct cognitive skills (57). 

Our findings show that ALFF was predictive of both crystallized and fluid intelligence. ALFF 

reflects temporal variability and therefore might be more suited for capturing dynamic 

changes or behaviors. Along this line, a previous study examining time-varying network 

configurations showed that these dynamic configurations are not only good fingerprints in 

healthy individuals but that the individual variability in one of these configurations (i.e., brain 

states) was predictive of florid psychotic symptoms in individuals with a psychotic disorder 

(58). Future studies could systematically investigate the ability of different fingerprints to 

predict different types of behavior and cognitive functions.  
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 A closer inspection of the LASSO weights for the ReHo features for predicting 

crystallized intelligence revealed that reconfigurations of ReHo across states were smaller in 

individuals with higher crystallized intelligence. This is in line with studies showing that the 

FC fingerprint at rest was more similar to the FC during several tasks in individuals with 

higher intelligence (33, 34). This ability to reconfigure networks efficiently based on task 

demands can be seen as a sign of high intelligence (33). Surprisingly, we also found that 

higher reconfiguration of the ReHo fingerprint between the language task and the other 

sessions was predictive of higher crystallized intelligence. However, some differences can 

be noted compared to this previous study using the HCP dataset, which may explain the 

difference in findings: they examined the FC fingerprint and not ReHo, calculated stability 

between fingerprints with the cosine distance between FC matrices, and calculated 

intelligence with a latent g-factor derived from 12 cognitive scores (34).  

Local fingerprints are also stable in a clinical sample 

The application of biomarkers in precision psychiatry requires stability in clinical populations. 

Here, we show perfect identification accuracies (100%) for ReHo and ALFF in both SZ and 

HC. For fALFF and FC, identification accuracies for SZ were lower compared to HC, albeit 

very slightly for FC. The higher identification accuracies for the FC in this sample compared 

to the HCP sample (99-100% vs 54-100%) could be due to the smaller sample size (21 SZ 

and 20 HC vs 399 HC), longer task duration compared to some (but not all) HCP sessions 

(+/- 4 minutes vs +/- 2-14,5 minutes), and the (increased) engagement of similar networks 

during 2- and 0-back tasks, all of which have been shown to increase FC fingerprint 

identification accuracy.  

 The utility of FC fingerprints has been shown in several clinical populations. A delay 

in reaching FC fingerprint stability has been reported even in individuals with preclinical 

signs of mental illness (i.e., increased prodromal symptoms across domains of ADHD, 

schizophrenia and depression) (11). Moreover, some aspects of FC functioning have been 

shown to be disrupted - and associated with symptom severity - across patients with differing 

psychiatric diagnoses, such as primary psychotic disorder, affective psychosis, and primary 

affective disorder without psychosis, while other aspects were only disrupted in patients with 

a psychotic disorder specifically (59). Lower stability of the whole-brain FC has also been 

shown in schizophrenia patients (10). Altogether, these previous studies demonstrated 

transdiagnostic utility of FC fingerprints. While this was unknown for local fingerprints, our 

findings suggest the utility of local functional fingerprints in individuals with schizophrenia. 

However, this should be replicated in other and larger samples. Future studies taking a 

transdiagnostic approach could inform the stability of different functional fingerprints across 
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individuals with different characteristics and their ability to predict different types of behaviors 

and symptoms.  

 Next, we investigated the association between fingerprint stability and intelligence. 

Given the small sample size, machine learning analysis to examine the fingerprints' ability to 

predict intelligence was not attempted here. We found that in individuals diagnosed with 

schizophrenia from the OpenNeuro.ds000115 dataset, higher reconfigurations of ReHo, 

ALFF, and FC fingerprints were associated with higher scores on the Matrix Reasoning 

subtest, a measure of abstract problem solving and inductive reasoning, which is considered 

a part of fluid intelligence. This finding was opposite to what we observed in healthy 

individuals of the HCP sample, and this was also not seen in the matched HC of the 

OpenNeuro.ds000115 dataset (all r < 0.02-0.1). This finding could suggest that individuals 

with SZ had difficulties performing the 2-back task and failed to engage the networks 

required for the additional working memory load of this task (compared to the 0-back task). 

