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Abstract

Individual subjects can be accurately identified in a database based on their functional
connectome (FC), i.e. the whole-brain patterns of synchrony in fluctuations of brain
activation as measured with functional MRI (fMRI). Accurate identification requires a
representation of brain function to be simultaneously reliable (i.e. low intraindividual
variability) and idiosyncratic (i.e. high interindividual variability), hence calling it a
"fingerprint". Importantly, several studies have shown lower test-retest reliability (i.e. higher
intraindividual variability) of the global FC compared to local representations of brain function
such as regional homogeneity (ReHo) and (fractional) amplitude of low-frequency
fluctuations ((f)ALFF). Therefore, here, with resting-state and task fMRI-data from the
Human Connectome Project and the enhanced Nathan Kline Institute, we demonstrate that
the local functional fingerprint, and especially regional homogeneity (ReHo), achieves near-
perfect identification accuracies using four different ways to quantify identification. This
finding is replicable across various parcellations as well as resilient to confounding effects.
Moreover, using a machine-learning setup, we show that the small intraindividual ReHo
fingerprint variability across sessions is meaningful for explaining individual-level
intelligence. Further analyses reveal that the attention networks and the Default Mode
Network contributed the most to the individual "uniqueness" of the ReHo fingerprint. Last,
with another publicly available dataset, we show that ReHo is also stable in individuals with
schizophrenia and that its (in)stability across sessions relates to intelligence scores.
Altogether, our findings suggest that the ReHo fingerprint is a good candidate for further

exploration of applicability in precision medicine.
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Introduction

Large variability across individuals (i.e., interindividual variability) is seen in phenotypic traits,
including physical traits and cognitive abilities, as well as brain organization. Identifying the
variability in functional brain organization across individuals that is predictive of cognitive and
clinical properties at the individual level is important for developing viable biomarkers for
precision medicine and precision psychiatry specifically (1). Precision psychiatry is the
tailoring of treatment to the individual. It requires trait-like representations of brain function
that are simultaneously reliable (i.e., show low intraindividual variability) and idiosyncratic
(i.e., show high interindividual variability), i.e., representations that are stable within an
individual but vary across individuals. Intraindividual stability independent of an individual's
current state is a prerequisite for clinical application, as biomarkers should reflect underlying
traits or disease and not the current state. Representations should also be idiosyncratic or
unique for an individual, as the interindividual variability in these representations can then be
utilized for the prediction of individual-level behavior with machine learning algorithms (2).
Thus, a trait-like state-independent neural fingerprint that captures interindividual differences
can shed light on fundamental brain organization as well as facilitate translational
applications.

Until now, the functional connectome (FC) has been the choice to predict cognition
and behavior. It reflects whole-brain patterns of synchrony in fluctuations of the blood-
oxygen-level-dependent (BOLD) signal, as measured with functional magnetic resonance
imaging (fMRI). The FC is usually calculated as the Pearson's correlations between the time
courses of all possible pairs of regions. It has been termed a functional connectome
"fingerprint" as it is highly stable and sufficiently unique to identify an individual across
sessions (3, 4). The FC has also been shown to capture interindividual differences (5, 6): the
variability in the FC fingerprint has been associated with development, aging, intelligence,
and psychiatric disorders (7—11). More specifically, it can be indicative of psychiatric
disorders such as schizophrenia, depression, or attention deficit disorder (10). Hence, it
fulfills the previously mentioned properties of low intraindividual variability and high
interindividual variability subsequently called "fingerprint properties" in this manuscript.

However, even though the FC is most commonly used for the prediction of cognitive
and clinical properties, several studies have shown lower test-retest reliability of global
measures of brain function as opposed to local measures such as regional homogeneity
(ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) (12—
14). Specifically, local metrics show lower intraindividual variability, suggesting that these
metrics are less dynamic than global metrics (13). Therefore, here, we compared the FC

baseline "fingerprint" to local functional "fingerprints" within predefined brain regions based
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on the 264 Power coordinates (15). We quantified fingerprint properties within the
identification framework in which identification is the ability to identify an individual in a new
database. Using the resting-state and task fMRI data of the Human Connectome Project
(HCP) and four different ways to quantify identification, including the novel "ranking
accuracy" and "forensic identification accuracy", we found near-perfect identification
accuracies when using ReHo, followed by ALFF, fALFF, and the FC. We extensively
checked for replicability of these findings across various parcellations and for resilience
against confounding effects. Next, four follow-up analyses were conducted. First, using a
novel optimization formulation, we investigated which regions contributed most to making the
ReHo fingerprint "unique" at the individual level. Second, the previously mentioned
fingerprint properties of reliability and idiosyncrasy are necessary but not sufficient for clinical
applicability, given that fingerprints should also capture interindividual variance related to
actual behavior (5, 16). We tested this by using both the fingerprints themselves and the
fingerprint stability - i.e., their invariance across sessions - to predict crystallized and fluid
intelligence in a machine-learning setup. This allowed us to test whether the (small)
intraindividual fingerprint variability across sessions is still meaningful for explaining cognitive
properties at the individual level. Third, to demonstrate applicability in a clinical sample, we
investigated fingerprints and the correlation between fingerprint stability and intelligence in
individuals with schizophrenia and matched healthy controls of the OpenNeuro.ds000115
sample (17). Finally, to address the question of neural origins of the BOLD signal (18), using
data from the enhanced Nathan Kline Institute (eNKI) sample, we compared fingerprints
between rs-fMRI and breath-holding scans that are known to capture cerebrovascular
signals (19). Altogether, our findings suggest that measures of local neural activity, and

especially ReHo, show high specificity, sensitivity, and robustness as a neural fingerprint.

