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Summary

Adaptive sensory behavior is thought to depend on processing in recurrent cortical circuits, but
how dynamics in these circuits shapes the integration and transmission of sensory information is
not well understood. Here, we study neural coding in recurrently connected networks of neurons
driven by sensory input. We show analytically how information available in the network output varies
with the alignment between feedforward input and the integrating modes of the circuit dynamics. In
light of this theory, we analyzed neural population activity in the visual cortex of mice that learned
to discriminate visual features. We found that over learning, slow patterns of network dynamics
realigned to better integrate input relevant to the discrimination task. This realignment of network
dynamics could be explained by changes in excitatory-inhibitory connectivity amongst neurons tuned
to relevant features. These results suggest that learning tunes the temporal dynamics of cortical
circuits to optimally integrate relevant sensory input.

Highlights

* A new theoretical principle links recurrent circuit dynamics to optimal sensory coding
* Predicts that high-SNR input dimensions activate slowly decaying modes of dynamics
» Population dynamics in primary visual cortex realign during learning as predicted

« Stimulus-specific changes in E-l connectivity in recurrent circuits explain realignment
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Introduction

Cortical circuits process sensory information through both feedforward and recurrent synaptic con-
nections (Lamme and Roelfsema, 2000). Feedforward connectivity can filter (Hubel and Wiesel,
1962; LeCun et al., 2015) and propagate (Abeles, 1992; Van Rossum et al., 2002) relevant informa-
tion, allowing rapid categorization and discrimination of stimuli (Thorpe et al., 1996; Resulaj et al.,
2018). However, the majority of synaptic input received by neurons in sensory cortex arises from
neighboring cortical cells (Peters et al., 1994; Douglas et al., 1995), and recurrent cortical dynamics
exerts a powerful influence on network activity during sensory stimulation (Fiser et al., 2004; Rein-
hold et al., 2015). The functional role of such recurrent synapses in the integration and transmission
of sensory information remains poorly understood.

Many of the stimulus features represented in the spiking output of neurons in primary sensory cor-
tex are already present in the net feedforward input they receive (Lien and Scanziani, 2013). Pre-
vious studies have proposed two possible functions of recurrent cortical synapses. First, recurrent
synapses may increase the signal-to-noise ratio (SNR) of the relevant sensory features through se-
lective amplification (Douglas et al., 1995; Ben-Yishai et al., 1995; Somers et al., 1995; Murphy
and Miller, 2009; Liu et al., 2011; Li et al., 2013; Lien and Scanziani, 2013; Cossell et al., 2015).
Second, recurrent synapses may enhance the efficiency of the encoding by suppressing redun-
dant responses in similarly tuned cells (Olshausen and Field, 1996; Lochmann and Deneve, 2011;
Chettih and Harvey, 2019). However, although recurrent amplification and competitive suppression
can increase the SNR of single-neuron responses and improve coding efficiency respectively, such
mechanisms cannot increase the amount of sensory information transmitted through the network
beyond the information that the network receives in its input (Cover and Thomas 2006; Series et al.,
2004; Beck et al., 2011; Kanitscheider et al., 2015; Zylberberg et al., 2017; Huang et al., 2020).

Recent studies have shown that visual features such as orientation become easier to decode from
both single-cell and population responses in primary visual cortex (V1) when mice and monkeys
learn to associate them with behavioral contingencies (Poort et al., 2015; Khan et al., 2018; Jurjut
et al.,, 2017; Yan et al.,, 2014). This apparent improvement in representation is accompanied by
changes in functional interactions amongst excitatory and inhibitory cell types within the local circuit
(Khan et al., 2018). Since changes in recurrent amplification or competitive suppression cannot
increase the total available information, it remains unclear how changes in the local circuit could
generate the observed improvements.

Here, we ask whether improvements in stimulus decodability over learning could arise through se-
lective temporal integration of relevant feedforward sensory input. We first show analytically how the
output of a network can be tuned to optimally discriminate pairs of input stimuli by matching its recur-
rent dynamics to their sensory input statistics. In particular, we show that a stimulus decoder applied
to network output performs best if the dimension of network input with greatest SNR activates a pat-
tern of recurrent network dynamics that decays slowly. We then study how the dynamical properties
of neural circuits in mouse V1 change as animals learn to discriminate visual stimuli. Using a dynam-
ical systems model fit to experimental data (Khan et al., 2018), we find that slowly decaying patterns
in the recurrent dynamics became better aligned with high-SNR sensory input over learning. Finally,
we analyze circuit models with excitatory and inhibitory neurons to explore how this alignment might
arise through changes in the circuit. We find that stimulus-specific changes in connectivity between
excitatory and inhibitory neurons increase the alignment of recurrent dynamics with sensory input
as observed experimentally. These connectivity changes predict changes in stimulus tuning within
the model, which we find to be recapitulated in the experimental data. Our findings suggest a critical
role for cortical dynamics in selective temporal integration of relevant sensory information.
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Results

Sensory discrimination relies on temporal integration of optimally weighted sensory input

We first asked how the dynamical properties of a recurrent network influence its capacity to dis-
criminate sensory inputs. The scenario we considered had one of two possible stimuli appear for
the duration of a trial. Each stimulus generated an input to each neuron in the network with con-
stant mean corrupted by additive, temporally uncorrelated, Gaussian noise (this approximates the
net feedforward synaptic input a neuron receives from a large number of upstream neurons, see
Stein, 1967; Capocelli and Ricciardi, 1971; Lansky, 1984). To determine how these inputs should be
integrated for optimal discrimination performance, we adopted a signal processing perspective (see
Supplementary Mathematical Note).

Two noisy stimuli can be optimally discriminated from the instantaneous sensory input to the net-
work by taking a one-dimensional linear combination of the inputs to different neurons (Figure 1A, B)
weighted according to the “linear discriminant". This is the linear combination of inputs that achieves
the best compromise between separating the mean inputs under the two stimuli and avoiding pro-
jected noise (Figure 1D, black dashed arrow). Writing u(t) for a vector collecting the inputs to all
neurons at time t, the linear discriminant is a vector w of the same dimension such that the projected
input vector d(t) = w - u(t) has the greatest possible signal-to-noise ratio SNR;,,.t (W) for the dis-
crimination of the two stimuli (Figure 1B, D). Then, to discriminate stimuli over a window of duration
T, the optimal strategy is simply to integrate the linear discriminant projection across the time window
(Figure 1C), yielding an output with SNRguipus = SNRinput (W)V/T (Figure 1E, F).

These results demonstrate that a network can best generate distinct activity patterns in response to
two different continuous stimuli if it temporally integrates the input stimuli weighted according to their
projection onto an optimal linear discriminant.

A Network Inputs Weighted Sum B C

i S Stimulus 1
v | Stimulus 1 o
w, =+1 = . i = )
u () V 3 | stimulus 2 d(t) Temporal Intgration g Stimulus 2
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© e e
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Feedforward Input ? & 5
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Inputs (Neuron 1) Integration Time Integration Time

Figure 1. Stimulus discrimination performance depends on temporal integration of weighted
sensory input. A: Feedforward inputs to a two-neuron network, shown for two different stimuli (red
and blue). B: A weighted sum (linear projection) of the instantaneous inputs shown in A. C: The
temporally integrated input projection for each stimulus (cumulative sum of projected inputs shown
in B). D: Distributions of instantaneous feedforward input for each of the two stimuli (colored ellipses),
their optimal linear discriminant (dashed black arrow), and a second suboptimal projection (dashed
gray arrow). E: The signal (difference in mean; solid lines) and noise (standard deviation; dashed
lines) of activity following linear projection and temporal integration, shown for the two projections in
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D. F: The instantaneous (dashed) and temporally integrated (solid) signal to noise ratio of these two
projections.

Recurrent networks enhance sensory discrimination by alignment of slowly decaying dynam-
ical modes with optimal sensory input

How might this optimal discrimination function be achieved using a recurrent network? To address
this, we considered how noisy stimulus input is filtered through the recurrent network dynamics. A
core feature of recurrent networks is their capacity to generate multiple distinct activity patterns,
which may unfold with different dynamical time constants within the network’s high-dimensional ac-
tivity space (Rabinovich et al., 2006; Miller, 2016; Sussillo et al., 2014). We asked if these different
time constants of network dynamics could allow a network to act as an optimal integrator of sensory
input by providing windows of temporal integration over the optimal input discriminant (Goldman et
al., 2009a).

For networks that settle into a steady pattern of firing rates when driven by a constant input (Figure
2A, C), the behavior of small fluctuations around that input-driven fixed point can be approximated
with a linear dynamical system (Figure 2B). The dynamics of this linearized network are described
by a set of dynamical "modes", each of which associates a time constant 7 with a unique pattern
of network activation m (Figure 2B). The activation pattern m is a vector describing a particular
deviation of network activity from the fixed point, with elements equal to the relative deviation of each
neuron, while 7 determines the time taken for an activity fluctuation along m to decay back towards
the fixed point through the network dynamics. In particular, when network activity is perturbed
away from its input-driven fixed point along any direction, the ensuing population activity trajectory
projected onto any given mode’s m decays as an exponential function with the corresponding time
constant 7 (Figure 2B, C). Moreover, when the network is driven by a stimulus input with continuously
fluctuating noise as considered here (Figure 1A), population activity projected onto any mode’s m
behaves as a leaky integrator, with each mode independently aggregating inputs that fall along its
activation pattern with an integration window of duration 7 (Figure 2D, E). In the discrimination task,
input associated with one of the two possible stimuli drives the network on any given trial (Figure
1A, D, Figure 2D). In this case, provided that the two stimulus-driven fixed points are sufficiently
close to fall within the domain of network linearization (Figure 2E, F), the SNR of network output
projected onto any single mode’s m following network integration matches the signal processing
solution above, with SNRuiput(m) = SNRj,pu(m)y/27 (Figure 21, J). Thus, a recurrent network
can achieve the optimal strategy for stimulus decoding (Figure 1) if its recurrent connectivity gives
rise to a dynamical mode with activation pattern m that is aligned to the input linear discriminant w
(i.e., m = w) and decay time constant 7 that is longer than the stimulus window 7' (as in Figure 2E,
F; panels G, H show suboptimal integration). In other words, the recurrent dynamics are optimized
for discrimination of a pair of input stimuli with linear discriminant w if fluctuations of network activity
along w decay slowly.

Biological neural networks may exhibit complex “non-normal” dynamics, including rapid “balanced
amplification” and temporally extended “functionally-feedforward” activation (Ganguli et al., 2008;
Murphy and Miller, 2009; Goldman, 2009b). In functionally-feedforward networks, activation of one
group of neurons causes subsequent activation of other neuron groups, leading to transient activity
sequences whose lifetime exceeds the decay time of any individual mode (Goldman, 2009b). We
asked whether these non-normal dynamics might yield further mechanisms for optimizing stimulus
discrimination. We found analytically that the discrimination performance of a network depends on
the geometry of its modes’ activation patterns (Supplementary Figure 1A, B). When these are or-
thogonal, corresponding to “normal” networks, response information is maximized when the most
slowly decaying mode has activation pattern aligned to the input linear discriminant (Figure 2E, Sup-
plementary Figure 1A, B). Analyzing “non-normal” networks, we found that response information
further improves when multiple modes have their activation patterns aligned with the input linear dis-
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criminant (Supplementary Figure 1A, B). These improvements arise through functionally-feedforward
dynamics, which increase the total window of network integration relative to the decay time constants
of the individual modes (Supplementary Figure 1A, C-H) (Ganguli et al., 2008; Goldman, 2009b).

Taken together, our findings demonstrate that recurrent networks maximize their capacity to dis-
criminate sensory inputs when they align one or more slowly decaying modes of dynamics with the
optimal input discriminant. We reasoned that such a mechanism may underlie improvements in
cortical representations for relevant stimuli over learning (Poort et al., 2015; Khan et al., 2018).
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g Neuron 1 Input Sy oy / :/ ’/ :/ J _—>S é Neuron 1 Activity
— A Y A A A4 -
3 J | N B . , ’ ';‘/,' £3 _I h
i c| . m fn{ 3z
2 Neuron 2 Input =N o ° { Neuron 2 Activity
= R
S Time E:i s oo v e . Time
- |7 7 - e
- Mode 1 Input S . . 2 Rapid Decay (t,=2)
oy ] _>8 o7 7 7 ' - 8_) 5§ L
88 <r g/ A o8 S| D —10
o= Mode 2 Input Vo Achivity, a % ow Decay (1,=10)
o 8 l 8 4 4 4 o ‘5’ E’ I\
s - —> Activity (neuron 1) > 85— .
O Time > Time
£ (@]
Discriminant Aligned to
E  Slowly-Decaying Mode F Network-Integrated Outputs
A (Instantaneous)
. gy '; : Stimulus 1 Stimulus 2
N - ‘ e gl sy o~
= c
8 [ A ard e
S| 7 7 ¢ s s >
Q . —_— 0
D Network Inputs = e £
(Instantaneous) Tfio g L A~ Z
Stimulus 1 Stimulus 2, = B[/ 7 ’ o . %
’ (/7 AR < Linear Discriminant
4 r e
5 . AAAARRRERR (0utpur)
s Activity (neuron 1) Activity (neuron 1)
5 . . . .
o G Discriminant Aligned to H Network-Integrated Outputs
£ Rapidly-Decaying Mode
- et (Instantaneous)
= KNN NN N v . .
o - _| Stimulus 1 Stimulus 2
g— S NN NN Y S
—_ c b NN\ NN N v - c
s )Linear Discriminant S~ -~ o
/ T (Input) =3 NN e~ S
(] ; ()
Inputs (neuron 1) =10 £}~ ~ ST <
=2 >0~ - NEENE NN 4?
E - - OGN N N Y >
ol - - (NENENA NN g
< \ \ NN \ \ \ Y L' H 1 H
- inear Discriminant
S v v v NN NN 3 (Output)
Activity (neuron 1) Activity (neuron 1)
| Signal and Noise Along Modes J SNR Along Modes
o —_ c 3
23 - S 2 Mode 2
(e - = O
a= g = 1
= O -— - -
32 - 5 £
3 zCo
0 5 10 15 20 25 n 0 5 10 15 20 25
Time constant of mode Time constant of mode

Figure 2. Alignment of dynamical modes with feedforward input determines sensory discrim-
ination performance. A-C: lllustration of a two-neuron network receiving feedforward input and
generating an output activity pattern with rapidly and slowly decaying dynamical modes (brown and
light purple). A: (Top). Constant input to each neuron, and a small input perturbation to neuron 2.
(Bottom) The same input shown following projection onto the two modes of network dynamics. B:
lllustration of network dynamics. Gray arrows depict the dynamical flow of network activity from a
given state when input is held at the constant level shown in A. Light purple and brown arrows depict
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modes’ activation patterns m. The trajectory of neural activity in response to the input in A is shown
in dark purple. The input perturbation to neuron 2 generates a dynamical response along both
modes, each decaying with a different time constant 7 C: Network output shown for each neuron
and along each mode. Single-neuron responses exhibit complex and heterogeneous timecourses,
but the network response projected onto any mode exhibits a simple exponential decay. D: Distri-
butions of instantaneous feedforward input under two different stimuli (red and blue ellipses), as in
Figure 1A, D (note that inputs have time-varying noise). E: A network with a slowly decaying mode
aligned to the input linear discriminant. Blue and red traces show example trajectories of network
output when the network is driven by a single-trial input from each of the two stimulus distributions.
F: Distributions of instantaneous network output at equilibrium under each stimulus. G, H: As in
E, F but with a rapidly decaying mode aligned to the input linear discriminant. I: Signal and noise
of instantaneous network output along each mode, as a function of the mode’s time constant. J:
Signal-to-noise ratio of instantaneous network output along each mode.

