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Abstract9

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic con-10

ductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints,11

such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible12

conductances? Here, we investigate how metabolic cost affects the parameters of neural circuits with similar activity13

in a model of the pyloric network of the crab Cancer borealis. We use a novel machine learning method to identify a14

range of networkmodels that can generate activity patternsmatching experimental data, and find that neural circuits15

can consume largely different amounts of energy despite similar circuit activity. Furthermore, a reduced but still sig-16

nificant range of circuit parameters gives rise to energy-efficient circuits. We then examine the space of parameters17

of energy-efficient circuits and identify potential tuning strategies for low metabolic cost. Finally, we investigate the18

interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across tem-19

peratures, but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our20

analyses show that, despitemetabolic efficiency and temperature robustness constraining circuit parameters, neural21

systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.22

23

Introduction24

Neural activity arises from the interplay ofmechanisms atmultiple levels, including single-neuron andnetworkmecha-25

nisms. Several experimental and theoretical studies have found that neural systems can produce similar activity from26

vastly different membrane and synaptic conductances [1–6], a property sometimes referred to as parameter degen-27

eracy [7, 8]. Such parameter degeneracy has been argued to be a prerequisite for natural selection [7] and translates28

into potential mechanisms of compensation for perturbations of the systems’ parameters [3, 5, 9–14]. However, in29

addition to a specific target activity, neural systems are likely subject to additional constraints such as the require-30

ment to be energy efficient [15–17]. In order to understand experimentally observed variability and probe potential31

compensation mechanisms in functioning neural systems, it is thus crucial to characterise the extent of the systems’32

parameter degeneracy under such additional constraints.33

Neuronal activity accounts for the majority of the energy consumed by the brain [18–20]. Energy is stored in34

the ionic gradients across the cell membrane, and consumed mostly by action potentials and synaptic mechanisms.35

Maintaining the ionic gradients requires the action of ion pumps, which consume ATP [15, 21]. Previous work has in-36

vestigated themetabolic efficiency in small neural systems, often at the single neuron level and with few ion channels37
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(often sodium, potassium, and leak) [15, 22, 23]. In these studies, it has been demonstrated that energy consump-38

tion of single neurons can be reduced by tuning maximal conductances or time constants of gating variables, while39

maintaining electrophysiological characteristics, e.g. spike width. However, questions regarding energy efficiency of40

neural systems remain: First, it is unclear whether previous findings in single neurons [24–26] extrapolate to neural41

circuits with a large diversity of membrane and synaptic currents [12, 21, 27]. Second, the question of how strongly42

metabolic constraints impact parameter degeneracy remains unaddressed: Are energy efficient solutions confined43

in parameter space or can disparate network parameters generate energy efficient activity? Lastly, metabolic cost is44

only one of many constraints under which neural circuits operate, and it is often unknown whether energy efficiency45

trades-off with other constraints (for a study of how energy efficiency trades off with temperature robustness in a46

single neuron model of the grasshopper, see Roemschied et al. [28]).47

Here, we investigate how energy efficiency constrains the parameter degeneracy in the pyloric network in the48

stomatogastric ganglion (STG) of the crab Cancer borealis [29, 30], a canonical example of a neural system with pa-49

rameter degeneracy [5]. The pyloric network produces a triphasic motor pattern, and consists of a pacemaker kernel50

(anterior burster neuron, AB, and two pyloric dilator neurons, PD), as well as two types of follower neurons (a single51

lateral pyloric, LP, and several pyloric, PY, neurons), interconnected by inhibitory synapses. Amodel of this circuit with52

three model neurons (AB/PD, LP, PY), each with eight membrane currents, and seven inhibitory synapses (Fig. 1a, de-53

tails inMethods) has been shown to be capable of producing similar network activity with widely different parameters54

[5].55

We start by characterising the parameter degeneracy of thismodel: We apply a recently introducedmachine learn-56

ing tool for simulation-based inference, Sequential Neural Posterior Estimation (SNPE) [14] to estimate the full set of57

membrane and synaptic conductances for which the model reproduces experimentally measured electrophysiologi-58

cal activity. We reduce the number of model simulations required to run SNPE by introducing an additional classifier59

which detects and rejects parameter-combinations that produce non-bursting model outputs [31]. After characteris-60

ing the parameter degeneracy in the model, we show that disparate circuit configurations can have different energy61

consumption despite similar activity. However, a significant parameter degeneracy is present in themodel evenwhen62

enforcing circuits to have both similar activity and low energy consumption. Furthermore, energy consumption is lin-63

early predictable from circuit parameters, allowing us to identify tuning mechanisms for lowmetabolic cost. We then64

show that individual neurons in the pyloric network can be tuned separately to minimize their energy consumption,65

and thereby achieve low energy consumption at the circuit level. Finally, since the crab Cancer borealis is subject66

to daily and seasonal fluctuations in temperature, we study the trade-off between metabolic cost and robustness67

to changes in temperature [32–35]. We find that metabolic cost can vary across temperatures, but that the pyloric68

network can produce functional, energy efficient, and temperature robust activity with disparate parameters.69

Results70

Disparate energy consumption despite similar network activity71

We studied the metabolic cost in a model of the pyloric network (Fig. 1a). In this model, disparate sets of maximal72

membrane and synaptic conductances can give rise to similar network activity [5]. As an example, we simulated73

two such circuit configurations (Fig. 1b) and computed their metabolic cost using a previously described measure of74

energy consumption [36]. In this measure, the energy for each ion channel is the time integral of the product of the75

membrane current and the respective difference between the membrane voltage and the reversal potential. The76

energy consumed by the entire neural circuit is the sum of the energies across channels of all neurons (details in77

Methods).78

Although the two simulated circuit configurations produce similar network activity, even at the single-spike level79

(Fig. 1c), the total energy consumption (Fig. 1d) as well as the moment by moment energy consumption differ sub-80

stantially (Fig. 1e). A closer inspection of the energy consumed by each current in the PY neuron during the action81

potentials [37] shows that the difference in energy between these two network configurations is also evident in the82

energy consumed by the sodium current Na, the delayed-rectifier potassium current Kd, and the transient calcium83

current CaT (Fig. 1f).84
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Figure 1. Similar activity with different energy consumption. (a) Computational model of the pyloric network consisting of

three model neurons (AB/PD, LP, PY) and seven synapses. (b) Two model configurations with similar circuit activity (traces from

top to bottom: AB/PD, LP, PY) despite different circuit parameters (parameter values not plotted). Scale bars indicate 50 mV. (c)

Close-up of two spikes in the PY neural activity shown in (b). (d) Total energy consumption divided by the duration of the simulation

(10 seconds) for the traces shown in (b). The left circuit has 3-fold lower metabolic cost than the right circuit. (e) Consumed energy

at each time point. Scale bar indicates 100 µJ/s. (f) Energy consumed by each of the ion currents during the two spikes shown in (c).

Disparity in energy consumption in models matching experimental data85

The example above illustrates that the model of the pyloric network can, in principle, produce the same activity with86

different metabolic costs. However, it is unclear how broad the range of metabolic costs associated with the same87

network output is. In order to address this, we need to identify the full space of maximal membrane and synaptic88

conductances (31 parameters in total) thatmatch experimentalmeasurements of network activity and to characterise89

the energy consumption of each of these configurations.90

We used a recently introduced machine learning tool for simulation-based inference, Sequential Neural Poste-91

rior Estimation (SNPE) [14], to estimate the set of circuit parameters (the posterior distribution) consistent with data92

and prior assumptions about the parameters. In SNPE, parameters which specify network configurations are initially93

sampled from the prior distribution (in our case a uniform distribution within plausible parameter ranges) and used94

to simulate network activity. Subsequently, a neural-network based density estimator is trained on these simulated95

network activities to learn which parameter sets produce network activity that is compatible with empirical obser-96

vations. In order to generate the training data for the neural network, SNPE requires millions of model simulations97

to accurately infer the set of data-compatible parameters. To improve the simulation efficiency and make the neu-98

ral network predict parameter sets that more closely match experimental data, we introduced a modification of the99

algorithm (Fig. 2a). Specifically, a technical challenge for SNPE is that parameter sets sampled from the prior distri-100

bution might produce simulation results that are not ‘valid’, i.e. produce clearly non-sensible data: E.g., if there are101

no bursts, phase gaps between bursts are not defined (Fig. 2a, forth panel, red). For SNPE, these ‘invalid’ simulations102

are discarded immediately. In order to reduce the fraction of simulations that are discarded, we introduce a classifier103

to predict whether a parameter set will lead to a ‘valid’ or an ‘invalid’ simulation output [31] (Fig. 2a, second panel).104

