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Key Points

e AlLSorts is a gene expression classifier for B-cell acute lymphoblastic leukemia,
which predicts 18 distinct genomic subtypes - including those designated by the
World Health Organisation (WHO) and provisional entities.

e Trained and validated on over 2300 B-ALL samples, representing each subtype and
a variety of clinical features.

e Correctly identified subtypes in 91% of cases in a held-out dataset and between
82-93% across a newly combined cohort of paediatric and adult samples.

e ALLSorts assigned subtypes to samples with previously unknown driver events.

ALLsorts is an accurate, comprehensive and freely available classification tool that

distinguishes subtypes of B-cell acute lymphoblastic leukemia from RNA-sequencing.

Abstract

B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer.
Subtypes within B-ALL are distinguished by characteristic structural variants and mutations,
which in some instances strongly correlate with responses to treatment. The World Health
Organisation (WHO) recognises seven distinct classifications, or subtypes, as of 2016.
However, recent studies have demonstrated that B-ALL can be segmented into 23 subtypes
based on a combination of genomic features and gene expression profiles. A method to
identify a patient’s subtype would have clear clinical utility. Despite this, no publically
available classification methods using RNA-Seq exist for this purpose.

Here we present ALLSorts: a publicly available method that uses RNA-Seq data to
classify B-ALL samples to 18 known subtypes and five meta-subtypes. ALLSorts is the result
of a hierarchical supervised machine learning algorithm applied to a training set of 1223
B-ALL samples aggregated from multiple cohorts. Validation revealed that ALLSorts can
accurately attribute samples to subtypes and can attribute multiple subtypes to a sample.
Furthermore, when applied to both paediatric and adult cohorts, ALLSorts was able to
classify previously undefined samples into subtypes.

ALLSorts is available and documented on GitHub

(https://qithub.com/Oshlack/AllSorts/).
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Introduction

B-cell acute lymphocytic leukemia (B-ALL) is the most common childhood
malignancy and is a rare Leukemia in adults (Gu et al., 2019; Hunger & Mullighan, 2015;
Inaba, Greaves, & Mullighan, 2013; Terwilliger & Abdul-Hay, 2017). B-ALL subtypes are
distinguished by characteristic structural variants and mutations, which in some instances
strongly correlate with responses to treatment (Gu et al., 2019; Inaba et al., 2013; Paietta et
al., 2021; Terwilliger & Abdul-Hay, 2017). The 2016 World Health Organisation (WHO)
classification recognises seven distinct B-ALL subtypes (Arber et al., 2016). These are
defined by either the presence of a fusion gene (BCR-ABL1, TCF3-PBX1, ETV6-RUNX1,
IGH-IL3, and KMT2A rearrangements in KMT2A) or chromosomal aneuploidy (hyperdiploidy
and hypodiploidy). There are two provisional subtypes, intrachromosomal amplification of
chromosome 21 (iIAMP21) and Philadelphia-like (Ph-like) (Arber et al., 2016). iIAMP21 is
relatively rare (~2% of cases) and represents a complex structural change within
chromosome 21, including amplification of a region including the RUNX1, ETS and ERG
genes (Inaba et al., 2013; Tsuchiya, Davis, & Gardner, 2017). Ph-like has a gene expression
profile that resembles Ph positive (BCR-ABL1) B-ALL but is driven by activating mutations in
other kinases.

The WHO classification of B-ALL is incomplete. Recognised driver mutations are not
identified in all cases. In addition, combinations of unsupervised and supervised machine
learning suggest the existence of up to 23 subtypes (Gu et al., 2019; Lilliebjérn et al., 2016).
Although it remains to be validated, subtype assignment has the potential of extending and
refining the current standards of risk stratification. Indeed, the current standard of care
already incorporates some molecular classification in order to identify patients at higher risk
of disease relapse (Inaba, Azzato, & Mullighan, 2017; Schultz et al., 2007). Detection of
BCR-ABL1 indicates high-risk disease and treatment should be modified to include a
ABL1-targeting tyrosine kinase inhibitor such as imatinib (Inaba et al., 2013). ETV6-RUNX1
fusions indicate a much lower risk of treatment relapse (dependent on some clinical
variables) (Brown et al., 2020; Inaba et al., 2017; Schultz et al., 2007). More recently, next
generation sequencing of RNA (RNA-Seq) has been used to identify fusion genes, quantify
gene expression, and perform variant calling to identify a larger number of drivers (Brown et
al., 2020; Byron, Van Keuren-Jensen, Engelthaler, Carpten, & Craig, 2016), and is making its
way into diagnostic pipelines (Brown et al., 2020; Inaba et al., 2017). Although gene

expression quantification is particularly useful for identifying molecular subtypes, there is
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currently no publicly available software for taking RNA-Seq expression and performing this
classification.