Learning reorganizes cortical networks to enhance integration of relevant sensory input

With this description of recurrent processing in mind, we examined the effects of learning on cortical
dynamics and sensory representations. We analyzed the activity of neuronal populations in primary
visual cortex of head-fixed mice as they learned to perform a visual discrimination task within a vir-
tual reality environment. Over a period of 7-9 days, mice learned to selectively lick a reward spout
in a virtual corridor lined with vertical but not angled stripes (Figure 3A, B). The responses of the
same populations of neurons to these stimuli were measured before and after learning using chronic
two-photon calcium imaging. Learning led to an improvement in the linear discriminability of these
two stimuli based on instantaneous population responses (Figure 3E right, p = 0.035, one-sided
sign test on pre- vs post-learning discriminability, see Methods for details). Given that instantaneous
sharpening or amplification of sensory input by the V1 circuit cannot increase response information
(Cover and Thomas 2006; Series et al., 2004; Beck et al., 2011), we hypothesized that such im-
provements could arise via either 1) an increase in sensory information provided through external
input to the circuit (i.e., an increase in SNRi,,ut(W) caused by changes in upstream processing)
or 2) a reorganization of local circuit dynamics to enhance temporal integration of sensory input
(Figures 1, 2).

Distinguishing these hypotheses requires a complete characterization of the dynamics of the imaged
circuit and the sensory input it receives before and after learning. As it is not currently possible to
achieve this experimentally, we sought to infer the recurrent dynamics and stimulus inputs which
best accounted for the coordinated activity patterns of the imaged circuit using a statistical model
fit to the data. To this end, we examined a multivariate autoregressive (MVAR) linear dynamical
system model we had previously fit to population activity imaged before or after learning (Khan
et al., 2018). The MVAR model predicts the activity of each cell at imaging frame t based on 1)
recurrent input from all imaged cells at time step t-1, with stimulus-independent weights; 2) a time-
varying stimulus-dependent input, locked to stimulus onset and the same for all trials with a given
stimulus; and 3) the running speed of the animal at time t (Figure 3C). Imaged responses in the
population covaried in time and across trials, in a way that could not be explained by changes in the
stimulus or changes in running behavior (Khan et al., 2018). The model depended on the recurrent
interaction term to capture such “noise” covariance, and so once the model was fit to data these
weights were effectively determined by the structure of observed trial-by-trial variability. Conversely,
the stimulus-dependent trial-invariant terms were determined during fitting so that the input signals,
once fed through the recurrent terms of the model, captured the trial-averaged response profiles.
Any remaining trial-by-trial variability in the data was assigned to a residual term (see Methods and
Khan et al., 2018 for a more detailed discussion of the MVAR model and its validation on the present
dataset). Given this characterization of the imaged responses in terms of stimulus-related input and
recurrent interactions (Figure 3D), we then sought to determine the respective contributions of these
components to the improvements in response information over learning (Figure 3E right).
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Figure 3. Changes in V1 population dynamics over learning selectively enhance temporal
integration of relevant sensory input. A: Visual discrimination task. B: Behavioral performance
of each mouse pre- vs post-learning. C: Schematic describing MVAR model fit to imaged popu-
lation activity. The MVAR model fits variability in single-trial responses of each cell by estimating
the contribution of stimulus-locked input, recurrent input from the local cell population, and running
speed. D: The inferred stimulus-related and recurrent input and the imaged network output, each
projected onto the optimal linear discriminant (mean + standard deviation over trials for one mouse
post-learning). E: Information in MVAR stimulus-related input and network output for each mouse
pre- vs post-learning (gray line delineates a particular mouse whose improvements occurred through
enhanced stimulus-related input). F: MVAR input-output information gain, pre- vs post-learning for
each mouse. G: Simulated response of the MVAR model to a synthetic pulse of input aligned to
the linear discriminant, pre- and post-learning for one mouse. H: As in G, showing meantsem over
mice. Inset shows zoomed in traces. |: Left: The decay time constant of responses in G and H for
each mouse, pre- vs post-learning. Right: The decay time constants for a second input pattern that
carries no information about stimulus identity.

To assess whether input information increased over learning, we computed the linear discriminability
of stimuli based on the stimulus-related input inferred by the MVAR model, assigning model residuals
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to noise in this input (Figure 3D, left). Information contained in this input did not increase (p>0.36,
one-sided sign test on linear discriminability pre- vs post-learning over all mice; Figure 3E, left).
However, there was an increase with learning in the gain of output-to-input information for 7/8 mice
(Figure 3E, F, p=0.035, one-sided sign test on relative percentage difference between MVAR input
and output information). Thus, the MVAR model ascribed improvements in population response
information to learning-related changes in recurrent interactions acting on stimulus-related input that
was itself unchanged in information content.

If these recurrent changes acted to improve temporal integration, then the network response to an
input pattern aligned with the linear discriminant should be observed to decay more slowly after
learning than before. Indeed, the MVAR response to a pulse of such input decayed more slowly
after learning for all mice in which improvements in response information were attributed to recurrent
dynamics (p=0.035, one-sided sign test on all mice, Figure 3G-I). Moreover, when this analysis was
repeated for a second input pattern that was orthogonal to the input discriminant, the decay time
did not change over learning (p=0.64, one-sided sign test, Figure 3l, right). Thus, learning induced
changes in temporal integration which were selective for task-relevant sensory input.

Enhanced temporal integration could arise through changes in the interaction weights or the stimulus-
related input (for example, if stimulus input realigned to drive more slowly decaying network activity
patterns). To distinguish between these possibilities, we refit the MVAR model with either interaction
weights or stimulus-related input constrained to remain fixed over learning (see Methods). Changes
in temporal integration did not occur when interaction weights were fixed (p=0.36, one-sided sign
test) but persisted when stimulus-related input was fixed (p=0.004, one-sided sign test, Supplemen-
tary Figure 2A, B). This suggested that the improvements relied on changes in interaction weights
but not stimulus input.

Taken together, these findings suggest that stimulus information in network responses improved
over learning through changes in recurrent dynamics that selectively enhanced temporal integration
of task-relevant sensory input.

Enhanced integration depends on realignment of slowly decaying modes with sensory input

Altered recurrence could selectively enhance temporal integration of relevant sensory input in two
ways. First, it could lengthen the decay time constants of those modes whose activation patterns are
already best aligned with the input linear discriminant (‘dynamical slowing hypothesis’, Figure 4A,
B). Alternatively, it could realign the activation patterns of existing slowly decaying modes towards
that discriminant (‘dynamical realignment hypothesis’, Figure 4C).

To distinguish between these two hypotheses, we computed modes of network dynamics and their
time constants from the pre- and post-learning MVAR interaction weight matrices. For each mode,
we computed the proportion of stimulus-related input information that fell along its activation pattern
(its “normalized input SNR”, SNR,,01m (M) = SNRjpput (M) /SNRiyput (W), which is maximized when
the mode is aligned to the input linear discriminant). The dynamical slowing hypothesis predicts
that the time constants of modes with high input SNR should increase (Figure 4A, B). However,
the time constants of modes did not change significantly over learning, either across all modes
(p>0.79, one-sided Wilcoxon rank sum test on pre- vs post-learning time constants for all modes
pooled across animals) or the subset modes with high input SNR (Figure 5A, B). In contrast, the
dynamical realignment hypothesis predicts that the normalized input SNRs of slowly decaying modes
should increase (Figure 4A, C). This prediction was borne out by a striking increase over learning
in normalized input SNR (p=0.03, one-sided Wilcoxon rank sum test on all modes pooled across
animals pre- vs post-learning) which was most pronounced for modes with time constants of ~700-
1000 ms (Figure 5C, D). The increase in normalized input SNR occurred for 7/8 mice (p=0.035,
one-sided sign test on average over modes within each mouse pre- vs post-learning, Supplementary
Fig 3A), while time constants increased for only 3/8 mice (p=0.86, one-sided sign test on average
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over modes within each mouse pre- vs post-learning, Supplementary Fig 3B). Examining the joint
distribution of the time constants and normalized input SNRs of modes before and after learning
(Figure 5E, F), we found a fall in the number of slowly decaying modes with low input SNR matched
by an increase in the number with similar decay time constants but high input SNR. These changes
are consistent with a realignment of slowly decaying modes towards the input linear discriminant.

In principle, enhanced integration could also arise through greater non-normality in the recurrent
dynamics (Supplementary Figure 1). However, we found that for 6/8 animals the recurrent dynamics
became less non-normal over learning (p=0.03, two-sided Wilcoxon rank sum test), suggesting that
this mechanism did not contribute to the enhancements detected in the MVAR model (Supplemen-
tary Fig 3C).

In summary, these results support the hypothesis that learning reorganizes local network interactions
in order to align slowly decaying modes of recurrent dynamics with the optimal linear discriminant of
sensory input (Figure 4C), thereby enhancing temporal integration of task-relevant sensory informa-
tion.

A Pre-Learning Dynamics
Mode 1 (slow decay)
< —> Mode 2 (rapid decay)
c - = => Input Linear Discriminant
S
::j Mode 1 Response to Input
= ol I 1 Impulse
> (%]
F c =—=Mode 1 Response
S 15}
5 &
< &
Time
Learning
B Hypothesis 1: Dynamical Slowing C Hypothesis 2: Dynamical Realignment
Network Dynamics Network Dynamics
7 777777 —> Mode 1 (slower decay) 7 ——> Mode 1 (slow decay)
A~ '////j/////// —> Mode 2 (rapid decay) ISRy s —> Mode 2 (rapid decay)
a A AR ;5 - - ->Input Linear Discriminant cl.. = = => Input Linear Discriminant
e i1 1177 /) g T
2 A Mode 1 Response to Input - Mode 1 Response to Input
Sk P ZL-
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AR AN =3 Sl 2
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Figure 4. Improvements in temporal integration of relevant sensory input could arise from
either slowing or realignment of dynamical modes. A: Example of pre-learning dynamics for a
two-neuron network. B: According to the dynamical slowing hypothesis, modes whose activation
patterns are best aligned with the input linear discriminant extend their decay time constants over
learning, leading to longer timescales of integration over the relevant input patterns. C: In the dy-
namical realignment hypothesis, modes which decay most slowly become better-aligned to the input
linear discriminant over learning.
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Figure 5. The MVAR model supports the dynamical realignment hypothesis but not the dy-
namical slowing hypothesis. A: Dependence of the time constants of modes on their input SNR,
pre- and post-learning (average time constant conditioned on normalized input SNR, meantsem
taken over pooled modes over animals). B: Difference between pre and post curves in A (solid black
line). Dashed gray lines show 2.5% and 97.5% of shuffled distributions. C, D: As in A, B but for an
average of normalized input SNR conditioned on time constant. E: Time constants and normalized
input SNRs of modes pooled over animals pre- and post-learning. F: Smoothed histogram of differ-
ence over learning in number of modes with a given input SNR and time constant (normalized by
standard deviation over shuffles). Dashed black and gray lines show regions where the number fell
below 2.5% and above 97.5% of shuffled distributions respectively (see Methods).
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Stimulus-specific but not uniform connectivity changes reproduce the changes in dynamical
integration observed in the MVAR model

How might the dynamical realignment observed in the MVAR model relate to systematic changes
in synaptic connectivity and response tuning within the V1 circuit? Constraints in the original ex-
periment meant that we were unable to determine the orientation tuning of the imaged neurons.
Thus, we turned to a canonical circuit model for feature selectivity to investigate the relationship
between network connectivity, tuning curves, and dynamical modes (Ben-Yishai et al., 1995; Ru-
bin et al, 2015; Hennequin et al., 2018). The model comprised excitatory and inhibitory neurons
arranged on a ring corresponding to their preferred orientation before learning. Neurons at nearby
locations formed stronger synaptic connections and received more similarly tuned feedforward input
than those more separated around the ring (Figure 6A). This is consistent with local microcircuits in
visual cortex in which neurons receive feature-tuned feedforward input (Lien et al., 2013) and interact
through feature-specific local synapses (Cossell et al., 2015; Znamenskiy et al., 2018).

We first analyzed the tuning curves and modes of dynamics in the E-I ring network. The network
formed a stable bump of activity centered on the stimulus orientation (Figure 6B, solid black line),
and each of the four most slowly decaying modes reflected an interpretable fluctuation about this sta-
ble activity pattern: side-to-side translation (Figure 6B, dashed gray lines), sharpening/broadening,
gain of amplitude, and asymmetric shear (Figure 6C, Supplementary Figure 4A-C). Responses were
sharpened relative to feedforward input (Figure 6B, black vs yellow line) and the degree of sharp-
ening depended on the strength and tuning of excitatory and inhibitory synapses around the ring
(Supplementary Figure 4D-F). This suggested that a possible mechanism for the reorganization of
dynamical modes observed in the MVAR model may be increased sharpening of feedforward input
due to changes in recurrent synapses. On testing this hypothesis, however, we found that recurrent
sharpening reduced alignment of the slowest dynamical mode with the input linear discriminant, in
contrast to the increased alignment observed in the MVAR model (Supplementary Figure 4G-L).
These findings remained consistent for a broad range of networks with varying strength and feature-
tuning of synaptic weights (Supplementary Figure 5A-H). Thus, uniform changes in the strength or
tuning of excitatory-excitatory and excitatory-inhibitory weights did not reproduce the changes over
learning observed in the data.

