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Abstract

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic con-
ductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints,
such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible
conductances? Here, we investigate how metabolic cost affects the parameters of neural circuits with similar activity
in a model of the pyloric network of the crab Cancer borealis. We use a novel machine learning method to identify a
range of network models that can generate activity patterns matching experimental data, and find that neural circuits
can consume largely different amounts of energy despite similar circuit activity. Furthermore, a reduced but still sig-
nificant range of circuit parameters gives rise to energy-efficient circuits. We then examine the space of parameters
of energy-efficient circuits and identify potential tuning strategies for low metabolic cost. Finally, we investigate the
interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across tem-
peratures, but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our
analyses show that, despite metabolic efficiency and temperature robustness constraining circuit parameters, neural
systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.

Introduction

Neural activity arises from the interplay of mechanisms at multiple levels, including single-neuron and network mecha-
nisms. Several experimental and theoretical studies have found that neural systems can produce similar activity from
vastly different membrane and synaptic conductances [1-6], a property sometimes referred to as parameter degen-
eracy [7, 8]. Such parameter degeneracy has been argued to be a prerequisite for natural selection [7] and translates
into potential mechanisms of compensation for perturbations of the systems’ parameters [3, 5, 9-14]. However, in
addition to a specific target activity, neural systems are likely subject to additional constraints such as the require-
ment to be energy efficient [15-17]. In order to understand experimentally observed variability and probe potential
compensation mechanisms in functioning neural systems, it is thus crucial to characterise the extent of the systems’
parameter degeneracy under such additional constraints.

Neuronal activity accounts for the majority of the energy consumed by the brain [18-20]. Energy is stored in
the ionic gradients across the cell membrane, and consumed mostly by action potentials and synaptic mechanisms.
Maintaining the ionic gradients requires the action of ion pumps, which consume ATP [15, 21]. Previous work has in-
vestigated the metabolic efficiency in small neural systems, often at the single neuron level and with few ion channels
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(often sodium, potassium, and leak) [15, 22, 23]. In these studies, it has been demonstrated that energy consump-
tion of single neurons can be reduced by tuning maximal conductances or time constants of gating variables, while
maintaining electrophysiological characteristics, e.g. spike width. However, questions regarding energy efficiency of
neural systems remain: First, it is unclear whether previous findings in single neurons [24-26] extrapolate to neural
circuits with a large diversity of membrane and synaptic currents [12, 21, 27]. Second, the question of how strongly
metabolic constraints impact parameter degeneracy remains unaddressed: Are energy efficient solutions confined
in parameter space or can disparate network parameters generate energy efficient activity? Lastly, metabolic cost is
only one of many constraints under which neural circuits operate, and it is often unknown whether energy efficiency
trades-off with other constraints (for a study of how energy efficiency trades off with temperature robustness in a
single neuron model of the grasshopper, see Roemschied et al. [28]).

Here, we investigate how energy efficiency constrains the parameter degeneracy in the pyloric network in the
stomatogastric ganglion (STG) of the crab Cancer borealis [29, 30], a canonical example of a neural system with pa-
rameter degeneracy [5]. The pyloric network produces a triphasic motor pattern, and consists of a pacemaker kernel
(anterior burster neuron, AB, and two pyloric dilator neurons, PD), as well as two types of follower neurons (a single
lateral pyloric, LP, and several pyloric, PY, neurons), interconnected by inhibitory synapses. A model of this circuit with
three model neurons (AB/PD, LP, PY), each with eight membrane currents, and seven inhibitory synapses (Fig. 1a, de-
tails in Methods) has been shown to be capable of producing similar network activity with widely different parameters
[5].

We start by characterising the parameter degeneracy of this model: We apply a recently introduced machine learn-
ing tool for simulation-based inference, Sequential Neural Posterior Estimation (SNPE) [14] to estimate the full set of
membrane and synaptic conductances for which the model reproduces experimentally measured electrophysiologi-
cal activity. We reduce the number of model simulations required to run SNPE by introducing an additional classifier
which detects and rejects parameter-combinations that produce non-bursting model outputs [31]. After characteris-
ing the parameter degeneracy in the model, we show that disparate circuit configurations can have different energy
consumption despite similar activity. However, a significant parameter degeneracy is present in the model even when
enforcing circuits to have both similar activity and low energy consumption. Furthermore, energy consumption is lin-
early predictable from circuit parameters, allowing us to identify tuning mechanisms for low metabolic cost. We then
show that individual neurons in the pyloric network can be tuned separately to minimize their energy consumption,
and thereby achieve low energy consumption at the circuit level. Finally, since the crab Cancer borealis is subject
to daily and seasonal fluctuations in temperature, we study the trade-off between metabolic cost and robustness
to changes in temperature [32-35]. We find that metabolic cost can vary across temperatures, but that the pyloric
network can produce functional, energy efficient, and temperature robust activity with disparate parameters.

Results

Disparate energy consumption despite similar network activity

We studied the metabolic cost in a model of the pyloric network (Fig. 1a). In this model, disparate sets of maximal
membrane and synaptic conductances can give rise to similar network activity [5]. As an example, we simulated
two such circuit configurations (Fig. 1b) and computed their metabolic cost using a previously described measure of
energy consumption [36]. In this measure, the energy for each ion channel is the time integral of the product of the
membrane current and the respective difference between the membrane voltage and the reversal potential. The
energy consumed by the entire neural circuit is the sum of the energies across channels of all neurons (details in
Methods).

Although the two simulated circuit configurations produce similar network activity, even at the single-spike level
(Fig. 1¢), the total energy consumption (Fig. 1d) as well as the moment by moment energy consumption differ sub-
stantially (Fig. 1e). A closer inspection of the energy consumed by each current in the PY neuron during the action
potentials [37] shows that the difference in energy between these two network configurations is also evident in the
energy consumed by the sodium current Na, the delayed-rectifier potassium current Kd, and the transient calcium
current CaT (Fig. 1f).
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Figure 1. Similar activity with different energy consumption. (a) Computational model of the pyloric network consisting of
three model neurons (AB/PD, LP, PY) and seven synapses. (b) Two model configurations with similar circuit activity (traces from
top to bottom: AB/PD, LP, PY) despite different circuit parameters (parameter values not plotted). Scale bars indicate 50 mV. (c)
Close-up of two spikes in the PY neural activity shown in (b). (d) Total energy consumption divided by the duration of the simulation
(10 seconds) for the traces shown in (b). The left circuit has 3-fold lower metabolic cost than the right circuit. (e) Consumed energy
at each time point. Scale bar indicates 100 pJ/s. (f) Energy consumed by each of the ion currents during the two spikes shown in (c).

Disparity in energy consumption in models matching experimental data

The example above illustrates that the model of the pyloric network can, in principle, produce the same activity with
different metabolic costs. However, it is unclear how broad the range of metabolic costs associated with the same
network output is. In order to address this, we need to identify the full space of maximal membrane and synaptic
conductances (31 parameters in total) that match experimental measurements of network activity and to characterise
the energy consumption of each of these configurations.

We used a recently introduced machine learning tool for simulation-based inference, Sequential Neural Poste-
rior Estimation (SNPE) [14], to estimate the set of circuit parameters (the posterior distribution) consistent with data
and prior assumptions about the parameters. In SNPE, parameters which specify network configurations are initially
sampled from the prior distribution (in our case a uniform distribution within plausible parameter ranges) and used
to simulate network activity. Subsequently, a neural-network based density estimator is trained on these simulated
network activities to learn which parameter sets produce network activity that is compatible with empirical obser-
vations. In order to generate the training data for the neural network, SNPE requires millions of model simulations
to accurately infer the set of data-compatible parameters. To improve the simulation efficiency and make the neu-
ral network predict parameter sets that more closely match experimental data, we introduced a modification of the
algorithm (Fig. 2a). Specifically, a technical challenge for SNPE is that parameter sets sampled from the prior distri-
bution might produce simulation results that are not ‘valid’, i.e. produce clearly non-sensible data: E.g., if there are
no bursts, phase gaps between bursts are not defined (Fig. 2a, forth panel, red). For SNPE, these ‘invalid’ simulations
are discarded immediately. In order to reduce the fraction of simulations that are discarded, we introduce a classifier
to predict whether a parameter set will lead to a ‘valid’ or an ‘invalid’ simulation output [31] (Fig. 2a, second panel).
Once the classifier is trained on an initial set of simulations, parameters are immediately discarded without running
the simulation, if the classifier confidently predicts that the simulation will be invalid (details in Methods). We name
the distribution of parameters that are accepted by the classifier the ‘restricted prior’ (Fig. 2a, third panel). Once
sufficiently many valid simulations are performed, SNPE proceeds by training a deep neural density estimator to es-
timate the posterior distribution over parameters of the model [14] (Fig. 2a, last two panels, proof of convergence to
the correct posterior distribution in Methods).