Here we present ALLSorts: a B-ALL gene expression classifier that attributes
samples to 18 subtypes previously defined by Gu et al. (2019). ALLSorts has several unique
features including a hierarchical design that offers broader group classifications if more
specific subtypes cannot be ascertained. ALLSorts also incorporates custom features guided
by B-ALL biology as suggested by Lilliebjorn et al. (2016). Additionally, ALLSorts can
attribute multiple subtypes to samples - the utility of which was demonstrated by Nordlund et
al. (2015). When applied to both pediatric and adult cohorts ALLSorts was able to classify
previously undefined samples. ALLSorts is open source and publicly available to aid in

further utilising RNA-seq data as a modality to investigate B-ALL.

Methods

Data sets

A combination of RNA-Seq, raw gene expression counts, and clinical information
were obtained for 322 pediatric, 68 adult and 1988 mixed age B-ALL patients (Table 1).
Furthermore, a dilution study undertaken by the Royal Children’s Hospital (RCH) was utilised
to determine the effect of tumour purity (Table 1). In total, 2370 samples were available for
use within this study. After gene expression counts were obtained for each dataset, gene
identifiers were converted to symbols for consistency. Non-coding genes were discarded
resulting in a final 20656 genes being included. The available samples were then split into a
training set and series of test sets - summarised in Table 1 and detailed in Supplementary
Table 1.

Cohort No. Samples Train (%) Test (%) Purpose Source
St. Jude Train &
1847 70 30 (Gu et al., 2019)
Children Hospital Hold out
Train &
Lund University 195 70 30 (Lilljebjorn et al., 2016)
Hold out
Royal Children’s Partly Published
127 0 100 Paediatric
Hospital (Brown et al., 2020)
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Molecular Haematology
Peter MacCallum Diagnostic Laboratory,
68 0 100 Adult
Cancer Centre Peter MacCallum

Cancer Centre

Royal Children’s

16 0 100 Purity (Brown et al., 2020)
Hospital (dilution)
St. Jude Children
Multiple
Hospital and Lund 117 0 100 (Gu et al., 2019)
Subtypes

(Multi-label)

Table 1. Datasets used for training and validating the ALLSorts method. Datasets that are split across training
and test are stratified by subtype. Note: Samples previously subtyped as “Other” or multi-label were removed in
each set apart from the Multi-labels samples, which were tested separately. A breakdown of the samples used in

the final training set are listed in Supplementary Table 1.

Data processing and feature creation

Training was broken down into four key steps: Preprocessing, Feature Creation,
Standardisation, and Model Creation. These were encapsulated within a 10-fold cross
validation (with replacement) and a nested grid search for optimal hyperparameter selection
(Cawley & Talbot, 2010). Preprocessing first involves filtering for genes with a minimum of 10
counts in as many samples as the subtype with the lowest membership. This has previously
been suggested as an initial step for differential gene expression analysis to remove low
information genes (Chen, Lun, & Smyth, 2016). The filtered raw counts are then transformed
to log2 counts per million (CPM) to scale samples by library size. Further scaling is then
applied using the factors calculated from the Trimmed Mean of M-values (TMM) method
(Robinson & Oshlack, 2010).

