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Summary15

Adaptive sensory behavior is thought to depend on processing in recurrent cortical circuits, but16

how dynamics in these circuits shapes the integration and transmission of sensory information is17

not well understood. Here, we study neural coding in recurrently connected networks of neurons18

driven by sensory input. We show analytically how information available in the network output varies19

with the alignment between feedforward input and the integrating modes of the circuit dynamics. In20

light of this theory, we analyzed neural population activity in the visual cortex of mice that learned21

to discriminate visual features. We found that over learning, slow patterns of network dynamics22

realigned to better integrate input relevant to the discrimination task. This realignment of network23

dynamics could be explained by changes in excitatory-inhibitory connectivity amongst neurons tuned24

to relevant features. These results suggest that learning tunes the temporal dynamics of cortical25

circuits to optimally integrate relevant sensory input.26

Highlights27

• A new theoretical principle links recurrent circuit dynamics to optimal sensory coding28

• Predicts that high-SNR input dimensions activate slowly decaying modes of dynamics29

• Population dynamics in primary visual cortex realign during learning as predicted30

• Stimulus-specific changes in E-I connectivity in recurrent circuits explain realignment31
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Introduction32

Cortical circuits process sensory information through both feedforward and recurrent synaptic con-33

nections (Lamme and Roelfsema, 2000). Feedforward connectivity can filter (Hubel and Wiesel,34

1962; LeCun et al., 2015) and propagate (Abeles, 1992; Van Rossum et al., 2002) relevant informa-35

tion, allowing rapid categorization and discrimination of stimuli (Thorpe et al., 1996; Resulaj et al.,36

2018). However, the majority of synaptic input received by neurons in sensory cortex arises from37

neighboring cortical cells (Peters et al., 1994; Douglas et al., 1995), and recurrent cortical dynamics38

exerts a powerful influence on network activity during sensory stimulation (Fiser et al., 2004; Rein-39

hold et al., 2015). The functional role of such recurrent synapses in the integration and transmission40

of sensory information remains poorly understood.41

Many of the stimulus features represented in the spiking output of neurons in primary sensory cor-42

tex are already present in the net feedforward input they receive (Lien and Scanziani, 2013). Pre-43

vious studies have proposed two possible functions of recurrent cortical synapses. First, recurrent44

synapses may increase the signal-to-noise ratio (SNR) of the relevant sensory features through se-45

lective amplification (Douglas et al., 1995; Ben-Yishai et al., 1995; Somers et al., 1995; Murphy46

and Miller, 2009; Liu et al., 2011; Li et al., 2013; Lien and Scanziani, 2013; Cossell et al., 2015).47

Second, recurrent synapses may enhance the efficiency of the encoding by suppressing redun-48

dant responses in similarly tuned cells (Olshausen and Field, 1996; Lochmann and Deneve, 2011;49

Chettih and Harvey, 2019). However, although recurrent amplification and competitive suppression50

can increase the SNR of single-neuron responses and improve coding efficiency respectively, such51

mechanisms cannot increase the amount of sensory information transmitted through the network52

beyond the information that the network receives in its input (Cover and Thomas 2006; Seriès et al.,53

2004; Beck et al., 2011; Kanitscheider et al., 2015; Zylberberg et al., 2017; Huang et al., 2020).54

Recent studies have shown that visual features such as orientation become easier to decode from55

both single-cell and population responses in primary visual cortex (V1) when mice and monkeys56

learn to associate them with behavioral contingencies (Poort et al., 2015; Khan et al., 2018; Jurjut57

et al., 2017; Yan et al., 2014). This apparent improvement in representation is accompanied by58

changes in functional interactions amongst excitatory and inhibitory cell types within the local circuit59

(Khan et al., 2018). Since changes in recurrent amplification or competitive suppression cannot60

increase the total available information, it remains unclear how changes in the local circuit could61

generate the observed improvements.62

Here, we ask whether improvements in stimulus decodability over learning could arise through se-63

lective temporal integration of relevant feedforward sensory input. We first show analytically how the64

output of a network can be tuned to optimally discriminate pairs of input stimuli by matching its recur-65

rent dynamics to their sensory input statistics. In particular, we show that a stimulus decoder applied66

to network output performs best if the dimension of network input with greatest SNR activates a pat-67

tern of recurrent network dynamics that decays slowly. We then study how the dynamical properties68

of neural circuits in mouse V1 change as animals learn to discriminate visual stimuli. Using a dynam-69

ical systems model fit to experimental data (Khan et al., 2018), we find that slowly decaying patterns70

in the recurrent dynamics became better aligned with high-SNR sensory input over learning. Finally,71

we analyze circuit models with excitatory and inhibitory neurons to explore how this alignment might72

arise through changes in the circuit. We find that stimulus-specific changes in connectivity between73

excitatory and inhibitory neurons increase the alignment of recurrent dynamics with sensory input74

as observed experimentally. These connectivity changes predict changes in stimulus tuning within75

the model, which we find to be recapitulated in the experimental data. Our findings suggest a critical76

role for cortical dynamics in selective temporal integration of relevant sensory information.77
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Results78

Sensory discrimination relies on temporal integration of optimally weighted sensory input79

We first asked how the dynamical properties of a recurrent network influence its capacity to dis-80

criminate sensory inputs. The scenario we considered had one of two possible stimuli appear for81

the duration of a trial. Each stimulus generated an input to each neuron in the network with con-82

stant mean corrupted by additive, temporally uncorrelated, Gaussian noise (this approximates the83

net feedforward synaptic input a neuron receives from a large number of upstream neurons, see84

Stein, 1967; Capocelli and Ricciardi, 1971; Lansky, 1984). To determine how these inputs should be85

integrated for optimal discrimination performance, we adopted a signal processing perspective (see86

Supplementary Mathematical Note).87

Two noisy stimuli can be optimally discriminated from the instantaneous sensory input to the net-88

work by taking a one-dimensional linear combination of the inputs to different neurons (Figure 1A, B)89

weighted according to the “linear discriminant". This is the linear combination of inputs that achieves90

the best compromise between separating the mean inputs under the two stimuli and avoiding pro-91

jected noise (Figure 1D, black dashed arrow). Writing u(t) for a vector collecting the inputs to all92

neurons at time t, the linear discriminant is a vector w of the same dimension such that the projected93

input vector d(t) = w · u(t) has the greatest possible signal-to-noise ratio SNRinput(w) for the dis-94

crimination of the two stimuli (Figure 1B, D). Then, to discriminate stimuli over a window of duration95

T, the optimal strategy is simply to integrate the linear discriminant projection across the time window96

(Figure 1C), yielding an output with SNRoutput = SNRinput(w)
√
T (Figure 1E, F).97

These results demonstrate that a network can best generate distinct activity patterns in response to98

two different continuous stimuli if it temporally integrates the input stimuli weighted according to their99

projection onto an optimal linear discriminant.100
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Figure 1. Stimulus discrimination performance depends on temporal integration of weighted102

sensory input. A: Feedforward inputs to a two-neuron network, shown for two different stimuli (red103

and blue). B: A weighted sum (linear projection) of the instantaneous inputs shown in A. C: The104

temporally integrated input projection for each stimulus (cumulative sum of projected inputs shown105

in B). D: Distributions of instantaneous feedforward input for each of the two stimuli (colored ellipses),106

their optimal linear discriminant (dashed black arrow), and a second suboptimal projection (dashed107

gray arrow). E: The signal (difference in mean; solid lines) and noise (standard deviation; dashed108

lines) of activity following linear projection and temporal integration, shown for the two projections in109
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D. F: The instantaneous (dashed) and temporally integrated (solid) signal to noise ratio of these two110

projections.111

Recurrent networks enhance sensory discrimination by alignment of slowly decaying dynam-112

ical modes with optimal sensory input113

How might this optimal discrimination function be achieved using a recurrent network? To address114

this, we considered how noisy stimulus input is filtered through the recurrent network dynamics. A115

core feature of recurrent networks is their capacity to generate multiple distinct activity patterns,116

which may unfold with different dynamical time constants within the network’s high-dimensional ac-117

tivity space (Rabinovich et al., 2006; Miller, 2016; Sussillo et al., 2014). We asked if these different118

time constants of network dynamics could allow a network to act as an optimal integrator of sensory119

input by providing windows of temporal integration over the optimal input discriminant (Goldman et120

al., 2009a).121

For networks that settle into a steady pattern of firing rates when driven by a constant input (Figure122

2A, C), the behavior of small fluctuations around that input-driven fixed point can be approximated123

with a linear dynamical system (Figure 2B). The dynamics of this linearized network are described124

by a set of dynamical "modes", each of which associates a time constant τ with a unique pattern125

of network activation m (Figure 2B). The activation pattern m is a vector describing a particular126

deviation of network activity from the fixed point, with elements equal to the relative deviation of each127

neuron, while τ determines the time taken for an activity fluctuation along m to decay back towards128

the fixed point through the network dynamics. In particular, when network activity is perturbed129

away from its input-driven fixed point along any direction, the ensuing population activity trajectory130

projected onto any given mode’s m decays as an exponential function with the corresponding time131

constant τ (Figure 2B, C). Moreover, when the network is driven by a stimulus input with continuously132

fluctuating noise as considered here (Figure 1A), population activity projected onto any mode’s m133

behaves as a leaky integrator, with each mode independently aggregating inputs that fall along its134

activation pattern with an integration window of duration τ (Figure 2D, E). In the discrimination task,135

input associated with one of the two possible stimuli drives the network on any given trial (Figure136

1A, D, Figure 2D). In this case, provided that the two stimulus-driven fixed points are sufficiently137

close to fall within the domain of network linearization (Figure 2E, F), the SNR of network output138

projected onto any single mode’s m following network integration matches the signal processing139

solution above, with SNRoutput(m) = SNRinput(m)
√
2τ (Figure 2I, J). Thus, a recurrent network140

can achieve the optimal strategy for stimulus decoding (Figure 1) if its recurrent connectivity gives141

rise to a dynamical mode with activation pattern m that is aligned to the input linear discriminant w142

(i.e., m = w) and decay time constant τ that is longer than the stimulus window T (as in Figure 2E,143

F; panels G, H show suboptimal integration). In other words, the recurrent dynamics are optimized144

for discrimination of a pair of input stimuli with linear discriminant w if fluctuations of network activity145

along w decay slowly.146

Biological neural networks may exhibit complex “non-normal” dynamics, including rapid “balanced147

amplification” and temporally extended “functionally-feedforward” activation (Ganguli et al., 2008;148

Murphy and Miller, 2009; Goldman, 2009b). In functionally-feedforward networks, activation of one149

group of neurons causes subsequent activation of other neuron groups, leading to transient activity150

sequences whose lifetime exceeds the decay time of any individual mode (Goldman, 2009b). We151

asked whether these non-normal dynamics might yield further mechanisms for optimizing stimulus152

discrimination. We found analytically that the discrimination performance of a network depends on153

the geometry of its modes’ activation patterns (Supplementary Figure 1A, B). When these are or-154

thogonal, corresponding to “normal” networks, response information is maximized when the most155

slowly decaying mode has activation pattern aligned to the input linear discriminant (Figure 2E, Sup-156

plementary Figure 1A, B). Analyzing “non-normal” networks, we found that response information157

further improves when multiple modes have their activation patterns aligned with the input linear dis-158

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454726doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454726
http://creativecommons.org/licenses/by-nc-nd/4.0/


criminant (Supplementary Figure 1A, B). These improvements arise through functionally-feedforward159

dynamics, which increase the total window of network integration relative to the decay time constants160

of the individual modes (Supplementary Figure 1A, C-H) (Ganguli et al., 2008; Goldman, 2009b).161

Taken together, our findings demonstrate that recurrent networks maximize their capacity to dis-162

criminate sensory inputs when they align one or more slowly decaying modes of dynamics with the163

optimal input discriminant. We reasoned that such a mechanism may underlie improvements in164

cortical representations for relevant stimuli over learning (Poort et al., 2015; Khan et al., 2018).165
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Figure 2. Alignment of dynamical modes with feedforward input determines sensory discrim-167

ination performance. A-C: Illustration of a two-neuron network receiving feedforward input and168

generating an output activity pattern with rapidly and slowly decaying dynamical modes (brown and169

light purple). A: (Top). Constant input to each neuron, and a small input perturbation to neuron 2.170

(Bottom) The same input shown following projection onto the two modes of network dynamics. B:171

Illustration of network dynamics. Gray arrows depict the dynamical flow of network activity from a172

given state when input is held at the constant level shown in A. Light purple and brown arrows depict173
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modes’ activation patterns m. The trajectory of neural activity in response to the input in A is shown174

in dark purple. The input perturbation to neuron 2 generates a dynamical response along both175

modes, each decaying with a different time constant τ C: Network output shown for each neuron176

and along each mode. Single-neuron responses exhibit complex and heterogeneous timecourses,177

but the network response projected onto any mode exhibits a simple exponential decay. D: Distri-178

butions of instantaneous feedforward input under two different stimuli (red and blue ellipses), as in179

Figure 1A, D (note that inputs have time-varying noise). E: A network with a slowly decaying mode180

aligned to the input linear discriminant. Blue and red traces show example trajectories of network181

output when the network is driven by a single-trial input from each of the two stimulus distributions.182

F: Distributions of instantaneous network output at equilibrium under each stimulus. G, H: As in183

E, F but with a rapidly decaying mode aligned to the input linear discriminant. I: Signal and noise184

of instantaneous network output along each mode, as a function of the mode’s time constant. J:185

Signal-to-noise ratio of instantaneous network output along each mode.186

Learning reorganizes cortical networks to enhance integration of relevant sensory input187

With this description of recurrent processing in mind, we examined the effects of learning on cortical188

dynamics and sensory representations. We analyzed the activity of neuronal populations in primary189

visual cortex of head-fixed mice as they learned to perform a visual discrimination task within a vir-190

tual reality environment. Over a period of 7-9 days, mice learned to selectively lick a reward spout191

in a virtual corridor lined with vertical but not angled stripes (Figure 3A, B). The responses of the192

same populations of neurons to these stimuli were measured before and after learning using chronic193

two-photon calcium imaging. Learning led to an improvement in the linear discriminability of these194

two stimuli based on instantaneous population responses (Figure 3E right, p = 0.035, one-sided195

sign test on pre- vs post-learning discriminability, see Methods for details). Given that instantaneous196

sharpening or amplification of sensory input by the V1 circuit cannot increase response information197

(Cover and Thomas 2006; Seriès et al., 2004; Beck et al., 2011), we hypothesized that such im-198

provements could arise via either 1) an increase in sensory information provided through external199

input to the circuit (i.e., an increase in SNRinput(w) caused by changes in upstream processing)200

or 2) a reorganization of local circuit dynamics to enhance temporal integration of sensory input201

