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Glimma 1.0 introduced intuitive, point-and-click interactive
graphics for differential gene expression analysis. Here, we
present a major update to Glimma which brings improved inter-
activity and reproducibility using high-level visualisation frame-
works for R and JavaScript. Glimma 2.0 plots are now read-
ily embeddable in R Markdown, thus allowing users to create
reproducible reports containing interactive graphics. The re-
vamped multidimensional scaling plot features dashboard-style
controls allowing the user to dynamically change the colour,
shape and size of sample points according to different experi-
mental conditions. Interactivity was enhanced in the MA-style
plot for comparing differences to average expression, which
now supports selecting multiple genes, export options to PNG,
SVG or CSV formats and includes a new volcano plot function.
Feature-rich and user-friendly, Glimma makes exploring data
for gene expression analysis more accessible and intuitive and is
available on Bioconductor and GitHub.
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Introduction

RNA-sequencing (RNA-seq) is a high-throughput method for
characterising transcriptomes (1). Researchers commonly
leverage RNA-seq technology to compare the transcription
levels of genes across experimental conditions, in a workflow
known as differential expression (DE) analysis. As there are
tens of thousands of genes involved in DE analyses, it can
be difficult to pinpoint information on genes of interest in
densely populated static R (2) plots. Static graphics neces-
sarily provide a flattened perspective on the data; version 1 of
Glimma (3) aimed to remedy this by allowing users to inter-
actively explore data at the sample-level through dimension-
ality reduction plots and at the gene-level in plots of summary
statistics obtained from popular DE analysis tools limma (4),
edgeR (5) and DESeq?2 (6).

While many powerful tools exist for producing interactive
plots for DE analysis (7-11), they require users to run a Shiny
server (12), which may be difficult to navigate for those with
minimal experience in R. The Glimma software does not de-
pend on Shiny and can produce portable outputs that can be
viewed without an active installation of R. This allows the
package to cater to its main user base of biologists and end-
users who would like drop-in graphics for popular gene ex-
pression workflows.

Glimma version 1 allowed the creation of two interactive
versions of limma-style plots: a multidimensional scaling

(MDS) plot used to assess variability between samples, and a
mean-difference (MD) plot used for identifying differentially
expressed genes between experimental conditions. These
could be exported as HTML files and shared with collabo-
rators, allowing biologists to investigate interesting features
in the data with minimal coding required.

The responsive and user-friendly layout of Glimma 1.0 has
proven very popular among the Bioconductor community,
amassing over 19,000 downloads in 2020 alone. The soft-
ware is commonly used for exploration of transcriptional data
from raw gene expression-levels to summarised results ob-
tained from DE analysis (13).

Intended as a drop-in interactive visualisation tool for com-
mon RNA-seq workflows, Glimma was built on d3.js (14)
and relied on custom-built functions for connecting R code
with a web-based frontend. The low-level nature of d3.js and
the high complexity of the codebase made it difficult to add
improved interactivity and new output formats to the pack-
age. For instance, simple improvements such as adding plot
legends and scaling point sizes became intractable tasks. Ver-
sion 2.0 of Glimma was built to address these deficiencies
by reproducing all existing functionality in 1.0 using existing
high-level libraries such as htmlwidgets (15) and Vega (16).
This would make it easier for bioinformaticians and software
engineers to rapidly develop new features in response to new
developments in gene expression studies, such as single cell
RNA-seq (scRNA-seq) analysis.

Another important theme in the second iteration of Glimma
was reproducibility. Previous versions instantiated plots
within a new HTML window when Glimma R functions were
called, creating a separation between interactive plots and the
code that created them. It was therefore a requirement that
plots could be embedded in R markdown (17) in version 2,
allowing bioinformaticians to share reports with graphics in-
terwoven between blocks of code.