We used this procedure to infer the posterior distribution over maximal membrane and synaptic conductances
of the model of the pyloric network given salient and physiologically relevant features of experimentally measured
data. These features are the cycle period, burst durations, duty cycles, phase gaps, and phase delays of the triphasic
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Figure 2. Bayesian inference reveals wide range of energy consumption. (a) Inferring the posterior distribution by combining
a rejection classifier and a deep neural density estimator. First, a classifier (trained on an initial set of simulations) predicts which
circuit parameters sampled from the prior produce ‘valid’ simulation outputs. We then proceed by sampling from the part of the
parameter space that is accepted by the classifier, i.e. the ‘restricted prior’. All ‘valid' data (green) are used to train a deep neural
density estimator, all ‘invalid’ data are discarded (red) [14]. Once this estimator is trained, it can be evaluated on experimental data
to return the posterior distribution over model parameters. (b) Experimental data recorded from the pyloric network [38]. Arrows
indicate a subset of the physiologically relevant features, namely the cycle period (1), phase delays (2), phase gaps (3), and burst
durations (4) (see Methods for details). (c) Simulation output from a parameter set sampled from the prior distribution. The traces
are: AB/PD (top), LP (middle), PY (bottom). Scale bars correspond to 500 ms and 50 mV. (d) Subset of the marginals and pairwise
marginals of the 31-dimensional restricted prior, i.e. the subspace of parameters for which the model produces bursting activity.
All maximal conductances are given in mS/cm?. (e) Subset of the marginals and pairwise marginals of the posterior distribution,
i.e. the subspace of parameters for which the model matches experimental data shown in panel (b) (full posterior distribution in
Appendix 1 Fig. 1). (f) Sample from the restricted prior producing bursting activity but not matching experimental data. (g) Sample
from the posterior distribution closely matching features of the experimental data. (h) Histograms over energy consumed by each
neuron (blue, orange, green) as well as by entire circuit (black). Trace with lowest energy consumes 9 times less energy than trace
with highest energy. (i) Same as in (h), but for energy per spike.

rhythm (Fig. 2b, details in Methods) [38]. As in previous studies [4, 5], we did not constrain the model of the pyloric
network by the number of spikes or the spike shapes. Below, we describe the results obtained for a specific experi-
mental preparation. We qualitatively reproduced all results with two additional experimental preparations (Appendix
1 Fig. 11, Appendix 1 Fig. 12, Appendix 1 Fig. 13, Appendix 1 Fig. 14, Appendix 1 Fig. 15, Appendix 1 Fig. 16) [38].
When simulating the pyloric network model with parameter sets sampled from the prior distribution, 99% of
simulations do not produce spikes or bursts and hence characteristic summary features of the circuits are not defined
(Fig. 2c). The restricted prior (Fig. 2d) is narrower than the prior distribution, but considerably broader than the
posterior (Fig. 2e, full posterior distribution in Appendix 1 Fig. 1; comparison between prior, restricted prior, and
posterior in Appendix 1 Fig. 2). Parameters sampled from the restricted prior often produce activity with well-defined
summary features (Fig. 2f), but do not generally match experimental data, whereas samples from the posterior closely

4 of 28


https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454484; this version posted January 24, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Most efficient 2% — L 9 ;
° east efficient 2% q>) AB/PDI LP Y1 Synapses
° 1
1000 <
i
‘G
c
pes
S0 — T
. 12.5 25 150 e < T ¥ EEEEEEE 100 25 6.4 16 04 0.1
Energy (W /s) Tear (PY) Tkd (AB/PD) L%} 29295 g X Lowest energy quantile [%]
° S TR S
aaa = £ —_
I| e ‘e % s MM/WI\ = (% 2
..' '. o g g e}
AB—Na
th-Na 7T MI 30 7 < 750 1 150
1 1000 2 = -!-u-l-.-!-.- "
G oML o Q- 0

AB - PY

v o
P ELEE: 5%
325998 N
r a >
25752 =g

Figure 3. Metabolic constraints on individual circuit parameters. (a) Left: Energy consumption of 35,939 models that match
experimental data. The orange area corresponds to the energy consumption in the lowest 2% quantile, red area to the top 98%
quantile. Middle: Distribution of the maximal conductance of the transient calcium channel (CaT) in the PY neuron in the 2%
(orange) and 98% quantile (red). Right: Distribution of the maximal conductance of the delayed-rectifier potassium channel (Kd) in
the AB/PD neuron in the 2% (orange) and 98% quantile (red). (b) Standard deviation of parameters for models with energy
consumption in the lowest 2% quantile. Standard deviation is normalized to the standard deviation of the parameters across all
35,939 models in our database. (c) Same as panel (b), but for a range of quantiles. Solid: AB/PD, dotted: LP, dashed: PY. Colors are
the same as in Fig. 1f. Synapses in black. (d) Subset of the parameter values of the five most efficient circuit configurations in our
database. (e) The network activity produced by two of these five configurations. Scale bar indicates 500 ms and 50 mV. (f) The
energy consumption of the two configurations shown in panel (d). (g) Subset of circuit parameters of the two solutions shown in
panel (b). Despite similar network activity and low energy consumption, several parameters differ by more than 2-fold. The
membrane conductances are scaled by the following factors (left to right): 100, 10, 10, 100, 100, 10000.

match experimental data (Fig. 2g). By using the classifier to reject ‘invalid’ simulations, we required half as many
simulations compared to ‘classical’ SNPE [14] and achieved a higher accuracy (Appendix 1 Fig. 3). For the subsequent
analyses, we only considered posterior samples whose activity was within a prescribed distance to the experimental
data, and discarded all other samples (details in Methods). We simulated 1 million parameter configurations sampled
from the posterior, out of which approximately 3.5% fulfilled the distance criterion, leading to a database of 35,939
parameter sets whose activity closely matched experimental data. Sampling from the prior distribution rather than
the posterior would have required approximately 600 billion simulations to obtain 35, 939 parameter sets that fulfill
our criterion (60, 000 times more than with our method).

We computed the energy consumption of each of the 35,939 circuit activities (Fig. 2h). The circuit configuration
with lowest total energy consumes nine times less energy than the circuit configuration with highest total energy.
To ensure that the difference in energy does not only stem from different numbers of spikes within a burst, we also
computed the average energy consumed during a spike (energy per spike) in each of the neurons (Fig. 2i). As with total
energy, energy per spike strongly varies across parameter configurations. These results show that, despite similar
circuit function, different parameter sets can have vastly different energy consumption. Below, we investigate the
mechanisms giving rise to this phenomenon.

Metabolic constraints on individual circuit parameter ranges

How strongly does enforcing low energy consumption constrain the permissible ranges of circuit parameters? We
inspected the circuit parameters of the 2% most and least efficient configurations within our database of 35,939
model configurations (Fig. 3a, left). For some circuit parameters, the range of values producing efficient activity is
clearly different from the range of values producing energetically costly activity (e.g. the maximal conductance of the
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Figure 4. Influence of circuit parameters on energy consumption. (a) lllustration of the energy landscape under functional
constraints (matching experimental activity). The linear regression weights correspond to the direction along which energy varies.
(b) The linear regression accurately predicts the energy consumption on a test set of 300 circuit configurations (black dots). Grey
line is the identity function. (c) Weights w of the linear regression. Left: Weights of the maximal membrane conductances. Right:
Weights of the maximal synaptic conductances. (d) Weights w as a function of energy consumption (both normalized), for all
membrane currents (arrows highlight three illustrative examples). Membrane conductances on the top left consume little energy,
but their maximal conductances correlate strongly with energy consumption. Conductances on the bottom right consume a lot of
energy, but their maximal conductances correlate weakly with energy consumption. (e) Top: The gating variable n* of the Kd
current in the PY neuron during activity produced by two circuit configurations (black and red) which are identical apart from the
magnitude of gx4. Bottom: The product of gating variable and maximal conductance n* - g¢4 for the same configurations. (f) Top:
Weights of a linear regression onto the energy per spike in the PY neuron. Bottom: Weights of a linear regression onto the number
of spikes in the PY neuron.

transient calcium currentin the PY neuron, Fig. 3a, middle). For other parameters, the range does not change (e.g. the
maximal conductance of the delayed-rectifier potassium currentin the AB/PD neuron, Fig. 33, right). To quantify how
strongly low energy consumption constrains parameters, we compared the parameter standard deviation across all
35,939 model configurations to that of the most efficient 2% (Fig. 3b,c). Most parameters in the circuit barely get
constrained by energy consumption (values close to one in Fig. 3b,c). The parameters that get constrained the most
by enforcing low energy consumption are the Na and CaT conductances of the AB/PD neuron, the CaS conductance
of the LP neuron, and the Na, CaT, CaS, and leak conductances of the PY neuron. However, for all of these parameters,
a large fraction of variability remains.