Results

Analyses were performed using data from 399 unrelated subjects with two resting-state and
seven task-based scans (acquired within 2 days) from the S1200 release of the Human
Connectome Project (HCP) Young Adult sample (20-24). The brain was parcellated into 264
spherical regions with a 3-mm radius around the Power coordinates (15) (as analyses
showed that smaller regions of interest (ROIls) yielded better identification accuracies -
Supplementary Fig. S1). The global FC fingerprint was calculated as the Pearson
correlations between the mean time series of each pair of ROls (3) (Fig. 1). Furthermore,
three local fingerprints were calculated: ReHo (25), ALFF (26), and fALFF (27). Here, the
often-reported FC fingerprint reflects the similarity between the mean time series of each

pair of spatially distant ROlIs (i.e. interregional similarity), while ReHo reflects the
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synchronization of the voxels' time series within a ROI (i.e. intraregional similarity), and
(HALFF reflects BOLD-fluctuations within a ROI (i.e. amplitude of intraregional activity).
Thus, distinct aspects of intrinsic brain function are captured by each of these measures.
Next, identification accuracies, i.e., the fraction of correctly identified subjects, were
calculated across all pairs of sessions. We observed near-perfect identification accuracies
when using ReHo (mean accuracy: 99.6%), followed by ALFF (96%), fALFF (93%), and FC
(84%) (Figure 2A), suggesting low intraindividual variability and high individual specificity.
Next, we investigated whether our findings hold for different ways of performing

identification.

Highly accurate individual identification based on local functional
fingerprints irrespective of identification performance quantification

First, we quantified the identification performance using the often-reported differential
identifiability ("lIdiff") score. This score is the difference between the average within-subject
and average between-subject similarity of a fingerprint; a higher Idiff indicates a better
fingerprint (9). Idiff scores were consistent with the accuracy results; the highest Idiff for
ReHo (mean: 53), followed by ALFF (mean: 47), fALFF (mean: 38), and FC (mean: 10)
(Supplementary Fig. S2; for general interest, additional results using a second parcellation
(Dosenbach (28)) are also reported). For those two conventional quantifications of
identification performance, it is assumed that there is one fingerprint of a subject in the base
database and one in the target database, and only the most similar fingerprint is considered
a match. Here, we explored two alternative scenarios in which either multiple fingerprints or
no fingerprint from the same subject exists in the target database. The first scenario was
approached with a new score that we call "ranking accuracy", which quantifies the degree to
which fingerprints of all sessions of a subject are consistently ranked higher (i.e., show
higher identification accuracy) than fingerprints of other subjects. This stricter measure
yielded the same pattern of results (Figure 2B). For the second scenario in which there is the
possibility of a "no-match", we calculated the “forensic identification” accuracy. The results

clearly demonstrate the superiority of the local fingerprints (Fig. 2C).
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Figure 1. Schematic representation of identification methods. d - iii) Note that at rank 2, the

ranking accuracy is similar to the conventional identification accuracy.
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Figure 2. A) Comparison of identification accuracies of fingerprints in the Human
Connectome Project (HCP) sample. B) Comparison of identification accuracies based on the
ranking of fingerprints in the HCP sample. Note that at rank 2, the ranking accuracy is similar
to the conventional identification accuracy, where the FC fingerprint performs relatively
similarly to the local fingerprints, but the difference between them becomes evident at higher
ranks. C) Forensic identification performance using fingerprint dissimilarity as a feature
(LogReg) or the pattern of distances between the fingerprint elements as features (LASSO).
For the FC, the nearly zero true-positive and false-positive rates with feature space 1
(fingerprint dissimilarity; left of Fig. 2C) indicate that it failed to match any of the test
subjects, while the high true-positive and false-positive rates with feature space 2 (pattern of
distances between fingerprint elements; right of Fig. 2C) indicate that it matched many
fingerprints (true positives) but also many false matches (false positives). Abbreviations:
ReHo = regional homogeneity; ALFF = amplitude of low frequency fluctuations; fALFF =
fractional ALFF; FC = functional connectome; RS = resting state; LogReg = logistic
regression; TP = true positive rate; FP = false positive rate.

Better identification performance of local functional fingerprints is

replicable across parcellations and samples and resilient to confounding

effects

Additionally, we performed extensive evaluations to establish replicability and specificity of
our results obtained with the Power 3-mm ROls. First, we tested three other parcellations,
namely, Dosenbach (28), Shen (29), and Schaefer with 300 ROls (30), which also showed
higher identification accuracies for the local fingerprints (Fig. S3). Similar to our results with
the Power spheres, the Dosenbach parcellation showed the highest identification accuracies
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for ReHo (94%), followed by ALFF (92%), fALFF (79%), and FC (78%). With the Shen and
Schaefer parcellations, the results followed a similar pattern with a slight difference in the
order: the highest identification accuracies were found for ALFF (77% and 79%), followed by
ReHo (68% and 62%), FC (52% and 53%), and fALFF (37% and 48%). Second, we
investigated the effect of removing confounds, i.e., sex, age, and total intracranial volume,
from the fingerprints. Removal of these confounds increased overall accuracy while retaining
the result pattern - highest accuracy with ReHo (Fig. S4). Last, replication on the smaller
Finn et al. (2015) HCP sample (n=125) showed similar results with some minor differences

(see Supplementary Materials for details; Fig. S5 & S6).