Indeed, a previous study using the same dataset (including 19 SZ and 10 HC) showed lower 

2-back performance in SZ compared to HC (0.72 vs 0.81 for 0-back; 0.64 and 0.80 for 2-

back) (17). In HC, only ALFF stability was associated with the scores on the Vocabulary 

subtest. Altogether, our findings suggest that even though the ReHo and ALFF fingerprints 

are highly stable, their subtle variation due to mental states is informative of individual-level 

cognition in patients with schizophrenia.  

ReHo represents a neural fingerprint 

Higher ReHo, fALFF (45), and ALFF (60) have been associated with higher glucose 

metabolism, although the strength of this association varies across the brain. As the fourth 

follow-up analysis, we investigated the contribution of vascular activity to local and global 

fingerprints. Identification accuracies with the eNKI breath-holding fMRI-task and resting-

state data suggest that breathing, or vascular signal, is represented more in resting-state 

ALFF than in resting-state ReHo. Indeed, previous research has shown that ALFF captures 

this signal (61, 62). Furthermore, our results are in line with the idea that fALFF, as a 

normalized ALFF, is affected less by physiological signals from large blood vessels and CSF 

that affect the entire frequency spectrum. Taken together, the high accuracy of ReHo in the 

HCP samples and its relatively lower accuracy with breath-holding data suggests that, as 

expected, ReHo captures neural signals more than ALFF.   
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Better identification performance of local functional fingerprints is 

replicable across parcellations and samples and resilient to confounding 

effects 

Finally, we tested the robustness of our main results regardless of methodological choices. 

In addition to the results obtained with ROIs created with 3-mm spheres around the Power 

coordinates, identification was also evaluated using three other parcellations (i.e., 

Dosenbach, Shen, and Schaefer with 300 ROIs). While the results with the Dosenbach 

spheres were similar to the Power spheres, for the Shen and Schaefer parcellations, higher 

identification accuracies were found for ALFF, followed by ReHo, FC, and fALFF (versus 

ReHo, ALFF, fALFF, FC with Power and Dosenbach parcellations). This difference might be 

explained by the fact that ROIs in the Power (264 ROIs; 3-mm radius) and Dosenbach (160 

ROIs; 5-mm radius) parcellations are compact spheres, while the ROIs of the Shen (268 

ROIs) and Schaefer (300 ROIs) parcellations are much larger. As we calculated ReHo for 

each ROI as Kendall9s coefficient of concordance for all the voxelwise time series within that 

ROI, ReHo values are expected to converge to 0 with increasing ROI size, in effect 

rendering the ReHo fingerprint less specific and confirming the importance of spatial 

resolution in ReHo calculation. fALFF values increase with larger ROI sizes, as larger ROIs 

result in smoother signals and therefore a higher proportion of low-frequency fluctuations 

(63). Moreover, larger ROIs reflect more macroscopic organization, are impacted more by 

partial volume effects, and averaging within them deteriorates local fingerprints. While a 

previous study showed lower identification accuracies with larger ROI sizes for the FC 

fingerprint (64), our findings show that this also applies to local fingerprints. Next, we tested 

the effect of sample size, as larger sample sizes are essential for application in precision 

psychiatry, while it is expected that they yield lower identification accuracies (64). Therefore, 

all comparisons were also conducted with the previously reported sample of 125 subjects 

(3). We found that identification accuracies for the FC decreased the most with increasing 

sample size, while local fingerprints, and especially ReHo, were affected the least. Last, our 

finding of highly accurate local fingerprints was resilient against confounding effects (i.e., 

age, sex, and intracranial volume), as confound removal resulted in the same pattern of 

identification accuracies, with ReHo yielding the highest accuracies. Confound removal 

benefited identification accuracies for FC the most and ALFF the least, suggesting higher 

sensitivity of the FC and lower sensitivity of ALFF to confounding effects. Altogether, our 

findings suggest that ReHo shows high specificity, sensitivity, and robustness as a neural 

fingerprint.  
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Limitations 

This study has some limitations. First, the contribution of physiological signals to the BOLD 

