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ABSTRACT 

Massively bulk RNA sequencing databases incorporating drug screening have opened up an 

avenue to inform the optimal clinical application of cancer drugs. Meanwhile, the growing 

single-cell RNA sequencing (scRNA-seq) data contributes to improving therapeutic 

effectiveness by studying the heterogeneity of drug responses for cancer cell subpopulations. 

There is a clear significance in developing computational biology approaches to predict and 

interpret cancer drug response in single cell data from clinical samples. Here, we introduce 

scDEAL, a deep transfer learning framework for cancer drug response prediction at single-

cell level by integrating large-scale bulk cell line data. The true innovation of scDEAL is to 

translate cancer cell line drug responses into predicting clinical drug responses via learning 

relations of gene expressions and drug responses at bulk-level and transfer to predict drug 

responses in scRNA-seq. Another innovation is the integrated gradient feature interpretation 

to infer a comprehensive set of signature genes to reveal potential drug resistance 

mechanisms. We benchmarked scDEAL on six scRNA-seq datasets and indicate its model 

interpretability through these case studies. We believe that this work may help study cell 

reprogramming, drug selection, and repurposing for improving therapeutic efficacy.   

 
Keywords: Deep transfer learning, drug response prediction, single-cell RNA-seq, 

integrative analysis 
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Background 

The investigation and development of precision medicine have achieved remarkable 

progress in understanding the complexity of the genomic landscape of cancer. The 

expectation towards tailoring cancer treatments to a particular genomic signature of an 

individual cell is growing rapidly. Abundant in vitro drug screening studies have been 

conducted, giving rise to drug response data on different cancer cell lines (CCLs) (1,2). Yet, 

one obstacle in cancer drug treatments is the low efficacies and high relapse rates caused 

by cancer heterogeneity among different states or cell fates. Such heterogeneity is 

responsible for differentiated responses of individual cells to a drug, leading to minimal 

residues remaining in the body, and finally, cancer relapse (3). Single-cell RNA-sequencing 

(scRNA-seq) technique provides an unprecedented opportunity to discover heterogeneous 

gene expressions of cancer subpopulations in response to specific drugs (4). All existing 

drug response prediction methods were developed for bulk data that cannot be directly used 

for larger-scale and highly intricate single-cell data. Hence, it is very much needed to 

develop computational methods to infer heterogeneous drug responses at the single-cell 

level.  

 

Deep learning methods have been deployed to tackle scRNA-seq data, achieving ideal 

performances in abstracting low-dimensional features and recovering dropout issues (5,6). 

The main obstacle in developing a deep learning-based tool for predicting single-cell drug 

responses is the lack of sufficient training power due to the limited number of benchmarked 

data in the public domain. As far as we know, only six datasets with drug treatment and 

experimentally validated drug responses for individual cells are available in the public 

domain. Fortunately, bulk drug-related RNA-seq data can be great complementary resources 

to infer relations of gene expression-drug response to help predict drug responses at the 

single-cell level (7), if bulk and single-cell data can be integrated (8). 

 

Deep transfer learning (DTL) is a deep learning method with the aim to transfer knowledge 

from one model to another (9). Using DTL, we can solve a particular task using a whole or 

part of an already pre-trained model on a different task. It has been applied as an effective 

strategy in leveraging multiple bulk data sources for cancer drug response predictions (10), 

yet, its power in transferring valuable bulk-level knowledge to the single-cell level has not 

been investigated. To this end, we developed a DTL framework, named scDEAL (single-cell 

Drug rEsponse AnaLysis), to predict drug responses of specific cancer cell groups from 

scRNA-seq data. To the best of our knowledge, scDEAL is the first computational framework 

that integrates a broad range of bulk and scRNA-seq data for drug response prediction. 

scDEAL holds a strong prediction power in predicting single-cell level drug sensitivity since it 

establishes bridges among drug sensitivity, gene features in single cells, and gene features 

in bulk samples. Corresponding parameters were trained and optimized towards the most 

reliable way to transfer information via the bridges (11), which is pre-trained (12) on a large 

volume of bulk cell line data stored in the Genomics of Drug Sensitivity in Cancer (GDSC) 

database (13,14). Applied on six benchmark drug-treated scRNA-seq data, scDEAL 
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achieves confidently high accuracy in predicting cell-type drug responses, comparing to 

benchmark labels. We further identified and interpreted critical genes that are either 

responsible for the development of sensitivity or resistance in a cell, by tracing and 

accumulating integrated gradients of each neuron in the neural network. Last, we 

demonstrated the relations between the dynamic change of drug response among cells and 

cell developmental trajectory, providing clues for identifying minimal residue disease cells. 

 

Results 
Overview of the scDEAL framework 
In general, scDEAL models relations between the gene expression feature and drug 

response at the bulk level, where annotations for cell lines are accessible (Fig. 1A). It 

deducts the single-cell expression features, having the maximum association with 

expression features at the bulk level. Therefore, the single-cell expression–drug response 

relations can be obtained through the migration of bulk expression-drug response relations. 

With the above strategies, scDEAL infers drug responses for individual cells without the 

training needs at the single-cell level.  