(Figures 1, 2).202

Distinguishing these hypotheses requires a complete characterization of the dynamics of the imaged203

circuit and the sensory input it receives before and after learning. As it is not currently possible to204

achieve this experimentally, we sought to infer the recurrent dynamics and stimulus inputs which205

best accounted for the coordinated activity patterns of the imaged circuit using a statistical model206

fit to the data. To this end, we examined a multivariate autoregressive (MVAR) linear dynamical207

system model we had previously fit to population activity imaged before or after learning (Khan208

et al., 2018). The MVAR model predicts the activity of each cell at imaging frame t based on 1)209

recurrent input from all imaged cells at time step t-1, with stimulus-independent weights; 2) a time-210

varying stimulus-dependent input, locked to stimulus onset and the same for all trials with a given211

stimulus; and 3) the running speed of the animal at time t (Figure 3C). Imaged responses in the212

population covaried in time and across trials, in a way that could not be explained by changes in the213

stimulus or changes in running behavior (Khan et al., 2018). The model depended on the recurrent214

interaction term to capture such “noise” covariance, and so once the model was fit to data these215

weights were effectively determined by the structure of observed trial-by-trial variability. Conversely,216

the stimulus-dependent trial-invariant terms were determined during fitting so that the input signals,217

once fed through the recurrent terms of the model, captured the trial-averaged response profiles.218

Any remaining trial-by-trial variability in the data was assigned to a residual term (see Methods and219

Khan et al., 2018 for a more detailed discussion of the MVAR model and its validation on the present220

dataset). Given this characterization of the imaged responses in terms of stimulus-related input and221

recurrent interactions (Figure 3D), we then sought to determine the respective contributions of these222

components to the improvements in response information over learning (Figure 3E right).223
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Figure 3. Changes in V1 population dynamics over learning selectively enhance temporal225

integration of relevant sensory input. A: Visual discrimination task. B: Behavioral performance226

of each mouse pre- vs post-learning. C: Schematic describing MVAR model fit to imaged popu-227

lation activity. The MVAR model fits variability in single-trial responses of each cell by estimating228

the contribution of stimulus-locked input, recurrent input from the local cell population, and running229

speed. D: The inferred stimulus-related and recurrent input and the imaged network output, each230

projected onto the optimal linear discriminant (mean ± standard deviation over trials for one mouse231

post-learning). E: Information in MVAR stimulus-related input and network output for each mouse232

pre- vs post-learning (gray line delineates a particular mouse whose improvements occurred through233

enhanced stimulus-related input). F: MVAR input-output information gain, pre- vs post-learning for234

each mouse. G: Simulated response of the MVAR model to a synthetic pulse of input aligned to235

the linear discriminant, pre- and post-learning for one mouse. H: As in G, showing mean±sem over236

mice. Inset shows zoomed in traces. I: Left: The decay time constant of responses in G and H for237

each mouse, pre- vs post-learning. Right: The decay time constants for a second input pattern that238

carries no information about stimulus identity.239

To assess whether input information increased over learning, we computed the linear discriminability240

of stimuli based on the stimulus-related input inferred by the MVAR model, assigning model residuals241

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454726doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454726
http://creativecommons.org/licenses/by-nc-nd/4.0/


to noise in this input (Figure 3D, left). Information contained in this input did not increase (p>0.36,242

one-sided sign test on linear discriminability pre- vs post-learning over all mice; Figure 3E, left).243

However, there was an increase with learning in the gain of output-to-input information for 7/8 mice244

(Figure 3E, F, p=0.035, one-sided sign test on relative percentage difference between MVAR input245

and output information). Thus, the MVAR model ascribed improvements in population response246

information to learning-related changes in recurrent interactions acting on stimulus-related input that247

was itself unchanged in information content.248

If these recurrent changes acted to improve temporal integration, then the network response to an249

input pattern aligned with the linear discriminant should be observed to decay more slowly after250

learning than before. Indeed, the MVAR response to a pulse of such input decayed more slowly251

after learning for all mice in which improvements in response information were attributed to recurrent252

dynamics (p=0.035, one-sided sign test on all mice, Figure 3G-I). Moreover, when this analysis was253

repeated for a second input pattern that was orthogonal to the input discriminant, the decay time254

did not change over learning (p=0.64, one-sided sign test, Figure 3I, right). Thus, learning induced255

changes in temporal integration which were selective for task-relevant sensory input.256

Enhanced temporal integration could arise through changes in the interaction weights or the stimulus-257

related input (for example, if stimulus input realigned to drive more slowly decaying network activity258

patterns). To distinguish between these possibilities, we refit the MVAR model with either interaction259

weights or stimulus-related input constrained to remain fixed over learning (see Methods). Changes260

in temporal integration did not occur when interaction weights were fixed (p=0.36, one-sided sign261

test) but persisted when stimulus-related input was fixed (p=0.004, one-sided sign test, Supplemen-262

tary Figure 2A, B). This suggested that the improvements relied on changes in interaction weights263

but not stimulus input.264

Taken together, these findings suggest that stimulus information in network responses improved265

over learning through changes in recurrent dynamics that selectively enhanced temporal integration266

of task-relevant sensory input.267

Enhanced integration depends on realignment of slowly decaying modes with sensory input268

Altered recurrence could selectively enhance temporal integration of relevant sensory input in two269

ways. First, it could lengthen the decay time constants of those modes whose activation patterns are270

already best aligned with the input linear discriminant (‘dynamical slowing hypothesis’, Figure 4A,271

B). Alternatively, it could realign the activation patterns of existing slowly decaying modes towards272

that discriminant (‘dynamical realignment hypothesis’, Figure 4C).273

To distinguish between these two hypotheses, we computed modes of network dynamics and their274

time constants from the pre- and post-learning MVAR interaction weight matrices. For each mode,275

we computed the proportion of stimulus-related input information that fell along its activation pattern276

(its “normalized input SNR”, SNRnorm(m) = SNRinput(m)/SNRinput(w), which is maximized when277

the mode is aligned to the input linear discriminant). The dynamical slowing hypothesis predicts278

that the time constants of modes with high input SNR should increase (Figure 4A, B). However,279

the time constants of modes did not change significantly over learning, either across all modes280

(p>0.79, one-sided Wilcoxon rank sum test on pre- vs post-learning time constants for all modes281

pooled across animals) or the subset modes with high input SNR (Figure 5A, B). In contrast, the282

dynamical realignment hypothesis predicts that the normalized input SNRs of slowly decaying modes283

should increase (Figure 4A, C). This prediction was borne out by a striking increase over learning284

in normalized input SNR (p=0.03, one-sided Wilcoxon rank sum test on all modes pooled across285

animals pre- vs post-learning) which was most pronounced for modes with time constants of ∼700-286

1000 ms (Figure 5C, D). The increase in normalized input SNR occurred for 7/8 mice (p=0.035,287

one-sided sign test on average over modes within each mouse pre- vs post-learning, Supplementary288

Fig 3A), while time constants increased for only 3/8 mice (p=0.86, one-sided sign test on average289
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over modes within each mouse pre- vs post-learning, Supplementary Fig 3B). Examining the joint290

distribution of the time constants and normalized input SNRs of modes before and after learning291

(Figure 5E, F), we found a fall in the number of slowly decaying modes with low input SNR matched292

by an increase in the number with similar decay time constants but high input SNR. These changes293

are consistent with a realignment of slowly decaying modes towards the input linear discriminant.294

In principle, enhanced integration could also arise through greater non-normality in the recurrent295

dynamics (Supplementary Figure 1). However, we found that for 6/8 animals the recurrent dynamics296

became less non-normal over learning (p=0.03, two-sided Wilcoxon rank sum test), suggesting that297

this mechanism did not contribute to the enhancements detected in the MVAR model (Supplemen-298

tary Fig 3C).299

In summary, these results support the hypothesis that learning reorganizes local network interactions300

in order to align slowly decaying modes of recurrent dynamics with the optimal linear discriminant of301

sensory input (Figure 4C), thereby enhancing temporal integration of task-relevant sensory informa-302

tion.303
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Figure 4. Improvements in temporal integration of relevant sensory input could arise from305

either slowing or realignment of dynamical modes. A: Example of pre-learning dynamics for a306

two-neuron network. B: According to the dynamical slowing hypothesis, modes whose activation307

patterns are best aligned with the input linear discriminant extend their decay time constants over308

learning, leading to longer timescales of integration over the relevant input patterns. C: In the dy-309

namical realignment hypothesis, modes which decay most slowly become better-aligned to the input310

linear discriminant over learning.311
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312

Figure 5. The MVAR model supports the dynamical realignment hypothesis but not the dy-313

namical slowing hypothesis. A: Dependence of the time constants of modes on their input SNR,314

pre- and post-learning (average time constant conditioned on normalized input SNR, mean±sem315

taken over pooled modes over animals). B: Difference between pre and post curves in A (solid black316

line). Dashed gray lines show 2.5% and 97.5% of shuffled distributions. C, D: As in A, B but for an317

average of normalized input SNR conditioned on time constant. E: Time constants and normalized318

input SNRs of modes pooled over animals pre- and post-learning. F: Smoothed histogram of differ-319

ence over learning in number of modes with a given input SNR and time constant (normalized by320

standard deviation over shuffles). Dashed black and gray lines show regions where the number fell321

below 2.5% and above 97.5% of shuffled distributions respectively (see Methods).322
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Stimulus-specific but not uniform connectivity changes reproduce the changes in dynamical323

integration observed in the MVAR model324

How might the dynamical realignment observed in the MVAR model relate to systematic changes325

in synaptic connectivity and response tuning within the V1 circuit? Constraints in the original ex-326

periment meant that we were unable to determine the orientation tuning of the imaged neurons.327

Thus, we turned to a canonical circuit model for feature selectivity to investigate the relationship328

between network connectivity, tuning curves, and dynamical modes (Ben-Yishai et al., 1995; Ru-329

bin et al, 2015; Hennequin et al., 2018). The model comprised excitatory and inhibitory neurons330

arranged on a ring corresponding to their preferred orientation before learning. Neurons at nearby331

locations formed stronger synaptic connections and received more similarly tuned feedforward input332

than those more separated around the ring (Figure 6A). This is consistent with local microcircuits in333

visual cortex in which neurons receive feature-tuned feedforward input (Lien et al., 2013) and interact334

through feature-specific local synapses (Cossell et al., 2015; Znamenskiy et al., 2018).335

We first analyzed the tuning curves and modes of dynamics in the E-I ring network. The network336

formed a stable bump of activity centered on the stimulus orientation (Figure 6B, solid black line),337

and each of the four most slowly decaying modes reflected an interpretable fluctuation about this sta-338

ble activity pattern: side-to-side translation (Figure 6B, dashed gray lines), sharpening/broadening,339

gain of amplitude, and asymmetric shear (Figure 6C, Supplementary Figure 4A-C). Responses were340

sharpened relative to feedforward input (Figure 6B, black vs yellow line) and the degree of sharp-341

ening depended on the strength and tuning of excitatory and inhibitory synapses around the ring342

(Supplementary Figure 4D-F). This suggested that a possible mechanism for the reorganization of343

dynamical modes observed in the MVAR model may be increased sharpening of feedforward input344

due to changes in recurrent synapses. On testing this hypothesis, however, we found that recurrent345

sharpening reduced alignment of the slowest dynamical mode with the input linear discriminant, in346

contrast to the increased alignment observed in the MVAR model (Supplementary Figure 4G-L).347

These findings remained consistent for a broad range of networks with varying strength and feature-348

tuning of synaptic weights (Supplementary Figure 5A-H). Thus, uniform changes in the strength or349

tuning of excitatory-excitatory and excitatory-inhibitory weights did not reproduce the changes over350

learning observed in the data.351

We previously found that response SNRs of both excitatory and inhibitory cells increase over learn-352

ing, and that these improvements are driven by an emergence of stimulus-specific excitatory to in-353

hibitory interaction weights in the MVAR model such that E to I interaction weights amongst cells with354

the same stimulus preference are stronger after learning than before (Khan et al., 2018). We there-355

fore reasoned that a change in E-I connectivity that is specific to the learned stimuli might account356

for the realignment of modes observed in the MVAR model. Thus, we considered a non-uniform ring357

network in which excitatory to inhibitory synaptic weights were strengthened locally amongst neu-358

rons tuned to a particular orientation (Figure 6D). We found that the resulting non-uniform inhibition359

induced changes in dynamical modes that were consistent with those observed over learning in the360

MVAR model: the slowest-decaying mode became better-aligned with the input discriminant while361

its time constant was unchanged (Figure 6E, F, Supplementary Figures 5I-L, 6A). When stimuli were362

presented at ±20 degrees relative to the subnetwork center (reflecting the 40-degree stimulus sep-363

aration in the experiment), information was enhanced via a greater separation of responses around364

the ring (Figure 6I, Supplementary Figure 6B). In simulations of the full nonlinear network response365

to feedforward input, accumulation of stimulus information was accelerated by non-uniform inhibition366

but slowed by uniform sharpening (Figure 6J). Experimental data showed an accelerated rate of367

integration over learning consistent with the non-uniform connectivity change (Figure 6K). Thus, in368

both the analysis of local linearized modes and the evolution of the nonlinear network responses369

over time, non-uniform changes in E-I connectivity accounted for the learning-related changes in370

responses imaged from the V1 circuit.371
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Figure 6. Stimulus-specific inhibition aligns the slowest decaying mode with the input linear373

discriminant and predicts observed changes in stimulus tuning. A: Excitatory-inhibitory ring374

network model for V1 orientation selectivity. B: Steady state network response (solid black) and375

perturbations along the most slowly decaying mode (dashed gray). Feedforward input (yellow) was376
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rescaled for aid of visual comparison. Only excitatory cells are shown. C: Activation patterns m for377

the four most slowly decaying modes (in order of time constant). Size and color of circles depicts378

weighting of cell in mode activation pattern. D: Synaptic weight matrix for a ring network with uniform379

(left) and non-uniform (right) connectivity. E: (Top) Feedforward input and steady state responses380

for the two networks. (Bottom) The most slowly decaying mode m for each of the two networks,381

overlaid with the input linear discriminant. The greater overlap between red and yellow lines com-382

pared to cyan and yellow indicates increased alignment. F-J: Input SNRs (F), time constants (G)383

and response SNRs (H) for the four most slowly decaying modes. I: Network responses to two384

stimulus orientations separated by 40 degrees. J: SNR of instantaneous network output for three385

networks (based on simulation of nonlinear dynamics). K: SNR of imaged V1 population responses386

(mean±sem over mice). L: The change in responses of excitatory neurons to their preferred and387

non-preferred stimuli induced by non-uniform inhibition (mean and variance over cells). The greater388

variance for the preferred stimulus reflects a more heterogeneous response change including both389

boosting and suppression. M: Mean (left) and variance (right) of the change in pyramidal responses390

to their preferred and non-preferred stimuli over learning. Responses to the non-preferred stimulus391

decreased (p=0.003, two-sided sign test) but responses to the preferred stimulus did not (p=0.8,392

two-sided sign test; p=0.025, one-sided Wilcoxon rank sum test on difference between preferred393

and non-preferred stimulus response change). The variance over cells of response changes was394

higher for the preferred than non-preferred stimulus (p=0.035, shuffling test).395

The tuning curves induced by non-uniform connectivity (Figure 6I) generated further predictions that396

we subsequently tested on the experimental data. Responses of excitatory neurons to their non-397

preferred stimulus were consistently suppressed by non-uniform inhibition, whereas responses to398

their preferred stimulus showed a heterogeneous combination of boosting and suppression (Figure399