In order to ensure that the remaining variability of circuit parameters does not stem from the remaining vari-
ability of energy consumptions within the lowest 2% quantile, we inspected the five most efficient configurations in
our database of 35,939 model configurations. Even these five circuit configurations have strongly disparate circuit
parameters (Fig. 3d). Despite having similar activity (Fig. 3e) and very low (and similar) metabolic cost (Fig. 3f), their
circuit parameters are disparate (Fig. 3g). These results demonstrate that metabolic efficiency constrains the range
of some circuit parameters, but it is possible to achieve low metabolic cost and similar network activity with widely
disparate circuit parameters.

Energy consumption can be linearly predicted from circuit parameters

We wanted to understand how each circuit parameter affects energy consumption. We performed a linear regression
from circuit parameters (taken from our database of 35, 939 model configurations) onto the energy consumption of
these circuits (Fig. 4a). This linear regression achieved a high accuracy, demonstrating that energy consumption
can be linearly predicted from circuit parameters (Fig. 4b; a non-linear regression with a neural network leads to
similar results and is shown in Appendix 1 Fig. 5; details in Methods). The regression weights w indicate how strongly
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energy consumption is correlated with each parameter value (Fig. 4c). The maximal sodium conductance g, and the
transient calcium conductance g,; of the AB/PD and PY neuron as well as the slow calcium conductance g¢,s of the
AB/PD, LP, and PY neuron are most strongly correlated with energy consumption: Increases of these conductances are
associated with an increase in energy consumption, and thus, small conductance values correspond to metabolically
more efficient solutions. The synaptic conductances are weakly correlated with energy consumption, which can be
explained by the low values of the maximal synaptic conductances: The synaptic strengths range up to 1000 nS,
whereas the membrane conductances can range up to 0.4 mS (i.e. 4 - 10° nS), such that synapses consume only
0.08% of the total energy in the circuit. These results demonstrate that energy consumption can be linearly predicted
from circuit parameters, and that energy consumption is most strongly correlated with the maximal conductances
of sodium as well as slow and transient calcium.

How do different currents affect total energy consumption? Do they directly consume energy, or do they trigger
processes that then require energy? We addressed these questions by comparing the fraction of energy consumed
by each current (as defined by our measure of energy [36], Fig. 1f) to the linear regression weight w associated with
its maximal conductance (Fig. 4d). We found that some currents consume a lot of energy, although their maximal
conductances barely correlate with energy consumption, e.g. the Kd current in the PY neuron (Fig. 4d, bottom right
arrow), while other currents consume little energy, but nonetheless their maximal conductances are correlated with
energy consumption, e.g. the CaS and CaT currents of the PY neuron (Fig. 4d, top left arrows).

We investigated the neuronal mechanisms that give rise to these behaviors. First, to understand how currents
can consume large amounts of energy despite their maximal conductance only weakly correlating with energy, we in-
vestigated the effects of the delayed-rectifier potassium conductance g4 on circuit activity. We simulated two circuit
configurations, identical apart from the magnitude of g4 in the PY model neuron. In the configuration with higher
Zkq: the gating variable n did not reach as high values as for the other configuration, thus leading to a similar effective
conductance n* - g4 (Fig. 4e). This demonstrates that changes in the maximal conductance g,y only weakly influence
the current and thereby the energy consumption. Thus, despite the potassium current consuming a lot of energy due
to a large flow of ions (compared to other channels), its maximal conductance g4 only weakly correlates with energy
consumption. Second, to understand how maximal conductances can correlate with energy consumption despite
their channels consuming little energy, we disentangled the correlation of circuit parameters with energy consump-
tion into two parts: The energy per spike and the number of spikes. We fitted two additional linear regression models:
One regression from circuit parameters onto number of spikes in the PY neuron and one regression from circuit
parameters onto energy per spike in the PY neuron. We again found good predictive performance of these models,
showing that the energy per spike and the number of spikes can also be linearly predicted from circuit parameters (re-
gression performance in Appendix 1 Fig. 6). The energy per spike is strongly correlated with the sodium conductance
(Fig. 4f, top), whereas the number of spikes is most strongly correlated with the maximal conductance of transient
calcium (also with sodium, slow calcium, and transient potassium conductances, Fig. 4f, bottom). This demonstrates
that increases in the maximal conductance of transient calcium lead to a higher number of spikes, which involve
increased energy consumption through other currents. We verified this hypothesis by simulating two configurations
that were identical apart from the magnitude of g¢,; in the PY model neuron and found that the configuration with
higher g, indeed produced more spikes per burst (Appendix 1 Fig. 7). This shows that, despite the calcium chan-
nel consuming little energy itself, increasing g.,r can lead to higher energy consumption by increasing the number
spikes, which involve energy consumption through other currents (mostly sodium and potassium). Overall, our anal-
yses demonstrate that currents which consume a lot of energy are not necessarily the ones that influence energy the
most.

Minimal tuning mechanisms for low energy consumption

We identified circuit parameters that correlate with energy consumption, but this does not yet address the question
of which changes of these parameters will lead to the reduction of energy consumption: First, a correlation between
parameter values and energy consumption does not imply a causal connection between these. Second, parameters
that correlate strongly with energy consumption might have to be finely tuned to match the pyloric rhythm, thus not
constituting a feasible substrate for reducing energy consumption. Therefore, we went beyond the previous anal-
ysis to investigate potential tuning mechanisms involving single and pairs of parameters that would reduce energy
consumption while maintaining the pyloric rhythm.
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Figure 5. Minimal tuning mechanisms for low energy consumption. (a) Energy consumption (as predicted by linear regression)
of several models that differ only in their maximal sodium conductance in the AB/PD neuron. Energy increases with gy,. We
excluded circuits with too low and too high values of gy, for which the model does not reproduce experimental data. (b) Same as
panel (a), but for models that differ in their maximal conductances of sodium (Na) and delayed-rectifier potassium (Kd) in the
AB/PD neuron. (c) Top: Voltage trace of the AB/PD neuron for the most efficient configuration within the plane shown in panel (b).
Bottom: energy consumption during that activity. (d) Same as panel (c), but for the least efficient configuration. (e) Fraction of
energy that can be saved by modifying a single membrane parameter (diagonal of each matrix) or pairs of membrane parameters
(upper and lower diagonal). Colorbar as in panel (f). Arrows indicate the direction in which (pairs of) parameters should change in
order to reduce energy: Left/right refers to the parameter on the x-axis, top/bottom refers to the parameter on the y-axis. (f)
Fraction of energy that can be saved by modifying a synaptic conductance (vector on the left) or the synaptic conductance and one
membrane conductance of the respective postsynaptic neuron (matrix on the right).

We investigated how strongly energy consumption could be reduced by mechanisms that involve a single param-
eter. For instance, we kept all parameters but the maximal sodium conductance of the AB/PD neuron (gy,) constant
and varied g, on a grid. We then estimated the energy consumption of each configuration with the previously iden-
tified linear model (Fig. 4). The energy consumption of the circuit increases with g,,. However, for too low (or too
high) g\., the network activity does not match experimental data (we rejected parameters for which the posterior
density is too low, see Methods). Thus, despite g, strongly correlating with energy consumption (Fig. 4c), energy
consumption can be reduced only modestly when tuning g, and keeping all other parameters constant.

We then investigated whether pairwise mechanisms could lead to larger savings in energy consumption. For in-
stance, we kept all parameters but gy, and the delayed-rectifier potassium conductance of the AB/PD neuron (gyg)
constant and varied the remaining two parameters on a grid. We estimated the energy consumption of any config-
uration on this grid and found that the most efficient parameter configuration is 23% more efficient than the most
wasteful configuration (Fig. 5b). This reduction in energy consumption could be achieved through a simple pairwise
mechanism: Areduction of sodium combined with an increase of potassium allows the network to maintain its activity
(Fig. 5¢,d), while reducing the metabolic cost (Fig. 5b).