The attention networks and the Default Mode Network contribute most to
individual uniqueness

Some brain networks contribute more to the "uniqueness" of the FC fingerprint than others
(3, 31). Encouraged by the high accuracy of the ReHo fingerprint, we investigated the
contribution of each ROI in making the ReHo fingerprint unique. Next, each region was
assigned to one of the seven Yeo networks based on the mode of the network membership
of the voxels within that ROI (32). Given that identification accuracies were lowest for the
motor task and highest between the resting state sessions (3), data from these three
sessions were used. We found that the ROls contributing most to uniqueness were located
in dorsal- and ventral-attention networks followed by the DMN, while the limbic network

contained the fewest individual-specific ROls (Fig. 3).
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Figure 3. Contribution of regions of interest (ROIs) in making the ReHo fingerprint individual-
specific. A) Relationship between ReHo and averaged (across all optimization runs) Z-
scored importance weights of ROIs. The average ReHo across subjects showed an inverse
U-shaped relationship with the weights, with higher weights indicating higher individual
uniqueness. B) The proportion of ROIs in Yeo's 7 networks. Abbreviations: ReHo = regional
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homogeneity; RS1 = resting-state fMRI session day 1; RS2 = resting-state fMRI session day
2; Motor = fMRI motor task.

Fingerprints and fingerprint stability capture interindividual differences

Next, for real-world and especially clinical application, representations of brain function
should not only be reliable and idiosyncratic but should also capture interindividual
differences in behavior or cognition. Interestingly, earlier studies have shown that the
variation in the FC fingerprint measured across fMRI sessions, thus reflective of (task-
related) reconfiguration, is lower in individuals with higher intelligence (33, 34). Therefore,
we chose to predict intelligence. First, we investigated the use of fingerprints to predict
intelligence in the HCP dataset (findings are reported when the median Pearson correlation
between predicted and actual intelligence is higher than 0.15). We found that the ReHo
fingerprint was predictive of crystallized (RS2 session, Social Cognition task) and fluid
intelligence (Language task), the ALFF fingerprint was predictive of crystallized (Language
task) and fluid intelligence (RS2 session, Motor task), the fALFF fingerprint of crystallized
(Motor task) and fluid intelligence (Motor task), while the FC fingerprint was not predictive
(Fig. S7-S15). Next, in contrast to previous studies using only the fingerprint itself to predict
cognition, we also examined the use of the stability of the fingerprints for the prediction of
intelligence. This allowed us to test whether the (small) intraindividual fingerprint variability
across sessions is still meaningful for explaining cognitive properties at the individual level.
We observed that the stability of ReHo was predictive of crystallized intelligence, ALFF
stability predicted both crystallized and fluid intelligence, while the stability of fALFF and FC
was generally not predictive (Fig. 4A). A closer inspection of the LASSO weights for the
ReHo features for predicting crystallized intelligence revealed that in individuals with higher
crystallized intelligence the ReHo fingerprint was more stable between the resting state and
the other sessions but less so between the language task and the other sessions. In
addition, for the prediction of crystallized intelligence, high positive coefficients were
observed for ALFF stability of the motor, language, and gambling tasks. For fluid
intelligence, the motor and relational processing task’s ALFF stability received a high

positive coefficient, and the social cognition task stability a negative coefficient.

Local fingerprints are also stable in a clinical sample

In addition to the healthy population, neural fingerprints also need to be stable within clinical
samples if they are to be used as clinical biomarkers. Studies have shown local
abnormalities in schizophrenia (35-37), but it is unclear whether these abnormalities are

stable. Kaufman et al. (2018) previously showed decreased FC fingerprint stability in
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patients with schizophrenia by combining three datasets (10). Here, we used the publicly
available OpenNeuro.ds000115 (17) part of this previously reported sample, which includes
21 individuals with schizophrenia (SZ) and 20 healthy controls (see details in Supplementary
Materials). fMRI data from the 0- and 2-back tasks obtained on the same day were used. No
rs-fMRI data is available for this sample. ROIs were again created with 3-mm radius spheres
around the Power coordinates (15). Identification accuracies for ReHo and ALFF were 100%
for both controls and patients (analyzed separately), while they were lower in SZ for fALFF
(65% in SZ; 88% in HC) and FC (99% in SZ; 100% in HC). This suggests that the ReHo and
ALFF fingerprints are also stable in patients with schizophrenia.

Next, we investigated the association between the stability of the fingerprints and
intelligence in the schizophrenia sample and their matched healthy controls. Machine
learning analysis was not attempted here due to the small sample size. Stability was
calculated as the correlation between the fingerprints of the 0-back and 2-back task
sessions. We correlated the stability of the fingerprints with the Wechsler Adult Intelligence
Scale (WAIS) Matrix Reasoning and Vocabulary subtest scores in both the SZ and HC
groups. In the SZ group, the stability of the ReHo, ALFF, and FC fingerprints showed a high
negative correlation with the WAIS Matrix Reasoning subtest (all r < -0.50, Fig. 4B), while in
the HC group, only ALFF stability showed a positive correlation with WAIS Vocabulary

subtest scores (r = 0.48).
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Figure 4. A) Prediction of crystallized and fluid intelligence using the stability of fingerprints
of the nine sessions of the Human Connectome Project sample. Each boxplot shows the
prediction performance across five cross-validation runs. B) Scatterplot between the WAIS
Matrix Reasoning scores and the stability of the task fingerprints in the SZ sample of the
OpenNeuro.ds000115 dataset. Abbreviations: ReHo = regional homogeneity; ALFF =
amplitude of low frequency fluctuations; fALFF = fractional ALFF; FC = functional
connectome.
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ReHo represents a neural fingerprint