Once the classifier is trained on an initial set of simulations, parameters are immediately discarded without running105

the simulation, if the classifier confidently predicts that the simulation will be invalid (details in Methods). We name106

the distribution of parameters that are accepted by the classifier the ‘restricted prior’ (Fig. 2a, third panel). Once107

sufficiently many valid simulations are performed, SNPE proceeds by training a deep neural density estimator to es-108

timate the posterior distribution over parameters of the model [14] (Fig. 2a, last two panels, proof of convergence to109

the correct posterior distribution in Methods).110

We used this procedure to infer the posterior distribution over maximal membrane and synaptic conductances111

of the model of the pyloric network given salient and physiologically relevant features of experimentally measured112

data. These features are the cycle period, burst durations, duty cycles, phase gaps, and phase delays of the triphasic113
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Figure 2. Bayesian inference reveals wide range of energy consumption. (a) Inferring the posterior distribution by combining

a rejection classifier and a deep neural density estimator. First, a classifier (trained on an initial set of simulations) predicts which

circuit parameters sampled from the prior produce ‘valid’ simulation outputs. We then proceed by sampling from the part of the

parameter space that is accepted by the classifier, i.e. the ‘restricted prior’. All ‘valid’ data (green) are used to train a deep neural

density estimator, all ‘invalid’ data are discarded (red) [14]. Once this estimator is trained, it can be evaluated on experimental data

to return the posterior distribution over model parameters. (b) Experimental data recorded from the pyloric network [38]. Arrows

indicate a subset of the physiologically relevant features, namely the cycle period (1), phase delays (2), phase gaps (3), and burst

durations (4) (see Methods for details). (c) Simulation output from a parameter set sampled from the prior distribution. The traces

are: AB/PD (top), LP (middle), PY (bottom). Scale bars correspond to 500 ms and 50 mV. (d) Subset of the marginals and pairwise

marginals of the 31-dimensional restricted prior, i.e. the subspace of parameters for which the model produces bursting activity.

All maximal conductances are given in mS/cm2. (e) Subset of the marginals and pairwise marginals of the posterior distribution,

i.e. the subspace of parameters for which the model matches experimental data shown in panel (b) (full posterior distribution in

Appendix 1 Fig. 1). (f) Sample from the restricted prior producing bursting activity but not matching experimental data. (g) Sample

from the posterior distribution closely matching features of the experimental data. (h) Histograms over energy consumed by each

neuron (blue, orange, green) as well as by entire circuit (black). Trace with lowest energy consumes 9 times less energy than trace

with highest energy. (i) Same as in (h), but for energy per spike.

rhythm (Fig. 2b, details in Methods) [38]. As in previous studies [4, 5], we did not constrain the model of the pyloric114

network by the number of spikes or the spike shapes. Below, we describe the results obtained for a specific experi-115

mental preparation. We qualitatively reproduced all results with two additional experimental preparations (Appendix116

1 Fig. 11, Appendix 1 Fig. 12, Appendix 1 Fig. 13, Appendix 1 Fig. 14, Appendix 1 Fig. 15, Appendix 1 Fig. 16) [38].117

When simulating the pyloric network model with parameter sets sampled from the prior distribution, 99% of118

simulations do not produce spikes or bursts and hence characteristic summary features of the circuits are not defined119

(Fig. 2c). The restricted prior (Fig. 2d) is narrower than the prior distribution, but considerably broader than the120

posterior (Fig. 2e, full posterior distribution in Appendix 1 Fig. 1; comparison between prior, restricted prior, and121

posterior in Appendix 1 Fig. 2). Parameters sampled from the restricted prior often produce activity with well-defined122

summary features (Fig. 2f), but do not generallymatch experimental data, whereas samples from the posterior closely123
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Figure 3. Metabolic constraints on individual circuit parameters. (a) Left: Energy consumption of 35,939 models that match

experimental data. The orange area corresponds to the energy consumption in the lowest 2% quantile, red area to the top 98%

quantile. Middle: Distribution of the maximal conductance of the transient calcium channel (CaT) in the PY neuron in the 2%

(orange) and 98% quantile (red). Right: Distribution of the maximal conductance of the delayed-rectifier potassium channel (Kd) in

the AB/PD neuron in the 2% (orange) and 98% quantile (red). (b) Standard deviation of parameters for models with energy

consumption in the lowest 2% quantile. Standard deviation is normalized to the standard deviation of the parameters across all

35, 939models in our database. (c) Same as panel (b), but for a range of quantiles. Solid: AB/PD, dotted: LP, dashed: PY. Colors are

the same as in Fig. 1f. Synapses in black. (d) Subset of the parameter values of the five most efficient circuit configurations in our

database. (e) The network activity produced by two of these five configurations. Scale bar indicates 500 ms and 50 mV. (f) The

energy consumption of the two configurations shown in panel (d). (g) Subset of circuit parameters of the two solutions shown in

panel (b). Despite similar network activity and low energy consumption, several parameters differ by more than 2-fold. The

membrane conductances are scaled by the following factors (left to right): 100, 10, 10, 100, 100, 10000.

match experimental data (Fig. 2g). By using the classifier to reject ‘invalid’ simulations, we required half as many124

simulations compared to ‘classical’ SNPE [14] and achieved a higher accuracy (Appendix 1 Fig. 3). For the subsequent125

analyses, we only considered posterior samples whose activity was within a prescribed distance to the experimental126

data, and discarded all other samples (details inMethods). We simulated 1million parameter configurations sampled127

from the posterior, out of which approximately 3.5% fulfilled the distance criterion, leading to a database of 35, 939128

parameter sets whose activity closely matched experimental data. Sampling from the prior distribution rather than129

the posterior would have required approximately 600 billion simulations to obtain 35, 939 parameter sets that fulfill130

our criterion (60, 000 times more than with our method).131

We computed the energy consumption of each of the 35, 939 circuit activities (Fig. 2h). The circuit configuration132

with lowest total energy consumes nine times less energy than the circuit configuration with highest total energy.133

To ensure that the difference in energy does not only stem from different numbers of spikes within a burst, we also134

computed the average energy consumed during a spike (energy per spike) in each of the neurons (Fig. 2i). As with total135

energy, energy per spike strongly varies across parameter configurations. These results show that, despite similar136

circuit function, different parameter sets can have vastly different energy consumption. Below, we investigate the137

mechanisms giving rise to this phenomenon.138

Metabolic constraints on individual circuit parameter ranges139

How strongly does enforcing low energy consumption constrain the permissible ranges of circuit parameters? We140

inspected the circuit parameters of the 2% most and least efficient configurations within our database of 35, 939141

model configurations (Fig. 3a, left). For some circuit parameters, the range of values producing efficient activity is142

clearly different from the range of values producing energetically costly activity (e.g. the maximal conductance of the143
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Figure 4. Influence of circuit parameters on energy consumption. (a) Illustration of the energy landscape under functional

constraints (matching experimental activity). The linear regression weights correspond to the direction along which energy varies.

(b) The linear regression accurately predicts the energy consumption on a test set of 300 circuit configurations (black dots). Grey

line is the identity function. (c) Weights w of the linear regression. Left: Weights of the maximal membrane conductances. Right:

Weights of the maximal synaptic conductances. (d) Weights w as a function of energy consumption (both normalized), for all

membrane currents (arrows highlight three illustrative examples). Membrane conductances on the top left consume little energy,

but their maximal conductances correlate strongly with energy consumption. Conductances on the bottom right consume a lot of

energy, but their maximal conductances correlate weakly with energy consumption. (e) Top: The gating variable n4 of the Kd

current in the PY neuron during activity produced by two circuit configurations (black and red) which are identical apart from the

magnitude of gKd. Bottom: The product of gating variable and maximal conductance n4 · gKd for the same configurations. (f) Top:

Weights of a linear regression onto the energy per spike in the PY neuron. Bottom: Weights of a linear regression onto the number

of spikes in the PY neuron.

transient calcium current in the PY neuron, Fig. 3a, middle). For other parameters, the range does not change (e.g. the144

maximal conductance of the delayed-rectifier potassium current in the AB/PD neuron, Fig. 3a, right). To quantify how145

strongly low energy consumption constrains parameters, we compared the parameter standard deviation across all146