The Feature Creation step then generates an additional five sets of features from the
gene expression counts, representing: fusions, iIAMP21’s expression motif, chromosome
ploidy, the B-ALL immunophenotype, and distance to a subtypes centroid. The fusion
features are designed to capture the relative change in gene expression between the fusion
gene partners that define known subtypes (BCR-ABL1, TCF3-PBX1, ETV6-RUNX1,
TCF3-HLF), calculated by taking the difference in log,(CPM) between the 5’ and 3’ genes.
Secondly, iIAMP21 specific features are also created to reflect its distinct expression pattern
across chromosome 21 (Tsuchiya et al., 2017). One region (region 3) is observed to be the

most amplified so the feature takes the median expression of this region and compares it to
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the flanking regions using a log ratio. This is visualised in Supplementary Figure 1. This
feature is added to ALLSorts along with the median value of each of the iIAMP21 regions.
Thirdly, a set of features that represent each chromosome’s relative expression is created.
First, for each gene in the cohort, the median absolute deviation (MAD) is calculated, a
median filter of five consecutive genes is applied, and finally taking the median of these
values per chromosome. Fourth, a feature is also generated that attempts to quantify the
immunophenotype of malignant B cells. As such, genes which are characteristic of B-ALL
(CD19, CD34, CD22, DNTT, and CD79A) were chosen from the literature and have their
preprocessed counts summed per sample to represent a B-ALL feature (Cobaleda &
Sanchez-Garcia, 2009). Fifth and finally, in an attempt to capture non-linear relationships
associated with a subtype, a feature that represents the euclidean distance towards a
subtype’s centroid in a nonlinear projection is calculated for each sample (Supplementary
Method).

A standardisation step is then applied to the preprocessed counts and the new
features to create a consistent scale across features, aiding in a model’s interpretability

when assessing coefficients. This is achieved by calculating the z-score feature-wise.

Training and running ALLsorts

The resulting counts matrix was input into a hierarchically organised set of logistic
regression classifiers which were trained using the One Versus Rest method (Pedregosa et
al., 2011). The logistic regression classifier includes an integrated feature selection method,
L1 Regularisation, which shrinks coefficients of weak features to 0 - effectively negating their
influence (Pedregosa et al., 2011). This can be seen as an embedded, multivariate feature
selection step. During cross-validation, the most optimal hyperparameters and subtype
probability thresholds are chosen. Hyperparameters are options that pertain to the learning
algorithm itself and are not learned through exposure to data, e.g. the strength of the
regularisation. Subtype probability thresholds are chosen by selecting a cutoff that
maximises the F1 score of a fold and then averaging the result over all folds. Further details
and descriptions of all the steps and the variables used can be found in the Supplementary
Method.

The ALLSorts classifier was trained on a B-ALL cohort consisting of 1223 samples
from two sources. While the pre-trained classifier is provided as part of our software

package, users may also run the training stage themselves for their own projects if desired.
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Input: Raw Gene Expression Counts, FASTQ, FASTA, or BAM
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User Input
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Figure 1. Overview of the ALLSorts classification strategy for new input. Green circles are where the probability
exceeds threshold. No probabilities are calculated for the black circles as classification terminates at their
meta-subtypes. In this example, two meta-subtypes exceed their thresholds at the first level. However, only one
nested subtype succeeds. This would result in a multi-label classification consisting of the deepest

subtypes/meta-subtypes that exceeded their respective thresholds.

Applying the pre-trained model to new samples follows a similar sequence as
described above. The key difference, however, is that each sample is normalised,
standardised, and has custom features constructed according to the parameters chosen
during training. The sample is then input into the hierarchy of logistic regression classifiers
and probabilities are calculated individually, one versus rest, for each of the subtypes.
Probabilities for the subtypes nested within a meta-subtype have their probabilities multiplied
by the probability of that meta-subtype. Where any subtype’s probability exceeds the

threshold, ALLSorts classifies the sample accordingly. This process is depicted in Figure 1.

Results

The ALLSorts Classifier

ALLSorts is a publicly available, pre-trained RNA-Seq classifier that attributes B-ALL

samples to 18 known subtypes as depicted in Figure 2. This tool accepts one of three
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starting inputs: FASTQ/FASTA, BAM, or a matrix of raw counts for each gene in each
sample to be classified. Input FASTQ/FASTA are aligned with STAR (Dobin et al., 2013).
Resulting or supplied BAM files are gene level summarisation by featureCounts (Liao,
Smyth, & Shi, 2014). This results in a consistent gene expression matrix for input into
ALLSorts. The gene expression matrix then undergoes preprocessing, feature creation, and
is filtered for the selected features as defined in Methods. The transformed counts are then
input to the hierarchically organised logistic regression classifiers. The outputs are a list of
predicted subtypes for the sample and a table of probabilities of subtype and meta-subtype
membership per sample. There are also two visualisations that help verify the validity of the
prediction and explore unclassifiable samples. The first visualisation depicts each user
submitted sample’s probability of being a subtype relative to the determined threshold (e.g.
Figure 3A). The second visualisation, termed waterfall plots, compares the maximum
subtype probability for each sample to the probabilities of samples known to belong to that
subtype (e.g. Figure 3B). The comparison samples shown by ALLSorts are from the
held-out cohort, with 10 random samples selected per subtype (where available). These are
packaged within the ALLSorts software but users can generate their own as described in the

softwares documentation.