We repeated this analysis for every conductance and every pair of conductances (Fig. 5e,f). Note that we only
considered pairs of parameters within each neuron because pairwise compensation mechanisms across neurons
have been shown to be weak in this model [14]. Some of the single-conductance mechanisms can reduce the energy
consumption by up to 36%. Pairwise mechanisms, such as reducing the sodium and transient calcium conductances
of the PY neuron, can reduce the energy consumption of the entire circuit by up to 55%. When considering only the
energy consumed in a specific neuron, pairwise mechanisms can reduce energy consumption by up to 80% (Appendix
1 Fig. 8). Finally, pairwise mechanisms between synapses and conductances of the respective postsynaptic neurons
can reduce energy consumption of the entire circuit by up to 43%.
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Figure 6. Neurons can be tuned individually to achieve minimal circuit energy consumption. (a) Black dots: Energy
consumed by each neuron separately. 100 randomly selected parameter configurations from our database of 35,939
configurations. Black line: Linear regression shows a weak correlation between the energy consumed by pairs of neurons. (b) We
select the five most efficient parameter configurations for each neuron separately, and search with Markov chain Monte Carlo
(MCMC) for synaptic conductances such that the target circuit activity is achieved. (c) The activity produced by two parameter
configurations produced with the strategy described in (b). (d) A subset of the membrane (left) and synaptic (right) conductances
for the configurations in (c). Despite generating similar network activity, the configurations have very different circuit parameters.
The membrane conductances are scaled with the following factors (left to right): 10, 10000, 1, 100, 10000. (e) Histogram over the
energy consumption of all 35,939 models in our database (blue, orange, green, black) and the energy consumption of the
configurations produced with the strategy described in panel (b) (red). (f) Histogram of the posterior log-probability for samples
from the prior distribution (grey), for the 35,939 models in our database (black), and for the configurations produced with the
strategy described in panel (b) (red).

These analyses provide hypotheses for causal mechanisms for how neurons can be tuned into low-energy regimes,
while the neural activity keeps satisfying functional constraints. We demonstrated that even simple mechanisms
involving one or two conductances can have a substantial impact on the energy consumption of the circuit—thus,
low-energy configurations can be found with ‘local’ parameter changes, not requiring fine coordination amongst
multiple parameters.

Neurons can be tuned individually to achieve minimal circuit energy
Next, we asked how single neurons interact to produce functional and efficient circuit activity. Can the energy of the
entire circuit be minimized by optimizing the energy of each neuron individually? And does the circuit retain functional
activity when neurons are individually optimized for low energy efficiency? Within our database of 35,939 model
configurations, there is a weak correlation between the energies consumed by pairs of neurons, which suggests
that the energy consumption between neurons might be independent from one another (Fig. 6a; AB/PD versus LP,
correlation coefficient r = —0.006, p-value p = 0.23; LP versus PY, r = 0.02, p = 3-107%; AB/PD versus PY, r = —0.03, p =
8-107°%). We thus investigated whether we could optimize the parameters of each neuron individually for low energy
consumption and still retain functional circuit activity. We searched our database of 35,939 model configurations for
the single neuron models with minimal energy consumption individually. We selected the five most efficient single
neuron parameter combinations for each of the neurons and assembled them into 125 (5%) network configurations.
We then identified synaptic conductances that match each of these configurations with Markov chain Monte Carlo
(Fig. 6b, details in Methods). Notably, given the already estimated full posterior distribution, this step does not require
additional simulations.

For each of the 125 combinations of membrane conductances, we found a set of synaptic conductances for which
the network activity closely resembles experimentally measured activity (Fig. 6¢). The resulting configurations have
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Figure 7. Temperature robustness does not preclude energy efficiency. (a) Top: Experimental data at 11°C. Bottom:
Experimental data at 27°C [38]. (b) Left: Posterior distribution given experimental data at 11°C. Right: Posterior given experimental
data at 11°C and 27°C. (c) Simulations for a parameter set drawn from the posterior distribution matching experimental data at
11°C and 27°C. Simulations at 11°C (top) and 27°C (bottom). (d) Cycle frequency (left), phase of LP neuron (middle) and phase of PY
neuron (right) for parameter set shown in panel (c), simulated at temperatures between 11°C and 27°C. Green dots are the values
of the experimental preparations. (e) Energy consumption at 11°C versus 27°C for 967 circuits sampled from the posterior (in (b)
right). In grey, the identity line. (f) Standard deviation of parameters for models that match experimental data at 11°C and 27°C
and that have energy consumption in the lowest 2% quantile at 11°C and 27°C. Standard deviation is normalized to the standard
deviation of the parameters across all 35,939 models in our database. (g) Green: Distribution of the energy consumption of
circuits matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C
and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and 27°C.

disparate parameters (Fig. 6d) but highly similar network activity. Furthermore, we found that the resulting configura-
tions have similar and very low energy consumption. The energy consumption of these circuits is significantly smaller
than that of any of the configurations in our database of 35,939 model configurations (Fig. 6e). This demonstrates
that optimizing a specific neuron for energy efficiency does not preclude the connected neurons from being energy
efficient. Thus, our results suggest that the pyloric network can be optimized for energy efficiency by tuning neurons
individually for low energy consumption.

We estimated how likely are these energy-efficient circuits under the estimated posterior. We found that all these
models have similar posterior log-probability as the 35,939 model configurations in our database (Fig. 6f), i.e. these
are as likely to underlie the experimentally measured activity as the database models. Thus, the low-energy config-
urations were not sampled when generating our original model database because of the high dimensionality of the
parameter space, and we cannot exclude the possibility that there might be unsampled regions in parameter space
with even more energy-efficient circuit configurations.

Robustness to temperature does not require an increased metabolic cost

The crab Cancer borealis experiences daily and yearly fluctuations in temperature which in turn influence the chemical
and physical properties of neurons [32-34]. Nonetheless, neural circuits such as the pyloric network can maintain
their functionality in the presence of these temperature variations. As temperature increases, the cycle frequency of
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the circuitincreases exponentially, but the phases between bursts remain relatively constant [35, 39]. We investigated
whether the pyloric network trades off robustness to changes in temperature with energy efficiency, i.e. whether
temperature-robust solutions are more energetically costly.

The temperature-dependence of a biophysical parameter R is captured by the Qi value and is defined as follows:

Rr = RrefQ](.(-)riTmf)/lox

where R, is the parameter value at the reference temperature T, = 11°C. We extended the model of the pyloric
network to include Qo values for all maximal membrane and synaptic conductances (details in Methods) [40, 41]. We
then used SNPE to identify all maximal membrane and synaptic conductances, as well as the associated Qo values
(41 parameters in total) that match experimental recordings at 11°C and 27°C (Fig. 7a) [38]. We set the previously
identified posterior distribution (Fig. 2e) over circuit parameters given experimental data at 11°C as the new prior
distribution, and then applied SNPE to match the model with experimental data at 27°C (Fig. 7b, full posterior in Ap-
pendix 1 Fig. 9, details in Methods). We sampled circuit parameters and Qo values from the resulting distribution
and selected samples whose activity closely matched experimental data at 11°C and 27°C (Fig. 7c). Overall, we gen-
erated a database of 967 sets of circuit parameters and Qo values. When simulating at temperatures between 11°C
and 27°C, these circuits show the characteristic exponential increase in cycle frequency as well as the constant phase
relationship between bursts observed experimentally (Fig. 7d) [35].

We asked whether the energy consumed by the circuit at 11°C is proportional to the energy consumed at 27°C.
We found that, despite the number of spikes in our model being higher at higher temperatures, the total energy
consumption is lower at 27°C (Fig. 7e; note that, for one of the three preparations, the energy consumptions at
11°C and 27°C are similar; see Appendix 1 Fig. 16). This occurs because at higher temperatures, the increase in the
number of spikes is accompanied by an increase in channel time constants and respective decrease in energy per
spike (Appendix 1 Fig. 10). In addition, there is a clear correlation between energy consumptions at 11°C and 27°C
(Pearson-correlation coefficient: 0.66), although circuit configurations with similar efficiency at 11°C can show a range
of energy consumptions at 27°C (Fig. 7e).

We then investigated how the additional constraint of temperature robustness impacts the parameter degeneracy
of the pyloric network. We computed the standard deviation of models that match experimental data at 11°C and
27°C and whose energy consumption is in the 2% quantile at both temperatures (Fig. 7f). The resulting standard
deviation is smaller than that of all models in our database of 35, 939 models, but a large parameter variability remains.
Thus, we found a substantial parameter degeneracy in circuits constrained by “pyloric-ness”, energy efficiency and
temperature robustness.