35, 939 model configurations to that of the most efficient 2% (Fig. 3b,c). Most parameters in the circuit barely get147

constrained by energy consumption (values close to one in Fig. 3b,c). The parameters that get constrained the most148

by enforcing low energy consumption are the Na and CaT conductances of the AB/PD neuron, the CaS conductance149

of the LP neuron, and the Na, CaT, CaS, and leak conductances of the PY neuron. However, for all of these parameters,150

a large fraction of variability remains.151

In order to ensure that the remaining variability of circuit parameters does not stem from the remaining vari-152

ability of energy consumptions within the lowest 2% quantile, we inspected the five most efficient configurations in153

our database of 35, 939 model configurations. Even these five circuit configurations have strongly disparate circuit154

parameters (Fig. 3d). Despite having similar activity (Fig. 3e) and very low (and similar) metabolic cost (Fig. 3f), their155

circuit parameters are disparate (Fig. 3g). These results demonstrate that metabolic efficiency constrains the range156

of some circuit parameters, but it is possible to achieve low metabolic cost and similar network activity with widely157

disparate circuit parameters.158

Energy consumption can be linearly predicted from circuit parameters159

Wewanted to understand how each circuit parameter affects energy consumption. We performed a linear regression160

from circuit parameters (taken from our database of 35, 939model configurations) onto the energy consumption of161

these circuits (Fig. 4a). This linear regression achieved a high accuracy, demonstrating that energy consumption162

can be linearly predicted from circuit parameters (Fig. 4b; a non-linear regression with a neural network leads to163

similar results and is shown in Appendix 1 Fig. 5; details in Methods). The regression weights w indicate how strongly164
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energy consumption is correlated with each parameter value (Fig. 4c). The maximal sodium conductance gNa and the165

transient calcium conductance gCaT of the AB/PD and PY neuron as well as the slow calcium conductance gCaS of the166

AB/PD, LP, andPYneuron aremost strongly correlatedwith energy consumption: Increases of these conductances are167

associated with an increase in energy consumption, and thus, small conductance values correspond to metabolically168

more efficient solutions. The synaptic conductances are weakly correlated with energy consumption, which can be169

explained by the low values of the maximal synaptic conductances: The synaptic strengths range up to 1000 nS,170

whereas the membrane conductances can range up to 0.4 mS (i.e. 4 · 105 nS), such that synapses consume only171

0.08% of the total energy in the circuit. These results demonstrate that energy consumption can be linearly predicted172

from circuit parameters, and that energy consumption is most strongly correlated with the maximal conductances173

of sodium as well as slow and transient calcium.174

How do different currents affect total energy consumption? Do they directly consume energy, or do they trigger175

processes that then require energy? We addressed these questions by comparing the fraction of energy consumed176

by each current (as defined by our measure of energy [36], Fig. 1f) to the linear regression weight w associated with177

its maximal conductance (Fig. 4d). We found that some currents consume a lot of energy, although their maximal178

conductances barely correlate with energy consumption, e.g. the Kd current in the PY neuron (Fig. 4d, bottom right179

arrow), while other currents consume little energy, but nonetheless their maximal conductances are correlated with180

energy consumption, e.g. the CaS and CaT currents of the PY neuron (Fig. 4d, top left arrows).181

We investigated the neuronal mechanisms that give rise to these behaviors. First, to understand how currents182

can consume large amounts of energy despite their maximal conductance only weakly correlating with energy, we in-183

vestigated the effects of the delayed-rectifier potassium conductance gKd on circuit activity. We simulated two circuit184

configurations, identical apart from the magnitude of gKd in the PY model neuron. In the configuration with higher185

gKd, the gating variable n did not reach as high values as for the other configuration, thus leading to a similar effective186

conductance n4 · gKd (Fig. 4e). This demonstrates that changes in the maximal conductance gKd only weakly influence187

the current and thereby the energy consumption. Thus, despite the potassium current consuming a lot of energy due188

to a large flow of ions (compared to other channels), its maximal conductance gKd only weakly correlates with energy189

consumption. Second, to understand how maximal conductances can correlate with energy consumption despite190

their channels consuming little energy, we disentangled the correlation of circuit parameters with energy consump-191

tion into two parts: The energy per spike and the number of spikes. We fitted two additional linear regression models:192

One regression from circuit parameters onto number of spikes in the PY neuron and one regression from circuit193

parameters onto energy per spike in the PY neuron. We again found good predictive performance of these models,194

showing that the energy per spike and the number of spikes can also be linearly predicted from circuit parameters (re-195

gression performance in Appendix 1 Fig. 6). The energy per spike is strongly correlated with the sodium conductance196

(Fig. 4f, top), whereas the number of spikes is most strongly correlated with the maximal conductance of transient197

calcium (also with sodium, slow calcium, and transient potassium conductances, Fig. 4f, bottom). This demonstrates198

that increases in the maximal conductance of transient calcium lead to a higher number of spikes, which involve199

increased energy consumption through other currents. We verified this hypothesis by simulating two configurations200

that were identical apart from the magnitude of gCaT in the PY model neuron and found that the configuration with201

higher gCaT indeed produced more spikes per burst (Appendix 1 Fig. 7). This shows that, despite the calcium chan-202

nel consuming little energy itself, increasing gCaT can lead to higher energy consumption by increasing the number203

spikes, which involve energy consumption through other currents (mostly sodium and potassium). Overall, our anal-204

yses demonstrate that currents which consume a lot of energy are not necessarily the ones that influence energy the205

most.206

Minimal tuning mechanisms for low energy consumption207

We identified circuit parameters that correlate with energy consumption, but this does not yet address the question208

of which changes of these parameters will lead to the reduction of energy consumption: First, a correlation between209

parameter values and energy consumption does not imply a causal connection between these. Second, parameters210

that correlate strongly with energy consumption might have to be finely tuned to match the pyloric rhythm, thus not211

constituting a feasible substrate for reducing energy consumption. Therefore, we went beyond the previous anal-212

ysis to investigate potential tuning mechanisms involving single and pairs of parameters that would reduce energy213

consumption while maintaining the pyloric rhythm.214
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Figure 5. Minimal tuning mechanisms for low energy consumption. (a) Energy consumption (as predicted by linear regression)

of several models that differ only in their maximal sodium conductance in the AB/PD neuron. Energy increases with gNa. We

excluded circuits with too low and too high values of gNa, for which the model does not reproduce experimental data. (b) Same as

panel (a), but for models that differ in their maximal conductances of sodium (Na) and delayed-rectifier potassium (Kd) in the

AB/PD neuron. (c) Top: Voltage trace of the AB/PD neuron for the most efficient configuration within the plane shown in panel (b).

Bottom: energy consumption during that activity. (d) Same as panel (c), but for the least efficient configuration. (e) Fraction of

energy that can be saved by modifying a single membrane parameter (diagonal of each matrix) or pairs of membrane parameters

(upper and lower diagonal). Colorbar as in panel (f). Arrows indicate the direction in which (pairs of) parameters should change in

order to reduce energy: Left/right refers to the parameter on the x-axis, top/bottom refers to the parameter on the y-axis. (f)

Fraction of energy that can be saved by modifying a synaptic conductance (vector on the left) or the synaptic conductance and one

membrane conductance of the respective postsynaptic neuron (matrix on the right).

We investigated how strongly energy consumption could be reduced by mechanisms that involve a single param-215

eter. For instance, we kept all parameters but the maximal sodium conductance of the AB/PD neuron (gNa) constant216

and varied gNa on a grid. We then estimated the energy consumption of each configuration with the previously iden-217

tified linear model (Fig. 4). The energy consumption of the circuit increases with gNa. However, for too low (or too218

high) gNa, the network activity does not match experimental data (we rejected parameters for which the posterior219

density is too low, see Methods). Thus, despite gNa strongly correlating with energy consumption (Fig. 4c), energy220

consumption can be reduced only modestly when tuning gNa and keeping all other parameters constant.221

We then investigated whether pairwise mechanisms could lead to larger savings in energy consumption. For in-222

stance, we kept all parameters but gNa and the delayed-rectifier potassium conductance of the AB/PD neuron (gKd)223

constant and varied the remaining two parameters on a grid. We estimated the energy consumption of any config-224

uration on this grid and found that the most efficient parameter configuration is 23% more efficient than the most225

wasteful configuration (Fig. 5b). This reduction in energy consumption could be achieved through a simple pairwise226

mechanism: A reduction of sodium combinedwith an increase of potassiumallows the network tomaintain its activity227

(Fig. 5c,d), while reducing the metabolic cost (Fig. 5b).228

We repeated this analysis for every conductance and every pair of conductances (Fig. 5e,f). Note that we only229

considered pairs of parameters within each neuron because pairwise compensation mechanisms across neurons230

have been shown to be weak in this model [14]. Some of the single-conductance mechanisms can reduce the energy231

consumption by up to 36%. Pairwise mechanisms, such as reducing the sodium and transient calcium conductances232

of the PY neuron, can reduce the energy consumption of the entire circuit by up to 55%. When considering only the233

energy consumed in a specific neuron, pairwisemechanisms can reduce energy consumption by up to 80% (Appendix234

1 Fig. 8). Finally, pairwise mechanisms between synapses and conductances of the respective postsynaptic neurons235

can reduce energy consumption of the entire circuit by up to 43%.236
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Figure 6. Neurons can be tuned individually to achieve minimal circuit energy consumption. (a) Black dots: Energy

consumed by each neuron separately. 100 randomly selected parameter configurations from our database of 35, 939

configurations. Black line: Linear regression shows a weak correlation between the energy consumed by pairs of neurons. (b) We

select the five most efficient parameter configurations for each neuron separately, and search with Markov chain Monte Carlo

(MCMC) for synaptic conductances such that the target circuit activity is achieved. (c) The activity produced by two parameter

configurations produced with the strategy described in (b). (d) A subset of the membrane (left) and synaptic (right) conductances

for the configurations in (c). Despite generating similar network activity, the configurations have very different circuit parameters.