ALLSorts has biology inspired architecture using meta-subtypes
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Figure 2. Overview of the ALLSorts classification architecture. In purple are the meta-subtypes that represent
classes that have convergent or overlapping signals as per its nested subtypes.

Green nodes are terminal subtypes. White nodes exist in the hierarchy, but classification currently terminates at
the parent node due to a lack of training samples. CRLF2(Non Ph-like) is not included in this classification as its
identification is better suited to downstream analysis. IGH-IL3 is also not included given only a single case across

all cohorts.

Phenocopies, where subtypes share a common transcriptional profile despite having
different causal lesions, are a phenomenon in B-ALL (Li et al., 2018; Mullighan, 2019).
ALLSorts represents phenocopies through the multi-level architecture depicted in Figure 2,
where phenocopies share a meta-subtype that captures their shared transcriptional profiles.
The classifier will first determine a sample's meta-subtype and then undertake a more
focussed classification between the nested subtypes.

There are five meta-subtypes that ALLSorts considers: ZNF384 Group, KMT2A
Group, Ph Group, ETV6-RUNX1 Group, and High Ploidy Signature Group (High Sig).
ZNF384, KMT2A, Ph, and ETV6-RUNX1 groups are nested with their phenocopy
counterparts, (-like) subtypes (Figure 2). In addition, a High Sig meta-subtype consists of all
subtypes that share a similar gene expression profile to High hyperdiploid. This includes
Near haploid, Low hyperdiploid, and High hyperdiploid. Though Near haploid membership
into this group would seem counter-intuitive, this subtype is considered to commonly harbour
both diploid and hyperdiploid clones (Harrison et al., 2004; Safavi et al., 2013). In addition,
as gene expression is a relative measure between genes, the expression of a haploid or

diploid sample is potentially difficult to distinguish using gene expression counts.

ALLSorts classifies 18 B-ALL subtypes

ALLSorts classifies 18 of the 23 subtypes recently described in Gu et al, (Gu et al.,
2019). The CRLF2 subtype, seen by Gu et al., was removed as it lacked a distinct signal that
could delineate it from Ph-like using gene expression data alone. The ZNF384-like and
KMT2A-like subtypes seen by Gu et al. (2019) contained too few training samples to
confidently train a discriminator. These two subtypes were included in meta-subtypes with

their phenotypic counterparts and classification is terminated at the meta-subtype (Figure 2).
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ALLSorts is accurate on held-out validation data

To validate the generalisability of ALLSorts in classifying subtypes, 10-fold
cross-validation was undertaken within the training set. In addition, the trained classifier was
also applied to held-out test sets, which were split from the cohorts prior to training (Table 1).
Four standard statistical metrics were used in the evaluation of the classifier: Accuracy,
Precision, Recall, and F1 Score. Accuracy is the proportion of samples that were predicted
correctly. Precision and recall are complementary, measuring the proportion of true positives
and false negatives, respectively. Finally, the F1 score reflects the balance between
precision and recall. These are calculated for each subtype and then aggregated by

weighting the proportion of samples in each subtype.

Dataset Accuracy (%) Precision (%) Recall (%) F1 (%)

Weighted average

Cross-Validation 90 96 91 93
(avg over 10 fold)

St. Jude’s & Lund 92 97 92 94
hold out

Table 2. ALLSorts performance in 10 fold cross validation determined during training and performance of held-out

test sets from the St. Jude’s and Lund cohorts.

