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Abstract

Advances in droplet-based single cell RNA-sequencing (sScCRNA-seq) have dramatically
20 increased throughput, allowing tens of thousands of cells to be routinely sequenced in a
single experiment. In addition to cells, droplets capture cell-free “ambient” RNA
predominately caused by lysis of cells during sample preparation. Samples with high ambient
RNA concentration can create challenges in accurately distinguishing cell-containing droplets
and droplets containing ambient RNA. Current methods to separate these groups often retain
25 a significant number of droplets that do not contain cells — so called empty droplets.
Additional to the challenge of identifying empty drops, there are currently no methods
available to detect droplets containing damaged cells, which comprise of partially lysed cells
—the original source of the ambient RNA. Here we describe DropletQC, anew method that is
able to detect empty droplets, damaged, and intact cells, and accurately distinguish from one
30 another. This approach is based on anovel quality control metric, the nuclear fraction, which
quantifies for each droplet the fraction of RNA originating from unspliced, nuclear pre-
MRNA. We demonstrate how DropletQC provides a powerful extension to existing

computational methods for identifying empty droplets such as EmptyDrops. We have
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implemented DropletQC as an R package, which can be easily integrated into existing single

35 cdl analysis workflows.
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Main text

Droplet-based single cell RNA-sequencing (ScCRNA-seq) methods utilise microfluidics to
40  encapsulate individual cells in nanolitre droplet emulsions, a technique that has dramatically
increased throughput compared to plate-based protocols[1]. While encapsulating cells,
droplets aso capture cell-free ambient RNA, a complex mixture of transcripts released from
damaged, stressed, and dying cells, often exacerbated during dissociation of solid tissues.
This ambient RNA creates challenges for downstream analyses and the biological
45  interpretation of results as most analysis methods are based on the assumption that a droplet
contains RNA from a single cell. To combat this problem, several methods have been

developed to estimate and remove its contribution to gene expression [2-4].

High levels of ambient RNA also create challenges in accurately identifying cell-containing

50 droplets. This is a particular problem for data generated from solid tissues, where more
fragile cells are more likely to become damaged during dissociation, and contribute to
ambient RNA. We thus have three scenarios that need to be differentiated: empty droplets
containing high concentrations of ambient RNA; droplets containing damaged cells; and
droplets containing cells with limited ambient RNA. Using cut-offs based on the total number

55 of RNA fragments assigned to each droplet, such as those originally proposed by Macosko et
al. [5] and Zheng et al. [6], risks both including empty droplets and excluding small cells
with below-average RNA content. The EmptyDrops method [7] addresses thisissue through a
more sophisticated approach, calculating the profile of the ambient RNA pool and testing
each barcode for significant deviations from this profile. A favoured alternative to simple

60 UMI cut-offs, this method has been integrated as the default cell-calling algorithm in the
widely used CellRanger pipeline [6]. However, cell-free droplets with high ambient RNA
concentration and damaged cells are till retained by this method.

Here, we present DropletQC, a new method that is able to simultaneously improve the
65  detection of cell free droplets and droplets containing damaged cells. Taking advantage of the
observation that unspliced and spliced mRNASs can be distinguished in common scRNA-seq
protocols [8], we develop a novel metric: the nuclear fraction. The nuclear fraction quantifies,
for each droplet, the proportion of RNA originating from unspliced preemRNA. Ambient
RNA consists predominantly of mature cytoplasmic mRNA. This may arise as RNA is

70  released from damaged cells in which the nuclear envelope remains intact, or capped and
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polyadenylated transcripts may be more stable in the extracellular environment (Figure 1).
Regardless, droplets that contain only ambient RNA have alow nuclear fraction compared to
droplets containing cells. In contrast, damaged cells due to the depletion of cytoplasmic
RNA, will have a higher nuclear fraction compared to intact cells. By using the nuclear
75  fraction score in combination with UMIs per droplet, we are able to accurately distinguish

between empty droplets, damaged cells, and intact cells.
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Figure 1 | lllustration of how the nuclear fraction, in combination with the library size of each droplet, can be used to

separate the populations of empty droplets, intact cells and damaged cells.

80 To assess the ability of DropletQC to identify both empty droplets and droplets containing
damaged cells, we applied it to four independent sScCRNA-seq datasets; embryonic mouse
brain, glioblastoma tumour, peripheral blood mononuclear cells (PBMCs), and Hodgkin's
lymphoma tumour. To determine whether DropletQC could identify empty droplets missed
by current methods, all barcodes were first filtered using EmptyDrops, as implemented in

85 DropletUtils [7]. DropletQC identified an additional 9.5% of mouse brain, 6.0% of
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Hodgkin's lymphoma, 4.0% of glioblastoma and 0.4% of PBMCs as empty droplets (Figure
2, Table S1). Cells from dissociated tissue (Figur e 2a-c) contained more empty droplets with
high RNA content than PBMCs (Figure 2d), suggesting ambient RNA may be released from
cells damaged during sample preparation.