 

Both bulk and scRNA-seq data were pre-processed prior to the input of scDEAL (Fig. 1B). 

The scDEAL framework involves four major components: 1) the bulk gene feature extractor, 

2) the single-cell gene feature extractor, 3) the drug response predictor, and 4) the whole 

DTL model combining all extractors and predictor as one (Fig. 1C). Two feature extractors 

(bulk and single-cell) are pre-trained in the encoder-decoder structure to extract low 

dimensional gene features from bulk and scRNA-seq data, respectively. The pre-training 

reduces the reconstruction loss between the decoder output and the expression profiles, 

making low dimensional features informative to represent the original gene expressions. 

Meanwhile, the pre-training is also a fine-tuned process (12) to generate initial better neuron 

weights within the DTL model. A fully connected predictor is attached to the pre-trained bulk 

feature extractor. It is trained to minimize the difference between the output and the drug 

response labels by the cross-entropy loss. The predictor attached to the extractor (extractor-

predictor) is trained to receive bulk RNA-seq data and predict drug response labels. 

Ultimately, the DTL model updates feature extractors and the predictor simultaneously in a 

multi-task learning manner, receiving both bulk and scRNA-seq data as inputs. Specifically, 

the first task is to minimize the differences (mean maximum discrepancy loss) between gene 

features from two extractors, bridging the communication between bulk and scRNA-seq data. 

The second task is to re-minimize the cross-entropy loss of extractor-predictor output and 

the drug response, similar to the training of the predictor. The output of scDEAL is the 

prediction of the potential drug response of individual cells or cell clusters (if available). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.01.454654doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.01.454654
http://creativecommons.org/licenses/by-nc-nd/4.0/


  4  
 

 

Fig. 1. The workflow of scDEAL. (A) The strategy of scDEAL is to transfer the knowledge 

through the DTL model of two relations of (i) gene expression feature association between 

bulk RNA-seq and scRNA-seq, and (ii) genes and drug responses to predict drug responses 

in individual cell types. (B) Data pre-processing steps for GDSC bulk data and scRNA-seq 

data. (C) The scDEAL framework, with four components: 1) a bulk gene feature extractor, 2) 

a single-cell gene feature extractor, 3) a drug response predictor, and 4) a transfer learning 

model. Bulk and single-cell feature extractors extract genetic features from expression 

profiles. It is firstly trained in an encoder-decoder manner. Subsequently, the bulk gene 

features extracted by the drug response predictor are applied to train a fully connected 

predictor for drug response prediction. Finally, the transfer learning model is used to update 

two feature extractors and the predictor at once. It enables the predictor to received genes 

features extracted from scRNA-seq data to generate single-cell drug response prediction.  
 

Training of scDEAL and assessment of prediction accuracy 
The training of scDEAL is composed of a source model trained to predict bulk-level drug 

response and a target model trained with DTL to predict single-cell level response. We 
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evaluated the DTL performance of scDEAL on a collection of six published datasets covering 

five drug treatments, including Cisplatin, Gefitinib, I-BET-762, Docetaxel, and Erlotinib. Here, 

we focus on the accuracy of single-cell level response predictions while bulk level 

benchmarks are presented (Supplementary Table S1). All selected datasets have been 

provided with drug response annotations (i.e., drug sensitive or resistant) for individual cells. 

The prediction of drug responses in scDEAL is compared to the ground truth using three 

commonly applied metrics for machine learning: F-score, Area Under the Receiver Operating 

Characteristic (AUROC), and average precision (AP). Fig. 2A presents the results of 

scDEAL measured by three metrics on six datasets. As a result, scDEAL achieves high 

prediction performance across different datasets and metrics. In particular, ROC and F-score 

are more significant than 0.9 in Kong's dataset (15) (GSE112274), and Schnepp dataset (16) 

(GSE140440), as well as AP is grated than 0.8 in the Sharma (HN120) dataset (17) 

(GSE118782). The excellent matching of scDEAL comparing with the ground truth cell types 

is also intuitive.  

 

To illustrate detailed predictions, we showcased the analytical power of scDEAL on Bell's 

dataset (18) (GSE110894) containing 1,419 leukemic cells treated with BET inhibitor (Fig. 
2B). Four cell states including two sensitive states “dosed with DMSO” and “sensitive to 400 

nM of IBET”, and two resistant states “cells have >IC90 to 1000 nM of IBET” and “withdrawn 

from IBET four days before experiments” (18). The prediction of scDEAL derived a 

consistent conclusion on leukemic cell drug responses with the original study. In all, 609 out 

of 685 resistant cells (>IC90 to 1000 nM of IBET) and the prolonged drug withdrawal cells 

are classified as resistant cells via scDEAL (Fig. 2B). Also, the sensitive prediction 

probability of cells is highly correlated to the ground truth label. 

 

Though scDEAL delivered decent results on metrics comparing predictions and binarized 

drug response labels. The comparison cannot reflect the expression patterns of MA9 

leukemic cells and my struggle in cells having sensitive probabilities in the borderline. To this 

end, we introduced a gene score reflecting drug responses (sensitivity or resistance) based 

on the differentially expressed genes in the sensitive (or resistant) cell cluster. The 

hypothesis behind the score is that an accurate prediction assigns the correct response label 

to cells. Therefore, the marker gene sets between the resistant and the sensitive state for an 

accurate prediction should be similar to the set derived from the ground truth. Gene scores 

based on the predicted drug response are highly correlated to that ground truth (Fig. 2C). 