Having both the cross-validation and held-out test set results from the same cohorts
used for training allows us to determine whether the model is underfit or overfit. Table 2
demonstrates that the held-out test set has a higher precision, recall, F1 score, and a slightly
lower accuracy than the cross-validation result. The confusion matrix of the held-out test set
shows there is an imbalance of subtype classification performance (Figure 3C) with the
highest levels of misclassification occurring between subtypes within the high (ploidy)

signature group.
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Figure 3. A. Probability distributions of St. Jude’s and Lund hold-out samples per subtype. For each sample,
AllSorts reports a probability for every subtype. Blue dots are samples negative for that subtype, red are positive.
The green lines are the subtype probability thresholds which were determined from the training data (Methods).
B. Waterfall plot of RCH and PM samples that were previously Unclassified and then assigned subtypes by
ALLSorts (white bars). The coloured bars represent samples with positive classifications from the St. Jude’s/Lund
held out set. The Y axis shows the highest probability reported for any subtype, the X axis colour is the prediction
as made by ALLSorts. Samples with multiple subtypes are displayed in every subtype where a prediction is
made. C. Confusion Matrix of the St. Jude’s / Lund held-out test data. A confusion matrix shows the performance
of the classifier. The Y axis represents the ground truth of each subtype, the X axis is the ALLSorts prediction. A
perfect classification result would include no values off the diagonal. ALLSorts can predict samples to have
multiple labels, these are reflected in the ‘Multiple Subtypes’ category. ‘Unclassified’ is where a sample’s
probability did not exceed the threshold for any subtype. D. Confusion Matrix of the combined RCH and PM
cohorts. The Y axis represents the previous classification of each sample, the X axis is the ALLSorts prediction.

Rows without values indicate no subtype with that true label in the dataset.

The predicted probability distributions for each sample in each subtype are plotted in
Figure 3A which shows a dichotomy between subtypes that are clearly defined, such as
DUX4 and TCF3-PBX1, compared with those with more of a continuum, such as High
hyperdiploid. The subtypes that show well defined groupings are classified with better
accuracy and are often heavily weighted by a single feature, typically expression of one of
the fusion partners e.g. PBX1 in TCF3-PBX1, HLF in TCF3-HLF, and NUTM1 in its
respective subtype. Those subtypes with a larger spread of probabilities are defined by
larger collections of genes/features, such as aneuploidies, which tend to be driven by a wide
range of genomic aberrations which and, produce more varied patterns of gene expression
that impedes classification (Gu et al., 2019).

Within the held-out dataset results, only two of seven Low hyperdiploid samples were
correctly called (Figure 3C). Of the five failed calls, two were called as Unclassified and three
misclassified as iIAMP21, Near haploid, and High hyperdiploid. Near haploid saw a
misclassification as Low hyperdiploid. This is not unexpected, given it is common for Near
haploid samples to have both Diploid and High hyperdiploid clones. Finally, High
hyperdiploid had six misclassifications deferring to the parent meta-subtype, one to Ph-like,
and two being marked as Unclassified. Therefore, given the ambiguity of the High Ploidy
Signature subtypes, one can conclude that further data is required to extract a common
signal or a new approach is required. In the interim, the High Ploidy Signature meta-subtype
can be used with an accuracy of 93%. In addition, both Ph/Ph-like and
ETV6-RUNX1/ETV6-RUNX1-like saw misclassifications to their phenotypic counterparts or

to the meta-subtype (Figure 3C). In circumstances such as this, the ambiguity can be
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resolved by running a fusion finder on these samples post classification and filtering the

output for fusions known to drive these subtypes.

ALLSorts applied to independent cohorts

Although the results on the held out data show that the ALLSorts classifier performs
well across most subtypes, the test dataset was from the same cohort as the training
dataset. Typically, ALLSorts will be applied to new samples which include technical
differences in the acquisition and processing of the samples compared to the training data.
To test whether ALLSorts is robust to such effects we applied it to paediatric and adult B-ALL
cohorts from the Royal Children’s Hospital (RCH) and Peter MacCallum Cancer Centre
(PM), respectively. Each cohort had different sequencing and library preparation protocols
making them an effective representation of a typical input.

ALLSorts predictions of the combined cohort are depicted within the confusion matrix
in Figure 3D. To evaluate these results they can be broken into four categories: match with
ground truth, new classification into a subtype, reclassification to another subtype(s), and
subtype to unclassified. Assuming the matched samples are correct (109 samples or 56%),
only samples described by the latter three categories required further exploration.