We previously found that response SNRs of both excitatory and inhibitory cells increase over learn-
ing, and that these improvements are driven by an emergence of stimulus-specific excitatory to in-
hibitory interaction weights in the MVAR model such that E to | interaction weights amongst cells with
the same stimulus preference are stronger after learning than before (Khan et al., 2018). We there-
fore reasoned that a change in E-I connectivity that is specific to the learned stimuli might account
for the realignment of modes observed in the MVAR model. Thus, we considered a non-uniform ring
network in which excitatory to inhibitory synaptic weights were strengthened locally amongst neu-
rons tuned to a particular orientation (Figure 6D). We found that the resulting non-uniform inhibition
induced changes in dynamical modes that were consistent with those observed over learning in the
MVAR model: the slowest-decaying mode became better-aligned with the input discriminant while
its time constant was unchanged (Figure 6E, F, Supplementary Figures 5I-L, 6A). When stimuli were
presented at +20 degrees relative to the subnetwork center (reflecting the 40-degree stimulus sep-
aration in the experiment), information was enhanced via a greater separation of responses around
the ring (Figure 61, Supplementary Figure 6B). In simulations of the full nonlinear network response
to feedforward input, accumulation of stimulus information was accelerated by non-uniform inhibition
but slowed by uniform sharpening (Figure 6J). Experimental data showed an accelerated rate of
integration over learning consistent with the non-uniform connectivity change (Figure 6K). Thus, in
both the analysis of local linearized modes and the evolution of the nonlinear network responses
over time, non-uniform changes in E-I connectivity accounted for the learning-related changes in
responses imaged from the V1 circuit.
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Figure 6. Stimulus-specific inhibition aligns the slowest decaying mode with the input linear

discriminant and predicts observed changes in stimulus tuning. A: Excitatory-inhibitory ring

network model for V1 orientation selectivity. B: Steady state network response (solid black) and
perturbations along the most slowly decaying mode (dashed gray). Feedforward input (yellow) was
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rescaled for aid of visual comparison. Only excitatory cells are shown. C: Activation patterns m for
the four most slowly decaying modes (in order of time constant). Size and color of circles depicts
weighting of cell in mode activation pattern. D: Synaptic weight matrix for a ring network with uniform
(left) and non-uniform (right) connectivity. E: (Top) Feedforward input and steady state responses
for the two networks. (Bottom) The most slowly decaying mode m for each of the two networks,
overlaid with the input linear discriminant. The greater overlap between red and yellow lines com-
pared to cyan and yellow indicates increased alignment. F-J: Input SNRs (F), time constants (G)
and response SNRs (H) for the four most slowly decaying modes. |: Network responses to two
stimulus orientations separated by 40 degrees. J: SNR of instantaneous network output for three
networks (based on simulation of nonlinear dynamics). K: SNR of imaged V1 population responses
(meantsem over mice). L: The change in responses of excitatory neurons to their preferred and
non-preferred stimuli induced by non-uniform inhibition (mean and variance over cells). The greater
variance for the preferred stimulus reflects a more heterogeneous response change including both
boosting and suppression. M: Mean (left) and variance (right) of the change in pyramidal responses
to their preferred and non-preferred stimuli over learning. Responses to the non-preferred stimulus
decreased (p=0.003, two-sided sign test) but responses to the preferred stimulus did not (p=0.8,
two-sided sign test; p=0.025, one-sided Wilcoxon rank sum test on difference between preferred
and non-preferred stimulus response change). The variance over cells of response changes was
higher for the preferred than non-preferred stimulus (p=0.035, shuffling test).

The tuning curves induced by non-uniform connectivity (Figure 61) generated further predictions that
we subsequently tested on the experimental data. Responses of excitatory neurons to their non-
preferred stimulus were consistently suppressed by non-uniform inhibition, whereas responses to
their preferred stimulus showed a heterogeneous combination of boosting and suppression (Figure
6L). Changes over learning in imaged pyramidal cell responses showed a similar pattern (Figure
6M). Moreover, the average response SNR of both excitatory and inhibitory neurons increased in the
model (Supplemental Figure 6C-F), as previously reported for the imaged responses of pyramidal
cells and parvalbumin-expressing interneurons (Khan et al., 2018; reproduced in Supplementary
Figure 6G).

Taken together, these findings demonstrate that the learning-related changes in imaged network
responses are consistent with the emergence of stimulus-specific excitatory to inhibitory synaptic
connectivity within local V1 microcircuits. These connectivity changes act to increase response
information by aligning slowly decaying dynamical modes with the optimal discriminant of sensory
input in order to selectively integrate relevant sensory information over time.

Discussion

We have developed a general framework for modeling the integration and transmission of sensory
information through recurrent networks and leveraged this framework to uncover the changes in
recurrent processing that drive improvements in sensory representations over learning. Previous
studies suggested that recurrent synapses selectively amplify or sharpen the tuning of feedforward
input (Douglas et al., 1995; Ben-Yishai, 1995; Somers et al., 1995; Murphy and Miller, 2009; Liu et
al., 2011; Li et al., 2013; Lien et al., 2013; Cossell et al., 2015), yet theoretical analyses concluded
that sharpening reduces population response information (Seriés et al., 2004; Beck et al., 2011).
Others proposed that recurrent synapses selectively suppress responses to remove redundancy
between similarly tuned neurons (Olshausen and Field, 1996; Lochmann et al., 2011; Znamenskiy
et al., 2018; Chettih and Harvey, 2019), yet such mechanisms cannot explain the improvements
in response information as animals learn to discriminate simple sensory features such as oriented
grating stimuli (Poort et al., 2015; Khan et al., 2018). Instead, we show that recurrent dynamics
in primary visual cortex perform selective temporal integration of relevant sensory information, an
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operation previously reported only in higher sensory and non-sensory areas with longer cellular and
network time constants (Shadlen and Newsome 2001; Wong and Wang, 2006; Kiebel et al., 2008;
Goldman et al., 2009a; Mante et al., 2013; Murray et al., 2014).

Responses of cells in primary visual cortex have been found to decay within a single neuronal time
constant when thalamic input is removed (Reinhold et al., 2015). Can the long timescales of re-
current dynamics required for selective temporal integration be reconciled with these observations?
One possibility is that the dynamical regime of cortex is dependent on tonic thalamic input, or on tha-
lamocortical loops. Alternatively, Reinhold and colleagues may have predominantly activated and
measured rapidly decaying modes of dynamics which obscured the presence of slowly decaying
modes intermixed with the population response. Detecting such slowly decaying modes of dynam-
ics requires recording from neural populations, whereas Reinhold and colleagues recorded single
neurons. Future studies could test these hypotheses by measuring and perturbing different pat-
terns of population activity during sensory stimulation and quantifying the time constants of network
responses.

We inferred cortical dynamics by fitting linear dynamical models to imaged population activity. Such
an approach is prone to model mismatch, such that temporally coordinated external input may be
erroneously attributed to local interactions amongst cells. Thus, while we identified changes in dy-
namics over learning, it is possible that such dynamics are inherited by the local circuit or generated
through a broader network of cortical and subcortical structures. This hypothesis could be tested in
future experiments by recording neuronal population activity in multiple brain regions simultaneously
during sensorimotor decision-making tasks. Additional confounds may arise through the convolution
of neuronal responses by slow calcium dynamics and the temporal resolution of the data (~125 ms).
However, although these may lead to an overestimate of the time constants of network dynamics,
they cannot trivially explain the change in alignment of dynamical modes observed over learning.
Nonetheless, while we observed an apparent decrease in non-normality over learning, measure-
ments at higher temporal resolution are necessary to detect rapid forms of non-normal dynamics
and their changes over learning (Murphy and Miller, 2009).

Our theory explains a recent report that information-limiting noise correlations are higher when an-
imals make correct decisions compared to incorrect ones (Valente et al., 2021). Because these
correlations reduce the information about the stimulus available in the network response relative
to an uncorrelated population and yet were associated with improved behavioral accuracy, these
findings were considered to be paradoxical by Valente and colleagues. Instead, we show that these
findings are an expected signature of optimal integration of sensory input through the recurrent circuit
dynamics. In particular, we observe that information-limiting response correlations across neurons
are maximized when networks integrate their sensory input optimally (compare Figure 1F to Figure
1H and Supplementary Figure 1A, ellipses which are more elongated along the direction which sep-
arates the two means have higher information-limiting correlations). Valente and colleagues also
found that correlations between responses at different time points within a trial are higher when ani-
mals make correct decisions, which was considered paradoxical because such correlations limit the
ability of downstream readers to decode the stimulus over the duration of a trial. We show that strong
temporal correlations are an expected signature of optimal integration of sensory input through time
by the circuit. Thus, we suggest that optimal sensory coding is best understood in terms of the
transformation of sensory input signals by the neural circuit, a perspective which leads to fundamen-
tally different experimental predictions for the optimal response statistics than those obtained using
abstract neural encoding models (see also Seriés et al., 2004; Beck et al., 2011; Huang et al., 2020).

Several previous studies have investigated information transmission through recurrent networks
(Series et al., 2004; Ganguli et al., 2008; Beck et al., 2011; Toyoizumi and Abbott, 2011; Dambre et
al., 2012; Najafi et al., 2018; Huang et al., 2020). While most studies (correctly) concluded that infor-
mation in network output cannot exceed that contained in the input, such studies either 1) quantified
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information in time-integrated network responses (Series et al., 2004; Moreno-Bote et al., 2014), 2)
modeled sensory input as being static within each trial, varying only from trial to trial (Najafi et al.,
2018), or 3) analyzed network models which lack the capacity for dynamical integration (Beck et al.,
2011). In our analysis, input noise was time-varying and recurrent dynamics could integrate input
over the course of a trial, allowing the instantaneous (but not time-integrated) response information
to exceed that of the input. While Toyoizumi and Abbott considered a similar scenario, their analysis
was restricted to networks of randomly connected neurons with antisymmetric, saturating transfer
functions.

Our analysis provides a general framework for understanding evidence integration in neural circuits,
such as path integration in grid cells, vestibular integration in head direction cells, and integration of
motion in higher visual areas. While several of these systems have been studied mechanistically as
attractor networks (Wong and Wang 2006; Burak and Fiete, 2009) or statistically as drift-diffusion
and population coding models (Ratcliff and McKoon, 2008; Averbeck et al., 2006), our approach
provides a unifying formalism which links statistical properties of evidence integration and popula-
tion coding to the dynamical properties of the underlying recurrent network. While we have focused
on changes in network dynamics over learning, the mechanism of dynamical alignment may also
provide a substrate for contextual or attentional modulation of sensory processing (Gilbert and Li,
2013). Specifically, top-down input may modulate the dynamics of recipient neural populations, tran-
siently aligning dynamical modes of the local circuit with relevant features of bottom-up sensory
input according to task context. Such a mechanism could allow for flexible routing and gating of
information between brain areas through the dynamical formation and coordination of “communica-
tion subspaces" (Semedo et al., 2019; Kohn et al., 2020; Javadzadeh and Hofer, 2021), configured
through selective alignment of local modes across anatomically distributed circuits.
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Resource Availability
Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled
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Maneesh Sahani (maneesh@gatsby.ucl.ac.uk).
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Materials Availability

This study did not generate new unique reagents

Data and Code Availability

The data and code that support the findings of this study are available from the corresponding
authors upon request.

Experimental model and subject details

No new experimental data were collected for the purposes of this study. The acquisition and pre-
processing of data used in this study are described in detail in Khan et al., 2018.

Method details
Analysis of optimal stimulus discrimination function (Figure 1)

In the Supplementary Mathematical Note we analyze the problem of stimulus discrimination from a
signal processing perspective. We consider a network receiving noisy but stimulus-tuned input and
tasked with reporting stimulus identity in its output. Under the assumption that the input time series
for a given stimulus follows a multivariate normal distribution with temporally uncorrelated, stimulus-
independent noise, we show that the statistically optimal method for discriminating two stimuli is
to perform a linear projection and temporal filtering of the input time series. We derive the optimal
projection weights and filter, and the signal to noise ratio (SNR) obtained using an arbitrary projection
and filter.

In Figure 1 we sought to illustrate these observations in a minimal toy example consisting of a re-
duced two-dimensional system describing the feedforward input to two neurons under each of two
stimuli. The dimensionality and statistics of the input were chosen primarily to optimize visualisation
and conceptual insight - our analysis allows for arbitrary numbers of neurons receiving input with ar-
bitrary stimulus-tuning and noise covariance. For each stimulus s; (¢ = 1, 2) and at each timestep ¢,
feedforward inputs u(s;,t) ~ N(g(si), X,) were sampled independently from a multivariate normal
distribution with stimulus-dependent mean g(s;) = [1,2], g(s2) = [2, 1] and stimulus-independent
covariance ¥, = [1,2;2,1] (here and throughout, we will use the shorthand notation that matrix
elements separated by commas are on the same row, while elements separated by a semicolon are
on separate rows, e.g. [z,y] = [z;y]"). These time series were projected onto the linear discrim-
inant wyp = X (g(s2) — g(s1)) to obtain dyw, , (s,t) = w]pu(s,t) before being summed cumu-
latively over time to obtain Dy,,, (s,t) = >.4_, dw,,(s,t). The signal (difference in mean), noise
(standard deviation), and signal to noise ratio of the projection of instantaneous input onto a vec-
tor w, dw(s,t) = wlu(s,t), were plotted using analytical expressions Apiuput(W) = (dyw(s2,t) —

dw(s1,)) = W (g(s2)=8(51)), Tinput(W) = \/0‘5 Dim12((dw(siy t) = (d3, (56, 1)))?) = /W' Egw,
SNRinput (W) = Aptinput (W) /Tinput (W). Following temporal integration, the corresponding quantities
Dy (5,t) = S5_, dyw(s, t) were plotted as Aptinput(W, 1) = Dy (52,1) — Dy (51, 1)) = Aptinput (W),

Tinput (W, 1) = \/0-522»:172((17“1(81-,25) — (Dw(5,1)))2) = Cimput(W)Vt, and SNRypput(W, 1) =

Aptinput (W, )/ Tinput (W, 1) = SNRinput (W, t)V/£. Iso-probability contours at one standard deviation
under each stimulus were plotted as g(s;) + /2y [cos §;sin 6] for § € [0, 2).