Does temperature robustness have an influence on metabolic cost? We computed the energy consumed at 11°C
for three different scenarios: First, for all models in our database of 35, 939 model configurations matching experimen-
tal data recorded at 11°C (same as Fig. 2h). Second, for all models in our database of 35,939 model configurations
that are also functional at 27°C (i.e. produce triphasic activity). Third, for all models in our database of 967 model
configurations matching experimental data recorded at 11°C and 27°C. In all three of these scenarios, the distribu-
tion of metabolic cost was similar (Fig. 7g. Note that the slightly different average energy consumption between the
first and the third scenario occurred only in two of the three preparations, see Appendix 1 Fig. 13 and Appendix 1
Fig. 16). In particular, all three scenarios contained configurations that produce energy efficient circuit function. This
demonstrates that enforcing temperature robustness does not require the pyloric network to be less energy efficient.

Overall, our analyses indicate that the model of the pyloric network retains substantial parameter degeneracy
despite constraints on energy efficiency and temperature robustness. In addition, we showed that temperature
robustness does not entail additional metabolic cost.

Discussion

Neural systems undergo environmental and neuromodulatory perturbations to their mechanisms. The parameter
degeneracy of neural systems, i.e. the ability to generate similar activity from disparate parameters, confers a certain
degree of robustness to such perturbations [7-10, 42, 43]. However, not all system configurations might be equally
desirable, with some configurations being more energy efficient than others [15]. Here, we analysed the energy con-
sumption of parameter configurations with similar activity in the pyloric network of the stomatogastric ganglion. We
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found that, even when the network activity is narrowly tuned to experimental data, the energy consumption can
strongly vary between parameter configurations. Despite this diversity of metabolic costs, energy efficient activity
could be produced from a wide range of circuit parameters. When characterising the range of data-consistent pa-
rameters, we found a linear relationship between circuit parameters and energy consumption, which allowed us to
identify tuning mechanisms for low energy consumption. Lastly, we showed that temperature robustness does not
preclude energy efficiency and that parameter degeneracy remains despite metabolic and temperature constraints.
These findings were facilitated by a methodological advance that increased the efficiency of previously published
tools for simulation-based inference [14, 31, 44, 45].

Parameter degeneracy under multiple constraints

In addition to a specific activity, neural circuits are likely constrained by other requirements, e.g. low energy con-
sumption or robustness to perturbations such as fluctuations in temperature or pH [35, 40, 41, 46-50]. Here, we in-
vestigated how energy efficiency impacts the parameter degeneracy of neural systems. While a plausible hypothesis
would have been that energy efficiency reduces or eliminates degeneracy altogether, here we found that parameter
degeneracy is preserved, even within circuits with very low energy consumption.

In our work, parameter degeneracy consisted in the range of pyloric-network models that match specific features
of experimental activity. We used the same features as in previous work [5], which are physiological constraints of
the pyloric network, e.g. cycle duration, burst durations, and gaps and phases of bursts. However, we cannot discard
the possibility that the inclusion of additional data-features (e.g. spike height or spike width) would have impacted
parameter degeneracy and consequently also the range of energies.

Previous work demonstrated that multiple parameter sets in a model of the AB/PD neuron are temperature robust
[40]. Here, we investigated the interplay between energy consumption and temperature robustness at the circuit
level, and showed that functional, energy efficient, and temperature robust activity can be generated from disparate
circuit parameters. In addition, consistent with previous work in a single neuron model of the grasshopper [28],
we found that temperature robustness does not require an increased metabolic cost. Whether these results will
generalize with the inclusion of the robustness to additional external perturbations, e.g. pH fluctuations [49, 51], or
internal perturbations, e.g. neuromodulation [39], remains a subject for future work.

O'Leary and Marder [52] have demonstrated in a model of the PD neuron that some physiological features (such as
duty cycle) can be maintained under temperature perturbations when conductances are scaled by a common factor.
We tested the possibility that such invariance under conductance scaling could explain the parameter degeneracy
and ranges of energies observed in our circuit model: Scaling the conductances by a common factor would scale
the currents and thereby the energy consumption. However, for the parameter ranges we used (similar ranges as
in Prinz et al. [5]), scaling the conductances changed physiological features (such as the cycle duration) of the pyloric
rhythm and led to the model not fitting the experimental data accurately (Appendix 1 Fig. 4).

More generally, whether there is potential for a system to exhibit parameter degeneracy depends on the number
of constraints on the system relative to the number of free parameters: In an over-parameterized system, if there
is any parameter setting which satisfies the constraints, it is expected that there will be multiple such settings. Our
model has 31 conductances and 10 Qi values, and we use 18 voltage features at 11°C, one energy consumption
constraint and 18 voltage features at 27°. While there is a similar number of constraints relative to the parameter
dimensionality, some of those constraints are likely redundant, in which case we have fewer constraints than param-
eters. Thus, the fact that there are multiple feasible parameter settings is not surprising per se. However, rather
than these multiple solutions corresponding to similar parameter values, we found these to be quite disparate in the
parameter space.

Relation to previous work on metabolic cost of neural systems

There has been extensive work on quantifying the metabolic cost of biophysical processes in single neurons [15, 22-
26], and how single neurons subject to functional constraints can be tuned to minimize energy consumption [15,
16, 23, 25]. Consistent with this work, we found that total energy consumption of the pyloric network is strongly
influenced by the sodium current [25], but also by the transient and slow calcium currents. The maximal sodium con-
ductance is the most prominent driver of the energy per spike: Increases in the conductance lead to an increase of
metabolic cost per spike [15, 25]. In contrast, calcium currents influence energy consumption through the number of
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spikes within a burst, despite not consuming much energy themselves. Our results suggest that the maximal conduc-
tances of sodium and calcium might be regulated for metabolic efficiency. We thus predict that these conductances
are less variable in nature than expected by computational models only matching network activity. Nevertheless, we
should note that our findings are based on two simplifying assumptions: First, we studied simple single-compartment
neurons rather than more realistic multi-compartment neuron models [53]; and second, the energy measure is de-
rived directly from the Hodgkin-Huxley model [36], rather than taking into account all the complexity of the ionic
exchange leading to ATP consumption [15, 21, 23, 25]

Previous studies have demonstrated that synaptic mechanisms can consume a substantial amount of energy
[21, 54, 55]. In contrast, in the considered model of the pyloric network, synaptic currents consume only a minor
fraction of energy (approximately 0.08% of the total energy is consumed by synapses, whereas Attwell and Laughlin
[21] report 40% of energy per action potential being consumed by synaptic mechanisms). This difference is largely
due to the low number of connections in the pyloric network [56]: Each neuron projects to up to two other model
neurons, whereas the synaptic energy consumption reported in Attwell and Laughlin [21] is based on the assumption
of 8000 synaptic boutons per neuron. Thus, models of more complex neural circuits driven by excitatory, recurrent
connectivity, such as the ones found in the cortex, might spend a larger fraction of energy on synaptic mechanisms.

Energy efficiency in the pyloric network
Experimental studies have shown that the parameters of the pyloric network vary across wide ranges [1, 2, 57]. This
raises the question of whether these disparate solutions are all tuned for energy efficiency. In our study, we demon-
strated that energy-efficient circuit function can be compatible with many parameter configurations. Therefore, de-
spite the variability of the parameters, each configuration in the crab Cancer Borealis might be tuned for low energy
consumption.

However, the pyloric network is a small subset of the nervous system of the crab and, therefore, likely consumes
a small fraction of its total energy budget. Thus, even if the nervous system of the crab is tuned for energy efficiency,
it could still achieve this without strict energy requirements for the pyloric network.

Increasing the efficiency of simulation-based inference

We used a previously introduced tool, SNPE [14, 45] to identify all models consistent with experimentally measured
activity as well as prior knowledge about realistic parameter ranges. We improved the efficiency of the method by
introducing a classifier that rejects ‘invalid’ simulations [31]. By using this classifier, we were able to improve the
accuracy of SNPE while requiring only half as many simulations [14]. Because of this larger simulation-budget, the
resulting posterior distributions became more accurate. Furthermore, the trained neural density estimator is amor-
tized, i.e. one can obtain the posterior distribution for multiple experimental preparations without running further
simulations or training a new neural network.

The classifier-enhanced SNPE can be applied to other modelling studies in neuroscience. In particular, the clas-
sifier to predict ‘invalid’ simulations is valuable whenever there are parameter values for which the computational
model of interest produces ill-defined features: E.g. the spike shape cannot be defined in cases where a neuron model|
does not produce spikes. Our method has the potential to significantly speed up inference in these scenarios.

Implications for the operation of neural circuits

Our findings suggest that neural circuits can be energy-efficient with largely disparate biophysical parameters, even
with highly specific functional requirements under naturally-occurring perturbations. This raises the question of
whether such energy efficiency is present in real biological systems, and how these systems could be tuned for
metabolic efficiency.
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Methods

Code availability

Code to reproduce the figures is available at https://github.com/mackelab/stg_energy. Code for running SNPE and
training a classifier to reject ‘invalid’ simulations is available in our toolbox: https://github.com/mackelab/sbi [58]. A
tutorial for how to use these features can be found on our website https://mackelab.org/sbi.