The prediction and benchmark of both sensitive and resistance scores showed similar 

distributions on the UMAP, also indicating the performance if scDEAL (Fig. 2D).  

 

Random repetition and stratified sampling were used to test the reproducibility of scDEAL 

(Fig. 2E). As a result, the variation of F-score, AUPRC, AP score, sensitivity score, and 

resistance score are 0.022, 0.017, and 0.022, respectively (Supplementary Table S2), 

indicating that scDEAL is robust across multiple runs of random sampling. 
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Fig. 2. Benchmarking results of scDEAL. (A) Comparison of drug prediction performance 

across five datasets of scDEAL, measured by F-score, AUROC, and AP. (B) Cell embedding 

visualization based on UMAP of data from GSE110894. Different colors present the ground 

truth sensitivity, the prediction results, prediction probability, and cell types. (C) Linear 

regression plot displaying the relationship between the gene score derived from the 

predicted and the ground truth cell labels. (D) UMAP plot colored by sensitive (and resistant) 

gene score derived from differentially expressed genes in the predicted and ground truth 

sensitive (and resistant) cluster. (E) Box plot across five benchmark scores in random 

repetition test and 80% stratified sampling test. 

 

Predicting critical genes for drug responsiveness using integrated gradient 
Though scDEAL delivered accurate prediction for single-cell drug responses with the help of 
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the DTL, comprehension of active genetic features within the model is essential to be 

revealed. To this end, we introduced Integrated Gradients (IG), a state-of-the-art feature 

interpretation method for deep neural networks, to provide a scope of "critical genes" 

contributing to the prediction of drug responses. Critical genes are defined based on the 

higher accumulation of gradients of neurons in the neural network following the path of layer 

connections. We conducted the IG analysis on the scDEAL model for the oral squamous cell 

carcinoma (OSCC) treated by Cisplatin in Sharma's dataset (GSE118782) (17), 

characterizing the relations between transcriptional expressions and resistant/sensitive 

states. Using scDEAL, 85% of cells were correctly predicted as either sensitive or resistant 

cells to Cisplatin, with an F1-score of 0.74, AUROC score of 0.89, and AP score of 0.94 (Fig. 

3A). The Pearson’s correlations of sensitive and resistant cells between prediction and 

benchmark are 0.83 and 0.82, respectively. We identified 714 sensitive critical genes and 

364 resistant critical genes, according to the distinct patterns in the predicted clusters based 

on the gradients (Fig. 3B), which cannot be reflected directly from gene expressions 

(Supplementary Fig. S1). 

 

Cisplatin is one of the most widely used drugs for treating solid cancers such as testicular, 

ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas (19). 

Cisplatin exerts its anti-cancer activity via the generation of DNA lesions by interacting with 

purine bases on DNA, interfering with DNA repair and causing DNA damage, followed by 

activation of several signal transduction pathways and finally leading to apoptosis of cancer 

cells (20). Particularly, sensitive CGs MCM7 and RFC5 have already been reported to play a 

role in Cisplatin-related pathways, such as cell cycle control, DNA replication, and error 

repair (21,22). The down-regulation of MCM7 was reported as an indicator of the increase of 

Cisplatin resistance in bladder cancer (23). Resistant CGs CTSC, CSTB, and IFITM1 are 

key players in the IFN signal transduction (lysosome dependent apoptosis and E-cadherin 

signal) (24-26). We further checked the top 10 sensitive and resistant CGs and found no 

explicit expression patterns but distinct integrated gradients differences (Fig. 3C and 

Supplementary Fig. S1). We utilized LISA2 (27) to identify potential regulators of sensitive 

and resistant CGs (Fig. 3D). SPI1, MXI1, MYC, REST, and MAX are the potential regulators 

of sensitive CGs that are well known for their roles in cell cycle regulation. The down-

regulation of MYC and cell cycle regulation is reported to increase Cisplatin resistance(28). 

On the other hand, five TFs were also predicted for resistant CGs, including CEBPB, STAT1, 

ELF3, IRF1, and KLF5. STAT1 and IRF1 in the potential regulators of resistant CGs indicate 

the participation of JAK-STAT signals, which are tightly working with the IFN signals. The IFN 

signal, along with the JAK-STAT signals, may promote Cisplatin resistance in OSCC.  

 

We performed the Gene Ontology analysis for the sensitive and resistant critical genes, 

respectively. The sensitive CGs are primarily enriched in cell cycle and DNA replication-

related pathways (Fig. 3E). It has also been reported that the mitochondria can be attacked 

by Cisplatin (29). ROS production (reactive oxygen species) triggered by the attack may 

explain the enriched carbon metabolism pathways in the KEGG analysis results. Thus, our 
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sensitive CG indicates and well presents the potential working mechanisms of Cisplatin. On 

the other hand, increased expression levels of various transporters and increased repair of 

platinum-DNA adducts are considered the most significant processes in developing drug 

resistance (29). In addition, the autophagy, mitochondria quality control may establish the 

resistance, lysosomal degradation of organelle, and the defects in the signal transduction 

pathways that usually elicit apoptosis in response to DNA damage and problems with the cell 

death executioner machinery (30,31). Those resistance-related pathways are also shown in 

our KEGG and GO analysis of resistant CGs (Fig. 3E and Supplementary Fig. S1). 