Analysis of linear Fisher Information in recurrent networks (Figure 2 and Supplementary Fig-
ure 1)

Linear Fisher Information quantifies the accuracy of a locally optimal linear estimator of a stimulus
from network responses (Seriés et al., 2004; Beck et al., 2011). When network responses follow a
multivariate normal distribution, the linear Fisher Information takes the form of a (squared) signal to
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noise ratio. We derived analytical expressions for the linear Fisher Information of the instantaneous
output of a recurrent network as a function of its input statistics and dynamics, and for the SNR
of network output projected onto any one its dynamical modes (see Supplementary Mathematical
Note). Our results hold for networks with arbitrary numbers of neurons with arbitrary nonlinearities
and synaptic connectivity, receiving sensory input with arbitrary stimulus-tuning and noise covari-
ance. Our strongest modeling assumptions were the linearization of dynamics about a fixed point
and the analysis of stationary state response statistics.

Signal to noise ratio along dynamical modes (Figure 2)

To illustrate the relationship between network dynamics and population coding, we constructed a
minimal toy model comprising a two-dimensional linear dynamical system % = Ar + u(s;, t) cor-
responding to the linearized dynamics of the firing rates r = [ry; 3] of two reciprocally connected
neurons. The weight matrix A was constructed by defining two dynamical modes with activation
patterns m; and corresponding time constants 7,. We consider a system without oscillations, i.e.
one in which the eigenvalues \; of A are real. In that case, 7;, = —1/\; and the unique weight matrix
which generates these dynamical modes is given by A = M~*AM, where M = [m{;m] and
A = [A\,0;0, A\z] (note that we define the mode activation patterns m,; to be the left eigenvectors of
A, see Supplementary Mathematical Note for details). We constructed m; as unit length vectors with
a given angle relative to the input linear discriminant using the equation m; = R(0;)wr.p/|wLp||,
where R(60;) = [cos(6;), — sin(6;); sin(6;), cos(6;)] is a rotation matrix. w;p was defined as the lin-
ear discriminant of two stimulus inputs with g(s1) = [6; 6], g(s2) = [5; 7], £,, = [20, 10; 10, 20] (these
values, along with the modes and time constants, were chosen to primarily to optimize visualisation).
We constructed networks with one mode aligned to input linear discriminant and the other orthogo-
nal to the first by setting ¢; = 0.027, 6, = 6, + 37/2. For the network with slowly-decaying mode
aligned to the linear discriminant we set 7, = 10, » = 2, and for the network with rapidly-decaying
mode aligned to input linear discriminant we set ; = 2, 75 = 10 (in arbitrary units of time).

As panels A-C were designed to illustrate the dynamical modes of the network rather than the
stimulus input, we set the input to u = (g(s1) + g(s2))/2 (or u = [0; 0] before input onset). Network
responses r were computed using the solution to the linear dynamics r(¢) = exp(At)(r(0) —r) +
ro, Where r(0) = [0;0], roo = —A~'u and exp is the matrix exponential function. The perturbation
was modeled by setting r(t,et) = roo + [0;10] and computing all future time points as r(t) =
exp(A(t — tpert)) (T (tpert) — Too) + Too

For panels D-J, network responses to the two stimulus input time series were simulated using the
Euler method with dt = 0.01, i.e. r(t + dt) = r(t) + (Ar(t) + g(s;) + n,)dt where n, ~ N(0,%,)).
For visualisation purposes, trajectories were smoothed before plotting for panels E and G using a
moving average box filter containing 100 time samples.

Input and output iso-probability ellipses were generated as in Figure 1, using the relevant mean and
covariance matrix in each condition. Response means were computed using the analytical solution
for a linear system at steady state, ro.(s) = —A~'g(s), and response covariance matrices (panels
F and H) were computed as the solution to the Lyapunov equation A + S AT + 3, = 0 using the
Matlab function lyap.

The signal, noise, and signal to noise ratio of stationary state responses projected along each
mode dm,(s,t) = mr(s,t) were computed using the equations Apouiput(m;) = (dm, (s2,t) —

i

A, (51,1)) = Atinput (1) T, Toutput (1) = \/0-5 > ke1.2{(@m, (58, ) = {dm, (51, 1)))?) = Tinput () /7 /2,

and SNRoutput (m;) = SNRinput (m;)+/27; respectively, where Aftinput; Tinput,; SNRinput are as de-
scribed for Figure 1 (see Supplementary Mathematical Note for a derivation).

Non-normal dynamics (Supplementary Figure 1)
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We derived expressions relating linear Fisher Information to the dynamics of an arbitrary normal or
non-normal network (subject to the same approximations described above). These expressions had
a simple and interpretable form in three special cases: two-dimensional networks, normal networks,
and non-normal networks with strong functionally-feedforward dynamics. Related findings have been
presented previously (Ganguli et al., 2008; Goldman et al., 2009).

To illustrate our analytical findings for the two-dimensional case, we constructed networks with
modes m; = [cosfy;sin 0], my = [cos fy;sin fs]. Panel A was constructed using the same proce-
dure as for Figure 2, but this time with m, = 10, » = 5. For panel B we chose input with isotropic
covariance X,, = I, (where Iy is the N x N identity matrix) and Ag = g(s2) — g(s1) = [1;0]. These
inputs were chosen in order to demonstrate the influence of non-normality as clearly as possible. We
sety =10, » = 1,5,7.5,9 and varied 6, 65 from 0 to 7 for each value. For each network (defined
by the parameters 6., 65, 71, 5 using the procedure described for Figure 2), the Fisher Information of
the stationary state network response Zr = Ar - X~ 'Ar was computed by substituting the long-run
solution for the mean Ar = —A~'Ag and the numerical solution to the Lyapunov equation for X
(described above). We normalized this linear Fisher Information by the maximum achievable SNR
in any normal network with the same time constants by defining Zg ,orm = IF/(AgTE,;lAgQﬁ).

To illustrate the case of functionally-feedforward networks (Goldman et al., 2009), we constructed
networks with NxN weight matrix A;; = (—1/7)d;; +wd; j 11, while varying the weight w and number
of neurons N for fixed single-cell time constants 7 = 10 (where ¢;; is the Kronecker delta symbol).
We set Ag; = d;; and X, = Iy. We derived analytical expressions in the w — oo limit for the
linear Fisher Information of network output at stationary state, the temporal filter the network applies
to its input, and the optimal linear readout of network responses. We numerically extended our
results to the finite w case by computing the response signal, response covariance, and linear Fisher
Information in the same way as for the two-dimensional networks. To understand how the finite w and
large w networks differ and where the large w approximation breaks down, we also computed the
SNR of the finite w network responses projected onto the large w optimal readout. Full derivations
can be found in the Supplementary Mathematical Note.

Multivariate autoregressive system model and analysis of neural data (Figure 3, 5, Supple-
mentary Figure 2, 3)

Details of the experiment, data preprocessing, calculation of behavioral d-prime (Figure 3B), and
fitting and validation of MVAR model on this dataset data have been described in detail in previous
publications (Khan et al., 2018; see also Poort et al., 2015, 2021). Here, we summarize the MVAR
model and provide details of novel MVAR analyses used in the present study.

The imaged A F/ F signals for each cell were divided into trials of duration -1 to 1 s relative to the on-
set of a visual stimulus. Here and below, all sums over time samples are restricted to the N; = 9 time
samples contained in the post-stimulus window of 0 to 1 s (although the model was fit to the full win-
dow of -1 to 1 s containing 17 time samples). We collect the population activity of N simultaneously
imaged neurons at imaging frame ¢ on trial : into an N-dimensional vector denoted ry). We define
the following quantities which we will make use of below. The trial-averaged activity conditioned on
stimulus s and time relative to stimulus onset  is 7" = Nrs] ieTrials(s) ri”, where Niyias(s) is
the number trials of stimulus s. The grand average over both time samples and trials conditioned on

the stimulus s is ¥(*) = N% fﬁl fgs). The pooled covariance over vertical (V) and angled (A) stimuli

T
: _ 1 Ne (L) =(s) (1) _ 7(s)
is X = Nt (Nrrials (V)4 Nyials (4)) Zs:V,A ZieTrials(s) t=1 <rt - I ) <rt - I ) :

Description of Model

To infer linear dynamics and stimulus input of the imaged circuit, we fit a multivariate autoregressive
linear dynamical system model to the imaged responses. In the MVAR model, the imaged activity is
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modeled as: 4 ' 4 ‘

rgl) =(A+ I'N)rgl_)1 + ugs) + £vt(l) - e,@ (1)
where A is an N x N matrix of interaction weights, ugs) is a vector of N stimulus-related inputs, £ is
a vector of NV running speed coefficients, vt(l) is the running speed of the animal and eﬁ’) is a vector
of residuals.

The MVAR model is fit to each dataset by minimizing the sum of squared residuals across all neurons
and trials of the vertical, angled, and gray corridor stimuli before or after learning (-1 to 1 s about the
onset of the corridor, which appeared suddenly). Analytical expressions for the model parameters
obtained under this least squares fit offer insight into their interpretation (equations 2-4 in Khan et
al., 2018). In particular, the interaction weights depend only on the stimulus-independent covariance
of the data (both the instantaneous covariance > and the covariance between consecutive imaging
frames). Given these interaction weights, the stimulus-related input depends only on the stimulus-
conditioned trial-averaged responses f?’. Thus, the MVAR model uses the imaged noise covariance
of the data (both within and across consecutive time samples) in order to infer interactions between
cells, and ascribes any remaining stimulus-dependent variation in trial-averaged responses to sen-
sory input. The residuals have zero mean under each condition, i.e. ;i) egs) = O forany ¢
and s (equation 4 in Khan et al., 2018). We observed that the contribution of the running speed term
to responses was negligible and so do not report results on this term (note that & was constrained
to have the same value pre- and post-learning in all of our analyses - when £ was free to vary over

learning a larger contribution could be observed).
Visualization of MVAR input and output along discriminant axis

Having fit the MVAR model to the experimental data, we sought to visualize how the imaged re-
sponses were generated through recurrent integration of stimulus-related input within the inferred dy-
namical system. To do so, we projected the sensory input, recurrent input, and MVAR output onto the
linear discriminant in order to see how stimulus-discriminability evolved over time. Single-trial sen-
sory input was defined as ugs) + ef) (i.e. residuals were assigned as input noise), recurrent input as
(A+Iy)r!), and MVAR output as r\"”. The linear discriminant vectors were wiPt — 51 (uY —uf)
and wyP" = N7 EY — 1), where u®) = Lo 37 o +ef) = &3, uf and
. T
Yo = N IV (VIIN; Sosm AV Dot icTrials(s) ei’el’)" . The sensory input was projected onto
wiLnB“t, while both recurrent input and imaged responses were projected onto w%p‘”. We plotted
the mean and standard deviation over trials of these projected activity patterns for a representative

mouse in the post-learning condition.

Quantification of MVAR input and output information

The stimulus-information (or linear discriminability) of single-imaging frame population responses
was quantified as Iy, = (FV — )T 1(fV — 7). The stimulus-information of inferred input was
quantified as I;, = (u” — u?)TX 1 (u" — u?). These metrics were computed separately for the
pre- and post-learning data for each mouse. The gain in output to input information was defined as
100 x (e — 1),

in

Quantification of temporal integration of relevant and irrelevant input

To test how temporal integration of relevant and irrelevant input changed over learning in the MVAR
model, we analyzed the impulse-response of the MVAR to two different input perturbations. The
impulse-response to a perturbation p was modelled by setting the MVAR to an initial state ro = p
and forward-simulating the system over multiple time steps with no other input, i.e. u;,e;, v, = 0.
This gave the response r; = (A + Iy)'p. Simulated responses r; were then projected onto a vector

w. For the relevant input, we chose p to be the MVAR input linear discriminant p oc 71 (u"” — u?)
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and w to be the linear discriminant of the imaged population responses w oc X1 (tV — ). With
this choice (i.e., by choosing not to enforce w = p), we allow for the possibility that temporal
integration occurs through either normal or non-normal dynamics (Supplementary Figure 1). For
the task-irrelevant input we chose p o< ¥ 1 (u" +u?) and w oc 71(r" + r4). Time constants of
network responses were defined as 7 = % DIrars o vvout]2 /> [t wout]2, which was adapted
from the analytically-derived temporal integration factor I-(f) in the Supplementary Mathematical
Note (see section titled Signal Processing Analysis).

Constrained model fits

To test whether the learning-related changes in temporal integration in the MVAR model require
changes in interaction weights or stimulus input, we refit the MVAR with either A or u constrained be
the same both pre- and post-learning. We then repeated the analyses for Figure 3 on the constrained
MVAR model fits. Details of the constrained model fitting procedure are provided in Khan et al.,
(2018).

Input and output SNR along MVAR modes

To compute the SNR of network input and output projected onto each mode, we used analytically de-
rived expressions which relate these SNRs to the eigenvectors and eigenvalues of A. Eigenvectors
(right vZ and left vi = m;) and eigenvalues \; of the pre- and post-learning MVAR interaction weight
matrices A were numerically computed using the Matlab function eig. The SNR of stimulus input pro-
jected along each mode was then given by the equation SNRi,put (M) = Aftinput (M) /Oinput (M) =

jm;- (0¥ —u?)|/v/m; - Yem;. The normalized input SNR was SNR,,orm (m;) = SNRiyput (m;) /SNRinput (WD input)

where Wipiput = 2ot (u¥ — u?) is the input linear discriminant and SNRiput(WLp input) =
VY —uM)TE 1 (uV — ui) is the SNR of input projected along the linear discriminant. We com-
puted the time constant of each mode using the equation 7; = —T7}/log (\; + 1) which converts
from a discrete-time dynamical system of sampling period T to a time constant in an equivalent
continuous-time dynamical system. We restricted our analysis of individual modes to those with real
eigenvalues \; + 1 > 0 (which ensures that 7; are real, so that the mode is not oscillatory).