Of the 74 samples that were previously Unclassified, 61 (82%) were newly classified
into one of the 18 subtypes or five meta-subtypes offered by ALLSorts. Of these, 42 were
evaluated to be plausible, one was incorrect (tumour purity 12%), and no definitive evidence
could be made for 17. Curiously, five of the samples without suitable evidence were
classified as DUX4 despite the fusion callers, JAFFA and Arriba, not finding a relevant fusion
gene (Supplementary Table 1).

Reclassification to a new subtype accounted for 10 samples. Of these, eight were
correct if including the meta-subtype as a positive call. One sample was incorrectly called
High Sig instead of iIAMP21. However, this sample had a tumour purity of only 13% which
could account for this misclassification. Finally, one contained a novel ETV6 fusion but was
predicted as being DUX4. The reason for this is currently unknown.

The most important misclassifications to explore were the 15 samples (7.7%)
previously labelled as a distinct subtype which ALLSorts assigned as Unclassified. Six of
these samples had tumour purities of less than 10%, which may account for
misclassifications in these cases, i.e. ALLSorts was found to be adversely affected by
tumour purities under this (Supp Figure X). Of the remaining nine, three were previously

labelled as KMT2A rearranged of which each had cytogenetic evidence of the relevant
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fusion genes. However, each of these samples exhibited low expression for genes such as
MEIS1, a typical target of KMT2A fusions which ALLSorts weights highly in KMT2A Group
classification. Four High Sig samples with a tumour purity above 10% did not reclassify
according to their ground truth. However, two had high probabilities of being ETV6-RUNX1
Group and each had an associated ETV6-BCL2L 14 fusion discovered through Arriba. As these two
samples also had relatively high probabilities for High Sig (over 39%), it is possible that this
is a multi-subtype sample. The remaining newly Unclassified samples were labeled
according to cytogenetics only or had a lower tumour purity (~16%).

A full list of samples that had unexpected classifications with potential causative
variants found is available in Supplementary Table 3. Of these 86 samples, 56% had a
plausible explanation that the ALLSorts classification was correct at least to the
meta-subtype level, 8% were incorrect, 27% remained ambiguous in terms of evidence
supporting or dismissing plausibility of the call, and 9% were defined as having tumour purity
too low for concrete classification (less than 10%). Summary statistics with adjusted labels

can be seen in Table 3.

Ambiguous Samples Accuracy (%) Precision (%) Recall (%) F1 (%)

Weighted average

Marked as incorrect 82 92 94 92

Marked as correct 93 99 97 98

Table 3. ALLSorts performance in the RCH and PM cohorts once orthogonal evidence gave plausibility to the
calls. Two sets of summary statistics are presented, representing where ambiguous samples have been marked

as correct or as incorrect - indicating the boundaries of the classifiers performance on these datasets.

ALLSorts classifies samples with multiple subtypes

One unique feature of ALLSorts is its ability to classify samples into more than one
subtype. The St. Jude and Lund cohorts included 117 samples that were described as
having multiple subtypes and were not excluded based on the sample filtering outlined in
Methods (Table 1). Both subtypes were based on both gene expression analysis and
cytogenetics. Without specifically training ALLSorts to recognise samples exhibiting multiple

subtypes, this cohort was used to investigate the capacity for multi-label classification.
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ALLSorts prediction on samples labeled with multiple subtypes % No. Samples
Both subtypes called 19.65 |23

One subtype and one meta-subtype 5.98 7

Two meta-subtypes 0 0

One subtype called 60.68 |71

One meta-subtype 4.27 5

Neither subtype called 9.4 11

Table 4. Breakdown of multi-label predictions.

We found the probability of getting at least a single subtype correct is 86.31% and
90.5% if including meta-subtypes (Table 4). Given this is similar accuracy to the single
subtype benchmarks, multi-label classification can be added without reducing single subtype
classification accuracy (Table 2). However, we only predicted both subtypes 26% of the time.
Interestingly, within the held-out test set thought to be composed of samples with only a
single subtype, nine samples were predicted as having two. Similarly, the PM and RCH
combined cohort had six samples (3%) classified with two subtypes. Of these six samples
five were found to have evidence pointing to the accuracy of both calls from fusion calling
and karyotyping (Supplementary Table 3). This demonstrates that multiple label classification
with ALLSorts can add further value of a classifier with little cost in performance. In future, as
further manual labelling of multi-label samples becomes available for use in training data,

these multi-label subtypes could be explicitly trained for.