signal is unclear. We used the FIX-denoised resting-state data from the HCP, which is 

expected to be free of such extraneous signals. We further tested the contribution of 

vascular activity to the fingerprints, but other sources of physiological signals might also 

contribute. Studies have shown, however, that accurate subject identification is mostly based 

on neural signals and not on nuisance processes such as physiological processes and head 

motion (44, 65). Furthermore, the contribution of structural information (brain morphology) to 

fingerprint identification accuracy is also unclear (42). Second, we created fingerprints based 

on local brain function, which is just one of many possibilities. Other studies investigated 

fingerprints based on shape, white matter fiber geometry, voxelwise diffusion density, or 

combinations (66). Future studies could also investigate a multimodal fingerprint including 

ReHo. Third, we analyzed data that was acquired within a short time span (i.e., days), but 

previous research has shown decreasing identification accuracies with increasing time 

spans (i.e., from 90% within one month to 66% within 2-3 years) (67). Future work could 

examine the stability of local and global fingerprints over months or years using longitudinal 

data. Fourth, we did not control for differences in scan durations between rs- and task-

sessions. However, earlier research has shown that identification accuracies between task 

sessions improved when matching scan duration but were still highly variable across 

sessions (68). Fifth, we checked fingerprint stability in one, relatively small, clinical sample of 

individuals with schizophrenia. It is unclear whether our findings generalize to other clinical 

samples and conditions. Finally, local metrics such as ReHo and (f)ALFF were originally 

proposed for rs-fMRI data while we also calculated them with task-based fMRI data. 

However, this data was treated as resting-state, as task timing was ignored. Our findings 

show that ReHo and (f)ALFF are highly stable across resting state and tasks, suggesting 

that even when influenced by a task they appear to reflect intrinsic brain function. 

Conclusion 

Investigating associations between brain function and cognition, behavior, or disease 

characteristics requires within-individual stable representations of brain function (69). Recent 

studies have increasingly stressed the importance of neural representations capturing both 

intraindividual stability and interindividual differences, as both are desired properties for 

clinical biomarkers (5, 16). Here, we show that measures of local brain function - and 

especially ReHo - are better fingerprints (compared to the global FC fingerprint), while they 

also capture interindividual differences in cognition. We suggest the ReHo fingerprint to be a 

good candidate for further exploration of applicability in precision medicine.  
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Materials and Methods 

Calculation of identification accuracy in the Human Connectome Project 

sample 

Human Connectome Project (HCP) sample 

Data collection was approved by the Institutional Review Board at Washington University in 

St. Louis. The selection of subjects was performed in R version 3.6.1 (R Core Team 2019). 

Individuals were included in case of the availability of 1) a T1-weighted scan, 2) two resting-

state fMRI scans (rfMRI_REST1 and rfMRI_REST2), 3) data on 58 behavioral variables (70) 

and 4) all fMRI tasks (working memory (tfMRI_WM), gambling (tfMRI_GAMBLING), motor 

(tfMRI_MOTOR), language (tfMRI_LANGUAGE), social cognition (tfMRI_SOCIAL), relational 

processing (tfMRI_RELATIONAL) and emotion processing (tfMRI_EMOTION) (46). Subjects 

with reported issues according to the HCP data release updates were excluded. From this 

sample, subjects were selected that were unrelated (variable Family_ID) with a similar 

number of selected males and females (Gender) that were matched on age (Age_in_Yrs), 

education (SSAGA_Educ), race (Race), and BMI (BMI). This resulted in a sample of 399 

subjects consisting of 195 females and 204 males. The mean age, education, and BMI were 

similar between males and females, namely, 27.83 (sd=3.75) versus 29.68 (sd=3.69), 14.08 

(sd=1.75) vs 15.01 (sd=1.86), and 27.03 (sd=4.38) vs 26.06 (sd=5.59), respectively. The 

distribution of races was also similar between males and females: Asian/Nat. 