The membrane conductances are scaled with the following factors (left to right): 10, 10000, 1, 100, 10000. (e) Histogram over the

energy consumption of all 35, 939models in our database (blue, orange, green, black) and the energy consumption of the

configurations produced with the strategy described in panel (b) (red). (f) Histogram of the posterior log-probability for samples

from the prior distribution (grey), for the 35, 939models in our database (black), and for the configurations produced with the

strategy described in panel (b) (red).

These analyses provide hypotheses for causalmechanisms for howneurons canbe tuned into low-energy regimes,237

while the neural activity keeps satisfying functional constraints. We demonstrated that even simple mechanisms238

involving one or two conductances can have a substantial impact on the energy consumption of the circuit—thus,239

low-energy configurations can be found with ‘local’ parameter changes, not requiring fine coordination amongst240

multiple parameters.241

Neurons can be tuned individually to achieve minimal circuit energy242

Next, we asked how single neurons interact to produce functional and efficient circuit activity. Can the energy of the243

entire circuit beminimized by optimizing the energy of each neuron individually? And does the circuit retain functional244

activity when neurons are individually optimized for low energy efficiency? Within our database of 35, 939 model245

configurations, there is a weak correlation between the energies consumed by pairs of neurons, which suggests246

that the energy consumption between neurons might be independent from one another (Fig. 6a; AB/PD versus LP,247

correlation coefficient r = −0.006, p-value p = 0.23; LP versus PY, r = 0.02, p = 3 ·10−6; AB/PD versus PY, r = −0.03, p =248

8 · 10−9). We thus investigated whether we could optimize the parameters of each neuron individually for low energy249

consumption and still retain functional circuit activity. We searched our database of 35, 939model configurations for250

the single neuron models with minimal energy consumption individually. We selected the five most efficient single251

neuron parameter combinations for each of the neurons and assembled them into 125 (53) network configurations.252

We then identified synaptic conductances that match each of these configurations with Markov chain Monte Carlo253

(Fig. 6b, details inMethods). Notably, given the already estimated full posterior distribution, this step does not require254

additional simulations.255

For each of the 125 combinations of membrane conductances, we found a set of synaptic conductances for which256

the network activity closely resembles experimentally measured activity (Fig. 6c). The resulting configurations have257
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Figure 7. Temperature robustness does not preclude energy efficiency. (a) Top: Experimental data at 11°C. Bottom:

Experimental data at 27°C [38]. (b) Left: Posterior distribution given experimental data at 11°C. Right: Posterior given experimental

data at 11°C and 27°C. (c) Simulations for a parameter set drawn from the posterior distribution matching experimental data at

11°C and 27°C. Simulations at 11°C (top) and 27°C (bottom). (d) Cycle frequency (left), phase of LP neuron (middle) and phase of PY

neuron (right) for parameter set shown in panel (c), simulated at temperatures between 11°C and 27°C. Green dots are the values

of the experimental preparations. (e) Energy consumption at 11°C versus 27°C for 967 circuits sampled from the posterior (in (b)

right). In grey, the identity line. (f) Standard deviation of parameters for models that match experimental data at 11°C and 27°C

and that have energy consumption in the lowest 2% quantile at 11°C and 27°C. Standard deviation is normalized to the standard

deviation of the parameters across all 35, 939models in our database. (g) Green: Distribution of the energy consumption of

circuits matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C

and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and 27°C.

disparate parameters (Fig. 6d) but highly similar network activity. Furthermore, we found that the resulting configura-258

tions have similar and very low energy consumption. The energy consumption of these circuits is significantly smaller259

than that of any of the configurations in our database of 35, 939 model configurations (Fig. 6e). This demonstrates260

that optimizing a specific neuron for energy efficiency does not preclude the connected neurons from being energy261

efficient. Thus, our results suggest that the pyloric network can be optimized for energy efficiency by tuning neurons262

individually for low energy consumption.263

We estimated how likely are these energy-efficient circuits under the estimated posterior. We found that all these264

models have similar posterior log-probability as the 35, 939 model configurations in our database (Fig. 6f), i.e. these265

are as likely to underlie the experimentally measured activity as the database models. Thus, the low-energy config-266

urations were not sampled when generating our original model database because of the high dimensionality of the267

parameter space, and we cannot exclude the possibility that there might be unsampled regions in parameter space268

with even more energy-efficient circuit configurations.269

Robustness to temperature does not require an increased metabolic cost270

The crab Cancer borealis experiences daily and yearly fluctuations in temperature which in turn influence the chemical271

and physical properties of neurons [32–34]. Nonetheless, neural circuits such as the pyloric network can maintain272

their functionality in the presence of these temperature variations. As temperature increases, the cycle frequency of273
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the circuit increases exponentially, but the phases between bursts remain relatively constant [35, 39]. We investigated274

whether the pyloric network trades off robustness to changes in temperature with energy efficiency, i.e. whether275

temperature-robust solutions are more energetically costly.276

The temperature-dependence of a biophysical parameter R is captured by the Q10 value and is defined as follows:

RT = RrefQ
(T−Tref )/10
10 ,

where Rref is the parameter value at the reference temperature Tref = 11°C. We extended the model of the pyloric277

network to includeQ10 values for all maximal membrane and synaptic conductances (details in Methods) [40, 41]. We278

then used SNPE to identify all maximal membrane and synaptic conductances, as well as the associated Q10 values279

(41 parameters in total) that match experimental recordings at 11°C and 27°C (Fig. 7a) [38]. We set the previously280

identified posterior distribution (Fig. 2e) over circuit parameters given experimental data at 11°C as the new prior281

distribution, and then applied SNPE to match the model with experimental data at 27°C (Fig. 7b, full posterior in Ap-282

pendix 1 Fig. 9, details in Methods). We sampled circuit parameters and Q10 values from the resulting distribution283

and selected samples whose activity closely matched experimental data at 11°C and 27°C (Fig. 7c). Overall, we gen-284

erated a database of 967 sets of circuit parameters and Q10 values. When simulating at temperatures between 11°C285

and 27°C, these circuits show the characteristic exponential increase in cycle frequency as well as the constant phase286

relationship between bursts observed experimentally (Fig. 7d) [35].287

We asked whether the energy consumed by the circuit at 11°C is proportional to the energy consumed at 27°C.288

We found that, despite the number of spikes in our model being higher at higher temperatures, the total energy289

consumption is lower at 27°C (Fig. 7e; note that, for one of the three preparations, the energy consumptions at290

11°C and 27°C are similar; see Appendix 1 Fig. 16). This occurs because at higher temperatures, the increase in the291

number of spikes is accompanied by an increase in channel time constants and respective decrease in energy per292

spike (Appendix 1 Fig. 10). In addition, there is a clear correlation between energy consumptions at 11°C and 27°C293

(Pearson-correlation coefficient: 0.66), although circuit configurations with similar efficiency at 11°C can show a range294

of energy consumptions at 27°C (Fig. 7e).295

We then investigated how the additional constraint of temperature robustness impacts the parameter degeneracy296

of the pyloric network. We computed the standard deviation of models that match experimental data at 11°C and297

27°C and whose energy consumption is in the 2% quantile at both temperatures (Fig. 7f). The resulting standard298

deviation is smaller than that of all models in our database of 35, 939models, but a large parameter variability remains.299

Thus, we found a substantial parameter degeneracy in circuits constrained by “pyloric-ness”, energy efficiency and300

temperature robustness.301

Does temperature robustness have an influence on metabolic cost? We computed the energy consumed at 11°C302

for three different scenarios: First, for all models in our database of 35, 939model configurationsmatching experimen-303

tal data recorded at 11°C (same as Fig. 2h). Second, for all models in our database of 35, 939 model configurations304

that are also functional at 27°C (i.e. produce triphasic activity). Third, for all models in our database of 967 model305

configurations matching experimental data recorded at 11°C and 27°C. In all three of these scenarios, the distribu-306

tion of metabolic cost was similar (Fig. 7g. Note that the slightly different average energy consumption between the307

first and the third scenario occurred only in two of the three preparations, see Appendix 1 Fig. 13 and Appendix 1308