Altogether, thus far, our findings suggest that ReHo is most stable within an individual and
captures brain-behavior associations. However, its high individual specificity might be driven
by stable nonneural signals (i.e., artifacts, breathing, cardiovascular effects). Indeed, earlier
studies have shown high stability of motion and cardiac pulsatility and that test-retest
reliability of individual edges within the FC is reduced after artifact removal (7). Therefore, as
a last follow-up analysis, we investigated the contribution of vascular activity to local and
global fingerprints. Previous research showed that breathholding is a reliable estimate of the
influence of vascular activity on BOLD signals (38), as it induces hypercapnia: an increase in
carbon dioxide causes increased cerebral blood flow. This was investigated with the resting-
state and breath-holding fMRI sessions (TR of 1400 ms) provided in the enhanced Nathan
Kline Institute dataset (eNKI; n=478; see Supplementary Materials for details) (39), as the
HCP does not provide breath-holding fMRI data. The breath-holding paradigm consists of
alternating breathing in, out, and breath-holding, causing a global change in oxygenation.
We only used the breath-holding blocks to derive the fingerprints. We observed the highest
identification accuracies between resting-state and breath-holding with ALFF (99%), followed
by ReHo (87%), FC (72%), and fALFF (44%). Identification accuracies for ALFF and ReHo
both reduced slightly when regressing out variance explained by ReHo and ALFF,
respectively (ALFF: from 99% to 98%; ReHo: from 87% to 86%). This result suggests that
the vascular signal in resting-state fMRI is captured with all fingerprints, but especially with
ALFF.

Discussion

Here, we compared fingerprint properties of three local fingerprints with the commonly
reported FC fingerprint, as higher reliability (lower intraindividual variability) of these local
measures has been shown as compared to the FC. Using a publicly available dataset and
four different measures of identification performance, different parcellations and ROl sizes,
our findings show high accuracy of local functional fingerprints, especially when using ReHo.
Next, four follow-up analyses were conducted. First, we show that the attention networks
and the DMN contained the highest number of individual-specific ROls in the ReHo
fingerprint. Second, we demonstrate that intelligence can be predicted with local fingerprints
and that even though the intraindividual variability of local fingerprints is small, it is
meaningful given that it captures interindividual differences in intelligence. Third, we show
the potential for the application of local fingerprints in clinical populations, as the ReHo

fingerprint was highly accurate in individuals with schizophrenia, and its stability correlated
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with intelligence. Finally, analyses using breath-holding data suggest that the ReHo
fingerprint largely reflects neuronal signals and that it can indeed be deemed a “neural
fingerprint”. As such, our findings suggest the ReHo fingerprint as a candidate for further
exploration: it has good fingerprint properties and is predictive of interindividual differences in

cognition.

"Fingerprinting" with local fingerprints versus the functional connectome
fingerprint

ReHo quantifies the synchronization among the voxelwise time series within a ROI, and its
stability across sessions appears to reflect the existence of regions that work relatively
uniformly across mental states (i.e., tasks). The FC, on the contrary, captures dynamic and
state-dependent interactions between regions and might be less suitable for answering
identifiability questions. One other explanation for our finding of higher accuracy of the local
fingerprints could be that first-order statistics such as ReHo and (f)ALFF might show different
patterns of interindividual variation compared to second-order statistics such as the FC (40).
Moreover, for local metrics the values are averaged for a region, which reduces noise (41).
To the best of our knowledge, no studies have reported identification accuracies for ReHo or
(HALFF fingerprints thus far. Two studies reported identification accuracies for a different
measure of local brain function called BOLD variance (3) or BOLD variability (BV) (42). The
BV fingerprint reflects the BOLD variance per region, i.e., regional fluctuations similar to the
ALFF fingerprint but in the full frequency range. Both of these studies showed lower
identification accuracies of the BV fingerprint compared to the FC fingerprint, suggesting that
not all local fingerprints have better fingerprint properties than the FC and that the BV

fingerprint captures processes different from ALFF.

The attention networks and the Default Mode Network contribute most to

individual "uniqueness”

Previous studies predominantly showed the contribution of frontoparietal regions or "higher-
order networks" (i.e., frontal, parietal and temporal lobes) to FC identifiability (3, 8, 9, 43, 44).
For example, one study found that ROls contributing most to the "uniqueness" of the FC
were located in the default mode, attention, and executive control networks (44). Here, we
investigated "uniqueness" for the ReHo fingerprint by optimally weighting ReHo features
higher in some brain regions to enhance the fingerprint efficacy, thereby revealing brain
regions that contribute more to individual uniqueness. Next, each region was assigned to

one of the previously described seven networks based on the mode of the network
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membership of the voxels within that ROI (32). We found that regions in the dorsal- and
ventral-attention networks and the DMN contributed most to identifiability, while the limbic
network contributed the least. However, some critical considerations should be noted. First,
limbic regions in these networks are smaller than ROIs within the other networks and
therefore might be affected more by normalization errors that induce noise. Second, they are
also affected most by magnetic susceptibility artifacts causing a reduced signal-to-noise ratio
leading to reduced homogeneity (45), which can make the ReHo fingerprint more noisy and
hence less specific in these regions. Last, the nature of the fMRI sessions used to
investigate uniqueness (the motor task and resting state sessions) might also influence the
contribution of certain ROlIs to the uniqueness of the fingerprint, although the motor task has
been shown to mostly modulate the motor cortex (46).

Previous research has indeed shown greater interindividual variability of multimodal
association networks (i.e., default, dorsal attention and executive control) (41, 47, 48), while
unimodal networks (i.e., visual and sensorimotor) had lower interindividual variability (41).
On the other hand, the DMN, attention, and subcortical systems have been shown to be
relatively less dynamically diverse (49) and thus show lower intraindividual variability, while
unimodal networks have higher intraindividual variability (41). It appears that higher-order
networks are affected more by genetic and environmental factors (41, 50), while lower-order
networks are influenced more by situational or task demands (41). Altogether, our findings
suggest that not only the distributed connectivity but also the local brain function within
higher-order brain networks contributes most to the "uniqueness" of a brain. These networks
that are stable within an individual but highly variable across individuals might provide a
fundamental backbone of functional brain organization implicated in cognition as well as in
disease (49). Future studies might use the localizing power of local fingerprints to attempt

pinpointing "uniqueness" to even smaller regions.