6L). Changes over learning in imaged pyramidal cell responses showed a similar pattern (Figure400

6M). Moreover, the average response SNR of both excitatory and inhibitory neurons increased in the401

model (Supplemental Figure 6C-F), as previously reported for the imaged responses of pyramidal402

cells and parvalbumin-expressing interneurons (Khan et al., 2018; reproduced in Supplementary403

Figure 6G).404

Taken together, these findings demonstrate that the learning-related changes in imaged network405

responses are consistent with the emergence of stimulus-specific excitatory to inhibitory synaptic406

connectivity within local V1 microcircuits. These connectivity changes act to increase response407

information by aligning slowly decaying dynamical modes with the optimal discriminant of sensory408

input in order to selectively integrate relevant sensory information over time.409

Discussion410

We have developed a general framework for modeling the integration and transmission of sensory411

information through recurrent networks and leveraged this framework to uncover the changes in412

recurrent processing that drive improvements in sensory representations over learning. Previous413

studies suggested that recurrent synapses selectively amplify or sharpen the tuning of feedforward414

input (Douglas et al., 1995; Ben-Yishai, 1995; Somers et al., 1995; Murphy and Miller, 2009; Liu et415

al., 2011; Li et al., 2013; Lien et al., 2013; Cossell et al., 2015), yet theoretical analyses concluded416

that sharpening reduces population response information (Seriès et al., 2004; Beck et al., 2011).417

Others proposed that recurrent synapses selectively suppress responses to remove redundancy418

between similarly tuned neurons (Olshausen and Field, 1996; Lochmann et al., 2011; Znamenskiy419

et al., 2018; Chettih and Harvey, 2019), yet such mechanisms cannot explain the improvements420

in response information as animals learn to discriminate simple sensory features such as oriented421

grating stimuli (Poort et al., 2015; Khan et al., 2018). Instead, we show that recurrent dynamics422

in primary visual cortex perform selective temporal integration of relevant sensory information, an423

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454726doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454726
http://creativecommons.org/licenses/by-nc-nd/4.0/


operation previously reported only in higher sensory and non-sensory areas with longer cellular and424

network time constants (Shadlen and Newsome 2001; Wong and Wang, 2006; Kiebel et al., 2008;425

Goldman et al., 2009a; Mante et al., 2013; Murray et al., 2014).426

Responses of cells in primary visual cortex have been found to decay within a single neuronal time427

constant when thalamic input is removed (Reinhold et al., 2015). Can the long timescales of re-428

current dynamics required for selective temporal integration be reconciled with these observations?429

One possibility is that the dynamical regime of cortex is dependent on tonic thalamic input, or on tha-430

lamocortical loops. Alternatively, Reinhold and colleagues may have predominantly activated and431

measured rapidly decaying modes of dynamics which obscured the presence of slowly decaying432

modes intermixed with the population response. Detecting such slowly decaying modes of dynam-433

ics requires recording from neural populations, whereas Reinhold and colleagues recorded single434

neurons. Future studies could test these hypotheses by measuring and perturbing different pat-435

terns of population activity during sensory stimulation and quantifying the time constants of network436

responses.437

We inferred cortical dynamics by fitting linear dynamical models to imaged population activity. Such438

an approach is prone to model mismatch, such that temporally coordinated external input may be439

erroneously attributed to local interactions amongst cells. Thus, while we identified changes in dy-440

namics over learning, it is possible that such dynamics are inherited by the local circuit or generated441

through a broader network of cortical and subcortical structures. This hypothesis could be tested in442

future experiments by recording neuronal population activity in multiple brain regions simultaneously443

during sensorimotor decision-making tasks. Additional confounds may arise through the convolution444

of neuronal responses by slow calcium dynamics and the temporal resolution of the data (∼125 ms).445

However, although these may lead to an overestimate of the time constants of network dynamics,446

they cannot trivially explain the change in alignment of dynamical modes observed over learning.447

Nonetheless, while we observed an apparent decrease in non-normality over learning, measure-448

ments at higher temporal resolution are necessary to detect rapid forms of non-normal dynamics449

and their changes over learning (Murphy and Miller, 2009).450

Our theory explains a recent report that information-limiting noise correlations are higher when an-451

imals make correct decisions compared to incorrect ones (Valente et al., 2021). Because these452

correlations reduce the information about the stimulus available in the network response relative453

to an uncorrelated population and yet were associated with improved behavioral accuracy, these454

findings were considered to be paradoxical by Valente and colleagues. Instead, we show that these455

findings are an expected signature of optimal integration of sensory input through the recurrent circuit456

dynamics. In particular, we observe that information-limiting response correlations across neurons457

are maximized when networks integrate their sensory input optimally (compare Figure 1F to Figure458

1H and Supplementary Figure 1A, ellipses which are more elongated along the direction which sep-459

arates the two means have higher information-limiting correlations). Valente and colleagues also460

found that correlations between responses at different time points within a trial are higher when ani-461

mals make correct decisions, which was considered paradoxical because such correlations limit the462

ability of downstream readers to decode the stimulus over the duration of a trial. We show that strong463

temporal correlations are an expected signature of optimal integration of sensory input through time464

by the circuit. Thus, we suggest that optimal sensory coding is best understood in terms of the465

transformation of sensory input signals by the neural circuit, a perspective which leads to fundamen-466

tally different experimental predictions for the optimal response statistics than those obtained using467

abstract neural encoding models (see also Seriès et al., 2004; Beck et al., 2011; Huang et al., 2020).468

Several previous studies have investigated information transmission through recurrent networks469

(Seriès et al., 2004; Ganguli et al., 2008; Beck et al., 2011; Toyoizumi and Abbott, 2011; Dambre et470

al., 2012; Najafi et al., 2018; Huang et al., 2020). While most studies (correctly) concluded that infor-471

mation in network output cannot exceed that contained in the input, such studies either 1) quantified472
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information in time-integrated network responses (Seriès et al., 2004; Moreno-Bote et al., 2014), 2)473

modeled sensory input as being static within each trial, varying only from trial to trial (Najafi et al.,474

2018), or 3) analyzed network models which lack the capacity for dynamical integration (Beck et al.,475

2011). In our analysis, input noise was time-varying and recurrent dynamics could integrate input476

over the course of a trial, allowing the instantaneous (but not time-integrated) response information477

to exceed that of the input. While Toyoizumi and Abbott considered a similar scenario, their analysis478

was restricted to networks of randomly connected neurons with antisymmetric, saturating transfer479

functions.480

Our analysis provides a general framework for understanding evidence integration in neural circuits,481

such as path integration in grid cells, vestibular integration in head direction cells, and integration of482

motion in higher visual areas. While several of these systems have been studied mechanistically as483

attractor networks (Wong and Wang 2006; Burak and Fiete, 2009) or statistically as drift-diffusion484

and population coding models (Ratcliff and McKoon, 2008; Averbeck et al., 2006), our approach485

provides a unifying formalism which links statistical properties of evidence integration and popula-486

tion coding to the dynamical properties of the underlying recurrent network. While we have focused487

on changes in network dynamics over learning, the mechanism of dynamical alignment may also488

provide a substrate for contextual or attentional modulation of sensory processing (Gilbert and Li,489

2013). Specifically, top-down input may modulate the dynamics of recipient neural populations, tran-490

siently aligning dynamical modes of the local circuit with relevant features of bottom-up sensory491

input according to task context. Such a mechanism could allow for flexible routing and gating of492

information between brain areas through the dynamical formation and coordination of “communica-493

tion subspaces" (Semedo et al., 2019; Kohn et al., 2020; Javadzadeh and Hofer, 2021), configured494

through selective alignment of local modes across anatomically distributed circuits.495
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Materials Availability629

This study did not generate new unique reagents630

Data and Code Availability631

The data and code that support the findings of this study are available from the corresponding632

authors upon request.633

Experimental model and subject details634

No new experimental data were collected for the purposes of this study. The acquisition and pre-635

processing of data used in this study are described in detail in Khan et al., 2018.636

Method details637

Analysis of optimal stimulus discrimination function (Figure 1)638

In the Supplementary Mathematical Note we analyze the problem of stimulus discrimination from a639

signal processing perspective. We consider a network receiving noisy but stimulus-tuned input and640

tasked with reporting stimulus identity in its output. Under the assumption that the input time series641

for a given stimulus follows a multivariate normal distribution with temporally uncorrelated, stimulus-642

independent noise, we show that the statistically optimal method for discriminating two stimuli is643

to perform a linear projection and temporal filtering of the input time series. We derive the optimal644

projection weights and filter, and the signal to noise ratio (SNR) obtained using an arbitrary projection645

and filter.646

In Figure 1 we sought to illustrate these observations in a minimal toy example consisting of a re-647

duced two-dimensional system describing the feedforward input to two neurons under each of two648

stimuli. The dimensionality and statistics of the input were chosen primarily to optimize visualisation649

and conceptual insight - our analysis allows for arbitrary numbers of neurons receiving input with ar-650

bitrary stimulus-tuning and noise covariance. For each stimulus si (i = 1, 2) and at each timestep t,651

feedforward inputs u(si, t) ∼ N(g(si),Ση) were sampled independently from a multivariate normal652

distribution with stimulus-dependent mean g(s1) = [1, 2], g(s2) = [2, 1] and stimulus-independent653

covariance Ση = [1, 2; 2, 1] (here and throughout, we will use the shorthand notation that matrix654

elements separated by commas are on the same row, while elements separated by a semicolon are655

on separate rows, e.g. [x, y] = [x; y]T ). These time series were projected onto the linear discrim-656

inant wLD = Σ−1
η

(g(s2)− g(s1)) to obtain dwLD
(s, t) = wT

LDu(s, t) before being summed cumu-657

latively over time to obtain DwLD
(s, t) =

∑t
t′=1 dwLD

(s, t). The signal (difference in mean), noise658

(standard deviation), and signal to noise ratio of the projection of instantaneous input onto a vec-659

tor w, dw(s, t) = wTu(s, t), were plotted using analytical expressions ∆µinput(w) ≡ 〈dw(s2, t) −660

dw(s1, t)〉 = wT (g(s2)−g(s1)), σinput(w) ≡
√

0.5
∑

i=1,2〈(dw(si, t)− 〈d2
w
(si, t)〉)2〉 =

√

wTΣηw,661

SNRinput(w) = ∆µinput(w)/σinput(w). Following temporal integration, the corresponding quantities662

Dw(s, t) =
∑t

t′=1 dw(s, t) were plotted as ∆µinput(w, t) ≡ 〈Dw(s2, t)−Dw(s1, t)〉 = ∆µinput(w)t,663

σinput(w, t) ≡
√

0.5
∑

i=1,2〈(Dw(si, t)− 〈Dw(si, t)〉)2〉 = σinput(w)
√
t, and SNRinput(w, t) ≡664

∆µinput(w, t)/σinput(w, t) = SNRinput(w, t)
√
t. Iso-probability contours at one standard deviation665

under each stimulus were plotted as g(si) +
√

Ση[cos θ; sin θ] for θ ∈ [0, 2π).666

Analysis of linear Fisher Information in recurrent networks (Figure 2 and Supplementary Fig-667

ure 1)668

Linear Fisher Information quantifies the accuracy of a locally optimal linear estimator of a stimulus669

from network responses (Seriès et al., 2004; Beck et al., 2011). When network responses follow a670

multivariate normal distribution, the linear Fisher Information takes the form of a (squared) signal to671
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noise ratio. We derived analytical expressions for the linear Fisher Information of the instantaneous672

output of a recurrent network as a function of its input statistics and dynamics, and for the SNR673

of network output projected onto any one its dynamical modes (see Supplementary Mathematical674

Note). Our results hold for networks with arbitrary numbers of neurons with arbitrary nonlinearities675

and synaptic connectivity, receiving sensory input with arbitrary stimulus-tuning and noise covari-676

ance. Our strongest modeling assumptions were the linearization of dynamics about a fixed point677

and the analysis of stationary state response statistics.678

Signal to noise ratio along dynamical modes (Figure 2)679

To illustrate the relationship between network dynamics and population coding, we constructed a680

minimal toy model comprising a two-dimensional linear dynamical system dr
dt

= Ar + u(si, t) cor-681

responding to the linearized dynamics of the firing rates r = [r1; r2] of two reciprocally connected682

neurons. The weight matrix A was constructed by defining two dynamical modes with activation683

patterns mi and corresponding time constants τi. We consider a system without oscillations, i.e.684

one in which the eigenvalues λi of A are real. In that case, τi = −1/λi and the unique weight matrix685

which generates these dynamical modes is given by A = M−1ΛM , where M =
[

mT
1 ;m

T
2

]

and686

Λ = [λ1, 0; 0, λ2] (note that we define the mode activation patterns mi to be the left eigenvectors of687

A, see Supplementary Mathematical Note for details). We constructed mi as unit length vectors with688

a given angle relative to the input linear discriminant using the equation mi = R(θi)wLD/‖wLD‖,689

where R(θi) = [cos(θi),− sin(θi); sin(θi), cos(θi)] is a rotation matrix. wLD was defined as the lin-690

ear discriminant of two stimulus inputs with g(s1) = [6; 6], g(s2) = [5; 7], Ση = [20, 10; 10, 20] (these691

values, along with the modes and time constants, were chosen to primarily to optimize visualisation).692

We constructed networks with one mode aligned to input linear discriminant and the other orthogo-693

nal to the first by setting θ1 = 0.02π, θ2 = θ1 + 3π/2. For the network with slowly-decaying mode694

aligned to the linear discriminant we set τ1 = 10, τ2 = 2, and for the network with rapidly-decaying695

mode aligned to input linear discriminant we set τ1 = 2, τ2 = 10 (in arbitrary units of time).696

As panels A-C were designed to illustrate the dynamical modes of the network rather than the697

stimulus input, we set the input to u = (g(s1) + g(s2))/2 (or u = [0; 0] before input onset). Network698

responses r were computed using the solution to the linear dynamics r(t) = exp(At)(r(0)− r∞) +699

r∞ where r(0) = [0; 0], r∞ = −A−1u and exp is the matrix exponential function. The perturbation700

was modeled by setting r(tpert) = r∞ + [0; 10] and computing all future time points as r(t) =701

exp(A(t− tpert))(r(tpert)− r∞) + r∞702

For panels D-J, network responses to the two stimulus input time series were simulated using the703

Euler method with dt = 0.01, i.e. r(t + dt) = r(t) + (Ar(t) + g(si) + ηt)dt where ηt ∼ N(0,Ση).704

For visualisation purposes, trajectories were smoothed before plotting for panels E and G using a705

moving average box filter containing 100 time samples.706

Input and output iso-probability ellipses were generated as in Figure 1, using the relevant mean and707

covariance matrix in each condition. Response means were computed using the analytical solution708

for a linear system at steady state, r∞(s) = −A−1g(s), and response covariance matrices (panels709

F and H) were computed as the solution to the Lyapunov equation AΣ + ΣAT + Ση = 0 using the710