Fig. 16). In particular, all three scenarios contained configurations that produce energy efficient circuit function. This309

demonstrates that enforcing temperature robustness does not require the pyloric network to be less energy efficient.310

Overall, our analyses indicate that the model of the pyloric network retains substantial parameter degeneracy311

despite constraints on energy efficiency and temperature robustness. In addition, we showed that temperature312

robustness does not entail additional metabolic cost.313

Discussion314

Neural systems undergo environmental and neuromodulatory perturbations to their mechanisms. The parameter315

degeneracy of neural systems, i.e. the ability to generate similar activity from disparate parameters, confers a certain316

degree of robustness to such perturbations [7–10, 42, 43]. However, not all system configurations might be equally317

desirable, with some configurations being more energy efficient than others [15]. Here, we analysed the energy con-318

sumption of parameter configurations with similar activity in the pyloric network of the stomatogastric ganglion. We319
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found that, even when the network activity is narrowly tuned to experimental data, the energy consumption can320

strongly vary between parameter configurations. Despite this diversity of metabolic costs, energy efficient activity321

could be produced from a wide range of circuit parameters. When characterising the range of data-consistent pa-322

rameters, we found a linear relationship between circuit parameters and energy consumption, which allowed us to323

identify tuning mechanisms for low energy consumption. Lastly, we showed that temperature robustness does not324

preclude energy efficiency and that parameter degeneracy remains despite metabolic and temperature constraints.325

These findings were facilitated by a methodological advance that increased the efficiency of previously published326

tools for simulation-based inference [14, 31, 44, 45].327

Parameter degeneracy under multiple constraints328

In addition to a specific activity, neural circuits are likely constrained by other requirements, e.g. low energy con-329

sumption or robustness to perturbations such as fluctuations in temperature or pH [35, 40, 41, 46–50]. Here, we in-330

vestigated how energy efficiency impacts the parameter degeneracy of neural systems. While a plausible hypothesis331

would have been that energy efficiency reduces or eliminates degeneracy altogether, here we found that parameter332

degeneracy is preserved, even within circuits with very low energy consumption.333

In our work, parameter degeneracy consisted in the range of pyloric-network models that match specific features334

of experimental activity. We used the same features as in previous work [5], which are physiological constraints of335

the pyloric network, e.g. cycle duration, burst durations, and gaps and phases of bursts. However, we cannot discard336

the possibility that the inclusion of additional data-features (e.g. spike height or spike width) would have impacted337

parameter degeneracy and consequently also the range of energies.338

Previouswork demonstrated thatmultiple parameter sets in amodel of the AB/PDneuron are temperature robust339

[40]. Here, we investigated the interplay between energy consumption and temperature robustness at the circuit340

level, and showed that functional, energy efficient, and temperature robust activity can be generated from disparate341

circuit parameters. In addition, consistent with previous work in a single neuron model of the grasshopper [28],342

we found that temperature robustness does not require an increased metabolic cost. Whether these results will343

generalize with the inclusion of the robustness to additional external perturbations, e.g. pH fluctuations [49, 51], or344

internal perturbations, e.g. neuromodulation [39], remains a subject for future work.345

O’Leary andMarder [52] have demonstrated in amodel of the PDneuron that somephysiological features (such as346

duty cycle) can be maintained under temperature perturbations when conductances are scaled by a common factor.347

We tested the possibility that such invariance under conductance scaling could explain the parameter degeneracy348

and ranges of energies observed in our circuit model: Scaling the conductances by a common factor would scale349

the currents and thereby the energy consumption. However, for the parameter ranges we used (similar ranges as350

in Prinz et al. [5]), scaling the conductances changed physiological features (such as the cycle duration) of the pyloric351

rhythm and led to the model not fitting the experimental data accurately (Appendix 1 Fig. 4).352

More generally, whether there is potential for a system to exhibit parameter degeneracy depends on the number353

of constraints on the system relative to the number of free parameters: In an over-parameterized system, if there354

is any parameter setting which satisfies the constraints, it is expected that there will be multiple such settings. Our355

model has 31 conductances and 10 Q10 values, and we use 18 voltage features at 11°C, one energy consumption356

constraint and 18 voltage features at 27°. While there is a similar number of constraints relative to the parameter357

dimensionality, some of those constraints are likely redundant, in which case we have fewer constraints than param-358

eters. Thus, the fact that there are multiple feasible parameter settings is not surprising per se. However, rather359

than these multiple solutions corresponding to similar parameter values, we found these to be quite disparate in the360

parameter space.361

Relation to previous work on metabolic cost of neural systems362

There has been extensive work on quantifying the metabolic cost of biophysical processes in single neurons [15, 22–363

26], and how single neurons subject to functional constraints can be tuned to minimize energy consumption [15,364

16, 23, 25]. Consistent with this work, we found that total energy consumption of the pyloric network is strongly365

influenced by the sodium current [25], but also by the transient and slow calcium currents. The maximal sodium con-366

ductance is the most prominent driver of the energy per spike: Increases in the conductance lead to an increase of367

metabolic cost per spike [15, 25]. In contrast, calcium currents influence energy consumption through the number of368
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spikes within a burst, despite not consuming much energy themselves. Our results suggest that the maximal conduc-369

tances of sodium and calcium might be regulated for metabolic efficiency. We thus predict that these conductances370

are less variable in nature than expected by computational models only matching network activity. Nevertheless, we371

should note that our findings are based on two simplifying assumptions: First, we studied simple single-compartment372

neurons rather than more realistic multi-compartment neuron models [53]; and second, the energy measure is de-373

rived directly from the Hodgkin-Huxley model [36], rather than taking into account all the complexity of the ionic374

exchange leading to ATP consumption [15, 21, 23, 25]375

Previous studies have demonstrated that synaptic mechanisms can consume a substantial amount of energy376

[21, 54, 55]. In contrast, in the considered model of the pyloric network, synaptic currents consume only a minor377

fraction of energy (approximately 0.08% of the total energy is consumed by synapses, whereas Attwell and Laughlin378

[21] report 40% of energy per action potential being consumed by synaptic mechanisms). This difference is largely379

due to the low number of connections in the pyloric network [56]: Each neuron projects to up to two other model380

neurons, whereas the synaptic energy consumption reported in Attwell and Laughlin [21] is based on the assumption381

of 8000 synaptic boutons per neuron. Thus, models of more complex neural circuits driven by excitatory, recurrent382

connectivity, such as the ones found in the cortex, might spend a larger fraction of energy on synaptic mechanisms.383

Energy efficiency in the pyloric network384

Experimental studies have shown that the parameters of the pyloric network vary across wide ranges [1, 2, 57]. This385

raises the question of whether these disparate solutions are all tuned for energy efficiency. In our study, we demon-386

strated that energy-efficient circuit function can be compatible with many parameter configurations. Therefore, de-387

spite the variability of the parameters, each configuration in the crab Cancer Borealismight be tuned for low energy388

consumption.389

However, the pyloric network is a small subset of the nervous system of the crab and, therefore, likely consumes390

a small fraction of its total energy budget. Thus, even if the nervous system of the crab is tuned for energy efficiency,391

it could still achieve this without strict energy requirements for the pyloric network.392

Increasing the efficiency of simulation-based inference393

We used a previously introduced tool, SNPE [14, 45] to identify all models consistent with experimentally measured394

activity as well as prior knowledge about realistic parameter ranges. We improved the efficiency of the method by395

introducing a classifier that rejects ‘invalid’ simulations [31]. By using this classifier, we were able to improve the396

accuracy of SNPE while requiring only half as many simulations [14]. Because of this larger simulation-budget, the397

resulting posterior distributions became more accurate. Furthermore, the trained neural density estimator is amor-398

tized, i.e. one can obtain the posterior distribution for multiple experimental preparations without running further399

simulations or training a new neural network.400

The classifier-enhanced SNPE can be applied to other modelling studies in neuroscience. In particular, the clas-401

sifier to predict ‘invalid’ simulations is valuable whenever there are parameter values for which the computational402

model of interest produces ill-defined features: E.g. the spike shape cannot be defined in caseswhere a neuronmodel403

does not produce spikes. Our method has the potential to significantly speed up inference in these scenarios.404

Implications for the operation of neural circuits405

Our findings suggest that neural circuits can be energy-efficient with largely disparate biophysical parameters, even406

with highly specific functional requirements under naturally-occurring perturbations. This raises the question of407

whether such energy efficiency is present in real biological systems, and how these systems could be tuned for408

metabolic efficiency.409
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Methods417