90
Following identification of empty droplets, droplets containing damaged cells are identified
using expectation maximisation and a Gaussian mixture model to separate them from
droplets containing intact cells. As both the total UMI count and nuclear fraction scores
display distinct distributions for different cell types (Figure S1), it is necessary to first group

95 cellsby type. Cells were annotated for each sample using a combination of gene markers and
supervised classification with scPred [9]. Of the remaining cells, 14.0% of mouse brain,
5.2% of Hodgkin’s lymphoma, 9.8% of glioblastoma tumour cells and one PBMC cell were
identified as damaged cells (Table S1).
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Figure 2 | DropletQC identifies empty droplets and damaged cells in four heterogeneous scRNA-seq datasets. Total UMI
counts (y-axis) and nuclear fraction scores (x-axis) are shown for each cell, with colours representing the status of each cell
assigned by DropletQC. Empty droplets contain less RNA than cells and a higher fraction of cytoplasmic RNA (low nuclear
105  fraction score). Damaged cells contain less RNA than intact cells and a higher proportion of unspliced RNA fragments (high

nuclear fraction score).
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As an additional test of the ability of DropletQC to identify damaged cells, we applied the
method to data from a recent investigation on the effects of cryopreservation on the
transcriptomes of macague microglia [10]. DropletQC revealed an increase in the proportion
110 of damaged cells following cryopreservation from 4.1% to 13.8% (Figure S2, Table S2).
These findings have implications for the suitability of prospectively archiving samples for
scRNA-seq studies through cryopreservation and demonstrates the utility of DropletQC for

similar studies.

115 By default, the DropletQC software provides a flag for empty droplets and damaged cells,
but does not automatically remove them from the dataset. Depending on the biological
analyses, damaged cells may retain useful information, and as such it may be desirable to
retain this metadata throughout downstream analyses. Similarly, cells such as erythrocytes,
which contain small amounts of mature mRNA, may be misidentified as empty droplets and

120  can be rescued downstream if desired.

For samples with large percentages of ambient RNA, some damaged cells and empty droplets
may be missed by DropletQC. However, these can be identified by their low RNA content
(Figure 2a) and may be easily flagged using a minimum UMI threshold. Calculation of the
125 nuclear fraction, identification of empty droplets and damaged cells are implemented as
separate functions within the DropletQC package. In summary, we have shown that
DropletQC is able to successfully identify both empty droplets and damaged cells in data

from arange of tissue types.

130
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M ethods

Nuclear fraction calculation
The DropletQC method first calculates the nuclear fraction for each droplet, which is the
135  proportion of RNA fragments that originate from intronic regions. It is calculated as:

NF, = Z(IR))
S(IR; + ERy)
Where NF; is the nuclear fraction for droplet i, IR; are the reads that map to intronic regions
for droplet i, and ER; are those that map to exonic regions. We have implemented two
140  methodsto map reads to either intronic or exonic regions. The first, takes advantage of region
tags, such as those added by 10x Genomics Cell Ranger count analysis pipeline that identify
the region type of each genome-aligned RNA fragment; exonic, intronic or intergenic. These
are efficiently counted using the nuclear_fraction_tags function to calculate a nuclear fraction
score for each provided cell barcode. Alternatively, if region tags are missing, our second
145 method assesses digned reads for overlap with intronic regions using the
nuclear_fraction_annotation function in combination with a user-provided gene annotation
file. To speed up processing of indexed, coordinate-sorted alignment files, reads are split
across a user-specified number of genomic regions to alow paralel computation. The four
samples presented in the manuscript were processed with 8 CPUs and 16Gb of RAM with an
150 average processing time of 106 seconds per 100 million reads using the nuclear_fraction_tags
function and 132 seconds per 100 million reads using the nuclear_fraction_annotation

function.

I dentifying empty droplets and damaged cells

155  Empty droplets are classified as all barcodes that fall below a defined nuclear fraction
threshold. To identify a suitable threshold, a kernel density estimate is calculated using the
nuclear fraction scores. The first derivative of the estimate is then calculated to identify the
loca minimum immediately following the first peak, corresponding to the population of
empty droplets. If the automatically selected cut-off misidentifies the empty droplet

160  population, two user-adjustable parameters are provided; a nuclear fraction threshold and a
total UMI threshold, above which all barcodes are marked as cells.
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To identify droplets containing damaged cells, barcodes are assessed separately for each cell
type. It is assumed damaged cells have both a lower UMI count and higher nuclear fraction

165  score than undamaged cells. We therefore use a two component (k) gaussian mixture model
to classify droplets containing damaged cells:

P(X lu,0,a) = ayN(X|yy, 0f) + a;N(X|uy, 04) (Eq. 1)