Glimma 2.0 offers three main interactive plots - an MDS plot
via the glimmaMDS function, an MD plot (which has been
renamed to MA plot) via the g1 immaMA function, and a vol-
cano plot via the glimmaVolcano function. Additionally,
a generalised version of an interactive plot that comprises of
the two components seen in the MD and volcano plots, which
includes a plot of summary results from a DE analysis and
a plot of expression data from which the DE analysis was
performed on, is available via the gl immaXY function (see
Figure 1). We refer to the style of these plots as “summary-
expression” plots for the remainder of the article.
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Relative to the original version of the software, the volcano
plot is a new addition to Glimma. It was included for ease
of use since this it is a common plot created in a RNA-seq
workflow. The new plot simplifies coding by Glimma-users
who would have otherwise had to used the more general XY
plot to create this plot.

The MD plot has been renamed to “MA plot” to reflect the
original name given to this style of plot in the limma package.
A plot of mean gene expression (or averages) against logs-
fold change or logFC (also called “M-values”) were referred
to as an MA plot. Glimma’s MA plot is equivalent to limma’s
MD plot.

In this article, we will demonstrate a suite of interactivity and
functionality upgrades made in Glimma 2.0. The embedded
plots offer a seamless user interface integrated with the work-
flow of DE analysis. Amidst fervent demand for improved
reproducibility in bioinformatics research, we anticipate that
version 2 will be even more popular than the initial version.

MATERIALS AND METHODS

Availability. Functions from Glimma 1.0, as well as the
improvements made to Glimma 2.0 are available in the
Glimma software package. The stable version of the soft-
ware is released on Bioconductor (18), and is available at
https://bioconductor.org/packages/Glimma. Both stable and
developmental releases of Glimma are available on GitHub
at https://github.com/hasaru-k/GlimmaV?2.

Frameworks. Glimma 2.0 was re-developed using htmiwid-
gets for R (15), a framework for creating web-based visuali-
sations which behave like R plots, which offers embeddabil-
ity in R Markdown out of the box, addressing reproducibil-
ity issues in the previous version. Some popular packages
using htmlwidgets as a foundation include Plotly (19) and
dygraphs for R (20). The htmlwidgets package provides a
convenient API (application programming interface) for soft-
ware developers to bind R functions to a JavaScript visuali-
sation front-end codebase. This means the process of con-
necting R function calls to web-based visualisations includ-
ing serialisation of R data structures is automated, greatly re-
ducing the complexity of the development process. To en-
sure backwards compatibility with previous versions, version
2 was built to support data structures from edgeR, limma and
DESeq?2 workflows as inputs (see Figure 1).

Visualisation. Interactive plots were generated within an
instantiated widget using the Vega visualisation grammar
(16) which is based on d3.js (14) but provides higher level
graphical primitives and allows convenient linkage of graphs.
Declarative JSON specifications for each genre of plot were
created, parameterised and passed to the Vega API which ren-
ders the desired interactive web-based graphics. The Vega
API was also used to display tooltips, respond to on-click
events and dynamically update plots.

In conjunction with external libraries, native JavaScript was
used to link data across various plots and tables. In the front-
end interface for summary statistic plots, an interaction state
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machine ensures that the response to any sequence of inputs
from the user is well-defined. For instance, selecting genes
on the summary plot triggers a transition into the graph selec-
tion state. This event filters the table to display the selected
genes and updates other visual controls. The open-source
FileSaver.js package (21) was used for exporting gene sum-
mary statistics and expression data as CSV files for summary-
expression plots.

Demonstration Dataset. A dataset from Sheridan ez al.
(2015) (22) was utilised to generate the Glimma 2.0 plots il-
lustrated in Figures 2 and 3. The experiment includes three
cell populations: basal, luminal progenitor (LP) and ma-
ture luminal (ML) cells from the mammary glands of female
mice. Three RNA samples were sequenced from each cell
population, resulting in nine samples in total. Read alignment
to the mmlI0 mouse reference genome was performed using
the Rsubread package (23) (version 1.14.1) to obtain gene-
level counts. Expression data and details regarding experi-
mental design are available from Gene Expression Omnibus
under accession number GSE63310. Interactive versions of
Figures 2 and 3 can also be accessed through the Glimma 2.0
vignettes.