Data from the crustacean stomatogastric ganglion

We analyzed extracellular recordings of the stomatogastric motor neurons that are involved in the triphasic pyloric
rhythm in the crab Cancer borealis [38]. The first dataset as seen in Fig. 2 and Fig. 7 is from files 845_082_0044 and
845_082_0064, preparation 1. The second dataset as seen in Appendix 1 Fig. 11 and Appendix 1 Fig. 13 is from files
857_016_0049 and 857_016_0069, preparation 1. The third dataset as seen in Appendix 1 Fig. 14 and Appendix 1
Fig. 16 is from files 845_078_0027 and 845_078_0040, preparation 2. All preparations were decentralized, i.e. the ax-
ons of the descending modulatory inputs were severed. The data were recorded at 11°C and 27°C. Full experimental
details in Haddad and Marder [39].

Circuit model of the crustacean stomatogastric ganglion

The circuit model of the crustacean stomatogastric ganglion was adapted from Prinz et al. [5]. The model is composed
of three single-compartment neurons, AB/PD, LP, and PY, where the electrically coupled AB and PD neurons are
modeled as a single neuron. Each of the model neurons contains 8 currents, a Na™ current ly,, a fast and a slow
transient Ca®* current Icor and Ieas, a transient Kt current Iy, a Ca*t-dependent K™ current lkc,, a delayed rectifier KT
current kg, a hyperpolarization-activated inward current /4, and a leak current /. In addition, the model contains 7
synapses. As in Prinz et al. [5], these synapses are simulated using a standard model of synaptic dynamics [59]. The
synaptic input current into the neurons is given by Is = g.s(Vpost — Vs), where g is the maximal synapse conductance,
Viost the membrane potential of the postsynaptic neuron, and Vs the reversal potential of the synapse. The dynamics
of the activation variable s are given by

ds  5(Vpre) —s

dt Ts '
with
_ 1 1 — 5(Vpre)
Vi = and s = ———————.
S(Vere) = T oo ((Vin = Vire) /9) " k_

Here, Vyre is the membrane potential of the presynaptic neuron, V4, is the half-activation voltage of the synapse, ¢
sets the slope of the activation curve, and k_ is the rate constant for transmitter-receptor dissociation rate.

As in Prinz et al. [5], we model two types of synapses, since AB, LP, and PY are glutamatergic neurons whereas PD
is cholinergic. We set E; = —70 mV and k_ = 1/40 ms for all glutamatergic synapses and E; = —80 mV and k_ = 1/100
ms for all cholinergic synapses. For both synapse types, we set V4, = —35 mV and § = 5 mV. The membrane area is
0.628 - 10~* cm”.

For each set of membrane and synaptic conductances, we numerically simulate the circuit for 10 seconds with a
step size of 0.025 ms. At each time step, each neuron receives Gaussian noise with mean zero and standard deviation
0.001 mV-ms—°5,

We applied SNPE to infer the posterior over 24 membrane parameters and 7 synaptic parameters, i.e. 31 parame-
ters in total. The 7 synaptic parameters are the maximal conductances g, of all synapses in the circuit, each of which is
varied uniformly in logarithmic domain from 0.01 nS to 1000 nS, with the exception of the synapse from AB to LP, which
is varied uniformly in logarithmic domain from 0.01 nS to 10000 nS. The membrane parameters are the maximal mem-
brane conductances for each neuron. The membrane conductances are varied over an extended range of previously
reported values [5, 14]: The prior distribution over the parameters [Na, CaT, CaS, A, KCa, Kd, H, leak] is uniform with
lower bounds piew = [0,0,0,0,0,25,0,0] mS cm~2 and upper bounds phigh = [500, 7.5, 8, 60, 15, 150, 0.2, 0.01] mS cm >
for the maximal membrane conductances of the AB neuron, pow = [0,0,2,10,0,0,0,0.01] mS cm~2 and Phigh =
[200, 2.5, 12,60, 10, 125, 0.06, 0.04] mS cm~2 for the maximal membrane conductances of the LP neuron, and piow =
[0,0,0,30,0,50,0,0] mS cm ™2 and phign = [600, 12.5, 4, 60, 5, 150, 0.06, 0.04] mS cm ™~ for the maximal membrane con-
ductances of the PY neuron.
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We computed 15 summary features proposed by Prinz et al. [5], and 3 additional features [14]. The features
proposed by Prinz et al. [5] are 15 salient features of the pyloric rhythm, namely: Cycle period T (s), AB/PD burst
duration df (s), LP burst duration d5% (s), PY burst duration d® (s), gap AB/PD end to LP start At (s), gap LP end to
PY start Ats.py (s), delay AB/PD start to LP start Atzg p (S), delay LP start to PY start At py (s), AB/PD duty cycle dag, LP
duty cycle dip, PY duty cycle dpy, phase gap AB/PD end to LP start Agag.Lp, phase gap LP end to PY start A¢.p.py, LP start
phase ¢.p, and PY start phase ¢py. Note that several of these values are only defined if each neuron produces rhythmic
bursting behavior. In addition, for each of the three neurons, we computed the maximal duration of its voltage being
above —30 mV. We did this as we observed—for many model simulations and in contrast with experimental data—
long plateaus at around —10 mV during the bursts, and wanted to detect such traces. If the maximal duration was
below 5 ms, we set this feature to 5 ms. To extract the summary features from the observed experimental data, we
first found spikes by searching for local maxima above a hand-picked voltage threshold, and then extracted the 15
above described features. For the experimental preparation, we set the additional 3 features to 5 ms.

At temperatures higher than 11°C, we include Qo values to simulate the biochemical changes of the network
parameters. These are defined by an Arrhenius-type factor

Rr = RerQlg ™", ™M

where R, is the parameter value at the reference temperature T, = 11°C, and Ry is the parameter value at tem-
perature T. Each maximal conductance has a different Qio, but the Qo value is the same across neurons [41]. We
introduce one Qo for the glutamatergic synapses and one for the cholinergic synapses. The prior distribution for the
Quo values is a uniform distribution between 1 and 2 for all maximal conductances but the hyperpolarization current,
for which the prior bounds are 1 and 4 [35]. The Qo values for the time constants are fixed to 2.4 for most m-gates
and 2.8 for all h-gates. Following the results from Caplan et al. [40], the Qi values for the m-gates of KCa and CaS as
well as for the calcium buffer have lower values: 2.0 for CaS and the calcium buffer and 1.6 for KCa. The Qo value for
the time constants of the synapses is 1.7.

Energy consumption
To compute the energy consumption E of a specific network activity, we followed the approach of Moujahid et al. [36].
For each neuron, we computed the energy as:

E= /ng(v — Vo) ) eV - Vo)t 2)

where g, is the effective conductance of channel m (i.e. the product of the respective gating variables, maximal
conductance and membrane area) and g is the effective synaptic conductance s into the specific neuron. V,, is the
reversal potential of the membrane current m and V. is the reversal potential of the synapse s. The units of energy
are[S-V?.s = J], where S are Siemens, V are Volt, s are seconds, and J are Joules. The total energy consumption was
defined as the sum of the energy consumed by each of the three neurons. Throughout the manuscript, we report the
energy per second, which we obtained by dividing the total energy consumption by the duration of the simulation
(10 seconds).

The energy per spike was defined as the energy consumed during bursts divided by the respective number of
spikes.
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s Simulation-based inference
s We extended Sequential Neural Posterior Estimation [14] by using a classifier to predict ‘invalid’ simulation outputs.

a7 The resulting algorithm is described in algorithm 1.