Interestingly, we found the interferon (IFN) related pathway is highly enriched in our resistant 

CGs, as IFN family genes are not among the typical genes related to drug resistance. 

Studies have reported that the IFN-gamma may suppress the caspase-3 activation and the 

apoptosis induced by Cisplatin in renal cells (32). Overall, our KEGG and GO results are in 

accordance with the Cisplatin anti-tumor mechanisms mentioned above.  
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Fig. 3.  Case study of scDEAL using the Sharma (HN120) dataset (A) Response predictions 

of the dataset. The red and blue labels are ground truth, while the black and orange labels 

are from prediction. (B) The integrated gradient heatmap of critical genes in the predicted 

sensitive and resistant clusters. (C) The integrated gradient of identified critical genes of 

crucial pathways. (D) The binding motif logos of TFs that regulate the critical genes. (E) The 

Gene Ontology analysis of sensitive (upper panel) and resistant (lower panel) critical genes. 

The orange and blue highlights are the known pathways related to the Cisplatin treatment. 

 
Correlating drug responsiveness with pseudotime analysis 
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Genetic features of developing the drug resistance are characterized by the integrated 

gradient method on the trained scDEAL model. Using the same OSCC data, we further 

inspected scDEAL predictions and the characterized critical gene signals accompanied by 

the transcriptome dynamics and drug resistance developments. We hypothesized that the 

drug response in OSCC decreased along with cell states starting from sensitive to resistant. 

We applied PAGA (33) and diffusion pseudotime (34) as the trajectory inference to the 

OSCC data, covering four stages divided into six cell clusters (Fig. 4A) of tumor evolution 

under the selection pressure of Cisplatin and metastatic dissemination.  

 

The PAGA graphs in Fig. 4A indicate strong connections between the diffusion pseudotime 

and predicted resistant probability in scDEAL. The diffusion pseudotime graph suggested 

setting the primary site of Sharma (HN120) cells as an origin root; its sensitivity towards 

Cisplatin decreases along with the cell trajectory. Beyond the consistency between 

prediction and the trajectory topology, we further explain the trend of resistance development 

by the critical genes identified by the integrate gradient method. Through the PAGA graphs 

(Fig. 4B), we observe that the expression levels of these genes are high within cells 

established from the primary site of the tumor and decrease elsewhere. On the contrary, 

expressions of resistant critical genes (such as IFITM and DLGAP5) are seen to increase 

towards the end of the sensitive–resistant path, respectively. We discovered consistent 

critical gene expression variation along with trajectory paths from sensitive to resistant, as 

shown in Fig. 4C. We observe changes of critical genes expressed in sensitive OSCC cells 

such as IFITM2 and MCMDC2. Similar trends are observed in three datasets, including 

Kong's dataset (15) (GSE112274), Schnepp's dataset (16) (GSE140440), and Sharma's 

dataset (17) (GSE118782). We investigated three scores characterizing cell resistance in 

drug response, including the prediction probability for the resistant label, the resistance gene 

score derived from prediction, and the resistant score derived from the ground truth (Fig. 4D). 

Pearson’s correlations among three scores and the pseudotime value are commonly high, 

which indicated that predictions of scDEAL could highly imply drug resistance development.  
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Fig. 4. Connecting predicted drug response to pseudotime trajectory. (A) The diffusion map 

plot colored by annotated by six cell states annotation, predicted resistant probability, and 

diffusion pseudotime value on the Sharma (HN120) OSCC dataset. 'P' and 'M' stand for 

sensitive cells in 'primary' and 'metastasis' sites. 'R' and 'DH' stand for 'resistant' and 'drug 
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holiday' cells. The combination of 'P’/’M' and "R’/’DH' constructs six cell states. The Red (B) 

PAGA graph of the Sharma (HN120) dataset is colored by four critical genes. Nodes of the 

graph represent cell clusters annotated by six cell states. (C) The heatmap analysis towards 

the expression of critical genes in the sensitive-resistant state paths for parental cells and 

metastasis cells. Upper rows represent gene expressions, while columns represent cells. 

Cells are ordered by their response scores. (D) The correlation between diffusion 

pseudotime value and gene scores related to cell resistance across three datasets. 

 

Discussion 
Our work, for the first time, provides a novel method to augment single-cell data analyses 

and interpretation using bulk gene expression data, which can be widely applied to predict 

drug responses of cell populations in any cancer single-cell data. The neural networks 

adapted to single-cell data can be pre-trained on a large volume of bulk cell-line data. Hence, 

a large number of labeled single-cell data is not required to infer drug sensitivity prediction in 

our study. We benchmarked scDEAL on six scRNA-seq data with experimentally validated 

drug response labels, with an average F1 score of 0.78. For a prostate cancer dataset with 

324 cells treated with the Docetaxel, scDEAL achieves the highest F1 as 0.97 and AUROC 

as 0.99. The robustness of scDEAL was demonstraed by performing random subsampling 

1,000 times with a result of variance of F1 scores lower than 0.1. We also identified CGs 

corresponding to the Cisplatin responses in OSCC, showing distinct predicted response 

patterns in drug-sensitive and resistant cells. These CGs are regulated by TFs and enriched 

by pathways that have been reported to be related to the drug response. Our results also 

demonstrated the dynamic changes of drug sensitivities among cells and cell developmental 

trajectory. 