Code availability418

Code to reproduce the figures is available at https://github.com/mackelab/stg_energy. Code for running SNPE and419

training a classifier to reject ‘invalid’ simulations is available in our toolbox: https://github.com/mackelab/sbi [58]. A420

tutorial for how to use these features can be found on our website https://mackelab.org/sbi.421

Data from the crustacean stomatogastric ganglion422

We analyzed extracellular recordings of the stomatogastric motor neurons that are involved in the triphasic pyloric423

rhythm in the crab Cancer borealis [38]. The first dataset as seen in Fig. 2 and Fig. 7 is from files 845_082_0044 and424

845_082_0064, preparation 1. The second dataset as seen in Appendix 1 Fig. 11 and Appendix 1 Fig. 13 is from files425

857_016_0049 and 857_016_0069, preparation 1. The third dataset as seen in Appendix 1 Fig. 14 and Appendix 1426

Fig. 16 is from files 845_078_0027 and 845_078_0040, preparation 2. All preparations were decentralized, i.e. the ax-427

ons of the descending modulatory inputs were severed. The data were recorded at 11°C and 27°C. Full experimental428

details in Haddad and Marder [39].429

Circuit model of the crustacean stomatogastric ganglion430

The circuit model of the crustacean stomatogastric ganglionwas adapted fromPrinz et al. [5]. Themodel is composed

of three single-compartment neurons, AB/PD, LP, and PY, where the electrically coupled AB and PD neurons are

modeled as a single neuron. Each of the model neurons contains 8 currents, a Na+ current INa, a fast and a slow

transient Ca2+ current ICaT and ICaS, a transient K
+ current IA, a Ca

2+-dependent K+ current IKCa, a delayed rectifier K
+

current IKd, a hyperpolarization-activated inward current IH, and a leak current Ileak. In addition, the model contains 7

synapses. As in Prinz et al. [5], these synapses are simulated using a standard model of synaptic dynamics [59]. The

synaptic input current into the neurons is given by Is = g ss(Vpost−Vs), where g s is the maximal synapse conductance,

Vpost the membrane potential of the postsynaptic neuron, and Vs the reversal potential of the synapse. The dynamics

of the activation variable s are given by

ds

dt
=

s(Vpre)− s

τs
,

with

s(Vpre) =
1

1 + exp((Vth − Vpre)/δ)
and τs =

1− s(Vpre)

k−
.

Here, Vpre is the membrane potential of the presynaptic neuron, Vth is the half-activation voltage of the synapse, δ431

sets the slope of the activation curve, and k− is the rate constant for transmitter-receptor dissociation rate.432

As in Prinz et al. [5], we model two types of synapses, since AB, LP, and PY are glutamatergic neurons whereas PD433

is cholinergic. We set Es = −70mV and k− = 1/40ms for all glutamatergic synapses and Es = −80mV and k− = 1/100434

ms for all cholinergic synapses. For both synapse types, we set Vth = −35mV and δ = 5mV. The membrane area is435

0.628 · 10−3 cm2.436

For each set of membrane and synaptic conductances, we numerically simulate the circuit for 10 seconds with a437

step size of 0.025ms. At each time step, each neuron receives Gaussian noise with mean zero and standard deviation438

0.001mV·ms−0.5.439

We applied SNPE to infer the posterior over 24membrane parameters and 7 synaptic parameters, i.e. 31 parame-440

ters in total. The 7 synaptic parameters are themaximal conductances g s of all synapses in the circuit, each of which is441

varied uniformly in logarithmic domain from 0.01 nS to 1000 nS, with the exception of the synapse fromAB to LP, which442

is varied uniformly in logarithmic domain from 0.01 nS to 10000 nS. Themembrane parameters are themaximalmem-443

brane conductances for each neuron. The membrane conductances are varied over an extended range of previously444

reported values [5, 14]: The prior distribution over the parameters [Na, CaT, CaS, A, KCa, Kd, H, leak] is uniform with445

lower bounds plow = [0, 0, 0, 0, 0, 25, 0, 0]mS cm−2 and upper bounds phigh = [500, 7.5, 8, 60, 15, 150, 0.2, 0.01]mS cm−2
446

for the maximal membrane conductances of the AB neuron, plow = [0, 0, 2, 10, 0, 0, 0, 0.01]mS cm−2 and phigh =447

[200, 2.5, 12, 60, 10, 125, 0.06, 0.04]mS cm−2 for the maximal membrane conductances of the LP neuron, and plow =448

[0, 0, 0, 30, 0, 50, 0, 0]mS cm−2 and phigh = [600, 12.5, 4, 60, 5, 150, 0.06, 0.04]mS cm−2 for the maximal membrane con-449

ductances of the PY neuron.450
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We computed 15 summary features proposed by Prinz et al. [5], and 3 additional features [14]. The features451

proposed by Prinz et al. [5] are 15 salient features of the pyloric rhythm, namely: Cycle period T (s), AB/PD burst452

duration dbAB (s), LP burst duration dbLP (s), PY burst duration dbPY (s), gap AB/PD end to LP start∆tesAB-LP (s), gap LP end to453

PY start∆tesLP-PY (s), delay AB/PD start to LP start∆tssAB-LP (s), delay LP start to PY start∆tssLP-PY (s), AB/PD duty cycle dAB, LP454

duty cycle dLP, PY duty cycle dPY, phase gap AB/PD end to LP start∆φAB-LP, phase gap LP end to PY start∆φLP-PY, LP start455

phase φLP, and PY start phase φPY. Note that several of these values are only defined if each neuron produces rhythmic456

bursting behavior. In addition, for each of the three neurons, we computed the maximal duration of its voltage being457

above −30 mV. We did this as we observed—for many model simulations and in contrast with experimental data—458

long plateaus at around −10 mV during the bursts, and wanted to detect such traces. If the maximal duration was459

below 5ms, we set this feature to 5ms. To extract the summary features from the observed experimental data, we460

first found spikes by searching for local maxima above a hand-picked voltage threshold, and then extracted the 15461

above described features. For the experimental preparation, we set the additional 3 features to 5ms.462

At temperatures higher than 11°C, we include Q10 values to simulate the biochemical changes of the network463

parameters. These are defined by an Arrhenius-type factor464

RT = RrefQ
(T−Tref )/10
10 , (1)

where Rref is the parameter value at the reference temperature Tref = 11°C, and RT is the parameter value at tem-465

perature T . Each maximal conductance has a different Q10, but the Q10 value is the same across neurons [41]. We466

introduce one Q10 for the glutamatergic synapses and one for the cholinergic synapses. The prior distribution for the467

Q10 values is a uniform distribution between 1 and 2 for all maximal conductances but the hyperpolarization current,468

for which the prior bounds are 1 and 4 [35]. The Q10 values for the time constants are fixed to 2.4 for most m-gates469

and 2.8 for all h-gates. Following the results from Caplan et al. [40], the Q10 values for the m-gates of KCa and CaS as470

well as for the calcium buffer have lower values: 2.0 for CaS and the calcium buffer and 1.6 for KCa. The Q10 value for471

the time constants of the synapses is 1.7.472

Energy consumption473

To compute the energy consumption E of a specific network activity, we followed the approach of Moujahid et al. [36].474

For each neuron, we computed the energy as:475

E =

∫ ∑
m

gm(V − Vm)
2 +

∑
s

gs(V − Vs)
2
dt, (2)

where gm is the effective conductance of channel m (i.e. the product of the respective gating variables, maximal476

conductance and membrane area) and gs is the effective synaptic conductance s into the specific neuron. Vm is the477

reversal potential of the membrane current m and Vs is the reversal potential of the synapse s. The units of energy478

are [S ·V 2 ·s = J], where S are Siemens, V are Volt, s are seconds, and J are Joules. The total energy consumption was479

defined as the sum of the energy consumed by each of the three neurons. Throughout themanuscript, we report the480

energy per second, which we obtained by dividing the total energy consumption by the duration of the simulation481

(10 seconds).482

The energy per spike was defined as the energy consumed during bursts divided by the respective number of483

spikes.484
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Simulation-based inference485

We extended Sequential Neural Posterior Estimation [14] by using a classifier to predict ‘invalid’ simulation outputs.486

The resulting algorithm is described in algorithm 1.487

Algorithm 1: SNPE

Input: simulator with (implicit) density p(x|θ), observed data xo , prior p(θ), rejection criterion g(x) ∈ {0, 1},

classification neural network Gζ(θ), density family qψ , neural network F (x,φ), number of cycles C of classifier

training, simulation count for each cycle Nc

randomly initialize φ, ζ

p̃1(θ) := p(θ)

N := 0

for c = 1 to C do

for i = 1 ...Nc do
sample θN+i ∼ p̃c(θ)

simulate xN+i ∼ p(x|θN+i )

evaluate whether ‘valid’ rN+i = g(xN+i )
N ← N + Nc

train ζ ← argmin
ζ

N∑
j=1

Le(θj , rj) // classifier training

T ← Tune classifier threshold s.t. false negative rate < 1%

U(θ)← Gζ(θ) > T

p̃c(θ) :∝ U(θ)p(θ)

train φ← argmin
φ

N∑
j=1

Ld(θj , xj) // neural density estimator training

return qF (xo ,φ)(θ)

488

Proof of convergence of SNPE with classifier489

Below, we prove that the posterior distribution inferred by our method converges to the true posterior distribution.