Algorithm 1: SNPE

Input: simulator with (implicit) density p(x|@), observed data x., prior p(0), rejection criterion g(x) € {0, 1},
classification neural network G¢(6), density family g, neural network F(x, ¢), number of cycles C of classifier
training, simulation count for each cycle N.

randomly initialize ¢, ¢
p1(0) := p(6)
N:=0
forc=1to Cdo
fori=1..N.do
sample On4i ~ pc(0)
ass simulate xy4+i ~ p(x|Onsi)

evaluate whether ‘valid’ ryy; = g(xn+i)
N~ N+ N,

N
train ¢ < arg min Z Le(0;, 1)) // classifier training
j=1
T + Tune classifier threshold s.t. false negative rate < 1%

U0) « Ge(0) > T

pe(6) x U(0)p(6)
N
train ¢ < arg min Z L4(0},%;) // neural density estimator training
=1
return gr, ) (0)

0 Proof of convergence of SNPE with classifier
Below, we prove that the posterior distribution inferred by our method converges to the true posterior distribution.
SNPE—with the classifier—minimizes the following loss function with respect to the neural network parameters ¢:

Lo=—% > log(as(6i1x)

N— o0

—= — Epa.[108(q4(0]x))]
= — Euo)p(e)pixio)[l0g(qs (61x))],

where U(0) is a constant U(8) = ¢ > 0 at least on the posterior support and U(6) = 0 elsewhere. Then:
Lo =~ [ [ U©P(O)p(x(6) 0g(as(81x)) o
—— [ o) [ U(©)p(81x) toe(as(61)) b
Since U(0) > 0 at least on the support of p(8|x):
Lo =~ [ b [ (61 1og(as (61x)) dodx

w0 Sincetheintegrand of theintegral over @ is proportional to the Kullback-Leibler-divergence between the true posterior
a1 p(0]x) and the inferred posterior q4(0|x), L4 is minimized if and only if g4(0|x) = p(0|x) for all x on the support of p(x).
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Classifier of ‘valid’ simulations
The algorithm includes a classifier U(0) trained to predict ‘valid’ simulations. We use a cross-entropy loss L.. We
enforce the classifier U(0) to be constant, with U(8) = ¢ > 0 at least on the posterior support and U(8) = 0 elsewhere:

1. In order for U(0) to be uniform, we parameterize it as a thresholded binary classifier.
2. To ensure that ¢ > 0 at least on the posterior support, we choose the classifier threshold such that there are
few false-negatives, i.e. the classifier accepts the parameters if these lie within the posterior support.

If we train the classifier U(0) with a large enough number of simulations, so that some are ‘valid’, the trained
classifier includes the posterior support. In order to sample from U(6)p(6), we sample from the prior over parameters
p(6) and accept the sampled parameters according to the classifier output.

Inference of the posterior distribution given experimental data at 11°C
Overall, we performed three cycles of simulation and classifier training in order to learn the restricted prior. In the
first round, we simulated 3 million parameter sets sampled from the prior. Among these, only 0.97% produced ‘valid’
summary features. We trained a classifier to detect parameter sets leading to ‘valid’ simulation outputs. We used a
residual neural network with 80 hidden units, two blocks, a dropout rate of 43%, and a batchsize of 199. To deal with
‘valid'/'invalid’ unbalanced data, we subsampled ‘invalid’ samples in every epoch. We post-hoc tuned the threshold
of the classifier such that the ratio of false-negatives was below 1% on a held-out test set. We then drew 3 million
samples from the resulting restricted prior. Out of these, 5.17% produced ‘valid’ summary features. We then repeated
this procedure and out of 3 million simulations from the resulting restricted prior, 8.45% produced good simulations.
Overall, in comparison to Gongalves et al. [14], we used half as many simulations (9 million versus 18.5 million), but
generated a database of ‘valid’ simulations 2.5 times larger. We then used all 438,608 ‘valid’ parameter sets to obtain
the posterior distribution with SNPE (see Gongalves et al. [14] for details). As deep neural density estimator, we chose
a neural spline flow (NSF) [60] with 10 transform layers, each consisting of a residual block with two hidden layers,
each with 200 hidden units.

Lastly, to ensure that the activity produced by samples from the posterior closely matched experimental data, we
sampled 1 million parameter sets from the inferred posterior distribution and performed an additional rejection step,
whereby posterior samples had to produce activity within a prescribed distance to the experimental data:

+ cycle duration and burst durations deviated from the experimental features by a maximum distance of 0.02
standard deviations of all simulations accepted by the classifier, i.e. 20.6 ms for the cycle duration, and [15.0,
13.5, 11.5] ms for the burst durations (of AB/PD, LP, and PY neurons).

+ duty cycles, phase gaps, phase delays, and phases deviated from the experimental features by a maximum
distance of 0.2 standard deviations.

Out of 1 million samples from the posterior, 35,939 samples fulfilled all these criteria. Notably, these samples are
no longer unbiased samples from the posterior distribution as estimated by SNPE, but they make up a database of
model configurations whose activity closely matches experimental data.

Regression neural network
We performed a linear regression to identify the contribution of the circuit parameters to the total energy consump-
tion using scikit-learn [61]. In order to test the robustness of the linear regression findings, we trained a regression
network to identify directions in the parameter space predictive of total energy consumption. The regression network
had the following characteristics: A Residual Network (ResNet) with one hidden layer with 20 hidden units, ReLU ac-
tivation functions, and 50% dropout rate [62, 63]. We trained the network with a mean-squared error loss.

After training the regression network, we searched for directions that were most predictive of the network output
f(+). To do so, we followed the procedure described in Constantine [64] and computed:

M = Egrp(ox,)[Vof(8)Vof(8)"]. 3)

Intuitively, M captures how much the regression function f(-) changes in different directions of the parameter space,
computed as an expected value over posterior samples. We estimated this expected value with a Monte Carlo mean
over 10,000 samples from the posterior distribution. We then computed the eigenvalue decomposition of M: The
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eigenvectors of highest eigenvalue are directions in the parameter space along which the output of the regression
neural network is most sensitive to changes.

Minimal tuning mechanisms for low energy consumption

In order to find tuning mechanisms for low energy consumption, we started by varying single or pairs of parameters
on a grid while keeping all other parameters constant (at a value taken from our database of 35,939 models). For the
matrices in Fig. 5e,f, we repeated the analysis with ten of such models and reported the average.

To predict the energy consumption for any parameter configuration, we used the linear regression model from
circuit parameters onto energy consumption described above. To evaluate whether a parameter set matches experi-
mental data, we computed its posterior probability p(€|x,). If the posterior probability was above a certain threshold
t, we considered the parameter set as matching the experimental data, otherwise we discarded the parameter set. To
obtain the threshold t, we evaluated the posterior probability of all 35,939 models in our database and used the 10%
quantile of these probabilities as t: within our database of models, 90% of the models would have been considered
as matching experimental data, whereas 10% of the models would have been (wrongly) discarded. We evaluated
different choices for the quantile used to obtain t and obtained qualitatively similar results.

In order to obtain the directions in the parameter space along which energy consumption can be maximally re-
duced (arrows in Fig. 5e,f), we searched the (1-dimensional or 2-dimensional) grids for the configurations with lowest
and highest energy consumption (subject to posterior probability > t). For each grid, we reported the sign of the
direction between these two points of highest and lowest energy consumption.

Sampling synaptic conductances, given energy efficient single-neuron configurations
In order to investigate whether efficient single-neuron parameters could lead to efficient and robust network activ-
ity, we first searched our database of 35,939 network configurations for the five configurations that had the lowest
metabolic cost in each neuron individually. We combined these single neuron configurations to generate 5° = 125
configurations of membrane conductances. For each of the configurations, we then sampled 1, 000 synaptic configu-
rations from the distribution:

P(0s]0m, x5) < p(Os, Om|xo), (4)

where 6, and 0,, are the synaptic and membrane conductances, respectively. We drew these samples with Markov
chain Monte Carlo: Specifically, we used Slice Sampling with axis-aligned updates [65]. We then simulated each of
these 5° - 1000 configurations. 72 out of the 5° configurations contained at least one sample that fulfilled our (distance
to experimental data) criteria, and 123 configurations contained a sample that fulfilled a slightly wider criteria (allowing
twice as much distance from the experimental data). For the remaining two configurations, we drew another 10,000
samples with MCMC and for each of them found at least one configuration whose activity fulfilled the slightly wider
criteria. The histograms in figures Fig. 6e,f are produced with all simulations that fulfilled the narrow criteria.