We pooled modes across animals separately in the pre- and post-learning conditions (note that indi-
vidual modes are not matched pre- vs post-learning). Both pre- and post-learning, we performed av-
erages over time constants conditioned on normalized input SNRs and over normalized input SNRs
conditioned on time constants. These conditional averages were obtained using a moving average
analysis. To obtain an average normalized input SNR conditioned on time constant, we used a box
filter of width 100 ms with center increasing from 100 ms to 1400 ms in increments of 25 ms. For each
increment, we computed the mean normalized input SNR of all modes within that window. Similarly,
we used a box filter of width 0.025 increasing from 0.025 to 0.25 to compute average time constant
conditioned on normalized input SNR. As an additional analysis, we computed a two-dimensional
histogram describing the number of modes n(7, SNR,om ) With time constant 7 and normalized input
SNR SNR,.:m by applying a moving two-dimensional Gaussian filter over the set of modes using the
equation n(7, SNRyorm) = vaz"i“des exp — [(7; — 7)?/(202) + (SNRyuorm (m;) — SNRyorm)?/ (2023xg)]-
We set 0. = 100 ms and ogng = 0.025. We computed the change over learning An = 705 — Mpre
and normalized this quantity by its standard deviation across shuffled data (see below) to obtain
An/o(Angus), @ measure of the change relative to chance level, which is plotted in Figure 5F.

To determine whether learning-related changes in time constants or normalized input SNRs ex-
ceeded chance level, we performed a bootstrapping procedure based on shuffling of trials. For each
mouse, we pooled pre- and post-learning trials and randomly resampled (without replacement) two
sets of trials of equal number to the pre- and post-learning datasets. These shuffled datasets consti-
tuted the null hypothesis that no changes occurred over learning. We then refit the MVAR model to
each of these shuffled datasets and repeated the above analyses to obtain the time constants and
normalized input SNRs under the null hypothesis. In this way, we generated a null distribution for
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each statistic (moving average of change in time constant, moving average of change in normalized
input SNR, and An). We then formed 95% confidence intervals for each statistic based on their
respective null distributions. Our null distributions consisted of 1000 such shuffles.

To confirm that our results were not biased by individual mice, we also performed within-animal
averages of the time constants and normalized input SNRs pre- and post-learning (Supplementary
Figure 3A,B). For this analysis, individual mice rather were considered as the statistical unit when
performing significance testing.

MVAR non-normal dynamics

The non-normality of dynamics was quantified using Henrici’s departure from normality (Henrici,

1962): H = \/I|AH% — 327 IAil2/||All . where ||A]|r is the Frobenius norm. This measure was
computed separately on the interaction weight matrix for pre- and post-learning data for each animal
(Supplementary Figure 3C).

Network models (Figure 6, Supplementary Figure 4-6)
Model Description

We considered two populations of cells (excitatory and inhibitory), each arranged on a ring, with
N* cells in population X € {F,I}. Each population is parameterized by its orientation on the

ring 60X = 27rz/NX. Dynamics were governed by the Wilson-Cowan equation 7 ad:‘ = —r¥ +

(ZY B WXYTY + uX (65, t)) where 7;* is the firing rate of neuron 7 in population X, 7%

is the time constant of neurons in population X, ;X" is the weight from neuron j in population Y’
to neuron ¢ in population X, u; X(0,, t) is the external input to neuron 7 in population X as a function
of the stimulus orientation 6, and time ¢, and ¢ is an element-wise nonlinearity. For both £ and [
populations we used a threshold-power law nonlinearity ¢(z) = [z]} (Hansel and Van Vreeswiik,
2002; Miller and Troyer, 2002; Ahmadian et al., 2013; Rubin et al., 2013; Hennequin et al., 2018).

External input had stimulus-tuned mean ¢;X(6,) and additive, temporally uncorrelated Gaussian
noise 7 (t), i.e. u¥ (6, t) = g (8,)+nX (1) with (X (1)) = 0and (X (1)} (¢) = (0%)?830x vt~
t'). Input tuning curves were circular-Gaussian, rotationally-invariant functions of stimulus orienta-
tion, defined by von Mises functions ¢:X (6,) = #S(;X) exp (K~ cos (6 — 6,)). The parameter £~
determines how concentrated the inputs are around the ring (i.e., orientation selectivity of input),
while gi° controls the total strength of network input. I, is the modified Bessel function of the first
kind, which is included to normalize the total input strength so as to be independent of the input
tuning ~*. To preserve rotational symmetry, inputs were chosen such that that 6, = 6 = 6] for
some pair of integers 7, j.

For the uniform network, weights had the same circular-Gaussian form as the input, WZ-;(Y =
XY
% exp (k%Y cos (X — 0Y)) where XY, WY are the concentration and strength parameters

for the weights from population Y to population X. For the non-uniform network, the excitatory to

inhibitory weights were modified to W/F = (W!E,  — + WIF ) Wi \where WIE. s the
y g iy uniform sub <Wlfr€form+WsIu€> uniform
IE
connectivity for the uniform network, (W), IZO 7y eXp (L5 cos (0] — Osup)) exp (kLE cos (07

is the additional subnetwork connectivity, (W> denotes an average over all elements of the weight
matrix W and Kgyp, W({ £ are the concentration and strength parameters for the excitatory-inhibitory
subnetwork.

With the exception of parameter sweeps, all analyses of the uniform and non-uniform network used
the following parameters: N* = 1000, N = 200, 7% = 10, 7/ =5, v = 2, k¥ = 0.5, ! = 0,
9y = 0.5, g5 = 0, WP = 0.019, Wy' = —1L1IWFP, WP = —0.04, Wi¥ = 0.04, "% = 2,
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=0, k' = 0.1, k¥1 = 04, !B = 4.2, W

sub sub_0'004’ (0 ) _221 191 /NE ( )2:
(0F)? /2. For parameter sweeps, all parameters other than those varied were held at these values.

In Supplementary Figure 4, the network with weak sharpening used %% = 1.4, x’F = 0.9, while the
network with strong sharpening used k% = 2.8, k’F = 0.4, with all other parameters unchanged.

Analysis of linearized dynamics

In order to compute modes of linearized dynamics and their time constants we used numerical meth-
ods to find the fixed points of the network dynamics and then numerically computed the eigenvalues
and eigenvectors of an analytically-derived Jacobian.

We found that fixed point estimates obtained by forward-simulating with the Euler method yielded in-
accurate estimates of linearized dynamics. Instead, we found the fixed points of Equation (4) using a
root-finding algorithm applied to the equation r = 0, where r = [rZ;v!], W = [WEE WEL WIE 1))
etc., T is a diagonal matrix of neuronal time constants, and r = T '(—r + ¢(Wr + )). We
used Newton’s method with the analytically-derived Jacobian J (r) = %&£ = &' — T~! (where
@' = T 'diag(yp(Wr + g)'~1/7) for our choice of transfer function). leed point estimates r,, were
iteratively updated as r,,;; = r, — J(r,)1,. The algorithm was terminated when ||1,|| < 107'°
(where it was considered to have converged), or after 100 iterations (which was classed as a failure
to converge). The root-finding algorithm was initialized at ry = 0 (or when performing a parameter
sweep, at the fixed point obtained from the previous set of parameters).

Having found a fixed point, the time constants, input SNRs, and output SNRs of linearized dynami—
cal modes were computed using analytically-derived equations 7; = —1/Real( )y SNRipput (VE) =

O)|//VE - ZpVE, SNRowput (VF) = SNRmput( )\/2_% where \;, vl, are eigenvalues and
Ieft e|genvectors of the Jacobian J = <I> W —T71, and vE are the left eigenvectors of the matrix
J = W& — T-'. Note that \; = );, and that o — T~'diag (yr'~'/7) at the fixed point (see
Supplementary Mathematical Note). Where modes are explicitly plotted (Figures 6B, C, E, Supple-
mentary Figure 4A-D, G-I, Supplementary Figure 6A), the quantities shown are the elements of \75.

The normalized input SNR was computed as SNRyorm (VF) = SNRinput (V f)/\/g’(ﬁs) - tg(0).

The degree of recurrent sharpening was quantified as N*/N¥ — 1, where N is the number of
excitatory neurons with non-zero firing rate at the fixed point.

Analysis of two-stimulus discrimination and nonlinear dynamics

Our theoretical results are underpinned by two key approximations: the linearization of network dy-
namics about a fixed point and the analysis of stationary state response statistics of the linearized
system. The linearization of dynamics restricts the domain of application of our theory to fine-scale
sensory discrimination tasks, whereas the stimuli presented experimentally were separated by 40°.
We therefore sought numerically determine whether our linearized theory provides adequate insight
into the full nonlinear and non-stationary integration of the experimentally presented stimuli through
the recurrent network. We took two approaches to do this. First, to determine the stationary state
response information for two stimuli separated by 40°, we separately computed the linearized sta-
tionary state response statistics about each stimulus (Figure 61 and Supplementary Figure 6B-F)
and then used linear discriminant analysis to compute response information. Second, to determine
the non-stationary integration of input through the network dynamics following stimulus onset, we
numerically computed responses of the nonlinear system over time using the Euler method (Figure
6J). The behavior of the linearized system made predictions that we were able to confirm in sim-
ulations of the nonlinear system: recurrent sharpening caused the most slowly-decaying mode to
increase its time constant and become less aligned with the input discriminant (Supplementary Fig-
ure 4), which predicts that input information should be integrated more slowly but over a longer time
window, and should should nonetheless achieve a greater stationary state information relative to the
non-sharpened network; similarly, non-uniform inhibition caused the most slowly-decaying mode to
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become better aligned to the input discriminant without changing its time constant (Figure 6E-H),
which predicts that input information should be integrated more rapidly, with response information
reaching its plateau before the sharpened or baseline uniform network. Both predictions were borne
out in simulations of the non-stationary nonlinear dynamics (Figure 6J), which demonstrates that
the linearized stationary state approximation to the network dynamics is able to adequately capture
the qualitative behavior of the integrative behavior of the nonlinear non-stationary system. We then
verified that the same qualitative behavior could be observed in the data (Figure 6K), as would be
expected based on the observed changes in MVAR modes (Figure 4).

For Figure 61 and Supplementary Figure 6B-F we computed the fixed points and Jacobians as-
sociated with the two stimulus orientations 0, = 0O — 20°, 0, = 05 + 20°. We computed
stationary state response covariance around each of these fixed points by numerically solving the
corresponding Lyapunov equation JX + X.J7 + ®'3, &' = 0. We computed response information as

I = (r(6s,) —r(6s,)) - [ (2(6s,) + 2(052))}_1 (r(6s,) —r(6,,)). Response information was then

normalized by the response information computed for a network with WJ/E, = 0 (computed us-

,sub

ing the same method with all other parameters unchanged). The SNR of excitatory and inhibitory

responses were computed as SNR;* = I On)ri)l g Supplementary Figure 6C, D, we

\/% (Eii(931)+2ii(052))
X

plotted (5 >_iv, SNR;¥)? normalized by the its value in the network with W{E, = 0 in order to

facilitate direct comparison with the response information. In Supplementary Figure 6E we plotted
X

the unnormalized NLX ZL SNRiX to facilitate comparison with previously defined measures of neu-

ronal response SNR (see Khan et al., 2018, in which this measure is reported as the mean absolute

selectivity).

To investigate the non-stationary and non-linear integration of sensory input following stimulus onset,
we numerically solved the Wilson-Cowan equation using the Euler method. We used a time step of
dt = 1 and initialized the simulation at the fixed point r(f,,) with external input given by one of the
two stimuli 0,, = 6,1, £20°. At each time step we computed the projection of responses onto the sta-

tionary state linear discriminant d(t, ;) = w2, r(t, 6,,), with wip = [ (2(6s,) + 2(0,,))] " (x(6s,) — 1(6s,))

2
computed using the analytical equations for the stationary state means and covariances in the lin-

earized systems about each fixed point. We simulated 1000 trials with 1000 time steps each. We

computed the signal-to-noise ratio of this quantity as SNR(t) = (d(t, 0s,)—d(t, 05,))/+/0.5[Var(d(t, 05,)) + Var(d(t

where averages and variances were taken over trials at each point in time. For the baseline and non-

uniform networks we set x¥% = 1.8, and for the sharpened network ¥ = 2. For the non-uniform

network we set x5 = 4.2, W!E = 0.004 and for the baseline and sharpened network x.% = 0,

sub 0,su sub —

Wik, = 0. We normalized SNR(t) by the average value in the final 300 time steps under the
baseline network model.

To compute response SNR as a function of time in the experimental data, we computed the linear

discriminantas wip = 7! (¥ — r') where £ and ) were computed as in Figure 3. We projected
imaged responses rff) onto wi,p at each time point ¢ on each trial for the vertical and angled stimuli to
obtain dﬁ’) = warf). We computed the signal-to-noise ratio of this projection at each time point rel-

ative to stimulus onset by computing its mean difference between stimuli and its pooled standard de-

viation across stimuli, i.e. SNRt = ’<d£i)>ieTrials(V)_<d§i)>ieTrials(A) ‘/\/O.5[Val"(d§i))ieﬂials(v) + Var(dgi))ieTrials(A)].

We performed this analysis separately for the pre- and post-learning data for each animal.
Comparison of response changes to preferred and non-preferred stimuli in model and data

We computed the change in the response of excitatory and inhibitory cells to their preferred and non-
preferred stimuli over learning (in the experimental data) and between the uniform and non-uniform
ring network models.

In the network models, we defined the preferred stimulus of excitatory cell ¢ as the stimulus which
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generates the greater firing rate value at the fixed point, i.e. Op,e¢(7) = argmax [rE (0, )] where k =
1, 2. The change in response to its preferred stimulus was defined as the difference in response be-
tween the two networks, i.6. ArE (Opret (7)) = [1F (Oprer (1)) non—unitorm — [T (Opret (7)) unitorm (NOte that
cells did not change stimulus preference). The mean and variance of this change in response were
then taken over the population of excitatory cells, i.e. mean[Ar” (Oyef)] = o5 ZZ]\Z ATE (0 pret (7)),

and var[Ar¥ (O,.er)] = % ZNE [ATE (0 pret) — mean[ArE (0,.¢)]]*. The non-preferred stimulus was
E

analyzed similarly but with Oon—prer (i) = argming_ [r7"(6s,)]-

In the experimental data we considered learning-related response changes of putative pyramidal
cells to the vertical and angled grating corridors (see Khan et al. for how cells were identified).
For each cell, we computed the difference in its response to the vertical and angled stimuli both
pre- and post-learning Ay_,7;, = 7} — 7i* (where | = pre, post). We also computed the change
in response to the vertical and angled stimulus over learning A os;_pre™® = fl(,i)st — 7%) (where

s = A, V). We then took the mean and variance of Apost,pref(sprcf) over all pyramidal cells which

passed a set of inclusion criteria (where s, = argmax, [fl(s)} is the preferred stimulus of the cell).