The accuracy of the prediction results in scDEAL could vary, depending on the collection 

of bulk gene expression of cell lines. In the future, we will include more bulk-level data in 

training scDEAL. Moreover, databases, such as DrugCombDB (35), which includes 448,555 

combinations of 2,887 drugs on 124 cell lines, can be included to train scDEAL for the 

prediction of combinatory drug responses in cell types. In addition, the genetic features 

between bulk and scRNA-seq data can be explained and biologically interpreted by the IG 

analysis. The predicted IGs can be used as targets for experimental validations on drug-

gene relations via single-cell Perturb-seq (36). We believe our work can contribute and 

provide insights to cell reprogramming, drug selection and repurposing, and combinatory 

drug usage for improving therapeutic efficacy.  
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Methods 

Datasets  
We used the GDSC database as the source of bulk data which systematically collects 

135,242 response profiles and genomic information across 565 compounds in 1,796 CCLs. 

GDSC is publicly available through the website (https://www.cancerrxgene.org/). Drug 

response annotation including half maximal inhibitory concentration (IC50) and area under 

the dose-response curve (AUC) are available through the page 

https://www.cancerrxgene.org/downloads/bulk_download. Gene expression data (RMA-

normalized basal expression profiles) for cell lines can be access on GDSC 
(https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html).  

 

All data analyzed within this paper are publicly available. The following data sets are 

available from the National Center for Biotechnology Information's (NCBI) Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). All data are accessible through the GEO 

Series accession numbers: GSE117872 (Sharma, et al., Cisplatin treated oral squamous cell 

carcinoma), GSE112274 (Kong, et al., Gefitinib treated lung cancer), GSE110894 (Bell, et al., 

I-BET-762 treated acute myeloid leukemia), GSE140440 (Schnepp et al., Docetaxel treated 

prostate cancer), and GSE149383 (Aissa, et al., Erlotinib treated lung carcinoma) (Table 1). 

  

Table 1. Data summary of the scRNA-seq datasets. 

Data Drug  GEO 
access Cells Species  Cancer type  Ref 

Sharma,  
(HN120) Cisplatin  GSE117872 548 Homo sapiens Oral squamous cell 

carcinomas 
(17) 

Sharma, 
(HN137) Cisplatin  GSE117872 568 Homo sapiens Oral squamous cell 

carcinomas 
Kong Gefitinib GSE112274 507 Homo sapiens Lung cancer (15) 

Aissa Erlotinib GSE149383 1496  Mus musculus Lung cancer (37) 

Bell I-BET-762 GSE110894 1419 Mus musculus Acute myeloid 
leukemia (18) 

Schnepp Docetaxel GSE140440 324 Homo sapiens Prostate Cancer (16) 
 

Pre-processing for expression profiles in GDSC dataset 
In our experiment, we selected 1,018 cell lines and 17,419 genes from the expression 

profiles correspond to a subset of drug screening annotation for five drugs, including I-BET-

762, Cisplatin, Gefitinib, Docetaxel, and Erlotinib, corresponding to the drug treatment in the 

single-cell data. All 1,018 cell expression profiles in GDSC are merged to their corresponding 

drug screening profiles according to their Catalogue of Somatic Mutations in Cancer 

(COSMIC) ID. Each cell line will be annotated with their drug screening records including 

AUC values, cell line names, and drug names. After the merging, there are 808 cell lines that 

have drug screening for our selected drugs. Expression values in the profiles are then scaled 

from 0 to 1 by "pre-processing.MinMaxScaler" in the package sklearn (38) before the training. 

The GDSC dataset is then split into training, validation, and test sets with the proportion of 

60%, 20%, and 20%, respectively. The split is a stratified split where the proportion of 
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sensitive and resistant cells are identical across training set, validation, and test set. The 

split is performed by the function "train_test_split" in the package sklearn. 
 

Pre-processing for labels transforming drug AUC to binary label in GDSC dataset. 
Our drug response labels of cell lines to each drug in the bulk-level gene are derived from 

the AUC values in the GDSC database. They are binarized with the waterfall method 

describe by the CCLE study (39) while cell lines have a response to a specific a selected 

drug is annotated as 1 and resistant as 0. The waterfall method firstly sorts cell lines 

according to their AUC values in descending order and generates an AUC-cell line curve in 

which the x-axis represents cell lines and the y-axis represents AUC values. The cutoff of 

AUC values is determined in two strategies: 1) for linear curves (whose regression line fitting 

has a Pearson correlation >0.95), the sensitive/resistant cutoff of AUC values is the median 

among all cell lines; 2) otherwise, the cut off is the AUC value of a specific boundary data 

point. It has the largest distance to a line linking two datapoints having the largest and 

smallest AUC values. Waterfall plots of drugs we applied in scDEAL are present in 

(Supplementary Fig. S2). 
 