Discussion

In this study we present ALLSorts, a B-ALL subtype classification tool that can
precisely attribute samples to 18 subtypes and five meta-subtypes according to their gene
expression measurements. This tool has been trained and validated with a combined cohort
of over 2300 samples and is offered for public use through Github. Minimal setup is required
to prepare the input and users receive subtype probabilities, predictions, and visualisations
as output.

One of the novel contributions of ALLSorts is a hierarchical architecture
representative of subtypes, their phenocopies, and the broader encompassing signal defined
as meta-subtypes. There are clear clinical advantages of such an approach. In an ideal
scenario, a classification algorithm can attribute a sample to a subtype with 100% accuracy.

However, in the case where a sample cannot be confidently ascribed it may still be clinically
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useful to classify in a higher tier (Galea et al. 2017). For example, if it is difficult to delineate
between Ph and Ph-like, a positive Ph Group classification can be further investigated for
specific targetable lesions. There are also technical advantages of hierarchical gene
expression classification. With a growing number of subtypes the ability for a classifier to
discriminate becomes more challenging. Segmenting the classification process into a
hierarchy can alleviate this and result in higher accuracy (Galea et al. 2017; Silla and Freitas
2011). Indeed, in our testing, the hierarchical architecture (Figure 2) demonstrated an
improvement in performance over a flat architecture during the 10 fold cross-validation of
ALLSorts (accuracy of hierarchical architecture = 87.1%, accuracy of flat architecture =
83.6% - Supplementary Table 2). With greater understanding of the underlying mechanisms
of tumorigenesis, more nuanced hierarchies may be proposed and further improve both
interpretability and performance of subtype classification models.

A key component to this study was testing the software across cohorts with various
biases to verify its robustness. Comparing the hold-out and validation confusion matrices in
Figure 3, on first look, suggests ALLSorts performance on the validation set has some
inaccuracies. There are multiple reasons as to why this may be the case. First, the subtype
schema used to identify the previous subtypes in the combined cohort was limited to nine in
total: Ph, Ph-like, Hyperdiploid, Hypodiploid, ETV6-RUNX1, ETV6-RUNX1-like, TCF3-PBX1,
DUX4, KMT2A, and Unclassified. Therefore, we expect the subtype designation to change in
some cases as samples begin to classify according to the new schema. Secondly, previous
classifications were derived through a combination of bioinformatics tools (fusion finding and
classification) and cytogenetic methods (G-Banding Karyotyping and Fluorescent in situ
hybridization). Brown et al (2020) demonstrated that RNA-Seq, despite its advantages, does
have limitations that can be overcome through precise cytogenetic methods. This is perhaps
shown in the KMT2A samples that were attributed Unclassified by ALLSorts, as KMT2A
rearrangements are known to be lowly expressed and evade multiple bioinformatics
methods (Brown et al., 2020). However, the converse is also true and ALLSorts was capable
of classifying samples where the driving event was not readily clear through traditional
cytogenetics. For example, two plausible ETV6-RUNX1 Group classifications were made
from samples that were previously not captured through G-Banding or FISH. Regardless, in
many of the cases with apparent misclassifications there was some justification for the
ALLSorts call based on orthogonal information from the sample or patient (Supplementary
Table 3). Given the summary statistics outlined in Table 3 accounting for these justifications,
we believe ALLSorts is accurate and has the ability to provide new annotation even in

previous B-ALL cohorts.
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As the number of B-ALL samples that are sequenced increases there will be
improvements that can be made to the classifier. ALLSorts has the ability to retrain the
classifier as more samples become available. The most obvious improvements will be
retraining for classification of subtypes that have relatively low numbers of samples, such as
BCL2/MYC. In addition, although gene counts are clearly useful in determining the overall
patterns of expression in a subtype, a more refined method that uses more nuanced aspects
of the data such as transcript quantification, equivalence classes, or kmers could provide
increased performance.

In summary, ALLSorts is an accurate, comprehensive and freely available

classification tool for determining subtypes of B-ALL.
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