Posterior distribution given experimental data at 27°C
In order to infer the posterior distribution given experimental data at 27°C, we started by sampling 3 million param-
eter sets from the 31-dimensional posterior distribution at 11°C:

p(Blx5') o< p(xo'10)p(6).-

We then drew 3 million sets of Q.o values from the prior distribution over Qi values (Qio prior in Methods, Circuit
model of the crustacean stomatogastric ganglion). We simulated these 3 million parameter sets at 27°C, from which
approximately 18% were ‘valid’ and were used to train a deep neural density estimator (see Proof of convergence of
SNPE with classifier). The hyperparameters of the neural density estimator were the same as the ones chosen for the
inference at 11°C. Since this density estimator was trained on parameters sampled from the posterior distribution at
11°C, the inferred posterior is an approximation to:

p(O]x5" x5') o p(x5'[0)p(B1x5") o p(x5'[0)p(xs |6)p(6).
where x2' and x27 are the features of the experimental data recorded at 11°C and 27°C, respectively. In other words,

the resulting posterior distribution matches prior knowledge about circuit parameters as well as experimental data

19 of 28


https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454484; this version posted January 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s at 11°C and 27°C. Note that we inferred the posterior distribution at 11°C while ignoring the Q.o values because the
s72 Qo values, by definition, do not influence the circuit activity at the reference temperature (which is assumed to be
s23 11°Q).

sz« Metabolic efficiency at 27°C

s7s For panels Fig. 7e,f and Fig. 7g (pink plot), we analyzed 967 simulations that closely matched experimental data
s76 recorded at 11°C and 27°C. For Fig. 7g (purple plot), we simulated, at 27°C, the 35, 939 circuit configurations that
s77 match experimental data recorded at 11°C. Out of these, 8121 were robust, i.e. displayed pyloric activity at 27°C.
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710 Supplementary Figure 1. Full posterior distribution over circuit parameters given experimental data at 11°C.
711 Panels on the diagonal are marginals, panels on the upper right are pairwise marginals. The first 24 parameters are
712 membrane conductances, the last 7 parameters are synaptic conductances. All membrane conductances are maximal

712 conductances and are given in mS/cm?, all synaptic conductances are given in nS.
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Supplementary Figure 2. Summary features of activity produced by sampling from the prior, the restricted prior,
and the posterior. Experimentally observed activity in green. The boxplots indicate maximum, 75% quantile, median, 25%
quantile, and minimum. All summary features are z-scored with the mean and standard deviation of all simulations from

prior samples.
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Supplementary Figure 3. Accuracy of the enhanced version of SNPE versus accuracy in [14]. While we used half as
many simulations (9 million versus 18 million), the accuracy of the method improved. (a) Median squared discrepancy
between the experimentally measured activity and the activity produced by samples from the posterior. When using the
classifier (red), the activity produced by posterior samples is closer to experimental activity than without the classifier
(blue). (b) Reduction of mean squared discrepancy between our previous results and the presented method. All distances
are computed after z-scoring the summary features with the mean and standard deviation of all prior samples.
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Supplementary Figure 4. Scaling conductances with a constant factor does not produce activity that matches
experimental data. We selected the 20 most expensive circuit configurations from our database of 35,939 models and
scaled all conductances by the same factor. The factor ranged from one to 1/3 (x-axis). All errors are z-scored by the
standard deviation of prior predictive simulations. (a) As the conductances are scaled down, the average error of the
model simulations to the observation increases. (b) The average error between the experimentally observed cycle duration
and the simulations increases quickly as the conductances are scaled. (c) The average error between the experimentally
observed duty cycle of the AB/PD neuron and the simulations increases minimally as the conductances are scaled.
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Supplementary Figure 5. Neural network regression from circuit parameters onto the total energy consumption.
(a) Performance of a neural network predicting the total energy from circuit parameters. (b) Eigenvalue-spectrum of the
trained neural network reveals a single dominating direction (details in Methods). (c) The eigenvector corresponding to the
strongest eigenvalue is similar to the linear regression weights w (Fig. 4c).
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745 Supplementary Figure 6. Performance of linear regression. Left: Performance of linear regression from circuit
746 parameters (taken from our database of 35, 393 models) onto energy per spike in the PY neuron. Right: Performance of
748 linear regression from circuit parameters onto the average number of spikes within a burst.
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750 Supplementary Figure 7. Influence of maximal conductance of transient calcium current on circuit function. Left:
751 Voltage trace in the PY neuron during activity produced by two circuit configurations (black and red) which are identical
752 apart from the magnitude of gc,7. Right: The average number of spikes per burst in the PY neuron for the two
758 configurations. The configuration with higher g, produces more spikes.
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756 Supplementary Figure 8. Potential energy savings in a single neuron. (a) The fraction of energy that can be saved in a
757 single neuron by modifying just a single membrane parameter (diagonal of each matrix) or pairs of membrane parameters
758 (upper and lower diagonal) in that neuron. Unlike Fig. 5e, only the energy in the neuron whose parameters are varied is
750 considered. Colorbar as in panel (b). The arrows indicate the direction in which (pairs of) parameters should change in
760 order to reduce energy: Left/right refers to the parameter on the x-axis, top/bottom refers to the parameter on the y-axis.
761 (b) The fraction of energy that can be saved by modifying a synaptic conductance (vector on the left) or the synaptic
762 conductance and one membrane conductance of the postsynaptic neuron (matrix on the right). The energy is computed in
763 the postsynaptic neuron.

25 of 28


https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454484; this version posted January 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

OESOEOEENDOEEOECONNENEEEaDDOEDaES
elaloli Plal ol b Jalol doJul bl b L] o | Jub Talalol ofale [l

L L L L L L L L L]
EOENOECOONNERED
HESNESCNUERNNDS
OENOEOONNERND
AENEEEEAnEREN
HESUESENNERNND
EOENOECONNEEEaEEENEOEDOEE
I T I
il O

NAEIDECENNENEAEENEEOEEAEE
s NEIOEDENNERENEE RN EDNEE
Y% T2/
IR o e lad b e T b Tolale | ool [l
o/ \EDENINEIEAEEANEDOENAER
AREEN
EEE

1I>EEOR
ISARENRA
INFARENER
17 I
[y Jo] o

r
o
~
=20
Tow o
O AR+
Holth
oro
i o
1v2%o

,_
oS
'<O7vo

P M HMERN MUENENE
PN annEEER EDOEDNEE
e HINEEEARNENDDOEEEED
PYJ*HAIIIIIIEIHEIIIIEI
ot ENENEEIEEEEEEES
AR o r1600~/" I I I I
gt T 1 1T 111111
AR 0T 1600/ N I I I I
P%ﬂ%ml!l!!!!!!!!
L 0_01 O oo/ I I
o7 1600 I I I
P NIRANPRRARR
RNl 7171 ¥~ 1* 1™
ST NAREENAEE
ccs\EHEEE
Quegrirn /M
ok N
Qo oo\
QlOT fz_l
Qioleak F
Qioglut I
Qiochol
766 Supplementary Figure 9. Full posterior distribution over 31 circuit parameters and 10 Q;, parameters given
768 experimental data at 11°C and 27°C.
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770 Supplementary Figure 10. Energy consumption of the circuit at 11°C and at 27°C. Energy per spike (left) and number
771 of spikes (right) for parameter configurations simulated at 11°C and 27°C. The energy per spike is smaller at higher
773 temperatures, but the number of spikes is higher at higher temperatures.
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Supplementary Figure 11. Analysis of a second experimental preparation. (a) Experimental data recorded at 11°C. (b)
Sample from posterior distribution matches the experimental data. (c) Energy consumption of 2804 model configurations
that closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energy
consumption.
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Supplementary Figure 12. Tuning neurons individually, for a second experimental preparation. (a) Black dots:
Energy consumed by each neuron separately. Black line: Linear regression (correlation coefficient r = —0.009, p-value

p = 0.39; LP versus PY, r = 0.21, p = 0.0012; AB/PD versus PY, r = 0.059, p = 0.10). (b) The activity produced by two
parameter configurations produced with the strategy described in Fig. 6b. (c) A subset of the membrane (left) and synaptic
(right) conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors
(left to right): 100, 10, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 2804 model
configurations in our database and the energy consumption of the configurations produced with the strategy described in
Fig. 6b (red). (e) Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 2804
models in our database (black), and for the configurations produced with the strategy described in Fig. 6b (red).
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Supplementary Figure 13. Analysis of temperature robustness of a second experimental preparation. (a)
Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energy
consumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuits
matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C
and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and
27°C.
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Supplementary Figure 14. Analysis of a third experimental preparation. (a) Experimental data recorded at 11°C. (b)
Sample from posterior distribution matches the experimental data. (c) Energy consumption of 6926 model configurations
that closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energy
consumption.
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Supplementary Figure 15. Tuning neurons individually, for a third experimental preparation. (a) Black dots: Energy
consumed by each neuron separately. Black line: Linear regression (correlation coefficient r = —0.003, p-value p = 0.39; LP
versus PY, r = 0.19, p = 0.007; AB/PD versus PY, r = 0.006, p = 0.77). (b) The activity produced by two parameter
configurations produced with the strategy described in Fig. 6b. (c) A subset of the membrane (left) and synaptic (right)
conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors (left to
right): 100, 100, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 6926 model configurations in
our database and the energy consumption of the configurations produced with the strategy described in Fig. 6b (red). (e)
Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 6926 models in our
database (black), and for the configurations produced with the strategy described in Fig. 6b (red).
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Supplementary Figure 16. Analysis of temperature robustness of a third experimental preparation. (a)
Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energy
consumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuits
matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C
and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and
27°C.
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