SNPE—with the classifier—minimizes the following loss function with respect to the neural network parameters φ:

Ld = −
1

N

∑
i

log(qφ(θi |xi ))

N→∞
−−−−→ −Ep(θ,x)[log(qφ(θ|x))]

= −EU(θ)p(θ)p(x|θ)[log(qφ(θ|x))],

where U(θ) is a constant U(θ) = c > 0 at least on the posterior support and U(θ) = 0 elsewhere. Then:

Ld = −

∫∫
U(θ)p(θ)p(x|θ) log(qφ(θ|x)) dθdx

= −

∫
p(x)

∫
U(θ)p(θ|x) log(qφ(θ|x)) dθdx

Since U(θ) > 0 at least on the support of p(θ|x):

Ld = −

∫
p(x)c

∫
p(θ|x) log(qφ(θ|x)) dθdx

Since the integrandof the integral over θ is proportional to the Kullback-Leibler-divergence between the true posterior490

p(θ|x) and the inferred posterior qφ(θ|x), Ld is minimized if and only if qφ(θ|x) = p(θ|x) for all x on the support of p(x).491
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Classifier of ‘valid’ simulations492

The algorithm includes a classifier U(θ) trained to predict ‘valid’ simulations. We use a cross-entropy loss Le . We493

enforce the classifierU(θ) to be constant, withU(θ) = c > 0 at least on the posterior support andU(θ) = 0 elsewhere:494

1. In order for U(θ) to be uniform, we parameterize it as a thresholded binary classifier.495

2. To ensure that c > 0 at least on the posterior support, we choose the classifier threshold such that there are496

few false-negatives, i.e. the classifier accepts the parameters if these lie within the posterior support.497

If we train the classifier U(θ) with a large enough number of simulations, so that some are ‘valid’, the trained498

classifier includes the posterior support. In order to sample fromU(θ)p(θ), we sample from the prior over parameters499

p(θ) and accept the sampled parameters according to the classifier output.500

Inference of the posterior distribution given experimental data at 11°C501

Overall, we performed three cycles of simulation and classifier training in order to learn the restricted prior. In the502

first round, we simulated 3 million parameter sets sampled from the prior. Among these, only 0.97% produced ‘valid‘503

summary features. We trained a classifier to detect parameter sets leading to ‘valid’ simulation outputs. We used a504

residual neural network with 80 hidden units, two blocks, a dropout rate of 43%, and a batchsize of 199. To deal with505

‘valid’/‘invalid’ unbalanced data, we subsampled ‘invalid’ samples in every epoch. We post-hoc tuned the threshold506

of the classifier such that the ratio of false-negatives was below 1% on a held-out test set. We then drew 3 million507

samples from the resulting restricted prior. Out of these, 5.17% produced ‘valid’ summary features. We then repeated508

this procedure and out of 3 million simulations from the resulting restricted prior, 8.45% produced good simulations.509

Overall, in comparison to Gonçalves et al. [14], we used half as many simulations (9 million versus 18.5 million), but510

generated a database of ‘valid’ simulations 2.5 times larger. We then used all 438,608 ‘valid’ parameter sets to obtain511

the posterior distribution with SNPE (see Gonçalves et al. [14] for details). As deep neural density estimator, we chose512

a neural spline flow (NSF) [60] with 10 transform layers, each consisting of a residual block with two hidden layers,513

each with 200 hidden units.514

Lastly, to ensure that the activity produced by samples from the posterior closely matched experimental data, we515

sampled 1million parameter sets from the inferred posterior distribution and performed an additional rejection step,516

whereby posterior samples had to produce activity within a prescribed distance to the experimental data:517

• cycle duration and burst durations deviated from the experimental features by a maximum distance of 0.02518

standard deviations of all simulations accepted by the classifier, i.e. 20.6 ms for the cycle duration, and [15.0,519

13.5, 11.5] ms for the burst durations (of AB/PD, LP, and PY neurons).520

• duty cycles, phase gaps, phase delays, and phases deviated from the experimental features by a maximum521

distance of 0.2 standard deviations.522

Out of 1 million samples from the posterior, 35, 939 samples fulfilled all these criteria. Notably, these samples are523

no longer unbiased samples from the posterior distribution as estimated by SNPE, but they make up a database of524

model configurations whose activity closely matches experimental data.525

Regression neural network526

We performed a linear regression to identify the contribution of the circuit parameters to the total energy consump-527

tion using scikit-learn [61]. In order to test the robustness of the linear regression findings, we trained a regression528

network to identify directions in the parameter space predictive of total energy consumption. The regression network529

had the following characteristics: A Residual Network (ResNet) with one hidden layer with 20 hidden units, ReLU ac-530

tivation functions, and 50% dropout rate [62, 63]. We trained the network with a mean-squared error loss.531

After training the regression network, we searched for directions that were most predictive of the network output532

f (·). To do so, we followed the procedure described in Constantine [64] and computed:533

M = Eθ∼p(θ|xo )[∇θf (θ)∇θf (θ)
T ]. (3)

Intuitively,M captures howmuch the regression function f (·) changes in different directions of the parameter space,534

computed as an expected value over posterior samples. We estimated this expected value with a Monte Carlo mean535

over 10,000 samples from the posterior distribution. We then computed the eigenvalue decomposition of M : The536
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eigenvectors of highest eigenvalue are directions in the parameter space along which the output of the regression537

neural network is most sensitive to changes.538

Minimal tuning mechanisms for low energy consumption539

In order to find tuning mechanisms for low energy consumption, we started by varying single or pairs of parameters540

on a grid while keeping all other parameters constant (at a value taken from our database of 35, 939models). For the541

matrices in Fig. 5e,f, we repeated the analysis with ten of such models and reported the average.542

To predict the energy consumption for any parameter configuration, we used the linear regression model from543

circuit parameters onto energy consumption described above. To evaluate whether a parameter set matches experi-544

mental data, we computed its posterior probability p(θ|xo). If the posterior probability was above a certain threshold545

t, we considered the parameter set asmatching the experimental data, otherwise we discarded the parameter set. To546

obtain the threshold t, we evaluated the posterior probability of all 35, 939models in our database and used the 10%547

quantile of these probabilities as t: within our database of models, 90% of the models would have been considered548

as matching experimental data, whereas 10% of the models would have been (wrongly) discarded. We evaluated549

different choices for the quantile used to obtain t and obtained qualitatively similar results.550

In order to obtain the directions in the parameter space along which energy consumption can be maximally re-551

duced (arrows in Fig. 5e,f), we searched the (1-dimensional or 2-dimensional) grids for the configurations with lowest552

and highest energy consumption (subject to posterior probability ≥ t). For each grid, we reported the sign of the553

direction between these two points of highest and lowest energy consumption.554

Sampling synaptic conductances, given energy efficient single-neuron configurations555

In order to investigate whether efficient single-neuron parameters could lead to efficient and robust network activ-556

ity, we first searched our database of 35, 939 network configurations for the five configurations that had the lowest557

metabolic cost in each neuron individually. We combined these single neuron configurations to generate 53 = 125558

configurations of membrane conductances. For each of the configurations, we then sampled 1, 000 synaptic configu-559

rations from the distribution:560

p(θs |θm, xo) ∝ p(θs ,θm|xo), (4)

where θs and θm are the synaptic and membrane conductances, respectively. We drew these samples with Markov561

chain Monte Carlo: Specifically, we used Slice Sampling with axis-aligned updates [65]. We then simulated each of562

these 53 ·1000 configurations. 72 out of the 53 configurations contained at least one sample that fulfilled our (distance563

to experimental data) criteria, and 123 configurations contained a sample that fulfilled a slightlywider criteria (allowing564

twice as much distance from the experimental data). For the remaining two configurations, we drew another 10,000565

samples with MCMC and for each of them found at least one configuration whose activity fulfilled the slightly wider566

criteria. The histograms in figures Fig. 6e,f are produced with all simulations that fulfilled the narrow criteria.567

Posterior distribution given experimental data at 27°C568

In order to infer the posterior distribution given experimental data at 27°C, we started by sampling 3 million param-

eter sets from the 31-dimensional posterior distribution at 11°C:

p(θ|x11o ) ∝ p(x11o |θ)p(θ).