Data sampling for predictor training. 
As described in the label binarization, the proportion of sensitive and resistant cell lines are 

different across drug treatments (Supplementary Fig. S3). Potentially, the imbalance of 

drug response labels in the training set may affect the performance of the model. We, 

therefore, introduce different sampling methods as options to balance the proportion of 

sensitive and resistant cell lines when training the prediction model in the bulk level shown in. 

Three sampling methods as hyperparameters are introduced in the bulk model training, 

including up-sampling, down-sampling, and SMOTE-sampling (40). Up-sampling randomly 

duplicates samples in the minority, while down-sampling discards samples in the majority 

class to generate a training set that having the same number of sensitive and resistant cell 

lines, respectively. SMOTE balances the training set in a similar manner to up-sampling. It 

generates synthetic cell lines by selecting k nearest neighbors for a random sample in the 

minority class and synthesis a novel artificial sample within neighbors in feature space. All 

sampling methods are implemented by the python library imblearn (41). 

 
Pre-processing for scRNA-seq data. 
Quality control and pre-processing of the scRNA-seq data were performed using python 

package SCANPY (42). Specifically, cells with less than 200 detected genes (indicative of no 

cell in the droplet), and genes detected in less than 3 cells are filtered out using the function 

"filter_cells" and "filter_genes". Percentages of mitochondrial genes expression and numbers 

of genes that have UMI count > 1 were calculated by the function "cal_ncount_ngenes". 

Counts matrices were normalized dividing by the total UMI count in each cell, multiplied by a 

factor of 10,000 using the function "normalize_total", and log one plus transformed using the 

function "log1p". All scRNA-seq dataset are then split into training set, validation, and test set 

with the proportion of 60%, 20%, and 20% respectively. The split is a stratified split where 
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the proportion of sensitive and resistant cells are identical across training, validation, and 

test sets. The split is performed by the function "train_test_split" in the package sklearn. 

 

scDEAL workflow design 
Step 1. Bulk gene feature extractor: The first introduced step of transfer learning is the 

gene feature extractor. Gene feature extractors are applied to extract variable gene features, 

reduce data dimensionality and denoise data. Also, it is a fined-tuned pre-training step for 

the sensitivity prediction model P that has better initial model weights than random 

initialization. Our solutions of feature extractors are non-linear neural networks (NNs): Auto 

Encoder (43) (AE) and Variational Auto Encoders (44) (VAE). 

 

The feature extractor ��  is modeled as an unsupervised autoencoder to learn a low 

dimensional representation from a bulk RNA-seq expression matrix ��, where each row of 

the matrix represents a cell and each column of the matrix is a gene. The basic architecture 

of an autoencoder is composed of two NNs: an encoder (��) and a decoder (���� ). ��  

subtracts the data to a lower-dimensional subspace, and the ����  reconstructs the low 

dimensional representations back an approximation of �� . Parameters inside the 

autoencoder are optimized by the reconstruction loss function (Mean Square Error, MSE) 

between the output of ����  and ��, aiming to make the reconstructed matrix as similar as 

��. The model can be trained by equation Eq. 1 as follows:  

min
��

	
������������ , �� , ��� � min
��

�����������������, ����#Eq. 1  

Alternatively, the feature extractor �� can also be modeled as an unsupervised Variational 

Autoencoder (VAE) (44) to learn a low dimensional representation from �� . Like AE, the 

architecture of a VAE is also composed of an encoder (��.) and a decoder (����). However, 

VAE is a generative model, which applies NNs to estimate parameters of a latent distribution 

that enable us to sample data in its lower-dimensional representation. In this model, an 

encoder (��) is applied to estimate the mean (μ) and variance (σ) of the data distribution in 

the lower-dimensional space. The decoder (����) received the low dimensional sampling 

result to generate an approximation of ��. Parameters inside the VAE are optimized by the 

weighted sum of the reconstruction loss function between the output of ���� and ��, and a 

Kullback–Leibler Divergence (KL), named the lower bound of likelihood loss (	
���	
�). The 

model can be trained by minimizing the loss explained by equation Eq. 2 as follows:  

min
��

 	
���	
������ , �� , ��� � ����������������, ��� � ��� N�µ�, σ��, N�0,1��#Eq. 2  

where N(µ, σ) is a normal distribution with mean µ and variance σ; ���� is the Kullback–

Leibler Divergence between distributions. All trained parameters in Step 1 are listed in 

Supplementary Table S3. 

 

Step 2. Single-cell gene feature extractor: The second step of the transfer learning is the 

d single-cell gene feature extractor. It is also applied to feature extractors are applied to 

extract low-dimensional gene features. Besides, it is a fined-tuned pre-training step for the 
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transfer learning model in the single-cell level in Step 5. Its model structure, training process, 

and loss function are identical to the previously introduced feature extractor at the bulk level. 

However, its input and reconstruction target are substituted by the scRNA-seq data ��.  All 

trained parameters in Step 2 are listed in Supplementary Table S4. 