Matlab function lyap.711

The signal, noise, and signal to noise ratio of stationary state responses projected along each712

mode dmi
(s, t) = mT

i r(s, t) were computed using the equations ∆µoutput(mi) ≡ 〈dmi
(s2, t) −713

dmi
(s1, t)〉 = ∆µinput(mi)τi, σoutput(mi) ≡

√

0.5
∑

k=1,2〈(dmi
(sk, t)− 〈dmi

(sk, t)〉)2〉 = σinput(mi)
√

τi/2,714

and SNRoutput(mi) = SNRinput(mi)
√
2τi respectively, where ∆µinput, σinput, SNRinput are as de-715

scribed for Figure 1 (see Supplementary Mathematical Note for a derivation).716

Non-normal dynamics (Supplementary Figure 1)717
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We derived expressions relating linear Fisher Information to the dynamics of an arbitrary normal or718

non-normal network (subject to the same approximations described above). These expressions had719

a simple and interpretable form in three special cases: two-dimensional networks, normal networks,720

and non-normal networks with strong functionally-feedforward dynamics. Related findings have been721

presented previously (Ganguli et al., 2008; Goldman et al., 2009).722

To illustrate our analytical findings for the two-dimensional case, we constructed networks with723

modes m1 = [cos θ1; sin θ1], m2 = [cos θ2; sin θ2]. Panel A was constructed using the same proce-724

dure as for Figure 2, but this time with τ1 = 10, τ2 = 5. For panel B we chose input with isotropic725

covariance Ση = I2 (where IN is the N x N identity matrix) and ∆g = g(s2)− g(s1) = [1; 0]. These726

inputs were chosen in order to demonstrate the influence of non-normality as clearly as possible. We727

set τ1 = 10, τ2 = 1, 5, 7.5, 9 and varied θ1, θ2 from 0 to π for each value. For each network (defined728

by the parameters θ1, θ2, τ1, τ2 using the procedure described for Figure 2), the Fisher Information of729

the stationary state network response IF = ∆r ·Σ−1∆r was computed by substituting the long-run730

solution for the mean ∆r = −A−1∆g and the numerical solution to the Lyapunov equation for Σ731

(described above). We normalized this linear Fisher Information by the maximum achievable SNR732

in any normal network with the same time constants by defining IF,norm = IF/(∆gTΣ−1
η
∆g2τ1).733

To illustrate the case of functionally-feedforward networks (Goldman et al., 2009), we constructed734

networks with NxN weight matrix Aij = (−1/τ)δij +ωδi,j+1, while varying the weight ω and number735

of neurons N for fixed single-cell time constants τ = 10 (where δij is the Kronecker delta symbol).736

We set ∆gi = δi1 and Ση = IN . We derived analytical expressions in the ω → ∞ limit for the737

linear Fisher Information of network output at stationary state, the temporal filter the network applies738

to its input, and the optimal linear readout of network responses. We numerically extended our739

results to the finite ω case by computing the response signal, response covariance, and linear Fisher740

Information in the same way as for the two-dimensional networks. To understand how the finite ω and741

large ω networks differ and where the large ω approximation breaks down, we also computed the742

SNR of the finite ω network responses projected onto the large ω optimal readout. Full derivations743

can be found in the Supplementary Mathematical Note.744

Multivariate autoregressive system model and analysis of neural data (Figure 3, 5, Supple-745

mentary Figure 2, 3)746

Details of the experiment, data preprocessing, calculation of behavioral d-prime (Figure 3B), and747

fitting and validation of MVAR model on this dataset data have been described in detail in previous748

publications (Khan et al., 2018; see also Poort et al., 2015, 2021). Here, we summarize the MVAR749

model and provide details of novel MVAR analyses used in the present study.750

The imaged ∆F/F signals for each cell were divided into trials of duration -1 to 1 s relative to the on-751

set of a visual stimulus. Here and below, all sums over time samples are restricted to the Nt = 9 time752

samples contained in the post-stimulus window of 0 to 1 s (although the model was fit to the full win-753

dow of -1 to 1 s containing 17 time samples). We collect the population activity of N simultaneously754

imaged neurons at imaging frame t on trial i into an N -dimensional vector denoted r
(i)
t . We define755

the following quantities which we will make use of below. The trial-averaged activity conditioned on756

stimulus s and time relative to stimulus onset t is r̄
(s)
t = 1

NTrials(s)

∑

i∈Trials(s) r
(i)
t , where NTrials(s) is757

the number trials of stimulus s. The grand average over both time samples and trials conditioned on758

the stimulus s is r̄(s) = 1
Nt

∑Nt

t=1 r̄
(s)
t . The pooled covariance over vertical (V ) and angled (A) stimuli759

is Σ = 1
Nt(NTrials(V )+NTrials(A))

∑

s=V,A

∑

i∈Trials(s)

∑Nt

t=1

(

r
(i)
t − r̄

(s)
t

)(

r
(i)
t − r̄

(s)
t

)T

.760

Description of Model761

To infer linear dynamics and stimulus input of the imaged circuit, we fit a multivariate autoregressive762

linear dynamical system model to the imaged responses. In the MVAR model, the imaged activity is763
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modeled as:764

r
(i)
t = (A+ IN)r

(i)
t−1 + u

(s)
t + ξv

(i)
t + e

(i)
t (1)

where A is an N ×N matrix of interaction weights, u
(s)
t is a vector of N stimulus-related inputs, ξ is765

a vector of N running speed coefficients, v
(i)
t is the running speed of the animal and e

(i)
t is a vector766

of residuals.767

The MVAR model is fit to each dataset by minimizing the sum of squared residuals across all neurons768

and trials of the vertical, angled, and gray corridor stimuli before or after learning (-1 to 1 s about the769

onset of the corridor, which appeared suddenly). Analytical expressions for the model parameters770

obtained under this least squares fit offer insight into their interpretation (equations 2-4 in Khan et771

al., 2018). In particular, the interaction weights depend only on the stimulus-independent covariance772

of the data (both the instantaneous covariance Σ and the covariance between consecutive imaging773

frames). Given these interaction weights, the stimulus-related input depends only on the stimulus-774

conditioned trial-averaged responses r̄
(s)
t . Thus, the MVAR model uses the imaged noise covariance775

of the data (both within and across consecutive time samples) in order to infer interactions between776

cells, and ascribes any remaining stimulus-dependent variation in trial-averaged responses to sen-777

sory input. The residuals have zero mean under each condition, i.e.
∑

i∈Trials(s) e
(s)
t = 0 for any t778

and s (equation 4 in Khan et al., 2018). We observed that the contribution of the running speed term779

to responses was negligible and so do not report results on this term (note that ξ was constrained780

to have the same value pre- and post-learning in all of our analyses - when ξ was free to vary over781

learning a larger contribution could be observed).782

Visualization of MVAR input and output along discriminant axis783

Having fit the MVAR model to the experimental data, we sought to visualize how the imaged re-784

sponses were generated through recurrent integration of stimulus-related input within the inferred dy-785

namical system. To do so, we projected the sensory input, recurrent input, and MVAR output onto the786

linear discriminant in order to see how stimulus-discriminability evolved over time. Single-trial sen-787

sory input was defined as u
(s)
t + e

(i)
t (i.e. residuals were assigned as input noise), recurrent input as788

(A+IN)r
(s)
t−1, and MVAR output as r

(i)
t . The linear discriminant vectors were w

input
LD = Σ−1

e
(uV −uA)789

and w
output
LD = Σ−1(r̄V − r̄A), where u(s) = 1

NTrials(s)Nt

∑

t,i∈Trials(s)(u
(s)
t + e

(i)
t ) = 1

Nt

∑

t u
(s)
t and790

Σe = 1
(NTrials(A)+NTrials(V ))Nt

∑

s=A,V

∑

t,i∈Trials(s) e
(i)
t e

(i)
t

T
. The sensory input was projected onto791

w
input
LD , while both recurrent input and imaged responses were projected onto w

output
LD . We plotted792

the mean and standard deviation over trials of these projected activity patterns for a representative793

mouse in the post-learning condition.794

Quantification of MVAR input and output information795

The stimulus-information (or linear discriminability) of single-imaging frame population responses796

was quantified as Iout = (r̄V − r̄A)TΣ−1(r̄V − r̄A). The stimulus-information of inferred input was797

quantified as Iin = (uV − uA)TΣ−1
e
(uV − uA). These metrics were computed separately for the798

pre- and post-learning data for each mouse. The gain in output to input information was defined as799

100× ( Iout
Iin

− 1).800

Quantification of temporal integration of relevant and irrelevant input801

To test how temporal integration of relevant and irrelevant input changed over learning in the MVAR802

model, we analyzed the impulse-response of the MVAR to two different input perturbations. The803

impulse-response to a perturbation p was modelled by setting the MVAR to an initial state r0 = p804

and forward-simulating the system over multiple time steps with no other input, i.e. ut, et, vt = 0.805

This gave the response rt = (A+ IN)
tp. Simulated responses rt were then projected onto a vector806

w. For the relevant input, we chose p to be the MVAR input linear discriminant p ∝ Σ−1
e
(uV − uA)807
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and w to be the linear discriminant of the imaged population responses w ∝ Σ−1(r̄V − r̄A). With808

this choice (i.e., by choosing not to enforce w = p), we allow for the possibility that temporal809

integration occurs through either normal or non-normal dynamics (Supplementary Figure 1). For810

the task-irrelevant input we chose p ∝ Σ−1
e
(uV + uA) and w ∝ Σ−1(r̄V + r̄A). Time constants of811

network responses were defined as τ = Ts

2
[
∑∞

t=0 rt ·wout]
2
/
∑∞

t=0 [rt ·wout]
2
, which was adapted812

from the analytically-derived temporal integration factor IT (f) in the Supplementary Mathematical813

Note (see section titled Signal Processing Analysis).814

Constrained model fits815

To test whether the learning-related changes in temporal integration in the MVAR model require816

changes in interaction weights or stimulus input, we refit the MVAR with either A or u constrained be817

the same both pre- and post-learning. We then repeated the analyses for Figure 3 on the constrained818

MVAR model fits. Details of the constrained model fitting procedure are provided in Khan et al.,819

(2018).820

Input and output SNR along MVAR modes821

To compute the SNR of network input and output projected onto each mode, we used analytically de-822

rived expressions which relate these SNRs to the eigenvectors and eigenvalues of A. Eigenvectors823

(right vR
i and left vL

i ≡ mi) and eigenvalues λi of the pre- and post-learning MVAR interaction weight824

matrices A were numerically computed using the Matlab function eig. The SNR of stimulus input pro-825

jected along each mode was then given by the equation SNRinput(mi) ≡ ∆µinput(mi)/σinput(mi) =826

|mi·(uV−uA)|/
√
mi · Σemi. The normalized input SNR was SNRnorm(mi) = SNRinput(mi)/SNRinput(wLD,input),827

where wLD,input = Σ−1
e
(uV − uA) is the input linear discriminant and SNRinput(wLD,input) =828

√

(uV − uA)TΣ−1
e
(uV − uA) is the SNR of input projected along the linear discriminant. We com-829

puted the time constant of each mode using the equation τi = −Ts/ log (λi + 1) which converts830

from a discrete-time dynamical system of sampling period Ts to a time constant in an equivalent831

continuous-time dynamical system. We restricted our analysis of individual modes to those with real832

eigenvalues λi + 1 > 0 (which ensures that τi are real, so that the mode is not oscillatory).833

We pooled modes across animals separately in the pre- and post-learning conditions (note that indi-834

vidual modes are not matched pre- vs post-learning). Both pre- and post-learning, we performed av-835

erages over time constants conditioned on normalized input SNRs and over normalized input SNRs836

conditioned on time constants. These conditional averages were obtained using a moving average837

analysis. To obtain an average normalized input SNR conditioned on time constant, we used a box838

filter of width 100 ms with center increasing from 100 ms to 1400 ms in increments of 25 ms. For each839

increment, we computed the mean normalized input SNR of all modes within that window. Similarly,840

we used a box filter of width 0.025 increasing from 0.025 to 0.25 to compute average time constant841

conditioned on normalized input SNR. As an additional analysis, we computed a two-dimensional842

histogram describing the number of modes n(τ, SNRnorm) with time constant τ and normalized input843

SNR SNRnorm by applying a moving two-dimensional Gaussian filter over the set of modes using the844

equation n(τ, SNRnorm) =
∑Nmodes

i=1 exp− [(τi − τ)2/(2σ2
τ ) + (SNRnorm(mi)− SNRnorm)

2/(2σ2
SNR)].845

We set στ = 100 ms and σSNR = 0.025. We computed the change over learning ∆n = npost − npre846

and normalized this quantity by its standard deviation across shuffled data (see below) to obtain847

∆n/σ(∆nshuff), a measure of the change relative to chance level, which is plotted in Figure 5F.848

To determine whether learning-related changes in time constants or normalized input SNRs ex-849

ceeded chance level, we performed a bootstrapping procedure based on shuffling of trials. For each850

mouse, we pooled pre- and post-learning trials and randomly resampled (without replacement) two851

sets of trials of equal number to the pre- and post-learning datasets. These shuffled datasets consti-852

tuted the null hypothesis that no changes occurred over learning. We then refit the MVAR model to853

each of these shuffled datasets and repeated the above analyses to obtain the time constants and854

normalized input SNRs under the null hypothesis. In this way, we generated a null distribution for855
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each statistic (moving average of change in time constant, moving average of change in normalized856

input SNR, and ∆n). We then formed 95% confidence intervals for each statistic based on their857

respective null distributions. Our null distributions consisted of 1000 such shuffles.858

To confirm that our results were not biased by individual mice, we also performed within-animal859

averages of the time constants and normalized input SNRs pre- and post-learning (Supplementary860

Figure 3A,B). For this analysis, individual mice rather were considered as the statistical unit when861

performing significance testing.862

MVAR non-normal dynamics863

The non-normality of dynamics was quantified using Henrici’s departure from normality (Henrici,864

1962): H =
√

‖A‖2F −∑N
i=1|λi|2/‖A‖F , where ‖A‖F is the Frobenius norm. This measure was865

computed separately on the interaction weight matrix for pre- and post-learning data for each animal866

(Supplementary Figure 3C).867

Network models (Figure 6, Supplementary Figure 4-6)868

Model Description869

We considered two populations of cells (excitatory and inhibitory), each arranged on a ring, with870

NX cells in population X ∈ {E, I}. Each population is parameterized by its orientation on the871

ring θXi = 2πi/NX . Dynamics were governed by the Wilson-Cowan equation τX
∂rXi
∂t

= −rXi +872

φ
(

∑

Y=E,I

∑NY

j=1 W
XY
ij rYj + uX

i (θs, t)
)

, where rXi is the firing rate of neuron i in population X , τX873

is the time constant of neurons in population X , WXY
ij is the weight from neuron j in population Y874

to neuron i in population X , uX
i (θs, t) is the external input to neuron i in population X as a function875

of the stimulus orientation θs and time t, and φ is an element-wise nonlinearity. For both E and I876

populations we used a threshold-power law nonlinearity φ(x) = [x]γ+ (Hansel and Van Vreeswijk,877