We then drew 3 million sets of Q10 values from the prior distribution over Q10 values (Q10 prior in Methods, Circuit

model of the crustacean stomatogastric ganglion). We simulated these 3 million parameter sets at 27°C, from which

approximately 18% were ‘valid’ and were used to train a deep neural density estimator (see Proof of convergence of

SNPE with classifier). The hyperparameters of the neural density estimator were the same as the ones chosen for the

inference at 11°C. Since this density estimator was trained on parameters sampled from the posterior distribution at

11°C, the inferred posterior is an approximation to:

p(θ|x27o , x11o ) ∝ p(x27o |θ)p(θ|x
11
o ) ∝ p(x27o |θ)p(x

11
o |θ)p(θ),

where x
11
o and x

27
o are the features of the experimental data recorded at 11°C and 27°C, respectively. In other words,569

the resulting posterior distribution matches prior knowledge about circuit parameters as well as experimental data570
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at 11°C and 27°C. Note that we inferred the posterior distribution at 11°C while ignoring the Q10 values because the571

Q10 values, by definition, do not influence the circuit activity at the reference temperature (which is assumed to be572

11°C).573

Metabolic efficiency at 27°C574

For panels Fig. 7e,f and Fig. 7g (pink plot), we analyzed 967 simulations that closely matched experimental data575

recorded at 11°C and 27°C. For Fig. 7g (purple plot), we simulated, at 27°C, the 35, 939 circuit configurations that576

match experimental data recorded at 11°C. Out of these, 8121 were robust, i.e. displayed pyloric activity at 27°C.577
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Supplementary material707

Supplementary figures708

709

Supplementary Figure 1. Full posterior distribution over circuit parameters given experimental data at 11°C.

Panels on the diagonal are marginals, panels on the upper right are pairwise marginals. The first 24 parameters are

membrane conductances, the last 7 parameters are synaptic conductances. All membrane conductances are maximal

conductances and are given in mS/cm2, all synaptic conductances are given in nS.
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Supplementary Figure 2. Summary features of activity produced by sampling from the prior, the restricted prior,

and the posterior. Experimentally observed activity in green. The boxplots indicate maximum, 75% quantile, median, 25%

quantile, and minimum. All summary features are z-scored with the mean and standard deviation of all simulations from

prior samples.
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Supplementary Figure 3. Accuracy of the enhanced version of SNPE versus accuracy in [14]. While we used half as

many simulations (9 million versus 18 million), the accuracy of the method improved. (a) Median squared discrepancy

between the experimentally measured activity and the activity produced by samples from the posterior. When using the

classifier (red), the activity produced by posterior samples is closer to experimental activity than without the classifier

(blue). (b) Reduction of mean squared discrepancy between our previous results and the presented method. All distances

are computed after z-scoring the summary features with the mean and standard deviation of all prior samples.
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Supplementary Figure 4. Scaling conductances with a constant factor does not produce activity that matches

experimental data. We selected the 20 most expensive circuit configurations from our database of 35,939 models and

scaled all conductances by the same factor. The factor ranged from one to 1/3 (x-axis). All errors are z-scored by the

standard deviation of prior predictive simulations. (a) As the conductances are scaled down, the average error of the

model simulations to the observation increases. (b) The average error between the experimentally observed cycle duration

and the simulations increases quickly as the conductances are scaled. (c) The average error between the experimentally

observed duty cycle of the AB/PD neuron and the simulations increases minimally as the conductances are scaled.
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Supplementary Figure 5. Neural network regression from circuit parameters onto the total energy consumption.

(a) Performance of a neural network predicting the total energy from circuit parameters. (b) Eigenvalue-spectrum of the

trained neural network reveals a single dominating direction (details in Methods). (c) The eigenvector corresponding to the

strongest eigenvalue is similar to the linear regression weights w (Fig. 4c).
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744

Supplementary Figure 6. Performance of linear regression. Left: Performance of linear regression from circuit

parameters (taken from our database of 35, 393models) onto energy per spike in the PY neuron. Right: Performance of

linear regression from circuit parameters onto the average number of spikes within a burst.
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Supplementary Figure 7. Influence of maximal conductance of transient calcium current on circuit function. Left:

Voltage trace in the PY neuron during activity produced by two circuit configurations (black and red) which are identical

apart from the magnitude of gCaT. Right: The average number of spikes per burst in the PY neuron for the two

configurations. The configuration with higher gCaT produces more spikes.
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Supplementary Figure 8. Potential energy savings in a single neuron. (a) The fraction of energy that can be saved in a

single neuron by modifying just a single membrane parameter (diagonal of each matrix) or pairs of membrane parameters

(upper and lower diagonal) in that neuron. Unlike Fig. 5e, only the energy in the neuron whose parameters are varied is

considered. Colorbar as in panel (b). The arrows indicate the direction in which (pairs of) parameters should change in

order to reduce energy: Left/right refers to the parameter on the x-axis, top/bottom refers to the parameter on the y-axis.

(b) The fraction of energy that can be saved by modifying a synaptic conductance (vector on the left) or the synaptic

conductance and one membrane conductance of the postsynaptic neuron (matrix on the right). The energy is computed in

the postsynaptic neuron.

756

757

758

759

760

761

762

763764

25 of 28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2022. ; https://doi.org/10.1101/2021.07.30.454484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.30.454484
http://creativecommons.org/licenses/by-nc-nd/4.0/


765

Supplementary Figure 9. Full posterior distribution over 31 circuit parameters and 10 Q10 parameters given

experimental data at 11°C and 27°C.
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Supplementary Figure 10. Energy consumption of the circuit at 11°C and at 27°C. Energy per spike (left) and number

of spikes (right) for parameter configurations simulated at 11°C and 27°C. The energy per spike is smaller at higher

temperatures, but the number of spikes is higher at higher temperatures.
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Supplementary Figure 11. Analysis of a second experimental preparation. (a) Experimental data recorded at 11°C. (b)

Sample from posterior distribution matches the experimental data. (c) Energy consumption of 2804 model configurations

that closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energy

consumption.
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Supplementary Figure 12. Tuning neurons individually, for a second experimental preparation. (a) Black dots:

Energy consumed by each neuron separately. Black line: Linear regression (correlation coefficient r = −0.009, p-value

p = 0.39; LP versus PY, r = 0.21, p = 0.0012; AB/PD versus PY, r = 0.059, p = 0.10). (b) The activity produced by two

parameter configurations produced with the strategy described in Fig. 6b. (c) A subset of the membrane (left) and synaptic

(right) conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors

(left to right): 100, 10, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 2804model

configurations in our database and the energy consumption of the configurations produced with the strategy described in

Fig. 6b (red). (e) Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 2804

models in our database (black), and for the configurations produced with the strategy described in Fig. 6b (red).
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Supplementary Figure 13. Analysis of temperature robustness of a second experimental preparation. (a)

Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energy

consumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuits

matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C

and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and

27°C.
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Supplementary Figure 14. Analysis of a third experimental preparation. (a) Experimental data recorded at 11°C. (b)

Sample from posterior distribution matches the experimental data. (c) Energy consumption of 6926 model configurations

that closely match experimental data. (d) Weights w of a linear regression from circuit parameters onto total energy

consumption.
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Supplementary Figure 15. Tuning neurons individually, for a third experimental preparation. (a) Black dots: Energy

consumed by each neuron separately. Black line: Linear regression (correlation coefficient r = −0.003, p-value p = 0.39; LP

versus PY, r = 0.19, p = 0.007; AB/PD versus PY, r = 0.006, p = 0.77). (b) The activity produced by two parameter

configurations produced with the strategy described in Fig. 6b. (c) A subset of the membrane (left) and synaptic (right)

conductances for the configurations in panel (c). The membrane conductances are scaled with the following factors (left to

right): 100, 100, 10,000, 100, 10,000. (d) Histogram over the total energy consumption of all 6926model configurations in

our database and the energy consumption of the configurations produced with the strategy described in Fig. 6b (red). (e)

Histogram of the posterior log-probability for samples from the prior distribution (grey), for the 6926models in our

database (black), and for the configurations produced with the strategy described in Fig. 6b (red).
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Supplementary Figure 16. Analysis of temperature robustness of a third experimental preparation. (a)

Experimental data recorded at 27°C. (b) Sample from posterior distribution matches the experimental data. (c) Energy

consumption at 11°C versus energy consumption at 27°C. (d) Green: Distribution of the energy consumption of circuits

matching experimental data at 11°C. Purple: Distribution of the energy consumption of circuits that match data at 11°C

and are robust at 27°C. Pink: Distribution of the energy consumption of circuits that match experimental data at 11°C and

27°C.
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