The inclusion criteria were as follows: the cell had a significant preference for one of the vertical
and angled stimuli both before and after learning (defined as p < 0.05 under a Wilcoxon rank-
sum test on the responses on vertical vs angled trials); the preferred stimulus s, was the same
before and after learning. These criteria were necessary to avoid confounds relating to regression
to the mean. The same analysis was performed for the non-preferred stimulus, in this case using

_ : =(s)
Snon—pref = argiming |:rl .

We computed the average response SNR of individual E and | cells in both the model and data
(Supplementary Figure 6E, F). The method for computing E and | response SNR in the network
models is described in the above section. Quantification of mean SNR of individual pyramidal and
parvalbumin cells was similar, and has been reported in Khan et al. (2018).
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Supplementary Figure 1. Non-normal dynamics can increase response information through
functionally-feedforward temporal integration of the optimal input discriminant. A: Integration
of feedforward input through normal and non-normal dynamics. Left: Distributions of instantaneous
feedforward input for two stimuli and their linear discriminant. Middle: Recurrent dynamics around
an input-driven fixed point. Non-normal dynamics can be described by either independent modes
or functionally-feedforward modes (Schur decomposition or Jordan normal form; see panels C, D).
Right: Distributions of instantaneous network activity following integration of feedforward input. B:
Response information depends on the time constants and the activation patterns of modes. x and *
are the parameters for the two example networks shown in A. Response information is normalized
by the maximum information achievable in a normal network with the same time constants. Maxi-
mum response information occurs when both modes are aligned to the input discriminant and have
similar time constants. C, D: Characterization of network dynamics by independent modes (eigen-
vectors) or "functionally-feedforward" modes (e.g., Schur decomposition). Both are valid descriptions
of the dynamics, but functionally-feedforward modes reveal non-normal integration more clearly. E:
Response information for networks with varying numbers of functionally-feedforward modes and
strength of functionally-feedforward interactions. Information is maximized in networks with strong
functionally-feedforward dynamics and grows with the number of modes. F: Response of a strong
functionally-feedforward network to a pulse of input. Black line shows the decay time constant of indi-
vidual modes and red trace shows the time course of the most slowly decaying projection of network
output. G: Squared SNR of two projections of network outputs. Red shows the optimal projection
derived analytically assuming infinitely strong functionally-feedforward weights. Gray curve shows
the optimal projection computed numerically for finite weights. H: Response information increases
linearly with number of functionally-feedforward modes.
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Supplementary Figure 2. Improvements in temporal integration rely of reorganization of in-
teraction weights but not stimulus-related input. A: Time constant of response to input along
linear discriminant for an MVAR model in which interaction weights or stimulus-related input was
constrained to be the same before and after learning. Gray line shows mouse whose time con-
stant decreased over learning when all parameters were free (see Figure 3E, F, I). B: Information in
stimulus-related input to MVAR model. Input information increased when weights were fixed, but not
when input was fixed (note that input information could in principle improve through altered residuals
even when mean input is held fixed).
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Supplementary Figure 3. Individual mice show an increase in alignment of modes with the in-
put linear discriminant, no increase in decay time constants, and a decrease in non-normality.
A: Average over modes’ normalized input SNR, shown for each mouse pre- and post-learning. B:
Average over modes’ time constant for each mouse. C: Non-normality of interaction weight matrices
for each mouse pre- and post-learning.

29


https://doi.org/10.1101/2021.08.02.454726
http://creativecommons.org/licenses/by-nc-nd/4.0/

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454726; this version posted August 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

A o1 Mode 2 (Width) B o1 Mode 3 (Amplitude) C o1 Mode 4 (Shear)

0.08 Feedforward Input 0.08 ’ 0.08
’ = Activity Steady State > >

> £ fn

£'0.06 S 0.06 S 0.06

= g 2

go.04 < 0.04 g 0.04
0.02 0.02 0.02

0 0 0 <z s
Angle on Ring Angle on Ring Angle on Ring
D Recurrent Sharpening E Connectivity for Weak Sharpening F Connectivity for Strong Sharpening
1 Feedforward Inputs (Rescaled) +0.08 - . € 0.08 — .
2 01 —— Weak Sharpening S s N ——EEWeight 5 E-E Weight
5 o ! G 7 N - -Eq Weight o] = =E-l Weight
% ——Strong Sharpening = 0.06 ’ \ = 0.06
& o ’ ' )
© N O
©»0.05 §0-04 L7 . 4% 0.04
3 so0.02f .7 Se_ Soo02
0) 0
w
0 0 0
-100 0 100 -100 0 100 -100 0 100
Angle on Ring (degrees) Angle on Ring (degrees) Angle on Ring (degrees)
G Mode 1 (Translation) H Mode 2 (Width) ' Mode 3 (Amplitude)
0.1 0.1 0.1

>0.05 P(\ >0.05 20.05 %

- —_—

2 0 \ (AN - = 0 \ - 2 0 O -

u : %

<0.05 \\d Input linear discriminant <<-0.05 \j\l <o.05
0.1 == Mode (weak sharpening) 0.1 0.1

’ === Mode (strong sharpening)
-100 0 100 -100 0 100 -100 0 100
Angle on Ring (degrees) Angle on Ring (degrees) Angle on Ring (degrees)

J Alignment of Modes with Inputs K Time Constants of Modes L Mode Signal to Noise Ratios
0.7 I Weak sharpening . Il Weak Sharpening Il Weak sharpening
0.6 Il Strong sharpening S [ Strong Sharpening xg I Strong sharpening

x © 200 = = Neuronal Time Constant %

= L

n 0.5 . Q

= S 150 26

2 0.4 krd Ei
£ g n
003 S 100 &4
8 o )
s 0.2 e '8
F 50 2 I
0.1 =
0 0 1 1 1 1 0
1 2 3 4 1 2 3 4 1 2 3 4
Mode Mode Mode

Supplementary Figure 4. Uniform recurrent sharpening of sensory input reduces alignment
of the slowest dynamical mode with the input linear discriminant. To test whether recurrent
sharpening can explain the findings of the MVAR model, we examined the changes in the four
slowest modes as connectivity was varied. A-C: Response steady state and perturbation along
the 2nd-4th most slowly decaying modes in the E-I ring model (as in Figure 6B). D: Response
of two networks to the same feedforward input, yielding weak and strong sharpening respectively.
E, F: Patterns of network connectivity that induced the weak and strong sharpening of responses
shown in D. Narrower E-E weights and/or broader E-l weights caused sharpening to increase (see
Supplementary Figure 5 for a more comprehensive illustration). G-I: The activation patterns m of the
three most slowly decaying modes, each overlaid with the input linear discriminant. In both networks,
the translation mode was best aligned to the input discriminant and decayed most slowly. However,
increased sharpening reduced the translation mode with the input discriminant (panel G, less overlap
between the red and yellow curve than between cyan and yellow). J-L: SNR of feedforward input
projected onto each mode (J), the time constant for each mode (K) and the SNR of network output
along each mode (L). Although the decay time constant of the translation mode increased (panel
K) and generated an increase in response SNR (panel L), these improvements are nonetheless
inconsistent with the unchanged time constants and increased input SNR observed over learning in
the MVAR model (Figure 5A, C).
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Supplementary Figure 5. Parameter sweeps of excitatory-excitatory and excitatory-inhibitory
synaptic weights. A: Degree of recurrent sharpening in networks with varying specificity (concen-
tration around ring) of E to | and E to E weights. White denotes unstable networks (global instability
or oscillation about an unstable fixed point). B: Normalized SNR of feedforward input projected along
best mode (mode with greatest input SNR). C: Time constant of the mode shown in B. D: Modes
pooled across networks shown in A-C (all modes pooled across all networks). For these uniform
connectivity changes, time constants and normalized input SNRs covaried across networks and
were largely constrained to lie on a 1-dimensional curve. For modes with decay time constants sig-
nificantly greater than single-neuron time constants (here, 10), increases in normalized input SNR
were consistently accompanied by decreases in time constant, in contrast to the stability of time
constants with increased input SNR observed in the MVAR model. Although small increases in nor-
malized input SNR with fixed time constant were possible (as evidenced by horizontal scatter about
the main curve), these relied exclusively on a simultaneous reduction in the specificity of E-E and
E-1 synaptic weights and required fine-tuning of parameters to achieve. E-H: As in A-D but varying
the magnitude of E to E and E to | weights across networks. I-L: As is A-D, but for networks with
an E to | subnetwork of varying specificity and magnitude. These non-uniform connectivity changes
yielded a fundamentally different relationship between mode time constant and input SNR, such that
input SNR could be increased without altering decay time constants parameters by increasing the
strength and tuning of the E-I subnetwork, with a wide range of connectivity parameters achieving
the desired result.
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Supplementary Figure 6. Modes and response information for networks with non-uniform
connectivity. A: Activation patterns m for modes 2-4 in the uniform and non-uniform networks
shown in Figure 6D. B: Linear discriminability of the two stimuli shown in Figure 61, for networks with
varying subnetwork strength and specificity (information normalized by value for uniform network).
C, D: Average squared SNR of excitatory and inhibitory responses (normalized by value for uniform
network). F, G: Average SNR of excitatory and inhibitory responses for the uniform and non-uniform
network (unnormalized). G: Average SNR of excitatory (pyramidal) and inhibitory (PV) responses

for the pre- and post-learning data.
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Supplementary Mathematical Note

Notation

We use bold-face lower case letters for column vectors and non-bold upper case letters for matrices.
Superscript T denotes a (vector or matrix) transpose; z; or (x), denotes the ith element of vector
X; Xy =xy = ZiN:1 x;7; denotes an inner (dot) product of vectors; xy’ denotes an outer
product of vectors with (ij)th element = z;y;; ||x|| = /X - x denotes the Euclidean vector norm;
x = x/||x|| denotes a unit vector; Tr A = vazl A;; denotes the trace of an N x N matrix A; [
denotes the identity matrix; we make use of the shorthand notation for the transpose of a matrix
inverse X1 = (XT)_1 — (X 1", (x) denotes the ensemble average of x (or time-average for
ergodic variables); d;; denotes the Kronecker delta symbol and §(¢) denotes the Dirac delta function.

Signal Processing Analysis

In this section we derive the results of Figure 1 in the main text. We consider a simplified model
describing the sensory input to a network of neurons upon presentation a stimulus. Under the
assumptions of this simple model, we derive the optimal method to discriminate a pair of stimuli
based on observations of the network input. We also derive the performance of a more general
class of suboptimal discrimination functions which we will later show are relevant to the way in which
recurrent network dynamics act on the sensory input. This signal processing analysis places an
upper bound on the possible discrimination performance of any network receiving such sensory
input, specifies the mathematical operations a network must apply to its input in order to achieve this
upper bound, and shows how suboptimal integration can be understood in terms of information loss
both instantaneously and over time. In the sections that follow we use the results of this analysis to
interpret the behavior of recurrent networks integrating such sensory input.

We consider a network of N neurons receiving sensory input u € R" generated from a stimulus s. In
the scenario we consider, one of two stimuli s € {s1, s} may be presented, each of which generates
a time-series of sensory input u(s,t) drawn from a different distribution p(u|s). We assume that
network input on any given trial consists of a time series u(s, t) = g(s)+n(t) with time-independent
but stimulus-dependent mean g(s) and additive, stimulus-independent, multivariate normal noise
n(t) ~ N(0,3,) with (n(t)) = 0and (n(t)n’ (t)) = 3,. We wish to infer the identity of the stimulus
s having observed a single realization of such a time series u. This can be achieved optimally by
maximizing the posterior probability p(s|u) over the two stimuli.

We first consider how the two stimuli can be discriminated given an observation of network input ug
at a single time sample ¢,. In this case, the most probable stimulus s given the input vector uy can
be found using linear discriminant analysis (LDA), i.e. by taking a linear projection of the input vector

w - ug and comparing this to a threshold c. To see this, note that p(s;|uy) = 5((32))p(u0|8i) =

2k [(9m)N/2|5,|12) " exp (—(wp — g(s:)) 7S, (o — g(s1))), which gives logp(s;|ug) = ¢ —
(ug — g(s:))"%;, (ug — g(si)) where ¢; is a constant with respect to ug. Thus, log p(s;|ug) —
logp(silug) = ca —c1 — g(s2)%;, ' &(s2) +8(51)%,,'8(s1) +2(g(s2) — 8(51)) %, "up = —c+w'uy,
where we have absorbed all constant terms into a single scalar ¢ and defined the projection vector
w = 2%, "(g(s2) — g(s1)). Therefore, the most probable stimulus given the observed input vector
u, is found by asking whether wuy < ¢ (i.e., if wluy > c then s = s, is more probable, whereas
if wi'uy < cthen s = s, is more probable). The projection vector w is known as the linear discrim-
inant, and can be understood as the vector which is normal to the hyperplane separating the two
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nss  stimulus input distributions. The constant ¢ determines the location of that hyperplane. Note that w
us7and c can be rescaled by an arbitrary scalar constant without altering the decision rule.

18 We next consider how stimuli can best be discriminated when network input is observed sequentially
1so  in time. When statistically independent inputs u(t) are observed at a set of times ¢t € 7 (a continuous
1eo interval or discrete samples), the optimal solution is to perform a time-averaged LDA using the
e decision rule w - (u(t))e7 < c. Here, (-)c7 is the sample mean over the set of time samples and
1e2 W, c are the same quantities as in the single time sample case. This result follows directly from the
e single time sample case and the fact that log p(s;|u(t),t € T) = >, log p(s;|u(t)) for statistically
1e¢ Independent samples.