Fingerprints and fingerprint stability capture interindividual differences

Our findings thus far showed that the ReHo fingerprint is an accurate neural fingerprint.
Next, we showed that the local fingerprints are predictive of crystallized and fluid intelligence,
while the FC fingerprint is only predictive of fluid intelligence. Previous studies also
significantly predicted fluid intelligence from the FC fingerprint itself (3) and from the strength
of the dynamic FC fingerprint (51), a high-resolution FC fingerprint (52), and a FC fingerprint
refined using an autoencoder network (43). These studies did not attempt to predict
crystallized intelligence (i.e., composite score of the Picture Vocabulary Test and Oral
Reading Recognition Test). Only the last-mentioned study investigated one crystallized

intelligence subtest, the Picture Vocabulary Test - measuring language comprehension - and
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found that the refined FCs could significantly predict it (43). The predictiveness of local
fingerprints have not been thoroughly investigated, although a few studies found significant
associations between (voxelwise) whole-brain ReHo or ALFF and intelligence (53, 54). In
short, our findings suggest that different fingerprints will be more appropriate for predicting
different traits, just as some fMRI tasks are more appropriate for capturing interindividual
differences in specific traits (55).

Overall, the fingerprints based on the Motor fMRI task data appeared to be most
predictive of intelligence, which is also the session with the lowest identification accuracies.
Indeed, it has been shown that reliability is not correlated with predictiveness (56) (of FC
edges in the referenced study), conceivably because behavior is not static but dynamic (5).
Therefore, we next tested whether the subtle differences in the fingerprints across sessions
are still informative of individual-level intelligence. Using a machine learning framework, we
predicted intelligence with the stability of the fingerprints across sessions. Our results
showed that the stability of ReHo could predict crystallized intelligence but not fluid
intelligence. On the other hand, ALFF stability could predict both crystallized and fluid
intelligence, while the stability of fALFF and FC were not predictive. Thus, even though local
fingerprints are highly similar across sessions, the (small) variation due to differing mental
states is still predictive of individual-level cognition.

Our findings suggest that intraregional information processing, as captured with
ReHo, is stable across tasks or mental states. This stability of information processing within
a region is associated more with the more static form of intelligence that is conceptualized
with crystallized intelligence than with the more dynamic ability to reason and solve new
problems referred to as fluid intelligence, which might be associated more with brain
dynamics or interactions between regions. In a previous study in which functional
connectivity patterns were also more predictive of crystallized than fluid intelligence, the
authors suggested that this might be explained by the strong mapping between brain
anatomy and language, while fluid intelligence might rely on the functioning of multiple
(partly) overlapping brain networks that are involved in many distinct cognitive skills (57).
Our findings show that ALFF was predictive of both crystallized and fluid intelligence. ALFF
reflects temporal variability and therefore might be more suited for capturing dynamic
changes or behaviors. Along this line, a previous study examining time-varying network
configurations showed that these dynamic configurations are not only good fingerprints in
healthy individuals but that the individual variability in one of these configurations (i.e., brain
states) was predictive of florid psychotic symptoms in individuals with a psychotic disorder
(58). Future studies could systematically investigate the ability of different fingerprints to

predict different types of behavior and cognitive functions.
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A closer inspection of the LASSO weights for the ReHo features for predicting
crystallized intelligence revealed that reconfigurations of ReHo across states were smaller in
individuals with higher crystallized intelligence. This is in line with studies showing that the
FC fingerprint at rest was more similar to the FC during several tasks in individuals with
higher intelligence (33, 34). This ability to reconfigure networks efficiently based on task
demands can be seen as a sign of high intelligence (33). Surprisingly, we also found that
higher reconfiguration of the ReHo fingerprint between the language task and the other
sessions was predictive of higher crystallized intelligence. However, some differences can
be noted compared to this previous study using the HCP dataset, which may explain the
difference in findings: they examined the FC fingerprint and not ReHo, calculated stability
between fingerprints with the cosine distance between FC matrices, and calculated

intelligence with a latent g-factor derived from 12 cognitive scores (34).

Local fingerprints are also stable in a clinical sample

The application of biomarkers in precision psychiatry requires stability in clinical populations.
Here, we show perfect identification accuracies (100%) for ReHo and ALFF in both SZ and
HC. For fALFF and FC, identification accuracies for SZ were lower compared to HC, albeit
very slightly for FC. The higher identification accuracies for the FC in this sample compared
to the HCP sample (99-100% vs 54-100%) could be due to the smaller sample size (21 SZ
and 20 HC vs 399 HC), longer task duration compared to some (but not all) HCP sessions
(+/- 4 minutes vs +/- 2-14,5 minutes), and the (increased) engagement of similar networks
during 2- and 0-back tasks, all of which have been shown to increase FC fingerprint
identification accuracy.

The utility of FC fingerprints has been shown in several clinical populations. A delay
in reaching FC fingerprint stability has been reported even in individuals with preclinical
signs of mental iliness (i.e., increased prodromal symptoms across domains of ADHD,
schizophrenia and depression) (11). Moreover, some aspects of FC functioning have been
shown to be disrupted - and associated with symptom severity - across patients with differing
psychiatric diagnoses, such as primary psychotic disorder, affective psychosis, and primary
affective disorder without psychosis, while other aspects were only disrupted in patients with
a psychotic disorder specifically (59). Lower stability of the whole-brain FC has also been
shown in schizophrenia patients (10). Altogether, these previous studies demonstrated
transdiagnostic utility of FC fingerprints. While this was unknown for local fingerprints, our
findings suggest the utility of local functional fingerprints in individuals with schizophrenia.
However, this should be replicated in other and larger samples. Future studies taking a

transdiagnostic approach could inform the stability of different functional fingerprints across
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individuals with different characteristics and their ability to predict different types of behaviors
and symptoms.