170  Where X is a dataset with log,,(UMI) and estimated nuclear fractions for 1-n droplets of a
given cell type. u and o%are the mean and variance, and a represents the mixing weight of a
given component. The initial model parameters are calculated as:

N
% K xik

Ui = Ni

175

N
2 2 - nr)?
O-k -
Ng

a, = W
180  Where N,is the number of data points in the k™ component. Following the initialisation, we
estimate parameters using expectation maximisation by asking what is the posterior
probability that a droplet (x;) belongs to component k;:

P(x;i|x;€kj)P(kj)
185

Where,

P(xi|x; € k) = N(x;|pjo o)
P(k;) = a;

P(x;) = Xkoq aiN (X |y, 0%)
190
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Niin the initial component parameters are replaced with the posterior probability and
recalculated, with these steps repeated until convergence determined using the Bayesian
information criterion. This model identifies the minimum separation required between the
identified distributions for a population of droplets to be marked as damaged. We then label

195 droplets as containing a damaged cell based on: a higher mean nuclear fraction and lower
mean UMI than the cell population; a mean nuclear fraction greater than the cell population
mean by a user-adjustable amount (default 0.15); a mean UMI count lower than the cell
population (default 50%).

200 Data
Cell filtering and annotation
Prior to calculating the nuclear fraction score, al cell barcodes were assessed for a significant
deviation from the ambient RNA expression pattern using the EmptyDrops method
implemented in the DropletUtils [7]. The lower bound on the total UMI count used to
205 identify empty droplets was increased from 100 to 500 and all other parameters were left at
their default values. Barcodes below a false discovery rate threshold of 1% were excluded.
Remaining barcodes were additionally filtered for a maximum mitochondrial gene content of
15% to exclude low quality cells. Mouse brain and PBMC cell types were annotated by
supervised classification with the scPred [9] using annotated PBMC [11], mouse brain [12]
210  and developing mouse brain [13] reference datasets. The glioblastoma sample cell types were
identified using cell-type specific gene markers for oligodendrocytes (MAG, MOG, MBP),
microglia/macrophages (C1QA, AIF1, LAPTMS5), T cells (CD2, CD3D, CD3E) and
endothelia cells (CD34, ESAM, APOLD1) [14-17]. Hodgkin's lymphoma cell types were
classified using marker genes for B cells (M3Al), macrophages (CD68, IDO1),
215  plasmacytoid dendritic cells (CLECAC, NRP1), erythrocytes (HBB, HBAL, HBA2), cytotoxic
T cells (GZMA, GZMK, IFNG), regulatory T cells (FOXP3, IL2RA, IKZF2), T helper cells
(CXCL13, PDCD1, FABP5), naive T cells (CCR7, IL7R, LEF1), progenitor (CD34) and
mast cells (TPSABL, TPSB2, KIT) [18,19].

220  Availability of data and materials
The four single-cell gene expression datasets presented in the manuscript are made publicly
available through the 10x Genomics website: https://support.10xgenomics.com/single-cell-
gene-expression/datasets. The macague microglia expression data is available from the NCBI
GEO database, under accession GSE162663. All of the code used to produce the analyses
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225  and figures presented in the manuscript, along with links to individual datasets, are available
through GitHub at https://github.com/powellgenomicslab/dropletQC_paper. DropletQC is
available as an R package at https://github.com/powellgenomicslab/DropletQC.
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325 Supplementary Figure 1 | Different cell types have distinct distributions of nuclear fraction scores and UMI counts.
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Supplementary Figure 2 | DropletQC identifies an increased proportion of damaged cellsin cryopreserved microglia
samples. (c-d) compared to fresh tissue samples (a-b). Total UMI counts (y-axis) and nuclear fraction scores (x-axis) are
330 shown for each cell, with colours representing the status of each cell assigned by DropletQC. The stacked bar chart (€)
illustrates the proportion of empty droplets and damaged cells for each sample.
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Supplementary Tables
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Sample Empty droplets Damaged cells
Embryonic mouse brain 9.53% 14.00%
Glioblastoma tumour 3.99% 9.77%
Peripheral blood mononuclear cells 0.37% 0.01%
Hodgkin’s lymphoma tumour 6.04% 5.16%

Supplementary Table 1 | Summary of the percentage of empty droplets and damaged cells identified in four heterogeneous
scRNA-seq datasets after filtering with EmptyDrops and a maximum mitochondrial gene content of 15%.
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Sample Empty droplets Damaged cells
Fresh 85T 0.80% 5.40%
Fresh 86T 1.15% 2.84%
Cryo 85T 0.64% 13.40%
Cryo_86T 0.57% 14.10%

Supplementary Table 2 | Summary of the percentage of empty droplets and damaged cells identified in four macague
microglia SCRNA-seq datasets.
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