1es  An intuitive way to understand this time-averaged LDA solution is to search for the linear projection
e n € RY and temporal filter f(¢) which, when applied jointly to the input time series u(s, ), generate
nez  the scalar output with the greatest signal to noise ratio with respect to the two stimuli to be discrim-
1es inated. In the case of a continuous time series of Iength T, i.e. t € [0,7T], we denote the scalar
1es output of such an operation as dy, ¢(s,T) fO (n-u(s,T — 7))dr. The signal to noise ratio of
o dn (s, T) is defined as:

[(dn, (8, T))s=s, — {dn s (5, T)>s:51]2 ‘
% [Var [dn, (s, T)],_, + Var[dy (s, T)]S:SJ

SNRZ(n, f) = (2

w1 Provided that u(s,t) has Gaussian statistics, dy, f(s,7") is a normally distributed random variable
172 under each stimulus s. Moreover, assuming stimulus-independent input covariance, the variance
s of dy ¢(s,T) is independent of s. As a consequence, the above signal to noise ratio is sufficient to
n7a  determine stimulus discrimination performance of an optimal observer receiving the scalar output
ws  dn (s, T) (in particular, p(correct) = ®(SNRy/2) where @ is the cumulative function of the stan-
17e dard normal distribution). The solution derived above by maximizing the posterior probability over
w7 s corresponds to setting f(t) = 1/7, n = w = 2%, '(g(s2) — g(s1)). We rederive this optimal
ns  solution below through maximization of the above SNR. As we will show, using a different projection
179 vector n or temporal filter f reduces the signal to noise ratio (except for scaling of f or n, which
1s0 has no effect). Thus, the linear discriminant vector w can also be understood as the vector which
1s1  Maximizes the signal to noise ratio of the projected input.

12 We now derive the optimal choice of n, f and quantify the performance of both optimal and sub-
1e3  optimal choices under the assumption of temporally uncorrelated Gaussian input noise. In this
e case, the influence of n and f on the signal to noise ratio of the scalar output d, ¢(s,T") takes
1155 ON a particularly simple form. In particular we then have (n(t)nT(t’)> =X 5(t — t'), so that
v (dns(5,T))oms, = 1 - g(s)) [ f(r)d7 and Var [dns(s,T)],_, = n-Zyn [fo £(r ] Defining

e Ag = g(s2) — g(s1), the output S|gnal to noise ratio is then given by:

n- Ag]? [fo } 9
NRlnput
n-X,n fo f2(r)dr

SNRZ(n, f) = (n)I7(f) (3)

1188 Where SNanput( )=[n-Ag]’/[n-% n] is the signal to noise ratio of the instantaneous input pro-

e jected along n and I (f [fo dr} / [fo 2 dr] is a temporal integration factor. Thus, the

1o total signal to noise ratlo factors into an instantaneous term and a temporal term. We can therefore
191 proceed to maximize each of these two factors in turn with respect to n and f respectively. To do so,
ez we apply the Cauchy-Schwarz inequality to derive two inequalities, SNRmput( n) < Ag- E‘lAg and

nee  Ip(f) <T. To see how the first inequality arises, note thatn - ¥,,n = <2117/2 ) <21/ > while by

o Cauohy-Sohwarz - Ag(s)| = | (2/n)(5*86) | </ (54"n) - (n) | (22 "2g) - (25" g
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Inserting these into the definition of SNR?nput(n) and cancelling terms in the numerator and denom-
inator gives the desired inequality. The second inequality follows in a similar fashion: the integral

Cauchy-Schwarz inequality gives |f0T f(r)dr| = |fOT f(r) - 1dr| < \/fOT fQ(T)dT\/foT 12dr =

fOT f2(1)dr+/T which can be inserted into the definition of I(f) to arrive at the desired result. It

can easily be verified that these upper bounds are achieved when f(t) = aandn = ﬁE;lAg = fw
for any pair of constants «, 5. Thus, we have arrived at the same optimal solution for stimulus dis-
crimination using two different methods: first, by maximizing the posterior probability of the stimulus
given the observed network input; second, by maximizing the signal to noise ratio obtained by linear
projection and temporal filtering of the network input.

Several conclusions can be drawn from this analysis. First, for invertible X, the information avail-
able to a decoder of network input over a time window 7' is finite and the sources of information
loss can be factored into an instantaneous term SNR;,,.+ and a temporal term Ir(f) (note that
further sources of information loss may occur when different functions than those considered here
are applied to the network input, as we will see when we study recurrent networks). Moreover,
even in the limit of infinite time, the information available to decoder with finite timescales of tem-
poral integration remains finite due to the loss of previously integrated information over time (i.e.,
if limr_, I7(f) < o0). As we have shown, the optimal solution for discriminating pairs of stimuli
given an observed time series of network input is to project that network input onto the direction car-
rying the most information instantaneously, and then to integrate that projection using a sufficiently
long time constant in order to avoid loss of previously integrated information (i.e., using a choice of
f such that I7(f)/T = 1). In the following analysis of information transmission through recurrent
networks, we will focus on the information contained in the output of networks with finite dynamical
time constants following integration of sensory input over a long period of time.

Analysis of Fisher Information in Recurrent Networks

We next quantify the capacity of an optimal observer to discriminate stimuli based on observations of
the output of a recurrent network which receives the sensory input described in the previous section.
We analyze the transformation of noisy sensory input by a recurrent network of N nonlinear units
governed by the following dynamics:

Ti% =—ri+¢ <ZVVijTj+ui(5>t)) (4)

J

where r; represents the firing rate of neuron 4, 7; is its time constant, ¢; is its input-output nonlinearity
(or transfer function), W, is the synaptic weight from neuron j to neuron i and w; (s, t) = gi(s)+n;(t)
is the feedforward input to neuron ¢ at time ¢ given a sensory stimulus s. As before, inputs are defined
as having additive, multivariate Gaussian, temporally uncorrelated, stimulus-independent noise ().

Rather than deriving the signal to noise ratio for two discrete stimuli as above, we will derive the
Fisher Information of network responses r with respect to a continuous one-dimensional stimulus
s. The Fisher Information places a lower bound on the variance of any unbiased estimator of s
from r. For responses following a multivariate normal distribution, the Fisher Information is given by

It =TSy + S Tr [(Z‘IE’)Q], where ; = %71 is the slope of the tuning curves with respect
tos, ¥ = ((r—(r))(r—(r))") is the covariance of network responses under that stimulus and
Y = %—f is the change in response covariance as the stimulus is changed. When Y is stimulus-
dependent, achieving the precision of stimulus discrimination set by the Fisher Information requires

a quadratic decoder of neural activity (Shamir and Sompolinsky, 2004; Yang et al., 2020). We focus
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instead on the linear Fisher Information Zp = r'” X!’ following previous studies (Seriés et al.,
2004; Beck et al., 2011; Moreno-Bote et al., 2014). In addition to being analytically tractable, the
linear Fisher Information has several theoretical advantages. First, even for networks in which the
optimal decoder is quadratic (or otherwise nonlinear), the linear Fisher Information describes the
optimal local linear decoder of small changes in the stimulus based on network responses (Seriés et
al., 2004; Beck et al., 2011; Kafashan et al., 2021). Second, the linear Fisher Information places a
bound on the precision of an optimal linear estimator even for non-Gaussian response distributions,
whereas the quadratic term holds only for Gaussian statistics (Yang et al., 2020; Kafashan et al.,
2021). Third, the linear Fisher Information has a natural relationship to linear discriminant analysis,
in particular ZrAs? ~ Ar?’X~!Ar for sufficiently small As, which allows us to relate our findings
back to the two-stimulus discrimination task studied experimentally in the main text and above in
our signal processing analysis. Fourth, the linear Fisher Information can be understood as a signal
to noise ratio, much as in our above signal processing analysis. In particular, the linear Fisher
Information is the SNR of w”r, where w = X ~'r’ is the linear discriminant vector for discriminating
infinitesimal changes in s based on network output r.

In order to evaluate the linear Fisher Information of the output of a recurrent network, we next derive
expressions for the tuning curve derivatives r’ and response covariance . for networks obeying the
dynamics of Equation (4) and driven to stationary state.

Tuning Curve Slopes and Response Covariance

The linear Fisher Information of the output of a recurrent network r depends on two quantities: the
tuning curves with respect to the stimulus r’ = 85?, and the response covariance ¥ = ((r— (r))(r —
(r))T). To derive expressions for these, we will rely on two approximations: first, we linearize the
system about a stimulus-evoked fixed point; second, we compute the statistics of the stationary state

response of the linearized system.

To estimate the tuning curve derivatives r' = %, we differentiate the noise-free fixed points of
the network with respect to the stimulus. To do so we set % = 0 and n = 0 and then dif-
ferentiate both sides of Equation (4) with respect to s. On performing this calculation, we ob-
tain risq(s) = —J1(s)®'(s)g'(s), where rss(s) = ¢ (Wrgs(s) + g(s)) is the noise-free steady
state response, J(s) = ®'(s)IW — T~ ! is a matrix of effective interaction weights and Di(s) =
5ij7j‘1 d‘t’éf) |zzzk Wi (s)+g; (s) 1S @ diagonal matrix quantifying the sensitivity of each neuron to small
changes in its input (both feedforward and recurrent). Note that this result involves an approxima-
tion: we have replaced the average stationary state response of the stochastic system (r) with the
fixed point of the noise-free system rgg. The accuracy of this approximation depends on the nonlin-
earity near the fixed point and on the magnitude of the noise. Note that while we did not explicitly
linearize in order to obtain this solution, an identical result is obtained by by first linearizing the net-
work dynamics about the noise-free fixed point, computing the mean response of the noise-injected
linearized system at stationary state, and then differentiating this with respect to the stimulus. This

is the approach we next take in order to obtain an approximation for the response covariance.

To derive the response covariance within the linearized stationary state approximation, we first lin-
earize Equation (4) about the fixed point r = rgs(s) by applying a first order Taylor expansion for
small fluctuations dr about the fixed point rgg, i.e. r = rgg + or with ||or|| ~ 0. This gives the
following approximation to the dynamics:

or
E ~ J (I‘ — I‘Ss) + (I)/’I] (5)

where J and ®’ are as defined above. Equation (5) describes a multivariate Ornstein-Uhlenbeck
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process, and has the general solution:

t
r(t) — rgg = e/ (r(ty) — rgg) + / /(1) dr (6)

to

for any initial condition r(¢,), where e is the matrix exponential function. Provided the fixed point
is stable (i.e., all eigenvalues of J have negative real part) we can take the stationary state limit by
letting o — —oo to obtain:

t
r —rgg = / 7o'y (1) dr. (7)
Assuming that input noise is temporally uncorrelated, i.e. (n(t)n’ (")) = 3,6(t —t'), the stationary-
state response covariance Ygg = ((r — rgg) (r —rgg)”) is:

t t
Ses= [ [ SO (e i @
t t
= / / NS, 5(r — ) T drdr! (9)
t
= / !N, e T dr (10)

T
> v (vf)TeW‘”] dr (11)

J

/ [Zv >]c1>2 o’

t
:Zv Loy, o'V ( j)T/ KT gr (12)
1
:—Zv Loy, o'vh (vi)T s (13)

where we have made use of the eigendecomposition of the Jacobian J = VAV ! = 327 vE (viL)T Py

and of its matrix exponential ¢/” = VA=t = SV VE (viL)T e, We use superscripts L and
R to denote left and right eigenvectors, which are the rows of V=1 and columns of V' respectively.
Note that the left and right eigenvectors do not in general form orthonormal bases, but do satisfy
the orthogonality relations v7 - Vf” = 0;;. This orthogonality relation does not typically allow for both
left and right eigenvectors to have unit length, because vF - vi* = ||[v|||[vE| cosf = 1. Where a
choice of normalization is required, we choose to normalize left eigenvectors to unit length, in which
case right eigenvectors typically do not have unit length. This convention for normalization is entirely
arbitrary and is made for convenience only, reflecting the central role that left eigenvectors play in
our theory. In the main text, we refer to the left eigenvectors as the mode activation patterns m, and
we define their time constants as 7 = —1/Re()\). Note that the stationary state covariance also
satisfies the Lyapunov equation JXgg + Xg5J7 + &3, @' = 0, which is well known in the control
theory literature. This Lyapunov equation can be solved efficiently using numerical methods, but is
less convenient when deriving the analytical results we present the following sections.

Relationship Between Eigen-Modes and Signal Processing Theory

With the results of the previous section in hand, we are now in a position to formulate a general
expression for the Linear Fisher Information of the network response. Before doing so, however, we
first show that the signal to noise ratio of the network output projected along any left eigenvector (i.e.,
mode) v’ of the Jacobian .J takes on a particularly simple form that is readily interpretable using the
insights obtained from our earlier signal processing analysis. The linear Fisher Information can be
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understood as the signal to noise ratio of network output projected onto the linear discriminant vector
for the network output, which in turn can be understood as the projection vector which maximizes
this signal to noise ratio (as shown in our signal processing analysis). Thus, deriving an expression
for the signal to noise ratio along any other projection (in this case, a left eigenvector) allows us to
place a lower bound on the total information in the network response. The equations derived in this
section form the basis for the results presented in Figure 2 of the main text, and motivate much of
our analysis of the experimental data and network models presented in Figures 3-6.

To simplify the expressions which follow, we first make a change of variables # = &'~'r and J =
d'~1J® = Wd — T-'. In this basis, Equation (5) becomes t = .J (¥ — fg5) + 7, while .J has
eigenvalues \; = \; and eigenvectors V- = &'vE, v = &'~1vE. We can express the tuning curve
derivatives as rgg = — >, -/’ (viL)T ®’g’. Then using the identity v - v} = §;;, both Xgs and
r'sg can be expressed in the basis of left eigenvectors, which obtains:

(V) s == (1) g =~ (1) ' (19
T T 1 N\T N 1
(VZL) ESSVJL-/ = — (VZL) @’E,,ICD/V]L )\Z n )\] = — (VZL) vafm (15)

We can then calculate the signal to noise ratio of the instantaneous network response at stationary
state, projected along any left eigenvector viL:

vE . rg)’ (vE-g)" 2
SNR2 o Virss) (v — =SNRZ_ .. (vF) 2%, 16
output (Vz ) (VZL)TESSVL <‘~’7’L)T En{}ZL )\z Input (Vz ) T, ( )
where we have defined 7, = —1/\;, under the assumption that \; € R (i.e., the mode is not

oscillatory).