Next, we investigated the association between fingerprint stability and intelligence.
Given the small sample size, machine learning analysis to examine the fingerprints' ability to
predict intelligence was not attempted here. We found that in individuals diagnosed with
schizophrenia from the OpenNeuro.ds000115 dataset, higher reconfigurations of ReHo,
ALFF, and FC fingerprints were associated with higher scores on the Matrix Reasoning
subtest, a measure of abstract problem solving and inductive reasoning, which is considered
a part of fluid intelligence. This finding was opposite to what we observed in healthy
individuals of the HCP sample, and this was also not seen in the matched HC of the
OpenNeuro.ds000115 dataset (all r < 0.02-0.1). This finding could suggest that individuals
with SZ had difficulties performing the 2-back task and failed to engage the networks
required for the additional working memory load of this task (compared to the 0-back task).
Indeed, a previous study using the same dataset (including 19 SZ and 10 HC) showed lower
2-back performance in SZ compared to HC (0.72 vs 0.81 for 0-back; 0.64 and 0.80 for 2-
back) (17). In HC, only ALFF stability was associated with the scores on the Vocabulary
subtest. Altogether, our findings suggest that even though the ReHo and ALFF fingerprints
are highly stable, their subtle variation due to mental states is informative of individual-level

cognition in patients with schizophrenia.

ReHo represents a neural fingerprint

Higher ReHo, fALFF (45), and ALFF (60) have been associated with higher glucose
metabolism, although the strength of this association varies across the brain. As the fourth
follow-up analysis, we investigated the contribution of vascular activity to local and global
fingerprints. Identification accuracies with the eNKI breath-holding fMRI-task and resting-
state data suggest that breathing, or vascular signal, is represented more in resting-state
ALFF than in resting-state ReHo. Indeed, previous research has shown that ALFF captures
this signal (61, 62). Furthermore, our results are in line with the idea that fALFF, as a
normalized ALFF, is affected less by physiological signals from large blood vessels and CSF
that affect the entire frequency spectrum. Taken together, the high accuracy of ReHo in the
HCP samples and its relatively lower accuracy with breath-holding data suggests that, as

expected, ReHo captures neural signals more than ALFF.
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Better identification performance of local functional fingerprints is
replicable across parcellations and samples and resilient to confounding

effects

Finally, we tested the robustness of our main results regardless of methodological choices.
In addition to the results obtained with ROls created with 3-mm spheres around the Power
coordinates, identification was also evaluated using three other parcellations (i.e.,
Dosenbach, Shen, and Schaefer with 300 ROIs). While the results with the Dosenbach
spheres were similar to the Power spheres, for the Shen and Schaefer parcellations, higher
identification accuracies were found for ALFF, followed by ReHo, FC, and fALFF (versus
ReHo, ALFF, fALFF, FC with Power and Dosenbach parcellations). This difference might be
explained by the fact that ROls in the Power (264 ROls; 3-mm radius) and Dosenbach (160
ROlIs; 5-mm radius) parcellations are compact spheres, while the ROIs of the Shen (268
ROIls) and Schaefer (300 ROIs) parcellations are much larger. As we calculated ReHo for
each ROI as Kendall’'s coefficient of concordance for all the voxelwise time series within that
ROI, ReHo values are expected to converge to 0 with increasing ROI size, in effect
rendering the ReHo fingerprint less specific and confirming the importance of spatial
resolution in ReHo calculation. fALFF values increase with larger ROI sizes, as larger ROls
result in smoother signals and therefore a higher proportion of low-frequency fluctuations
(63). Moreover, larger ROIs reflect more macroscopic organization, are impacted more by
partial volume effects, and averaging within them deteriorates local fingerprints. While a
previous study showed lower identification accuracies with larger ROI sizes for the FC
fingerprint (64), our findings show that this also applies to local fingerprints. Next, we tested
the effect of sample size, as larger sample sizes are essential for application in precision
psychiatry, while it is expected that they yield lower identification accuracies (64). Therefore,
all comparisons were also conducted with the previously reported sample of 125 subjects
(3). We found that identification accuracies for the FC decreased the most with increasing
sample size, while local fingerprints, and especially ReHo, were affected the least. Last, our
finding of highly accurate local fingerprints was resilient against confounding effects (i.e.,
age, sex, and intracranial volume), as confound removal resulted in the same pattern of
identification accuracies, with ReHo yielding the highest accuracies. Confound removal
benefited identification accuracies for FC the most and ALFF the least, suggesting higher
sensitivity of the FC and lower sensitivity of ALFF to confounding effects. Altogether, our
findings suggest that ReHo shows high specificity, sensitivity, and robustness as a neural