Hawaiian/Other Pacific Is. (11 vs 13), Black or African Am. (28 vs 29), White (154 vs 145), 

unknown or not reported (4 vs 2), more than one (7 vs 6). For all subjects, all available fMRI 

data (i.e., two resting-state fMRI sessions and seven fMRI tasks) were used for the main 

analyses. Further details on the tasks and acquisition parameters can be found in Barch et 

al., 2013 (46).  

 We used the preprocessed data provided by the HCP, which includes artifact 

removal, motion correction, and registration to standard space (71375). For the resting-state 

data, the ICA-FIX noise components removed data were used. We also used the sample 

from Finn et al. (3) (n=125) for replication and optimization analyses; of this sample, 47 

subjects overlapped with the n=399 HCP subsample. 

Preprocessing 

Additional minimal preprocessing was performed assuming no prior knowledge of the data, 

therefore allowing the use of our preprocessing pipeline in a broad range of situations (i.e., 

task- or resting-state data, variable scan parameters, etc.). This was done in MATLAB 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2021.08.03.454862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454862
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

release 2019b (MathWorks) and included regressing out the 12 detrended motion 

parameters (provided by HCP as Movement_Regressors_dt.txt), as well as the mean time 

courses of WM, CSF, and global signal, and filtering the time series with a bandpass filter of 

0.01-0.1 Hz. Next, the fingerprints were calculated for both left-right (LR) and right-left (RL) 

phase-encoding runs and consequently averaged.  

Local fingerprints 

A local fingerprint for a subject consists of a vector of length N, where N is the number of 

ROIs. All local fingerprints were calculated on the average time-series per ROI. ReHo is 

calculated with Kendall's coefficient of concordance considering the time series of all the 

voxels within an ROI (25). For ALFF and (f)ALFF, voxelwise time series were transformed to 

the frequency domain to obtain the power spectrum (27). ALFF is the averaged square root 

of the power in the 0.01-0.1 Hz frequency range averaged across voxels within a ROI (26). 

fALFF is ALFF scaled by the total power in the full frequency range averaged across voxels 

within a ROI (27).  

Global fingerprint (whole-brain functional connectome) 

A FC for a subject consists of a matrix of size NxN, where N is the number of ROIs. We 

extracted the lower triangle of this matrix and vectorized it to obtain the FC fingerprint as a 

vector of length N x (N-1)/2.  

Identification accuracy 

Iteratively, all subjects' data from one session was used as the "base dataset" while data 

from another session was used as the "target dataset". Spearman correlations were 

calculated between the fingerprints of the two sessions. Using a 1-nearest neighbor 

approach (3), the "base" fingerprint was labeled with the subject identity of the most similar 

fingerprint in the "target dataset". Identification accuracy was calculated as the fraction of 

correctly labeled participants. 

Idiff 

An identification matrix of size NxN (N = number of subjects) was created reflecting the 

correlations between the fingerprints of a subject in the base and all fingerprints in the target 

database. The lower triangle elements were extracted and represented as a N x (N-1)/2-

dimensional vector. "Iself" is the average within-subject similarity, while "Iothers" is the 

average between-subjects similarity. Idiff is then calculated by taking the difference between 

Iself and Iothers (9). 
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Ranking accuracy 

Identification accuracies were calculated (see paragraph "Identification accuracy" above) 

with one difference. Namely, iteratively, each session was used as the base dataset, while 

all other eight sessions (instead of only one other session) were included in the target 

dataset. Then, instead of focusing only on the fingerprint in the target dataset with the 

highest correlation, all fingerprints in the target dataset were ranked based on their similarity 

with a subject's fingerprint in the base dataset. At each rank (2-9, as each subject has data 

from nine sessions), the proportion of correctly identified subjects was calculated (see Fig. 1 

for a visualization). 