2002; Miller and Troyer, 2002; Ahmadian et al., 2013; Rubin et al., 2013; Hennequin et al., 2018).878

External input had stimulus-tuned mean gXi (θs) and additive, temporally uncorrelated Gaussian879

noise ηXi (t), i.e. uX
i (θs, t) = gXi (θs)+ηXi (t) with 〈ηXi (t)〉 = 0 and 〈ηXi (t)ηYj (t

′)〉 = (σX)2δijδXY δ(t−880

t′). Input tuning curves were circular-Gaussian, rotationally-invariant functions of stimulus orienta-881

tion, defined by von Mises functions gXi (θs) =
gX0

2πI0(κX)
exp

(

κX cos
(

θXi − θs
))

. The parameter κX
882

determines how concentrated the inputs are around the ring (i.e., orientation selectivity of input),883

while gX0 controls the total strength of network input. I0 is the modified Bessel function of the first884

kind, which is included to normalize the total input strength so as to be independent of the input885

tuning κX . To preserve rotational symmetry, inputs were chosen such that that θs = θEi = θIj for886

some pair of integers i, j.887

For the uniform network, weights had the same circular-Gaussian form as the input, WXY
ij =888

WXY
0

I0(κXY )
exp

(

κXY cos
(

θXi − θYj
))

where κXY , WXY
0 are the concentration and strength parameters889

for the weights from population Y to population X . For the non-uniform network, the excitatory to890

inhibitory weights were modified to W IE
ij =

(

W IE
uniform +W IE

sub

)

ij

〈W IE
uniform

〉

〈W IE
uniform

+W IE
sub

〉
where W IE

uniform is the891

connectivity for the uniform network,
(

W IE
sub

)

ij
=

W IE
0,sub

I20 (κ
IE
sub

)
exp

(

κIE
sub cos

(

θIi − θsub
))

exp
(

κIE
sub cos

(

θEj − θsub
))

892

is the additional subnetwork connectivity, 〈W 〉 denotes an average over all elements of the weight893

matrix W and κsub, W IE
0,sub are the concentration and strength parameters for the excitatory-inhibitory894

subnetwork.895

With the exception of parameter sweeps, all analyses of the uniform and non-uniform network used896

the following parameters: NE = 1000, N I = 200, τE = 10, τ I = 5, γ = 2, κE = 0.5, κI = 0,897

gE0 = 0.5, gI0 = 0, WEE
0 = 0.019, W II

0 = −1.1WEE
0 , WEI

0 = −0.04, W IE
0 = 0.04, κEE = 2,898
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κII = 0, κIE = 0.1, κEI = 0.4, κIE
sub = 4.2, W IE

0,sub = 0.004, (σE)2 = 2
∑NE

i=1 g
E
i /N

E , (σI)2 =899

(σE)2/2. For parameter sweeps, all parameters other than those varied were held at these values.900

In Supplementary Figure 4, the network with weak sharpening used κEE = 1.4, κIE = 0.9, while the901

network with strong sharpening used κEE = 2.8, κIE = 0.4, with all other parameters unchanged.902

Analysis of linearized dynamics903

In order to compute modes of linearized dynamics and their time constants we used numerical meth-904

ods to find the fixed points of the network dynamics and then numerically computed the eigenvalues905

and eigenvectors of an analytically-derived Jacobian.906

We found that fixed point estimates obtained by forward-simulating with the Euler method yielded in-907

accurate estimates of linearized dynamics. Instead, we found the fixed points of Equation (4) using a908

root-finding algorithm applied to the equation ṙ = 0, where r = [rE; rI ], W = [WEE,WEI ;W IE,W II ]909

etc., T is a diagonal matrix of neuronal time constants, and ṙ = T−1(−r + φ(Wr + g)). We910

used Newton’s method with the analytically-derived Jacobian J (r) ≡ ∂ṙ
∂r

= Φ′W − T−1 (where911

Φ′ = T−1diag(γφ(Wr+ g)1−1/γ) for our choice of transfer function). Fixed point estimates rn were912

iteratively updated as rn+1 = rn − J−1(rn)ṙn. The algorithm was terminated when ‖ṙn‖ < 10−15
913

(where it was considered to have converged), or after 100 iterations (which was classed as a failure914

to converge). The root-finding algorithm was initialized at r0 = 0 (or when performing a parameter915

sweep, at the fixed point obtained from the previous set of parameters).916

Having found a fixed point, the time constants, input SNRs, and output SNRs of linearized dynami-917

cal modes were computed using analytically-derived equations τi = −1/Real(λi), SNRinput(ṽ
L
i ) =918

|ṽL
i · g′(θs)|/

√

ṽL
i · Σηṽ

L
i , SNRoutput(v

L
i ) = SNRinput(ṽ

L
i )
√
2τi, where λi, v

L
i , are eigenvalues and919

left eigenvectors of the Jacobian J = Φ′W − T−1, and ṽL
i are the left eigenvectors of the matrix920

J̃ = WΦ′ − T−1. Note that λ̃i = λi, and that Φ′ = T−1diag
(

γr1−1/γ
)

at the fixed point (see921

Supplementary Mathematical Note). Where modes are explicitly plotted (Figures 6B, C, E, Supple-922

mentary Figure 4A-D, G-I, Supplementary Figure 6A), the quantities shown are the elements of ṽL
i .923

The normalized input SNR was computed as SNRnorm(ṽ
L
i ) = SNRinput(ṽ

L
i )/

√

g′(θs) · Σ−1
η
g′(θs).924

The degree of recurrent sharpening was quantified as NE/NE
+ − 1, where NE

+ is the number of925

excitatory neurons with non-zero firing rate at the fixed point.926

Analysis of two-stimulus discrimination and nonlinear dynamics927

Our theoretical results are underpinned by two key approximations: the linearization of network dy-928

namics about a fixed point and the analysis of stationary state response statistics of the linearized929

system. The linearization of dynamics restricts the domain of application of our theory to fine-scale930

sensory discrimination tasks, whereas the stimuli presented experimentally were separated by 40◦.931

We therefore sought numerically determine whether our linearized theory provides adequate insight932

into the full nonlinear and non-stationary integration of the experimentally presented stimuli through933

the recurrent network. We took two approaches to do this. First, to determine the stationary state934

response information for two stimuli separated by 40◦, we separately computed the linearized sta-935

tionary state response statistics about each stimulus (Figure 6I and Supplementary Figure 6B-F)936

and then used linear discriminant analysis to compute response information. Second, to determine937

the non-stationary integration of input through the network dynamics following stimulus onset, we938

numerically computed responses of the nonlinear system over time using the Euler method (Figure939

6J). The behavior of the linearized system made predictions that we were able to confirm in sim-940

ulations of the nonlinear system: recurrent sharpening caused the most slowly-decaying mode to941

increase its time constant and become less aligned with the input discriminant (Supplementary Fig-942

ure 4), which predicts that input information should be integrated more slowly but over a longer time943

window, and should should nonetheless achieve a greater stationary state information relative to the944

non-sharpened network; similarly, non-uniform inhibition caused the most slowly-decaying mode to945
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become better aligned to the input discriminant without changing its time constant (Figure 6E-H),946

which predicts that input information should be integrated more rapidly, with response information947

reaching its plateau before the sharpened or baseline uniform network. Both predictions were borne948

out in simulations of the non-stationary nonlinear dynamics (Figure 6J), which demonstrates that949

the linearized stationary state approximation to the network dynamics is able to adequately capture950

the qualitative behavior of the integrative behavior of the nonlinear non-stationary system. We then951

verified that the same qualitative behavior could be observed in the data (Figure 6K), as would be952

expected based on the observed changes in MVAR modes (Figure 4).953

For Figure 6I and Supplementary Figure 6B-F we computed the fixed points and Jacobians as-954

sociated with the two stimulus orientations θs1 = θsub − 20◦, θs2 = θsub + 20◦. We computed955

stationary state response covariance around each of these fixed points by numerically solving the956

corresponding Lyapunov equation JΣ+ΣJT +Φ′ΣηΦ
′ = 0. We computed response information as957

I = (r(θs2)− r(θs1)) ·
[

1
2
(Σ(θs1) + Σ(θs2))

]−1
(r(θs2)− r(θs1)). Response information was then958

normalized by the response information computed for a network with W IE
0,sub = 0 (computed us-959

ing the same method with all other parameters unchanged). The SNR of excitatory and inhibitory960

responses were computed as SNRX
i =

|rXi (θs2 )−ri(θs1 )|
√

1
2(Σii(θs1 )+Σii(θs2 ))

. In Supplementary Figure 6C, D, we961

plotted ( 1
NX

∑NX

i=1 SNR
X
i )

2 normalized by the its value in the network with W IE
0,sub = 0 in order to962

facilitate direct comparison with the response information. In Supplementary Figure 6E we plotted963

the unnormalized 1
NX

∑NX

i=1 SNR
X
i to facilitate comparison with previously defined measures of neu-964

ronal response SNR (see Khan et al., 2018, in which this measure is reported as the mean absolute965

selectivity).966

To investigate the non-stationary and non-linear integration of sensory input following stimulus onset,967

we numerically solved the Wilson-Cowan equation using the Euler method. We used a time step of968

dt = 1 and initialized the simulation at the fixed point r(θsub) with external input given by one of the969

two stimuli θsi = θsub±20◦. At each time step we computed the projection of responses onto the sta-970

tionary state linear discriminant d(t, θsi) = wT
LDr(t, θsi), with wLD =

[

1
2
(Σ(θs1) + Σ(θs2))

]−1
(r(θs2)− r(θs1))971

computed using the analytical equations for the stationary state means and covariances in the lin-972

earized systems about each fixed point. We simulated 1000 trials with 1000 time steps each. We973

computed the signal-to-noise ratio of this quantity as SNR(t) = 〈d(t, θs2)−d(t, θs1)〉/
√

0.5[Var(d(t, θs1)) + Var(d(t,974

where averages and variances were taken over trials at each point in time. For the baseline and non-975

uniform networks we set κEE = 1.8, and for the sharpened network κEE = 2. For the non-uniform976

network we set κIE
sub = 4.2, W IE

0,sub = 0.004 and for the baseline and sharpened network κIE
sub = 0,977

W IE
0,sub = 0. We normalized SNR(t) by the average value in the final 300 time steps under the978

baseline network model.979

To compute response SNR as a function of time in the experimental data, we computed the linear980

discriminant as wLD = Σ−1
(

r̄V − r̄A
)

where Σ and r̄(s) were computed as in Figure 3. We projected981

imaged responses r
(i)
t onto wLD at each time point t on each trial for the vertical and angled stimuli to982

obtain d
(i)
t = wT

LDr
(i)
t . We computed the signal-to-noise ratio of this projection at each time point rel-983

ative to stimulus onset by computing its mean difference between stimuli and its pooled standard de-984

viation across stimuli, i.e. SNRt = |〈d(i)t 〉i∈Trials(V )−〈d(i)t 〉i∈Trials(A)|/
√

0.5[Var(d
(i)
t )i∈Trials(V ) +Var(d

(i)
t )i∈Trials(A)].985

We performed this analysis separately for the pre- and post-learning data for each animal.986

Comparison of response changes to preferred and non-preferred stimuli in model and data987

We computed the change in the response of excitatory and inhibitory cells to their preferred and non-988

preferred stimuli over learning (in the experimental data) and between the uniform and non-uniform989

ring network models.990

In the network models, we defined the preferred stimulus of excitatory cell i as the stimulus which991
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generates the greater firing rate value at the fixed point, i.e. θpref(i) = argmaxθsk [r
E
i (θsk)] where k =992

1, 2. The change in response to its preferred stimulus was defined as the difference in response be-993

tween the two networks, i.e. ∆rEi (θpref(i)) = [rEi (θpref(i))]non−uniform−[rEi (θpref(i))]uniform (note that994

cells did not change stimulus preference). The mean and variance of this change in response were995

then taken over the population of excitatory cells, i.e. mean[∆rE(θpref)] =
1

NE

∑NE

i=1 ∆rEi (θpref(i)),996

and var[∆rE(θpref)] =
1

NE

∑NE

i=1[∆rEi (θpref)−mean[∆rE(θpref)]]
2. The non-preferred stimulus was997

analyzed similarly but with θnon−pref(i) = argminθsk
[rEi (θsk)].998

In the experimental data we considered learning-related response changes of putative pyramidal999

cells to the vertical and angled grating corridors (see Khan et al. for how cells were identified).1000

For each cell, we computed the difference in its response to the vertical and angled stimuli both1001

pre- and post-learning ∆V−Ar̄l = r̄Vl − r̄Al (where l = pre, post). We also computed the change1002

in response to the vertical and angled stimulus over learning ∆post−prer̄
(s) = r̄

(s)
post − r̄

(s)
pre (where1003

s = A, V ). We then took the mean and variance of ∆post−prer̄
(spref) over all pyramidal cells which1004

passed a set of inclusion criteria (where spref = argmaxs

[

r̄
(s)
l

]

is the preferred stimulus of the cell).1005

The inclusion criteria were as follows: the cell had a significant preference for one of the vertical1006

and angled stimuli both before and after learning (defined as p < 0.05 under a Wilcoxon rank-1007

sum test on the responses on vertical vs angled trials); the preferred stimulus spref was the same1008

before and after learning. These criteria were necessary to avoid confounds relating to regression1009

to the mean. The same analysis was performed for the non-preferred stimulus, in this case using1010

snon−pref = argmins

[

r̄
(s)
l

]

.1011

We computed the average response SNR of individual E and I cells in both the model and data1012

(Supplementary Figure 6E, F). The method for computing E and I response SNR in the network1013

models is described in the above section. Quantification of mean SNR of individual pyramidal and1014

parvalbumin cells was similar, and has been reported in Khan et al. (2018).1015
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Supplementary Figures1025
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Supplementary Figure 1. Non-normal dynamics can increase response information through1027

functionally-feedforward temporal integration of the optimal input discriminant. A: Integration1028

of feedforward input through normal and non-normal dynamics. Left: Distributions of instantaneous1029

feedforward input for two stimuli and their linear discriminant. Middle: Recurrent dynamics around1030

an input-driven fixed point. Non-normal dynamics can be described by either independent modes1031

or functionally-feedforward modes (Schur decomposition or Jordan normal form; see panels C, D).1032

Right: Distributions of instantaneous network activity following integration of feedforward input. B:1033

Response information depends on the time constants and the activation patterns of modes. x and *1034

are the parameters for the two example networks shown in A. Response information is normalized1035

by the maximum information achievable in a normal network with the same time constants. Maxi-1036

mum response information occurs when both modes are aligned to the input discriminant and have1037

similar time constants. C, D: Characterization of network dynamics by independent modes (eigen-1038

vectors) or "functionally-feedforward" modes (e.g., Schur decomposition). Both are valid descriptions1039

of the dynamics, but functionally-feedforward modes reveal non-normal integration more clearly. E:1040