fingerprint.
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Limitations

This study has some limitations. First, the contribution of physiological signals to the BOLD
signal is unclear. We used the FIX-denoised resting-state data from the HCP, which is
expected to be free of such extraneous signals. We further tested the contribution of
vascular activity to the fingerprints, but other sources of physiological signals might also
contribute. Studies have shown, however, that accurate subject identification is mostly based
on neural signals and not on nuisance processes such as physiological processes and head
motion (44, 65). Furthermore, the contribution of structural information (brain morphology) to
fingerprint identification accuracy is also unclear (42). Second, we created fingerprints based
on local brain function, which is just one of many possibilities. Other studies investigated
fingerprints based on shape, white matter fiber geometry, voxelwise diffusion density, or
combinations (66). Future studies could also investigate a multimodal fingerprint including
ReHo. Third, we analyzed data that was acquired within a short time span (i.e., days), but
previous research has shown decreasing identification accuracies with increasing time
spans (i.e., from 90% within one month to 66% within 2-3 years) (67). Future work could
examine the stability of local and global fingerprints over months or years using longitudinal
data. Fourth, we did not control for differences in scan durations between rs- and task-
sessions. However, earlier research has shown that identification accuracies between task
sessions improved when matching scan duration but were still highly variable across
sessions (68). Fifth, we checked fingerprint stability in one, relatively small, clinical sample of
individuals with schizophrenia. It is unclear whether our findings generalize to other clinical
samples and conditions. Finally, local metrics such as ReHo and (f)ALFF were originally
proposed for rs-fMRI data while we also calculated them with task-based fMRI data.
However, this data was treated as resting-state, as task timing was ignored. Our findings
show that ReHo and (f)ALFF are highly stable across resting state and tasks, suggesting

that even when influenced by a task they appear to reflect intrinsic brain function.

Conclusion

Investigating associations between brain function and cognition, behavior, or disease
characteristics requires within-individual stable representations of brain function (69). Recent
studies have increasingly stressed the importance of neural representations capturing both
intraindividual stability and interindividual differences, as both are desired properties for
clinical biomarkers (5, 16). Here, we show that measures of local brain function - and
especially ReHo - are better fingerprints (compared to the global FC fingerprint), while they
also capture interindividual differences in cognition. We suggest the ReHo fingerprint to be a

good candidate for further exploration of applicability in precision medicine.
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Materials and Methods

Calculation of identification accuracy in the Human Connectome Project

sample

Human Connectome Project (HCP) sample

Data collection was approved by the Institutional Review Board at Washington University in
St. Louis. The selection of subjects was performed in R version 3.6.1 (R Core Team 2019).
Individuals were included in case of the availability of 1) a T1-weighted scan, 2) two resting-
state fMRI scans (rffMRI_REST1 and rfMRI_REST?2), 3) data on 58 behavioral variables (70)
and 4) all fMRI tasks (working memory (tftMRI_WM), gambling (ttMRI_GAMBLING), motor
(tfIMRI_MOTOR), language (tftMRI_LANGUAGE), social cognition (tfMRI_SOCIAL), relational
processing (tfMRI_RELATIONAL) and emotion processing (ttMRI_EMOTION) (46). Subjects
with reported issues according to the HCP data release updates were excluded. From this
sample, subjects were selected that were unrelated (variable Family_ID) with a similar
number of selected males and females (Gender) that were matched on age (Age_in_Yrs),
education (SSAGA_Educ), race (Race), and BMI (BMI). This resulted in a sample of 399
subjects consisting of 195 females and 204 males. The mean age, education, and BMI were
similar between males and females, namely, 27.83 (sd=3.75) versus 29.68 (sd=3.69), 14.08
(sd=1.75) vs 15.01 (sd=1.86), and 27.03 (sd=4.38) vs 26.06 (sd=5.59), respectively. The
distribution of races was also similar between males and females: Asian/Nat.
Hawaiian/Other Pacific Is. (11 vs 13), Black or African Am. (28 vs 29), White (154 vs 145),
unknown or not reported (4 vs 2), more than one (7 vs 6). For all subjects, all available fMRI
data (i.e., two resting-state fMRI sessions and seven fMRI tasks) were used for the main
analyses. Further details on the tasks and acquisition parameters can be found in Barch et
al., 2013 (46).

We used the preprocessed data provided by the HCP, which includes artifact
removal, motion correction, and registration to standard space (71-75). For the resting-state
data, the ICA-FIX noise components removed data were used. We also used the sample
from Finn et al. (3) (n=125) for replication and optimization analyses; of this sample, 47

subjects overlapped with the n=399 HCP subsample.

Preprocessing

Additional minimal preprocessing was performed assuming no prior knowledge of the data,
therefore allowing the use of our preprocessing pipeline in a broad range of situations (i.e.,

task- or resting-state data, variable scan parameters, etc.). This was done in MATLAB
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release 2019b (MathWorks) and included regressing out the 12 detrended motion
parameters (provided by HCP as Movement_Regressors_dt.txt), as well as the mean time
courses of WM, CSF, and global signal, and filtering the time series with a bandpass filter of
0.01-0.1 Hz. Next, the fingerprints were calculated for both left-right (LR) and right-left (RL)

phase-encoding runs and consequently averaged.

Local fingerprints

A local fingerprint for a subject consists of a vector of length N, where N is the number of
ROIs. All local fingerprints were calculated on the average time-series per ROI. ReHo is
calculated with Kendall's coefficient of concordance considering the time series of all the
voxels within an ROI (25). For ALFF and (f)ALFF, voxelwise time series were transformed to
the frequency domain to obtain the power spectrum (27). ALFF is the averaged square root
of the power in the 0.01-0.1 Hz frequency range averaged across voxels within a ROI (26).
fALFF is ALFF scaled by the total power in the full frequency range averaged across voxels
within a ROI (27).

Global fingerprint (whole-brain functional connectome)

A FC for a subject consists of a matrix of size NxN, where N is the number of ROIs. We
extracted the lower triangle of this matrix and vectorized it to obtain the FC fingerprint as a
vector of length N x (N-1)/2.