Forensic identification 

We used a machine learning framework to predict whether two fingerprints matched (see 

Fig. 1). For this, we used the two resting-state sessions as training data and trained a 

classification model using a match-no-match dataset derived from 70% of the subjects 

(randomly chosen). Forensic identification accuracies were calculated across all pairs of 

sessions. We tested two different feature spaces that were constructed containing a match 

and a no-match part. The match part contained features of fingerprints from two sessions of 

the same subject. The no-match part contained features of a subject from session 1 and 

their second-closest match from session 2. For the first model, the feature space included 

(for each subject) the correlation coefficient between two resting-state fingerprints. For the 

second model, the features for the match-part included (for each subject) the absolute 

difference between the elements of two resting-state fingerprints. Similarly, the features for 

the no-match part included the absolute difference between the resting state 1 fingerprint of 

a subject in the base dataset and the resting state 2 fingerprint of the closest other subject in 

the target dataset. This provided a dataset with 2xN rows (N = number of subjects), which 

together with class labels indicating match or no-match was used to train a classifier. More 

specifically, we employed logistic regression with the feature space of the first model and 

LASSO with the feature space of the second model. The 30% hold-out subjects were used 

for testing: each of the 30% held-out subjects was probed against all the subjects one by 

one as a reference to obtain matches. Given a reference fingerprint (with known identity) and 

a test fingerprint (unknown identity), a trained model was used to predict whether they 

matched. A prediction was then obtained using each fingerprint in a reference dataset. The 

reference dataset was either the average of the two resting-state sessions or one of the task 

sessions (emulating the privacy-preserving scenario where the training data itself is not 

available). As the number of predictions for each test fingerprint equals the number of 

fingerprints in the reference dataset, predictions for a test fingerprint can contain one, 
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multiple, or no matches. If the correct subject was predicted as a match, it was counted as a 

true positive (TP), and if any other subject was predicted as a match (irrespective of TP), 

then this was counted as a false positive (FP). A good classifier should provide a high TP 

and a low FP rate. The split between training and test subjects was repeated 10 times. Ten 

times repeated 10-fold cross-validation was performed on the training data to estimate the 

generalization ability.  

Confound removal 

Confounding signals due to age, sex, and total intracranial volume (ICV) were regressed out 

from each column of each database (subjects x fingerprint), and the residuals were used for 

identification. The ICV was estimated using the CAT12.5 VBM processing pipeline.  

Contribution of regions to individual uniqueness via margin optimization 

To identify important ROIs whose ReHo is individual specific, we posed an optimization 

problem to derive weights for the weighted Pearson correlation coefficient that maximizes 

the margin, i.e., the correlation difference between the correct fingerprint and the next best.  

As the ReHo identification accuracy was very high (close to 100% in most cases), using the 

accuracy as an optimization objective would not be meaningful. We sought to identify a 

weight wi for each ROI by solving the following optimization problem: 

������& '�&(����) 2	�&(����34567)
489

 

�. �. �<	 * [0,1] 
 This optimization problem was solved to maximize the average margin for the HCP 

sample (n=399) using the CMA-ES algorithm (76). Importantly, the data was divided into a 

50% training set used to learn the weights and a 50% test set to validate whether the 

optimized weights indeed improve the margin on out-of-sample data. This procedure was 

repeated 20 times to assess stability. We used two optimization problems: RS1-RS2 and 

RS2-Motor. This resulted in an importance weight for each ROI reflecting its contribution to 

uniqueness (Fig. S16 & S17). Next, each of the Power 3-mm ROIs was assigned to one of 

the seven Yeo networks or 8None9 based on the mode of the network membership of the 

voxels within each ROI. Then, we varied a threshold over the optimized weights (averaged 

over RS1-RS2 and RS2-Motor) to assess the retained proportion of the ROIs from each of 

the seven networks (Table S1). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2021.08.03.454862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454862
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Fingerprints and fingerprint stability predict intelligence 

The fingerprints were used to predict individual-level crystallized 

("CogCrystalComp_AgeAdj") and fluid intelligence ("CogFluidComp_AgeAdj") separately in a 

5 times repeated 5-fold cross-validation setup using least absolute shrinkage and selection 

operator (LASSO) regression (77). The variance due to age and total intracranial volume 

was removed from the features in a cross-validation consistent manner (78). 

 Next, to investigate the predictiveness of fingerprint stability, we first calculated - for 

each individual - the stability of the fingerprints as the average correlation of each session9s 

fingerprint with the fingerprints of all other sessions resulting in a feature vector with nine 

values (i.e., two resting-state and seven task fMRI sessions). These features were then 

employed for prediction analysis as described above. 
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