Equation (16) demonstrates that the SNR of network output following projection onto any left eigen-
vector of J is equal to the SNR of network input projected along the corresponding left eigenvector of
J, multiplied by the decay time constant of that eigen-mode and by a constant factor of 2. This result
is identical to that obtained in our signal processing analysis, and can easily be derived from Equa-
tion (3) by setting f(t) = e /", n = vE, and taking T — oo. The reason for this correspondence
is that left eigenvectors implement exactly the linear projection and temporal filtering operations re-
quired for optimal stimulus discrimination, up to the minor caveat that the optimal (but biologically
implausible) f(t) = 1/T is replaced with an exponential filter f(t) = e~*/7. We can identify the
scalar output dy, ¢(s,T") from the signal processing analysis with the linear projection of the network
response v - r. Equation (16) is the main result presented in Figure 2, where we considered a
purely linear (rather than linearized) system, which slightly simplifies the result because \75 = vf.

It is important to emphasize that, while Equation (16) can be understood as a special case of our
more general signal processing analysis (which allows for arbitrary filters f(t)), this result in fact
relies on the unique properties of left eigenvectors. For example, a similar result is not obtained
when projecting responses along right eigenvectors vI*. Indeed, there is a deeper reason that
left eigenvectors exhibit this property. This result relies on two facts: first, network input along
each left eigenvector is mapped onto network output along the corresponding right eigenvector;
second, left eigenvectors are orthogonal to right eigenvectors (v’ - vf = 9;5). Together, these
properties ensure that the network dynamics decouple into independent leaky integrators when
projected onto left eigenvectors, in particular V- - ¥ = A\ v - (¥ — f55) + v/ -1 (and also vF - i =
\ivE (r — rgg)+vE-®'n). This decoupling into independent processes is a unique feature of the left
eigenvector basis, and motivates the use of the word “modes" to describe them. This observation
underscores an additional source of information loss in recurrent networks that was not apparent
from our signal processing analysis - because recurrent networks map multiple different projections
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134+ Of their input onto any given projection of their output, they superimpose both relevant information
135 and additional irrelevant noise within the same output projection, which reduces the signal to noise
146 ratio. Left eigenvectors avoid this source of information loss by isolating a single projection of network
1347 input and preserving it along a single projection of the network output, allowing them to integrate
14s  input information optimally.

149 Linear Fisher Information at Stationary State

1350 We now return to the problem of estimating the linear Fisher Information of the network response.
1351 1he Linear Fisher Information is equal to the signal to noise ratio obtained after projecting network
w2 responses along their linear discriminant w = Xgsr’ss. Because the linear discriminant is the pro-
1353 jection which maximizes this signal to noise ratio, the linear Fisher Information will typically exceed
135« the signal to noise ratio obtained following projection along any left eigenvector (Equation (16)).
1355 Inserting the expressions for tuning curve slopes and response covariance derived above into the
156 equation for the linear Fisher Information, we obtain:

AN

—_— ' 17
| & 00

Tp =g - Ngiree = —g7 [cp’ 1Zv Loy, ovE (vE) ¢!

1357 Using again the change of basis introduced in the previous section, this result simplifies to:

-1
A ~ ~ 1
= [Z a ({,f)TFij] 8= g/Tzeﬂg’ by =~ ({,iL)TE NL)\ ]>\ B (V 12’7‘/ T>ij 4T
(18)
1358 1his equation provides intuition as to how the transformation of sensory input through the recur-
1359 rent network shapes the information about the stimulus available in the network output. The linear
1s0 Fisher Information of the instantaneous sensory input is g’TE:,lg’, so that X, encapsulates the
1361 relationship between input and output information (the transformation of both input signal and noise
12 Dy the network have been absorbed into this effective covariance). The coefficients I';; have a
133 Natural interpretation as the effective covariance between network responses projected onto pairs
wes Of left eigenvectors, i.e. T = ({QL)TEeff{f]L and I = V-1X4V-T. Moreover, these coeffi-
13ss  cients depend on the alignment of the corresponding pair of left eigenvectors with the sensory
1386 iNpuUt covariance and also depend inversely on the timescale of integration along those eigenvec-
wer tors 7, + 7, = — (AN + A;) / (AiA;) (@assuming the eigenvalues are real). Moreover, I is the solution
s 1o the Lyapunov equation A~ + A~'T + V%, V- = 0, meaning it is the stationary state covari-
13s9 ance of a system with injected covariance V”E,,V*T and dynamical evolution A~!. Similarly, the
o effective covariance follows the Lyapunov equation J ' e + Seg 7 + %, = 0.

131 The Fisher Information can be expressed compactly in matrix form as:

Tp=g"VIT W =y (¢ -¥) (g v)) (I7),,. (19)

ij

w72 Unfortunately, this expression for Fisher Information is difficult to compute analytically except in
1373 certain special cases where I' can be directly inverted, such as when I' is a 2x2 matrix or a diagonal
w74 matrix. For a diagonal I' we have:

I AL
=% (g—v>§ - Z SNRZ, . (V) 2, (20)

75 SO that the Fisher Information in the network response is simply the sum of response SNRs along
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individual left eigenvectors. Although this case provides useful intuition, the assumption that I is
diagonal places strong restrictions on the dynamics which may not be applicable to neural circuits,
for example that the eigenvectors are orthogonal. For such networks (also known as “normal” net-
works), it can be seen that the solution which maximizes the linear Fisher Information in Equation
(20) is to align the left eigenvector with the longest decay time constant 7, with the linear discriminant
of the instantaneous sensory input, so that Zp = g’ - E;lg’QTk much as in our analysis of single
eigen-modes.

Linear Fisher Information for Non-Normal Networks

Networks in which the eigenvectors of the Jacobian are not orthogonal are known as “non-normal”
networks (Ganguli et al., 2008; Goldman, 2009; Murphy and Miller, 2009). We now study how
non-normal network dynamics influence information integration and transmission. Our main finding
is that non-normal dynamics can enhance the linear Fisher Information of network responses by a
factor of up to NV (the number of neurons in the network). These findings form the basis of the results
presented in Supplementary Figure 1 of the main text. We note that closely related findings have
been presented previously (Ganguli et al., 2008; Goldman, 2009). To arrive at these results, we first
analyze the an arbitrary two-dimensional non-normal system, then use the optimal solution obtained
in this 2-dimensional case to motivate a specific class of N-dimensional networks which achieve the
desired N-fold improvement in information transmission.

To gain intuition into how non-normality of network dynamics affects linear Fisher Information, we
perturb the solution obtained for the normal network adding a single pair off-diagonal elements
'y, = I'y, to I'. This perturbed system corresponds a network in which only a two-dimensional
plane exhibits non-normal dynamics, with the remaining eigenvectors forming an orthogonal basis.

This system has effective covariance matrix Yeg = Zgiag + Lap <\7§ (fz{f)T + v (x?f’)T>, where

Ydiag IS the effective covariance matrix for the unperturbed system. This covariance matrix can be
inverted exactly using the Sherman-Morrison matrix inversion identity:

_ _ r2 1 ;v L o, vt L/ i \T 1, \T
zefg:zdi;g+m{rmv5 (8 ot 68) - o (s D" 5t )
1)

This result can then be used to obtain the linear Fisher Information of the perturbed system via
Equations (18, 20):

1 N r2 1 - . - -
L= 3 g 8 ot | W) gy () 2 () ()
z (22)

By rearranging this expression, we can make explicit the information contained in the non-normal
plane of dynamics (given in the second term below):

1 1 [(g’-\?gf . (g - v} oy La (¢ -¥1) (g’-fff)] .

ra Faa be 1—‘aal—‘bb ¢

Ir=) (g’~%L)2+1 -
itab " T Tuulm

(23)
To understand how the non-normal component of the Fisher Information depends on the rela-
tive alignment of eigenvectors and their time constants we define D,, = (ffﬁ)TE,,\?bL, so that
Fw = Du/(1a + 7). We then introduce the two dimensionless quantities § = 7,/7, and kK =
[(g/ . \75)2 /Dbb] / [(g’ . \7{;)2 /Daa]. The term D, quantifies the degree of non-orthogonality of
the eigenvector pair a, b (more precisely, the covariance of sensory input projected onto the pair of
eigenvectors). [ quantifies the relative time constants of the two eigen-modes, and « quantifies the
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111 relative signal to noise ratio of sensory input projected onto the two left eigenvectors. Without loss
w12 of generality, we may assume that 7, > 7, so that 5 < 1.

s Inserting these definitions into Equation (23) gives:

2 LN+ KB — Ay
v
Ip = 27, V) + 27, (8- va) B P ; Daalun (24)
iZa Dii Daa 1 =5 b arar

s As Dy, — 0, the solution for the normal system is recovered (Equation (20)). However, if both k — 1
/. oL

— 1 then the Fisher Information becomes Zp =}, , 27 (gDV;) +27a< T Vi) (145).

15 and m
1oL

f 2
ws Thenas 3 — 1 the Fisher Information becomes Zr =}, , 27 (g;;) + 47, (e ZL) . Taking this
17 set of limits corresponds to the case where \75 — \75 and 7, — 7. The linear Fisher Information is
s then maximized by setting vZ = E;lg’, in which case both left eigenvectors in the non-normal plane
119 are aligned to the input linear discriminant while all other left eigenvectors are orthogonal. The total
120 response information for such a network is Zp, = g’ - E;lg’élfa, which is twice that achievable by any
12 normal network whose longest time constant is 7, (see Supplementary Figure 1B for a numerical
w22 validation of this result). It is noteworthy that the limit taken here yields a defective matrix .J, i.e. one
123 Which has fewer distinct eigenvectors than it has dimensions N. We next show that, by constructing
124 @ maximally-defective matrix, i.e. one which has just one eigenvector repeated N times, it is possible
125 1o achieve an N-fold improvement in linear Fisher Information relative to an optimal normal network.

126 10 extend this two-dimensional example to the N-dimensional case, we construct a network in which
142z non-normal dynamics produce an N-fold increase in response information. Motivated by our signal
128 processing analysis, we search for cases in which there exists a pair of projections w of the neural
120 response or =r —rgg = [ e’"®'u(s,t — 7)dr and n of the sensory input u(s, t) such that:

w - 0r = /00 f(r)n-u(s,t —7)dr. (25)
0

s for some yet-to-be-determined function f(¢). In such a case the SNR of network responses projected
131 onto w is given by Equation (3) with T" — oo.

w2 We can immediately identify one solution to Equation (25), which is w = vF, n = vF, f(t) = eM'.
133 This recovers our single-eigenvector analysis. To construct a second case, we conS|der a network
s With J;; = A\d;; +wd; j—1, which corresponds to a delay line in which units have decay time constants
ws 7, = —1/\ and feedforward weights w (by feedforward, we mean that the weights are ordered along
s the delay line). It can be verified that this matrix has onIy one distinct eigenvalue A\ and one distinct
w7 eigenvector (VL)i = ;5. Then [e“]ij = 0> (G t (as can be shown using the power series

(3—4)!
s definition of a matrix exponential). Thus, Equation (25) becomes:

Sy [ L

=1 j=1

j

N 0o
)‘TCIJ’ i(s,t —7)dr = Z/ f(T)njui(s,t —7)dr. (26)
j=170

13 There does not in general exist an n and f which satisfy this equation, but in the limit w — oo a
7 N—1

a0 solution exists because Z - “]Ti P ui(s, b —T) = (m)ﬂ,)! M & yun(s,t — 7). This gives

14 the equation:

Zwl/ (wr)™ ’\TqD’NNuN( dT_Z/ f(T)nju;(s,t — 7)dr. (27)

. . . . . . 5 . N (wt)N i NV
sz We can then identify a second solution to Equation (25), whichis n; = é;y and f(t) = > ._, w; e P
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Thus, while we are free to choose any set of readout weights w, only the input to the Nth neuron
can be recovered from the output of such a network regardless of the readout weights we choose.
In this case, the readout weights w determine the temporal filter f(¢) applied to the Nth neuron’s
input, with different choices of w allowing different functions of the input history to be recovered.

Having identified this solution, we next proceed to maximize the SNR of responses along w. To
optimize response SNR along w, we need to maximize both SNR;,put (1) and 1.(f) as defined in
Equation (3). I.(f) can be maximized by choosing the appropriate readout weights w as follows:

S

N—i 2
I _ L f(t)dﬂ2 B [Zf\; wl(_;})TH] 1
) = P i = T P e =

i.j=1 Willj (o2 =571 (N—i)[(N—j)!

[w-1]

=S

(28)

S
S

where we have defined w; = (—2)" "w; and S,; = 2‘(2N‘i‘j+1)% and 1 is a vector of

ones. The Cauchy-Schwarz inequality then yields 7. (f) < (—=A\)71175711 = (=))~! ijzl (S7h),s
with the upper bound achieved when w = S~'1. We find numerically that fojzl (S7h),; = 2N,
so that I..(f) = (—=\)"'2N, revealing an N-fold increase in temporal integration through non-
normal dynamics (because A is the only eigenvalue of J, a normal network could obtain at best
Io(f) = 2(=\)"1). Supplementary Figure 1F shows the temporal filter f(¢) that results from this

choice of weights when N = 16.

We now ask how to maximize the second factor in our signal processing analysis, SNRipput(1).
Because the input projection integrated by the above network is n; = d;n, SNRiyput(n) is maxi-
mized when the linear discriminant of sensory input is aligned to the Nth element of the delay line.
However, orthogonal transformations of this delay line, J — UJU”T with UT = U~!, change the
projection of sensory input integrated by the network as n — Un, but do not otherwise affect the re-
sults. Thus, SNRi,put (1) is maximized by rotating the delay line in neural space so that n aligns with
the linear discriminant of sensory input, while I..(f) is maximized by the appropriate choice of read-
out weights w as described in the preceding paragraph (which must also be rotated, w — Uw).
This rotated delay line corresponds to a "functionally feedforward" dynamic (Goldman, 2009) and
the integrative properties of such delay line architectures have been studied previously (Ganguli et
al., 2008). The Jacobian J introduced here is a defective matrix, i.e. it has only one eigenvector
(vl = n) and one eigenvalue (), and therefore is consistent with the result of the two-dimensional
case in which information increases when eigenvectors become more aligned and eigenvalues si-
multaneously become more similar. Moreover, the optimization of SNR,,.+ (1) requires that this left
eigenvector is aligned to the input linear discriminant, demonstrating that the optimal non-normal
network is one in which all left eigevectors are aligned to the input linear discriminant and have iden-
tical time constants. Supplementary Figure 1E-H show the response information computed from
networks with varying number of units /V and feedforward weight w.
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