Identification accuracy

Iteratively, all subjects' data from one session was used as the "base dataset" while data
from another session was used as the "target dataset". Spearman correlations were
calculated between the fingerprints of the two sessions. Using a 1-nearest neighbor
approach (3), the "base" fingerprint was labeled with the subject identity of the most similar
fingerprint in the "target dataset". Identification accuracy was calculated as the fraction of

correctly labeled participants.

|diff

An identification matrix of size NxN (N = number of subjects) was created reflecting the
correlations between the fingerprints of a subject in the base and all fingerprints in the target
database. The lower triangle elements were extracted and represented as a N x (N-1)/2-
dimensional vector. "Iself" is the average within-subject similarity, while "lothers" is the
average between-subjects similarity. Idiff is then calculated by taking the difference between
Iself and lothers (9).
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Ranking accuracy

Identification accuracies were calculated (see paragraph "ldentification accuracy" above)
with one difference. Namely, iteratively, each session was used as the base dataset, while

all other eight sessions (instead of only one other session) were included in the target

dataset. Then, instead of focusing only on the fingerprint in the target dataset with the
highest correlation, all fingerprints in the target dataset were ranked based on their similarity
with a subject's fingerprint in the base dataset. At each rank (2-9, as each subject has data
from nine sessions), the proportion of correctly identified subjects was calculated (see Fig. 1

for a visualization).

Forensic identification

We used a machine learning framework to predict whether two fingerprints matched (see
Fig. 1). For this, we used the two resting-state sessions as training data and trained a
classification model using a match-no-match dataset derived from 70% of the subjects
(randomly chosen). Forensic identification accuracies were calculated across all pairs of
sessions. We tested two different feature spaces that were constructed containing a match
and a no-match part. The match part contained features of fingerprints from two sessions of
the same subject. The no-match part contained features of a subject from session 1 and
their second-closest match from session 2. For the first model, the feature space included
(for each subject) the correlation coefficient between two resting-state fingerprints. For the
second model, the features for the match-part included (for each subject) the absolute
difference between the elements of two resting-state fingerprints. Similarly, the features for
the no-match part included the absolute difference between the resting state 1 fingerprint of
a subject in the base dataset and the resting state 2 fingerprint of the closest other subject in
the target dataset. This provided a dataset with 2xN rows (N = number of subjects), which
together with class labels indicating match or no-match was used to train a classifier. More
specifically, we employed logistic regression with the feature space of the first model and
LASSO with the feature space of the second model. The 30% hold-out subjects were used
for testing: each of the 30% held-out subjects was probed against all the subjects one by
one as a reference to obtain matches. Given a reference fingerprint (with known identity) and
a test fingerprint (unknown identity), a trained model was used to predict whether they
matched. A prediction was then obtained using each fingerprint in a reference dataset. The
reference dataset was either the average of the two resting-state sessions or one of the task
sessions (emulating the privacy-preserving scenario where the training data itself is not
available). As the number of predictions for each test fingerprint equals the number of

fingerprints in the reference dataset, predictions for a test fingerprint can contain one,
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multiple, or no matches. If the correct subject was predicted as a match, it was counted as a
true positive (TP), and if any other subject was predicted as a match (irrespective of TP),
then this was counted as a false positive (FP). A good classifier should provide a high TP
and a low FP rate. The split between training and test subjects was repeated 10 times. Ten
times repeated 10-fold cross-validation was performed on the training data to estimate the

generalization ability.

Confound removal

Confounding signals due to age, sex, and total intracranial volume (ICV) were regressed out
from each column of each database (subjects x fingerprint), and the residuals were used for

identification. The ICV was estimated using the CAT12.5 VBM processing pipeline.

Contribution of regions to individual uniqueness via margin optimization

To identify important ROIs whose ReHo is individual specific, we posed an optimization
problem to derive weights for the weighted Pearson correlation coefficient that maximizes
the margin, i.e., the correlation difference between the correct fingerprint and the next best.
As the ReHo identification accuracy was very high (close to 100% in most cases), using the
accuracy as an optimization objective would not be meaningful. We sought to identify a
weight w; for each ROI by solving the following optimization problem:

argmax,, 2 Qw(self) - Qw(beStiself)

sub
s.t.w; €[0,1]

This optimization problem was solved to maximize the average margin for the HCP
sample (n=399) using the CMA-ES algorithm (76). Importantly, the data was divided into a
50% training set used to learn the weights and a 50% test set to validate whether the
optimized weights indeed improve the margin on out-of-sample data. This procedure was
repeated 20 times to assess stability. We used two optimization problems: RS1-RS2 and
RS2-Motor. This resulted in an importance weight for each ROI reflecting its contribution to
uniqueness (Fig. S16 & S17). Next, each of the Power 3-mm ROIs was assigned to one of
the seven Yeo networks or ‘None’ based on the mode of the network membership of the
voxels within each ROI. Then, we varied a threshold over the optimized weights (averaged
over RS1-RS2 and RS2-Motor) to assess the retained proportion of the ROIs from each of

the seven networks (Table S1).
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Fingerprints and fingerprint stability predict intelligence

The fingerprints were used to predict individual-level crystallized
("CogCrystalComp_AgeAd;") and fluid intelligence ("CogFluidComp_AgeAd;") separately in a
5 times repeated 5-fold cross-validation setup using least absolute shrinkage and selection
operator (LASSO) regression (77). The variance due to age and total intracranial volume
was removed from the features in a cross-validation consistent manner (78).

Next, to investigate the predictiveness of fingerprint stability, we first calculated - for
each individual - the stability of the fingerprints as the average correlation of each session’s
fingerprint with the fingerprints of all other sessions resulting in a feature vector with nine
values (i.e., two resting-state and seven task fMRI sessions). These features were then

employed for prediction analysis as described above.
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