Response information for networks with varying numbers of functionally-feedforward modes and1041

strength of functionally-feedforward interactions. Information is maximized in networks with strong1042

functionally-feedforward dynamics and grows with the number of modes. F: Response of a strong1043

functionally-feedforward network to a pulse of input. Black line shows the decay time constant of indi-1044

vidual modes and red trace shows the time course of the most slowly decaying projection of network1045

output. G: Squared SNR of two projections of network outputs. Red shows the optimal projection1046

derived analytically assuming infinitely strong functionally-feedforward weights. Gray curve shows1047

the optimal projection computed numerically for finite weights. H: Response information increases1048

linearly with number of functionally-feedforward modes.1049
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Supplementary Figure 2. Improvements in temporal integration rely of reorganization of in-1051

teraction weights but not stimulus-related input. A: Time constant of response to input along1052

linear discriminant for an MVAR model in which interaction weights or stimulus-related input was1053

constrained to be the same before and after learning. Gray line shows mouse whose time con-1054

stant decreased over learning when all parameters were free (see Figure 3E, F, I). B: Information in1055

stimulus-related input to MVAR model. Input information increased when weights were fixed, but not1056

when input was fixed (note that input information could in principle improve through altered residuals1057

even when mean input is held fixed).1058
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1059

Supplementary Figure 3. Individual mice show an increase in alignment of modes with the in-1060

put linear discriminant, no increase in decay time constants, and a decrease in non-normality.1061

A: Average over modes’ normalized input SNR, shown for each mouse pre- and post-learning. B:1062

Average over modes’ time constant for each mouse. C: Non-normality of interaction weight matrices1063

for each mouse pre- and post-learning.1064
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Supplementary Figure 4. Uniform recurrent sharpening of sensory input reduces alignment1066

of the slowest dynamical mode with the input linear discriminant. To test whether recurrent1067

sharpening can explain the findings of the MVAR model, we examined the changes in the four1068

slowest modes as connectivity was varied. A-C: Response steady state and perturbation along1069

the 2nd-4th most slowly decaying modes in the E-I ring model (as in Figure 6B). D: Response1070

of two networks to the same feedforward input, yielding weak and strong sharpening respectively.1071

E, F: Patterns of network connectivity that induced the weak and strong sharpening of responses1072

shown in D. Narrower E-E weights and/or broader E-I weights caused sharpening to increase (see1073

Supplementary Figure 5 for a more comprehensive illustration). G-I: The activation patterns m of the1074

three most slowly decaying modes, each overlaid with the input linear discriminant. In both networks,1075

the translation mode was best aligned to the input discriminant and decayed most slowly. However,1076

increased sharpening reduced the translation mode with the input discriminant (panel G, less overlap1077

between the red and yellow curve than between cyan and yellow). J-L: SNR of feedforward input1078

projected onto each mode (J), the time constant for each mode (K) and the SNR of network output1079

along each mode (L). Although the decay time constant of the translation mode increased (panel1080

K) and generated an increase in response SNR (panel L), these improvements are nonetheless1081

inconsistent with the unchanged time constants and increased input SNR observed over learning in1082

the MVAR model (Figure 5A, C).1083
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1084

Supplementary Figure 5. Parameter sweeps of excitatory-excitatory and excitatory-inhibitory1085

synaptic weights. A: Degree of recurrent sharpening in networks with varying specificity (concen-1086

tration around ring) of E to I and E to E weights. White denotes unstable networks (global instability1087

or oscillation about an unstable fixed point). B: Normalized SNR of feedforward input projected along1088

best mode (mode with greatest input SNR). C: Time constant of the mode shown in B. D: Modes1089

pooled across networks shown in A-C (all modes pooled across all networks). For these uniform1090

connectivity changes, time constants and normalized input SNRs covaried across networks and1091

were largely constrained to lie on a 1-dimensional curve. For modes with decay time constants sig-1092

nificantly greater than single-neuron time constants (here, 10), increases in normalized input SNR1093

were consistently accompanied by decreases in time constant, in contrast to the stability of time1094

constants with increased input SNR observed in the MVAR model. Although small increases in nor-1095

malized input SNR with fixed time constant were possible (as evidenced by horizontal scatter about1096

the main curve), these relied exclusively on a simultaneous reduction in the specificity of E-E and1097

E-I synaptic weights and required fine-tuning of parameters to achieve. E-H: As in A-D but varying1098

the magnitude of E to E and E to I weights across networks. I-L: As is A-D, but for networks with1099

an E to I subnetwork of varying specificity and magnitude. These non-uniform connectivity changes1100

yielded a fundamentally different relationship between mode time constant and input SNR, such that1101

input SNR could be increased without altering decay time constants parameters by increasing the1102

strength and tuning of the E-I subnetwork, with a wide range of connectivity parameters achieving1103

the desired result.1104
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1105

Supplementary Figure 6. Modes and response information for networks with non-uniform1106

connectivity. A: Activation patterns m for modes 2-4 in the uniform and non-uniform networks1107

shown in Figure 6D. B: Linear discriminability of the two stimuli shown in Figure 6I, for networks with1108

varying subnetwork strength and specificity (information normalized by value for uniform network).1109

C, D: Average squared SNR of excitatory and inhibitory responses (normalized by value for uniform1110

network). F, G: Average SNR of excitatory and inhibitory responses for the uniform and non-uniform1111

network (unnormalized). G: Average SNR of excitatory (pyramidal) and inhibitory (PV) responses1112

for the pre- and post-learning data.1113
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Supplementary Mathematical Note1114

Notation1115

We use bold-face lower case letters for column vectors and non-bold upper case letters for matrices.1116

Superscript T denotes a (vector or matrix) transpose; xi or (x)i denotes the ith element of vector1117

x; x · y = xTy =
∑N

i=1 xiyi denotes an inner (dot) product of vectors; xyT denotes an outer1118

product of vectors with (ij)th element = xiyj ; ‖x‖ =
√
x · x denotes the Euclidean vector norm;1119

x̂ = x/‖x‖ denotes a unit vector; Tr A =
∑N

i=1 Aii denotes the trace of an N × N matrix A; I1120

denotes the identity matrix; we make use of the shorthand notation for the transpose of a matrix1121

inverse X−T =
(

XT
)−1

= (X−1)
T

; 〈x〉 denotes the ensemble average of x (or time-average for1122

ergodic variables); δij denotes the Kronecker delta symbol and δ(t) denotes the Dirac delta function.1123

Signal Processing Analysis1124

In this section we derive the results of Figure 1 in the main text. We consider a simplified model1125

describing the sensory input to a network of neurons upon presentation a stimulus. Under the1126

assumptions of this simple model, we derive the optimal method to discriminate a pair of stimuli1127

based on observations of the network input. We also derive the performance of a more general1128

class of suboptimal discrimination functions which we will later show are relevant to the way in which1129

recurrent network dynamics act on the sensory input. This signal processing analysis places an1130

upper bound on the possible discrimination performance of any network receiving such sensory1131

input, specifies the mathematical operations a network must apply to its input in order to achieve this1132

upper bound, and shows how suboptimal integration can be understood in terms of information loss1133

both instantaneously and over time. In the sections that follow we use the results of this analysis to1134

interpret the behavior of recurrent networks integrating such sensory input.1135

We consider a network of N neurons receiving sensory input u ∈ R
N generated from a stimulus s. In1136

the scenario we consider, one of two stimuli s ∈ {s1, s2} may be presented, each of which generates1137

a time-series of sensory input u(s, t) drawn from a different distribution p(u|s). We assume that1138

network input on any given trial consists of a time series u(s, t) = g(s)+η(t) with time-independent1139

but stimulus-dependent mean g(s) and additive, stimulus-independent, multivariate normal noise1140

η(t) ∼ N(0,Ση) with 〈η(t)〉 = 0 and 〈η(t)ηT (t)〉 = Ση. We wish to infer the identity of the stimulus1141

s having observed a single realization of such a time series u. This can be achieved optimally by1142

maximizing the posterior probability p(s|u) over the two stimuli.1143

We first consider how the two stimuli can be discriminated given an observation of network input u01144

at a single time sample t0. In this case, the most probable stimulus s given the input vector u0 can1145

be found using linear discriminant analysis (LDA), i.e. by taking a linear projection of the input vector1146

w · u0 and comparing this to a threshold c. To see this, note that p(si|u0) = p(si)
p(u0)

p(u0|si) =1147

p(si)
p(u0)

[

(2π)N/2|Ση|1/2
]−1

exp
(

−(u0 − g(si))
TΣ−1

η
(u0 − g(si))

)

, which gives log p(si|u0) = ci −1148

(u0 − g(si))
TΣ−1

η
(u0 − g(si)) where ci is a constant with respect to u0. Thus, log p(s2|u0) −1149

log p(s1|u0) = c2− c1−g(s2)Σ
−1
η
g(s2)+g(s1)Σ

−1
η
g(s1)+2(g(s2)−g(s1))

TΣ−1
η
u0 ≡ −c+wTu0,1150

where we have absorbed all constant terms into a single scalar c and defined the projection vector1151

w = 2Σ−1
η
(g(s2) − g(s1)). Therefore, the most probable stimulus given the observed input vector1152

u0 is found by asking whether wTu0 ≶ c (i.e., if wTu0 > c then s = s2 is more probable, whereas1153

if wTu0 < c then s = s1 is more probable). The projection vector w is known as the linear discrim-1154

inant, and can be understood as the vector which is normal to the hyperplane separating the two1155
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stimulus input distributions. The constant c determines the location of that hyperplane. Note that w1156

and c can be rescaled by an arbitrary scalar constant without altering the decision rule.1157

We next consider how stimuli can best be discriminated when network input is observed sequentially1158

in time. When statistically independent inputs u(t) are observed at a set of times t ∈ T (a continuous1159

interval or discrete samples), the optimal solution is to perform a time-averaged LDA using the1160

decision rule w · 〈u(t)〉t∈T ≶ c. Here, 〈·〉t∈T is the sample mean over the set of time samples and1161

w, c are the same quantities as in the single time sample case. This result follows directly from the1162

single time sample case and the fact that log p(si|u(t), t ∈ T ) =
∑

t∈T log p(si|u(t)) for statistically1163

independent samples.1164

An intuitive way to understand this time-averaged LDA solution is to search for the linear projection1165

n ∈ R
N and temporal filter f(t) which, when applied jointly to the input time series u(s, t), generate1166

the scalar output with the greatest signal to noise ratio with respect to the two stimuli to be discrim-1167

inated. In the case of a continuous time series of length T , i.e. t ∈ [0, T ], we denote the scalar1168

output of such an operation as dn,f (s, T ) =
∫ T

0
f(τ)(n · u(s, T − τ))dτ . The signal to noise ratio of1169

dn,f (s, T ) is defined as:1170

SNR2
T (n, f) =

[〈dn,f (s, T )〉s=s2 − 〈dn,f (s, T )〉s=s1 ]
2

1
2

[

Var [dn,f (s, T )]s=s1
+Var [dn,f (s, T )]s=s2

] . (2)

Provided that u(s, t) has Gaussian statistics, dn,f (s, T ) is a normally distributed random variable1171

under each stimulus s. Moreover, assuming stimulus-independent input covariance, the variance1172

of dn,f (s, T ) is independent of s. As a consequence, the above signal to noise ratio is sufficient to1173

determine stimulus discrimination performance of an optimal observer receiving the scalar output1174

dn,f (s, T ) (in particular, p(correct) = Φ(SNRT/2) where Φ is the cumulative function of the stan-1175

dard normal distribution). The solution derived above by maximizing the posterior probability over1176

s corresponds to setting f(t) = 1/T , n = w = 2Σ−1
η
(g(s2) − g(s1)). We rederive this optimal1177

solution below through maximization of the above SNR. As we will show, using a different projection1178

vector n or temporal filter f reduces the signal to noise ratio (except for scaling of f or n, which1179

has no effect). Thus, the linear discriminant vector w can also be understood as the vector which1180

maximizes the signal to noise ratio of the projected input.1181

We now derive the optimal choice of n, f and quantify the performance of both optimal and sub-1182

optimal choices under the assumption of temporally uncorrelated Gaussian input noise. In this1183

case, the influence of n and f on the signal to noise ratio of the scalar output dn,f (s, T ) takes1184

on a particularly simple form. In particular, we then have 〈η(t)ηT (t′)〉 = Σηδ(t − t′), so that1185

〈dn,f (s, T )〉s=si = n · g(si)
∫ T

0
f(τ)dτ and Var [dn,f (s, T )]s=si

= n · Σηn
[

∫ T

0
f 2(τ)dτ

]

. Defining1186

∆g = g(s2)− g(s1), the output signal to noise ratio is then given by:1187

SNR2
T (n, f) =

[n ·∆g]2

n · Σηn

[

∫ T

0
f(τ)dτ

]2

∫ T

0
f 2(τ)dτ

≡ SNR2
input(n)IT (f) (3)

where SNR2
input(n) = [n ·∆g]2 / [n · Σηn] is the signal to noise ratio of the instantaneous input pro-1188

jected along n and IT (f) =
[

∫ T

0
f(τ)dτ

]2

/
[

∫ T

0
f 2(τ)dτ

]

is a temporal integration factor. Thus, the1189

total signal to noise ratio factors into an instantaneous term and a temporal term. We can therefore1190

proceed to maximize each of these two factors in turn with respect to n and f respectively. To do so,1191

we apply the Cauchy-Schwarz inequality to derive two inequalities, SNR2
input(n) ≤ ∆g ·Σ−1

η
∆g and1192

IT (f) ≤ T . To see how the first inequality arises, note that n · Σηn =
(

Σ
1/2
η n

)

·
(

Σ
1/2
η n

)

, while by1193

Cauchy-Schwarz |n·∆g(s)| = |
(

Σ
1/2
η n

)

·
(

Σ
−1/2
η ∆g

)

| ≤
√

(

Σ
1/2
η n

)

·
(

Σ
1/2
η n

)

√

(

Σ
−1/2
η ∆g

)

·
(

Σ
−1/2
η ∆g

)

.1194
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Inserting these into the definition of SNR2
input(n) and cancelling terms in the numerator and denom-1195

inator gives the desired inequality. The second inequality follows in a similar fashion: the integral1196

Cauchy-Schwarz inequality gives |
∫ T

0
f(τ)dτ | = |

∫ T

0
f(τ) · 1dτ | ≤

√

∫ T

0
f 2(τ)dτ

√

∫ T

0
12dτ =1197

√

∫ T

0
f 2(τ)dτ

√
T which can be inserted into the definition of IT (f) to arrive at the desired result. It1198

can easily be verified that these upper bounds are achieved when f(t) = α and n = βΣ−1
η ∆g = βw1199

for any pair of constants α, β. Thus, we have arrived at the same optimal solution for stimulus dis-1200

crimination using two different methods: first, by maximizing the posterior probability of the stimulus1201

given the observed network input; second, by maximizing the signal to noise ratio obtained by linear1202

projection and temporal filtering of the network input.1203

Several conclusions can be drawn from this analysis. First, for invertible Ση, the information avail-1204

able to a decoder of network input over a time window T is finite and the sources of information1205

loss can be factored into an instantaneous term SNRinput and a temporal term IT (f) (note that1206

further sources of information loss may occur when different functions than those considered here1207

are applied to the network input, as we will see when we study recurrent networks). Moreover,1208

even in the limit of infinite time, the information available to decoder with finite timescales of tem-1209

poral integration remains finite due to the loss of previously integrated information over time (i.e.,1210

if limT→∞ IT (f) < ∞). As we have shown, the optimal solution for discriminating pairs of stimuli1211

given an observed time series of network input is to project that network input onto the direction car-1212

rying the most information instantaneously, and then to integrate that projection using a sufficiently1213

long time constant in order to avoid loss of previously integrated information (i.e., using a choice of1214

f such that IT (f)/T ≈ 1). In the following analysis of information transmission through recurrent1215

networks, we will focus on the information contained in the output of networks with finite dynamical1216

time constants following integration of sensory input over a long period of time.1217