 

Step 3. Bulk drug response predictor: The third introduced step of transfer learning is the 

drug response predictor. We pre-train a NN model (!) based on a fully connected multi-layer 

perceptron (MLP) (45) on bulk RNA-seq data to estimate the correlation of drug response 

and bulk gene expressions. Parameters inside ! are optimized with the classification loss 

(i.e., cross-entropy) between the predictive value of sensitivity ������������ and the ground 

truth "�, which can be trained by: 

min

�

	
��������!, �� , �� , "�� � min
��

�Cross Entropy �!��������, "���#Eq. 3  

The result of Step 2 (P), will be finally applied to link the level of drug response cells of �� 

cell-drug in Step 5. 

 

Step 4. Transfer learning: In this step, we will introduce the transfer learning model, which 

is the core step of the model. It adapts the gene features extracted from bulk and single level 

to enable the sensitivity prediction for cells through the predictor P. 

 

We apply a DaNN (46) model to derive the feature extractor �� in the single-cell level. The 

DaNN model introduces an extra loss named the Maximum Mean Discrepancy (MMD) to 

estimate the similarity of output ��  and �� . This similarity between two gene features is 

added to the classification loss during the training process of the predictor ! to ensure that 

the feature space from the output of �� exhibits similar distributions to the output of �
. This 

transfer learning model (D) takes two sources of data �� and �� as inputs, and "� as output. 

DaNN models are trained to update two gene extractors �
 and �� at the same time. The 

loss of DaNN marked as 	
������ can be interpreted as a weighted sum of the bulk level 

prediction loss 	
������� , and the gene feature distribution 	
����� . 	
�������  is the 

classification loss of the sensitivity prediction of bulk RNA-seq data, which is the loss 

described in equation Eq. 3. The distribution loss 	
����� is the discrepancy between the 

feature output of bulk and single-cell data. The 	
����� function is described in Eq. 4: 

	
�������� , ��� � ,| 1
. / 012�� 3

�

���

4 1
5 / 012��3

�

���

, |� , #Eq. 4  

where ��=72�� 8
���,…,�

 and ��=72��8
���,…,�

 are data vectors for bulk and single-cell data; 0�. � is 

referred to as the feature space map to the universal Reproducing Kernel Hilbert Space 

(RKHS). The RKHS norm |. |� is applied to measure the distance of two vectors with different 

dimensions. At last, the overall loss of DaNN is defined as 

min
�� ,�� ,


 	
��������� , �� , �� , �� , !� � 	
��������!, �� , �� , "��  �  9	
�������� , ���, #Eq. 5  
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where 9 is a weight of 	
�����. Minimizing the transfer learning loss 	
������ , the result will 

be the extracted and matched gene features output from ��  and will be used in the 

sensitivity prediction in Step 5. 

 

Single-cell Prediction: The last step of transfer learning framework is to generate drug 

response prediction for cells. The trained �� in Step 4 is a model after feature transformation. 

Therefore, the gene feature from scRNA-seq data extracted by �� can be recognized by the 

predictor ! . Therefore, we will ensemble two components ��  and !  as a drug response 

prediction network at the single-cell level. The prediction network will take scRNA-seq data 

�� as input and output binary drug response (sensitive or resistant) for each cell in ��. The 

binary drug response predictions will be applied to calculate a sensitive/resistant score 

based on the expression level of marker genes in the predicted sensitive/resistant cluster. 

The detailed method is described in the Sensitive and resistant gene score analysis 
section. 

 

Benchmarking metrics for the scDEAL prediction. 
To evaluate the prediction of scDEAL, we applied three metrics F-score, AUROC, and AP 

which are measurements of a classification test's accuracy.  

F-score can be interpreted as a weighted average of precision and recall. F-score 

reaches its highest value at 1 and lowest score at 0. The equation for the F-score is: 

; 4 �<
=> �  True positive
True positive � 0.5 C �True positive � False negative� #Eq. 6  

We implemented F-score tests using the "f1_score" function in the package sklearn (38). 

AUROC score computes the area under the receiver operating characteristic (ROC) 

curve. ROC curve's x-axis is the true positive rate and the y-axis is the false positive rate 

derived from prediction scores. The curve is generated by setting different thresholds to 

binarize the numerical prediction scores. AUROC computes the area under the precision-

recall curve with the trapezoidal rule, which uses linear interpolation. We implemented 

AUROC tests using the "roc_auc_score" function in the sklearn package. 

AP score summarizes a precision-recall curve (PRC) as the weighted mean of 

precisions achieved at each threshold, with the increase in recall from the previous threshold 

used as the weight. The equation of AP score is: 

I! � ,/�J�

�

���

4 J����, !�#Eq. 7  

where !�  and J�  are the precision and recall at a threshold n ordered by its value. We 

implemented AP tests using the "average_precision_score" function in the package sklearn. 

 

Sensitive and resistant gene score analysis. 
To define the sensitive and resistant score, we collected differentially expressed genes 

between the sensitive and the resistant cluster based on both the predictions and 

annotations in the dataset (Table 1). The sensitive or resistant gene score is derived from 
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the binned average expression of a set of differentially expressed genes either in the 

sensitive or resistant cell cluster. The score of each set of genes was evaluated with the 

"score_genes" function built in the SCANPY (42). To select the differentially expressed 

genes, we performed Wilcoxon signed-rank tests using the "rank_genes_groups" function. 