Analysis of Fisher Information in Recurrent Networks1218

We next quantify the capacity of an optimal observer to discriminate stimuli based on observations of1219

the output of a recurrent network which receives the sensory input described in the previous section.1220

We analyze the transformation of noisy sensory input by a recurrent network of N nonlinear units1221

governed by the following dynamics:1222

τi
∂ri
∂t

= −ri + φi

(

∑

j

Wijrj + ui(s, t)

)

(4)

where ri represents the firing rate of neuron i, τi is its time constant, φi is its input-output nonlinearity1223

(or transfer function), Wij is the synaptic weight from neuron j to neuron i and ui(s, t) = gi(s)+ηi(t)1224

is the feedforward input to neuron i at time t given a sensory stimulus s. As before, inputs are defined1225

as having additive, multivariate Gaussian, temporally uncorrelated, stimulus-independent noise η(t).1226

Rather than deriving the signal to noise ratio for two discrete stimuli as above, we will derive the1227

Fisher Information of network responses r with respect to a continuous one-dimensional stimulus1228

s. The Fisher Information places a lower bound on the variance of any unbiased estimator of s1229

from r. For responses following a multivariate normal distribution, the Fisher Information is given by1230

Itot
F = r′TΣ−1r′ + 1

2
Tr
[

(Σ−1Σ′)
2
]

, where r′i ≡ ∂〈ri〉
∂s

is the slope of the tuning curves with respect1231

to s, Σ = 〈(r− 〈r〉) (r− 〈r〉)T 〉 is the covariance of network responses under that stimulus and1232

Σ′ = ∂Σ
∂s

is the change in response covariance as the stimulus is changed. When Σ is stimulus-1233

dependent, achieving the precision of stimulus discrimination set by the Fisher Information requires1234

a quadratic decoder of neural activity (Shamir and Sompolinsky, 2004; Yang et al., 2020). We focus1235
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instead on the linear Fisher Information IF = r′TΣ−1r′ following previous studies (Seriès et al.,1236

2004; Beck et al., 2011; Moreno-Bote et al., 2014). In addition to being analytically tractable, the1237

linear Fisher Information has several theoretical advantages. First, even for networks in which the1238

optimal decoder is quadratic (or otherwise nonlinear), the linear Fisher Information describes the1239

optimal local linear decoder of small changes in the stimulus based on network responses (Seriès et1240

al., 2004; Beck et al., 2011; Kafashan et al., 2021). Second, the linear Fisher Information places a1241

bound on the precision of an optimal linear estimator even for non-Gaussian response distributions,1242

whereas the quadratic term holds only for Gaussian statistics (Yang et al., 2020; Kafashan et al.,1243

2021). Third, the linear Fisher Information has a natural relationship to linear discriminant analysis,1244

in particular IF∆s2 ≈ ∆rTΣ−1∆r for sufficiently small ∆s, which allows us to relate our findings1245

back to the two-stimulus discrimination task studied experimentally in the main text and above in1246

our signal processing analysis. Fourth, the linear Fisher Information can be understood as a signal1247

to noise ratio, much as in our above signal processing analysis. In particular, the linear Fisher1248

Information is the SNR of wT r, where w = Σ−1r′ is the linear discriminant vector for discriminating1249

infinitesimal changes in s based on network output r.1250

In order to evaluate the linear Fisher Information of the output of a recurrent network, we next derive1251

expressions for the tuning curve derivatives r′ and response covariance Σ for networks obeying the1252

dynamics of Equation (4) and driven to stationary state.1253

Tuning Curve Slopes and Response Covariance1254

The linear Fisher Information of the output of a recurrent network r depends on two quantities: the1255

tuning curves with respect to the stimulus r′ = ∂〈r〉
∂s

, and the response covariance Σ = 〈(r−〈r〉)(r−1256

〈r〉)T 〉. To derive expressions for these, we will rely on two approximations: first, we linearize the1257

system about a stimulus-evoked fixed point; second, we compute the statistics of the stationary state1258

response of the linearized system.1259

To estimate the tuning curve derivatives r′ = ∂〈r〉
∂s

, we differentiate the noise-free fixed points of1260

the network with respect to the stimulus. To do so we set ∂r
∂t

= 0 and η = 0 and then dif-1261

ferentiate both sides of Equation (4) with respect to s. On performing this calculation, we ob-1262

tain r′SS(s) = −J−1(s)Φ′(s)g′(s), where rSS(s) = φ (WrSS(s) + g(s)) is the noise-free steady1263

state response, J(s) = Φ′(s)W − T−1 is a matrix of effective interaction weights and Φ′
ij(s) =1264

δijτ
−1
j

dφj(x)

dx
|x=∑

k Wjkrk(s)+gj(s) is a diagonal matrix quantifying the sensitivity of each neuron to small1265

changes in its input (both feedforward and recurrent). Note that this result involves an approxima-1266

tion: we have replaced the average stationary state response of the stochastic system 〈r〉 with the1267

fixed point of the noise-free system rSS . The accuracy of this approximation depends on the nonlin-1268

earity near the fixed point and on the magnitude of the noise. Note that while we did not explicitly1269

linearize in order to obtain this solution, an identical result is obtained by by first linearizing the net-1270

work dynamics about the noise-free fixed point, computing the mean response of the noise-injected1271

linearized system at stationary state, and then differentiating this with respect to the stimulus. This1272

is the approach we next take in order to obtain an approximation for the response covariance.1273

To derive the response covariance within the linearized stationary state approximation, we first lin-1274

earize Equation (4) about the fixed point r = rSS(s) by applying a first order Taylor expansion for1275

small fluctuations δr about the fixed point rSS , i.e. r = rSS + δr with ‖δr‖ ≈ 0. This gives the1276

following approximation to the dynamics:1277

∂r

∂t
≈ J (r− rSS) + Φ′

η (5)

where J and Φ′ are as defined above. Equation (5) describes a multivariate Ornstein-Uhlenbeck1278
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process, and has the general solution:1279

r(t)− rSS = eJ(t−t0) (r(t0)− rSS) +

∫ t

t0

eJ(t−τ)Φ′
η(τ)dτ (6)

for any initial condition r(t0), where eX is the matrix exponential function. Provided the fixed point1280

is stable (i.e., all eigenvalues of J have negative real part) we can take the stationary state limit by1281

letting t0 → −∞ to obtain:1282

r− rSS =

∫ t

−∞
eJ(t−τ)Φ′

η(τ)dτ. (7)

Assuming that input noise is temporally uncorrelated, i.e. 〈η(t)ηT (t′)〉 = Σηδ(t− t′), the stationary-

state response covariance ΣSS = 〈(r− rSS) (r− rSS)
T 〉 is:

ΣSS =

∫ t

−∞

∫ t

−∞
eJ(t−τ)Φ′〈η(τ)ηT (τ ′)〉Φ′eJ

T (t−τ ′)dτdτ ′ (8)

=

∫ t

−∞

∫ t

−∞
eJ(t−τ)Φ′Σηδ(τ − τ ′)Φ′eJ

T (t−τ ′)dτdτ ′ (9)

=

∫ t

−∞
eJ(t−τ)Φ′ΣηΦ

′eJ
T (t−τ)dτ (10)

=

∫ t

−∞

[

∑

i

vR
i

(

vL
i

)T
eλi(t−τ)

]

Φ′ΣηΦ
′

[

∑

j

vR
j

(

vL
j

)T
eλj(t−τ)

]T

dτ (11)

=
∑

i,j

vR
i

(

vL
i

)T
Φ′ΣηΦ

′vL
j

(

vR
j

)T
∫ t

−∞
e(λi+λj)(t−τ)dτ (12)

= −
∑

i,j

vR
i

(

vL
i

)T
Φ′ΣηΦ

′vL
j

(

vR
j

)T 1

λi + λj

(13)

where we have made use of the eigendecomposition of the Jacobian J = V ΛV −1 =
∑N

i=1 v
R
i

(

vL
i

)T
λi1283

and of its matrix exponential eJτ = V eΛτV −1 =
∑N

i=1 v
R
i

(

vL
i

)T
eλiτ . We use superscripts L and1284

R to denote left and right eigenvectors, which are the rows of V −1 and columns of V respectively.1285

Note that the left and right eigenvectors do not in general form orthonormal bases, but do satisfy1286

the orthogonality relations vL
i · vR

j = δij . This orthogonality relation does not typically allow for both1287

left and right eigenvectors to have unit length, because vL
i · vR

i = ‖vL
i ‖‖vR

i ‖ cos θ = 1. Where a1288

choice of normalization is required, we choose to normalize left eigenvectors to unit length, in which1289

case right eigenvectors typically do not have unit length. This convention for normalization is entirely1290

arbitrary and is made for convenience only, reflecting the central role that left eigenvectors play in1291

our theory. In the main text, we refer to the left eigenvectors as the mode activation patterns m, and1292

we define their time constants as τ = −1/Re(λ). Note that the stationary state covariance also1293

satisfies the Lyapunov equation JΣSS + ΣSSJ
T + Φ′ΣηΦ

′ = 0, which is well known in the control1294

theory literature. This Lyapunov equation can be solved efficiently using numerical methods, but is1295

less convenient when deriving the analytical results we present the following sections.1296

Relationship Between Eigen-Modes and Signal Processing Theory1297

With the results of the previous section in hand, we are now in a position to formulate a general1298

expression for the Linear Fisher Information of the network response. Before doing so, however, we1299

first show that the signal to noise ratio of the network output projected along any left eigenvector (i.e.,1300

mode) vL
i of the Jacobian J takes on a particularly simple form that is readily interpretable using the1301

insights obtained from our earlier signal processing analysis. The linear Fisher Information can be1302
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understood as the signal to noise ratio of network output projected onto the linear discriminant vector1303

for the network output, which in turn can be understood as the projection vector which maximizes1304

this signal to noise ratio (as shown in our signal processing analysis). Thus, deriving an expression1305

for the signal to noise ratio along any other projection (in this case, a left eigenvector) allows us to1306

place a lower bound on the total information in the network response. The equations derived in this1307

section form the basis for the results presented in Figure 2 of the main text, and motivate much of1308

our analysis of the experimental data and network models presented in Figures 3-6.1309

To simplify the expressions which follow, we first make a change of variables r̃ ≡ Φ′−1r and J̃ ≡1310

Φ′−1JΦ′ = WΦ′ − T−1. In this basis, Equation (5) becomes ˙̃r = J̃ (r̃− r̃SS) + η, while J̃ has1311

eigenvalues λ̃i = λi and eigenvectors ṽL
i = Φ′vL

i , ṽR
i = Φ′−1vR

i . We can express the tuning curve1312

derivatives as r′SS = −∑i
1
λi
vR
i

(

vL
i

)T
Φ′g′. Then using the identity vL

i · vR
j = δij , both ΣSS and1313

r′SS can be expressed in the basis of left eigenvectors, which obtains:1314

(

vL
i

)T
r′SS = −

(

vL
i

)T
Φ′g′ 1

λi

= −
(

ṽL
i

)T
g′ 1

λi

, (14)

1315

(

vL
i

)T
ΣSSv

L
j = −

(

vL
i

)T
Φ′ΣηΦ

′vL
j

1

λi + λj

= −
(

ṽL
i

)T
Σηṽ

L
j

1

λi + λj

. (15)

We can then calculate the signal to noise ratio of the instantaneous network response at stationary1316

state, projected along any left eigenvector vL
i :1317

SNR2
output

(

vL
i

)

≡
(

vL
i · r′SS

)2

(vL
i )

TΣSSv
L
i

= −
(

ṽL
i · g′)2

(ṽL
i )

T
Σηṽ

L
i

2

λi

= SNR2
input

(

ṽL
i

)

2τi (16)

where we have defined τi = −1/λi, under the assumption that λi ∈ R (i.e., the mode is not1318

oscillatory).1319

Equation (16) demonstrates that the SNR of network output following projection onto any left eigen-1320

vector of J is equal to the SNR of network input projected along the corresponding left eigenvector of1321

J̃ , multiplied by the decay time constant of that eigen-mode and by a constant factor of 2. This result1322

is identical to that obtained in our signal processing analysis, and can easily be derived from Equa-1323

tion (3) by setting f(t) = e−t/τi , n = ṽL
i , and taking T → ∞. The reason for this correspondence1324

is that left eigenvectors implement exactly the linear projection and temporal filtering operations re-1325

quired for optimal stimulus discrimination, up to the minor caveat that the optimal (but biologically1326

implausible) f(t) = 1/T is replaced with an exponential filter f(t) = e−t/τi . We can identify the1327

scalar output dn,f (s, T ) from the signal processing analysis with the linear projection of the network1328

response vL
i · r. Equation (16) is the main result presented in Figure 2, where we considered a1329

purely linear (rather than linearized) system, which slightly simplifies the result because ṽL
i = vL

i .1330

It is important to emphasize that, while Equation (16) can be understood as a special case of our1331

more general signal processing analysis (which allows for arbitrary filters f(t)), this result in fact1332

relies on the unique properties of left eigenvectors. For example, a similar result is not obtained1333

when projecting responses along right eigenvectors vR
i . Indeed, there is a deeper reason that1334

left eigenvectors exhibit this property. This result relies on two facts: first, network input along1335

each left eigenvector is mapped onto network output along the corresponding right eigenvector;1336

second, left eigenvectors are orthogonal to right eigenvectors (vL
i · vR

j = δij). Together, these1337

properties ensure that the network dynamics decouple into independent leaky integrators when1338

projected onto left eigenvectors, in particular ṽL
i · ˙̃r = λiṽ

L
i · (r̃− r̃SS) + ṽL

i · η (and also vL
i · ṙ =1339

λiv
L
i ·(r− rSS)+vL

i ·Φ′
η). This decoupling into independent processes is a unique feature of the left1340

eigenvector basis, and motivates the use of the word “modes" to describe them. This observation1341

underscores an additional source of information loss in recurrent networks that was not apparent1342

from our signal processing analysis - because recurrent networks map multiple different projections1343
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of their input onto any given projection of their output, they superimpose both relevant information1344

and additional irrelevant noise within the same output projection, which reduces the signal to noise1345

ratio. Left eigenvectors avoid this source of information loss by isolating a single projection of network1346

input and preserving it along a single projection of the network output, allowing them to integrate1347

input information optimally.1348

Linear Fisher Information at Stationary State1349

We now return to the problem of estimating the linear Fisher Information of the network response.1350

The Linear Fisher Information is equal to the signal to noise ratio obtained after projecting network1351

responses along their linear discriminant w = Σ−1
SSr

′
SS . Because the linear discriminant is the pro-1352

jection which maximizes this signal to noise ratio, the linear Fisher Information will typically exceed1353

the signal to noise ratio obtained following projection along any left eigenvector (Equation (16)).1354

Inserting the expressions for tuning curve slopes and response covariance derived above into the1355

equation for the linear Fisher Information, we obtain:1356

IF ≡ r′SS · Σ−1
SSr

′
SS = −g′T

[

Φ′−1
∑

i,j

vR
i

(

vL
i

)T
Φ′ΣηΦ

′vL
j

(

vR
j

)T
Φ′−1 λiλj

λi + λj

]−1

g′. (17)

Using again the change of basis introduced in the previous section, this result simplifies to:1357

IF = g′T

[

∑

i,j

ṽR
i

(

ṽR
j

)T
Γij

]−1

g′ ≡ g′TΣ−1
eff g

′, Γij = −
(

ṽL
i

)T
Σηṽ

L
j

λiλj

λi + λj

=
(

Ṽ −1ΣηṼ
−T
)

ij

1

τi + τj
.

(18)

This equation provides intuition as to how the transformation of sensory input through the recur-1358

rent network shapes the information about the stimulus available in the network output. The linear1359

Fisher Information of the instantaneous sensory input is g′TΣ−1
η
g′, so that Σeff encapsulates the1360

relationship between input and output information (the transformation of both input signal and noise1361

by the network have been absorbed into this effective covariance). The coefficients Γij have a1362

natural interpretation as the effective covariance between network responses projected onto pairs1363

of left eigenvectors, i.e. Γij =
(

ṽL
i

)T
Σeff ṽ

L
j and Γ = Ṽ −1Σeff Ṽ

−T . Moreover, these coeffi-1364

cients depend on the alignment of the corresponding pair of left eigenvectors with the sensory1365

input covariance and also depend inversely on the timescale of integration along those eigenvec-1366

tors τi + τj = − (λi + λj) / (λiλj) (assuming the eigenvalues are real). Moreover, Γ is the solution1367

to the Lyapunov equation ΓΛ−1+Λ−1Γ+ Ṽ −1ΣηṼ
−T = 0, meaning it is the stationary state covari-1368

ance of a system with injected covariance Ṽ −1ΣηṼ
−T and dynamical evolution Λ−1. Similarly, the1369

effective covariance follows the Lyapunov equation J̃−1Σeff + Σeff J̃
−T + Ση = 0.1370

The Fisher Information can be expressed compactly in matrix form as:1371

IF = g′T Ṽ −TΓ−1Ṽ −1g′ =
∑

ij

(

g′ · ṽL
i

) (

g′ · ṽL
j

) (

Γ−1
)

ij
. (19)

Unfortunately, this expression for Fisher Information is difficult to compute analytically except in1372

certain special cases where Γ can be directly inverted, such as when Γ is a 2x2 matrix or a diagonal1373

matrix. For a diagonal Γ we have:1374

IF =
∑

i

(

g′ · ṽL
i

)2

(ṽL
i )

T
Σηṽ

L
i

2

λi

=
∑

i

SNR2
input

(

ṽL
i

)

2τi (20)

so that the Fisher Information in the network response is simply the sum of response SNRs along1375
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individual left eigenvectors. Although this case provides useful intuition, the assumption that Γ is1376

diagonal places strong restrictions on the dynamics which may not be applicable to neural circuits,1377

for example that the eigenvectors are orthogonal. For such networks (also known as “normal" net-1378

works), it can be seen that the solution which maximizes the linear Fisher Information in Equation1379

(20) is to align the left eigenvector with the longest decay time constant τk with the linear discriminant1380

of the instantaneous sensory input, so that IF = g′ · Σ−1
η
g′2τk much as in our analysis of single1381

eigen-modes.1382

Linear Fisher Information for Non-Normal Networks1383

Networks in which the eigenvectors of the Jacobian are not orthogonal are known as “non-normal"1384

networks (Ganguli et al., 2008; Goldman, 2009; Murphy and Miller, 2009). We now study how1385

non-normal network dynamics influence information integration and transmission. Our main finding1386

is that non-normal dynamics can enhance the linear Fisher Information of network responses by a1387

factor of up to N (the number of neurons in the network). These findings form the basis of the results1388

presented in Supplementary Figure 1 of the main text. We note that closely related findings have1389

been presented previously (Ganguli et al., 2008; Goldman, 2009). To arrive at these results, we first1390

analyze the an arbitrary two-dimensional non-normal system, then use the optimal solution obtained1391

in this 2-dimensional case to motivate a specific class of N-dimensional networks which achieve the1392

desired N-fold improvement in information transmission.1393

To gain intuition into how non-normality of network dynamics affects linear Fisher Information, we1394

perturb the solution obtained for the normal network adding a single pair off-diagonal elements1395

Γab = Γba to Γ. This perturbed system corresponds a network in which only a two-dimensional1396

plane exhibits non-normal dynamics, with the remaining eigenvectors forming an orthogonal basis.1397

This system has effective covariance matrix Σeff = Σdiag + Γab

(

ṽR
a

(

ṽR
b

)T
+ ṽR

b

(

ṽR
a

)T
)

, where1398

Σdiag is the effective covariance matrix for the unperturbed system. This covariance matrix can be1399

inverted exactly using the Sherman-Morrison matrix inversion identity:1400

Σ−1
eff = Σ−1

diag +
Γ2
ab

ΓaaΓbb − Γ2
ab

[

1

Γaa

ṽL
a

(

ṽL
a

)T
+

1

Γbb

ṽL
b

(

ṽL
b

)T − 1

Γab

(

ṽL
a

(

ṽL
b

)T
+ ṽL

b

(

ṽL
a

)T
)

]

.

(21)

This result can then be used to obtain the linear Fisher Information of the perturbed system via1401

Equations (18, 20):1402

IF =
∑

i

1

Γii

(

g′ · ṽL
i

)2
+

Γ2
ab

ΓaaΓbb − Γ2
ab

[

1

Γaa

(

g′ · ṽL
a

)2
+

1

Γbb

(

g′ · ṽL
b

)2 − 2
1

Γab

(

g′ · ṽL
a

) (

g′ · ṽL
b

)

]

.

(22)

By rearranging this expression, we can make explicit the information contained in the non-normal1403

plane of dynamics (given in the second term below):1404

IF =
∑

i 6=a,b

1

Γii

(

g′ · ṽL
i

)2
+

1

1− Γ2
ab

ΓaaΓbb

[

(

g′ · ṽL
a

)2

Γaa

+

(

g′ · ṽL
b

)2

Γbb

− 2
Γab

ΓaaΓbb

(

g′ · ṽL
a

) (

g′ · ṽL
b

)

]

.

(23)

To understand how the non-normal component of the Fisher Information depends on the rela-1405

tive alignment of eigenvectors and their time constants we define Dab =
(

ṽL
a

)T
Σηṽ

L
b , so that1406

Γab = Dab/(τa + τb). We then introduce the two dimensionless quantities β = τb/τa and κ =1407
[

(

g′ · ṽL
b

)2
/Dbb

]

/
[

(

g′ · ṽL
a

)2
/Daa

]

. The term Dab quantifies the degree of non-orthogonality of1408

the eigenvector pair a, b (more precisely, the covariance of sensory input projected onto the pair of1409

eigenvectors). β quantifies the relative time constants of the two eigen-modes, and κ quantifies the1410
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relative signal to noise ratio of sensory input projected onto the two left eigenvectors. Without loss1411

of generality, we may assume that τa ≥ τb, so that β ≤ 1.1412

Inserting these definitions into Equation (23) gives:1413

IF =
∑

i 6=a,b

2τi

(

g′ · ṽL
i

)2

Dii

+ 2τa

(

g′ · ṽL
a

)2

Daa

1 + κβ − 4
√
κ β
1+β

Dab√
DaaDbb

1− 4
D2

ab

DaaDbb

β
(1+β)2

. (24)

As Dab → 0, the solution for the normal system is recovered (Equation (20)). However, if both κ → 11414

and Dab√
DaaDbb

→ 1 then the Fisher Information becomes IF =
∑

i 6=a,b 2τi
(g′·ṽL

i )
2

Dii
+2τa

(g′·ṽL
a )

2

Daa
(1+β).1415

Then as β → 1 the Fisher Information becomes IF =
∑

i 6=a,b 2τi
(g′·ṽL

i )
2

Dii
+ 4τa

(g′·ṽL
a )

2

Daa
. Taking this1416

set of limits corresponds to the case where ṽL
a → ṽL

b and τa → τb. The linear Fisher Information is1417

then maximized by setting ṽL
a = Σ−1

η
g′, in which case both left eigenvectors in the non-normal plane1418

are aligned to the input linear discriminant while all other left eigenvectors are orthogonal. The total1419

response information for such a network is IF = g′ ·Σ−1
η
g′4τa, which is twice that achievable by any1420

normal network whose longest time constant is τa (see Supplementary Figure 1B for a numerical1421

validation of this result). It is noteworthy that the limit taken here yields a defective matrix J̃ , i.e. one1422

which has fewer distinct eigenvectors than it has dimensions N . We next show that, by constructing1423

a maximally-defective matrix, i.e. one which has just one eigenvector repeated N times, it is possible1424

to achieve an N -fold improvement in linear Fisher Information relative to an optimal normal network.1425

To extend this two-dimensional example to the N-dimensional case, we construct a network in which1426

non-normal dynamics produce an N-fold increase in response information. Motivated by our signal1427

processing analysis, we search for cases in which there exists a pair of projections w of the neural1428

response δr ≡ r− rSS =
∫∞
0

eJτΦ′u(s, t− τ)dτ and n of the sensory input u(s, t) such that:1429

w · δr =
∫ ∞

0

f(τ)n · u(s, t− τ)dτ. (25)

for some yet-to-be-determined function f(t). In such a case the SNR of network responses projected1430

onto w is given by Equation (3) with T → ∞.1431

We can immediately identify one solution to Equation (25), which is w = vL
j , n = ṽL

j , f(t) = eλjt.1432

This recovers our single-eigenvector analysis. To construct a second case, we consider a network1433

with Jij = λδij+ωδi,j−1, which corresponds to a delay line in which units have decay time constants1434

τi = −1/λ and feedforward weights ω (by feedforward, we mean that the weights are ordered along1435

the delay line). It can be verified that this matrix has only one distinct eigenvalue λ and one distinct1436

eigenvector
(

vL
)

i
= δiN . Then

[

etJ
]

ij
= δj≥i

(ωt)j−i

(j−i)!
eλt (as can be shown using the power series1437

definition of a matrix exponential). Thus, Equation (25) becomes:1438

N
∑

i=1

N
∑

j=i

wi

∫ ∞

0

(ωτ)j−i

(j − i)!
eλτΦ′

jjuj(s, t− τ)dτ =
N
∑

j=1

∫ ∞

0

f(τ)njuj(s, t− τ)dτ. (26)

There does not in general exist an n and f which satisfy this equation, but in the limit ω → ∞ a1439

solution exists because
∑N

j=i
(ωτ)j−i

(j−i)!
eλτΦ′

jjuj(s, t − τ) → (ωτ)N−i

(N−i)!
eλτΦ′

NNuN(s, t − τ). This gives1440

the equation:1441

N
∑

i=1

wi

∫ ∞

0

(ωτ)N−i

(N − i)!
eλτΦ′

NNuN(s, t− τ)dτ =
N
∑

j=1

∫ ∞

0

f(τ)njuj(s, t− τ)dτ. (27)

We can then identify a second solution to Equation (25), which is ni = δiN and f(t) =
∑N

i=1 wi
(ωt)N−i

(N−i)!
eλtΦ′

NN .1442
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Thus, while we are free to choose any set of readout weights w, only the input to the N th neuron1443

can be recovered from the output of such a network regardless of the readout weights we choose.1444

In this case, the readout weights w determine the temporal filter f(t) applied to the N th neuron’s1445

input, with different choices of w allowing different functions of the input history to be recovered.1446

Having identified this solution, we next proceed to maximize the SNR of responses along w. To1447

optimize response SNR along w, we need to maximize both SNRinput(n) and I∞(f) as defined in1448

Equation (3). I∞(f) can be maximized by choosing the appropriate readout weights w as follows:1449

I∞(f) =

[∫∞
0

f(t)dt
]2

∫∞
0

f 2(t)dt
=

[

∑N
i=1 wi

ωN−i

(−λ)N−i+1

]2

∑N
i,j=1 wiwj

ω2N−i−j

(−2λ)2N−i−j+1

(2N−i−j)!
(N−i)!(N−j)!

≡ 1

−λ

[w̄ · 1]2
w̄ · Sw̄ (28)

where we have defined wi =
(

−λ
c

)N−i
w̄i and Sij = 2−(2N−i−j+1) (2N−i−j)!

(N−i)!(N−j)!
and 1 is a vector of1450

ones. The Cauchy-Schwarz inequality then yields I∞(f) ≤ (−λ)−11TS−11 = (−λ)−1
∑N

i,j=1 (S
−1)ij ,1451

with the upper bound achieved when w̄ = S−11. We find numerically that
∑N

i,j=1 (S
−1)ij = 2N ,1452

so that I∞(f) = (−λ)−12N , revealing an N-fold increase in temporal integration through non-1453

normal dynamics (because λ is the only eigenvalue of J , a normal network could obtain at best1454

I∞(f) = 2(−λ)−1). Supplementary Figure 1F shows the temporal filter f(t) that results from this1455

choice of weights when N = 16.1456

We now ask how to maximize the second factor in our signal processing analysis, SNRinput(n).1457

Because the input projection integrated by the above network is ni = δiN , SNRinput(n) is maxi-1458

mized when the linear discriminant of sensory input is aligned to the N th element of the delay line.1459

However, orthogonal transformations of this delay line, J → UJUT with UT = U−1, change the1460

projection of sensory input integrated by the network as n → Un, but do not otherwise affect the re-1461

sults. Thus, SNRinput(n) is maximized by rotating the delay line in neural space so that n aligns with1462

the linear discriminant of sensory input, while I∞(f) is maximized by the appropriate choice of read-1463

out weights w as described in the preceding paragraph (which must also be rotated, w → Uw).1464

This rotated delay line corresponds to a "functionally feedforward" dynamic (Goldman, 2009) and1465

the integrative properties of such delay line architectures have been studied previously (Ganguli et1466

al., 2008). The Jacobian J introduced here is a defective matrix, i.e. it has only one eigenvector1467

(vL
i = n) and one eigenvalue (λ), and therefore is consistent with the result of the two-dimensional1468

case in which information increases when eigenvectors become more aligned and eigenvalues si-1469

multaneously become more similar. Moreover, the optimization of SNRinput(n) requires that this left1470

eigenvector is aligned to the input linear discriminant, demonstrating that the optimal non-normal1471

network is one in which all left eigevectors are aligned to the input linear discriminant and have iden-1472

tical time constants. Supplementary Figure 1E-H show the response information computed from1473

networks with varying number of units N and feedforward weight ω.1474
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