By default, the top 50 genes (whose adjusted p-values<0.05) ranked by the z-score are 

selected to calculate the sensitive or resistant gene score.  

 

Data sampling and repetition for stability tests. 
The stability test is performed by retraining the DTL model ten times with different random 

seeds and randomly sampled subsets of cells. To preserve the original sensitive and 

resistant cell ratio in the dataset, we choose to perform the stratified sampling of the 

sensitive and resistant cells in the dataset. The sampling is performed using the "resample" 

function in the sklearn package (38). The number of output (n_samples parameter) is set to 

be 80% of the input, and the sampled data points cannot be sampled again with the setting 

"replace=False". 

 

Critical gene identification with Integrated Gradients 
We applied integrated gradients (IG) (47) to characterize critical input genes features in the 

scDEAL model. IG represents the integral of gradients with respect to each gene expression 

as inputs along the path from zero expression as a baseline to the input expression level 

(Supplementary Fig. S4). The integral is approximated using the Riemann rule described 

as follows: 

 IG ��2� L� �x� 4 x��� N O ∂F1x� � α N �x 4 x��3
∂x�

�

�� 

d#Eq. 8  

It calculated the importance of the i-th gene expression of the input cell x. 9 is the scaling 

coefficient; x�� is the baseline expression level gene i which is 0 in our case; and ∂F(x) / ∂x� 
represents the gradient of F(x) along the i -th dimension.  

 

We apply the "IntegratedGradients" class in the python Captum library (48) to calculate IG 

values. The input is the function is our expression matrix, trained model, and output labels. 

The output of the function is IG matrices of the same shape as the input expression matrix. 

Rows resents genes and columns represent cells. Values in a matrix are the corresponding 

IG values. 

 

Since scDEAL is a binary classification deep learning model. It has two nodes in the output 

layer to predict sensitive and resistant probability. Based on the sensitivity or resistance for 

each gene contribute, we can obtain two IG matrices for each input data with corresponds to 

the sensitive and resistant output, respectively. The IG matrix can be found in the model 

output file "attr_integrated_gradient.h5ad". The IG matrix is stored with an "AnnData" object 

and can be read by the function "sc.read_h5ad".  
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To select critical genes that have significantly higher IG values within the sensitive (or 

resistant) cell cluster, we utilize the Wilcoxon test using the function 

"sc.tl.rank_genes_groups" between Cisplatin sensitive and resistant cells in SCANPY. We 

consider the genes which have Bonferroni adjusted p-values less than 0.05 and log-fold 

changes greater than 1 as acritical genes. Sensitive critical genes and resistant critical 

genes are further determined depending on the predicted sensitive and resistant cluster 

labels. 

 

Functional enrichment 
The KEGG and GO gene set enrichment analysis is performed using R package 

ClusterProfiler (49). The gene symbols are first converted to ENTREZID by the "bitr" 

function. The KEGG analysis is performed via the function "enrichKEGG" with the parameter 

setting "qvalueCutoff=0.05". The GO analysis is performed by utilizing the function 

“enrichGO” with the parameter setting “ont = "ALL", pAdjustMethod = "BH", qvalueCutoff = 

0.05”. GO biological process enrichment analysis was performed using the ClusterProfiler R 

package with a p-value cut-off of 0.01 and a q-value cut-off of 0.05. 

 

TF and Motif analysis  
Epigenetic Landscape in Silico deletion Analysis (LISA) (27) was used to identify potential 

transcription factors (TFs) and chromatin regulators (CRs) that regulate the sensitive and 

resistant critical genes, respectively.  LISA first models the epigenetic landscape based on 

the input marker genes as well as public epigenomic profiles (DNase-seq, H3K27ac ChIP-

seq) in CistromeDB, then performs in silico detection of TF binding sites on the epigenetic 

landscape to evaluate the essentiality of the transcriptional regulators. We utilize the default 

setting of LISA2 with the parameter 'hg38', rp_map = 'enhanced_10K', assays = 

['Direct','DNase','H3K27ac'], isd_method = 'chipseq', verbose = 1). The number of 

background genes is set for 3000. The motifs of TFs in LISA2 are fetched by JASPAR (50) 

database. 

 
Trajectory inference for Oral Squamous Cell Carcinomas. The trajectory analysis is 

carried out in the python package SCANPY (42). The PCA and nearest neighbor graph 

required by the trajectory inference are generated in the step of analysis for scRNA-seq 

gene expression. We apply ForceAtlas2 (51) layout to preserves a graph topology that is 

better to be visualized using function "draw_grap." To denoise the graph, we applied 

diffusion map (34) using the function "diffmap" to computing distances based on diffusion 

components  similar to denoising a data matrix using PCA. The trajectory is then mapped to 

a backbone PAGA (33) connectivity structure using the "paga" function. By quantifying the 

connectivity cell types in the single-cell graph, PAGA generates a simplified graph of 

partitions, in which edge weights represent confidence in the presence of connections.  
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Code availability 

The source code of scDEAL is freely available on (https://github.com/OSU-BMBL/scDEAL).  
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