RESULTS

Embedded Plot or Stand-Alone File. A major new fea-
ture of Glimma 2.0 is that it allows plots to be embedded in
R markdown. Users still have the option to export widgets
as a standalone HTML file with inlined JavaScript, CSS and
assets. This is another improvement on version 1.0 where
exported HTML had to be manually zipped with scripts and
assets before sharing interactive plots with collaborators.

Image Export. Glimma 2.0 widgets contain save buttons
which allow the user to export plots in their current state as
static PNG or SVG files. The latter filetype is an infinitely
scalable vector format which allows users to further manipu-
late plots in Adobe Illustrator. For MDS plots, both the MDS
plot itself and the “Variance Explained” plot can be exported
separately using the “Save Plot” button. Similarly, summary-
expression plots have the capability to export either of the
summary or expression plots separately. This is a marked
improvement over version 1.0 which lacked image saving ca-
pabilities.

MDS Plot Improvements. Each point on the MDS plot rep-
resents an experimental sample for which the transcriptional
output across thousands of genes has been recorded. MDS
reduces the dimensionality of the data so that the first few
dimensions represent most of the variation, which allows us
to visually examine similarities and differences in the tran-
scription profiles of samples (4). Samples that cluster to-
gether are interpreted as more similar than those which are
far apart, and each dimension of the MDS plot explains a de-
creasing proportion of the total variation. This is used for ex-
ploratory analysis of an experiment to determine which fac-
tors drive the variation between samples and the degree of
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Fig. 1. Schematic diagram for Glimma 2.0. Input data structures from limma, edgeR and DESeqg2 RNA-seq analysis workflows are shown on the left, connected to the
Glimma functions that accept them. New features for the MDS and summary-expression plots (MA, volcano and XY) are shown in the centre, demarcated by plus signs.

Function outputs are listed on the right with several new output formats shown.

their effects. It is useful for observing both expected and un-
expected differences in the samples’ transcriptional profiles
(e.g. separation between biological groups versus unknown
batch effects), and serves as a predictor of what downstream
DE analysis results may look like (e.g. poor separation be-
tween biological groups in the MDS plot tends to result in no
or low numbers of differentially expressed genes).

Sizing, shaping and colouring points. Typically, one would
simply examine the first 2 dimensions in a static MDS plot
- the first 2 dimensions explain most of the variation in the
data; and move onto the next steps in data exploration if sat-
isfied with the clustering of biological and/or experimental
groups there. Whilst this task is fairly straight-forward, one
can easily end up with several versions (4 or more) of the
same dimension-1-and-2 MDS plot by the time they apply
different sizing, shapes and colours to the plot to reflect ex-
perimental factors in the study. Applying these custom visual
transformations to static R plots can be time-intensive and re-
quire coding experience. We therefore designed dashboard-
style inputs which apply a range of visual modifications to the
MBDS plot. Users can encode information about each sample
by adjusting the colour, shape and size of each point using
drop-down menus (see Figure 2). Points can be coloured by
a given feature using a continuous or discrete colour scheme
of choice which can be changed on the fly using a drop-down
menu. These modifications to the MDS plot help users de-
termine the experimental factors by which samples cluster.
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They also allow for the encoding of redundancy into a visu-
alisation which can emphasise the visual groupings of a data
display (24). For instance in Figure 2, samples are coloured
and shaped by the same experimental factor, whilst library
sizes are reflected in its sizing.

Plotting Dimensions. Aside from dimension-1-and-2 plots,
the examination of higher dimensions allows one to check
for unwanted batch effects in the dataset (13). In many cases,
this next step is skipped over if dimension-1-and-2 plots do
not raise any questions, especially when production of the
first set of plots was already quite time-intensive. Occasion-
ally, one would create higher dimension R plots within the
R console as a visual inspection, but not save or document
the plot unless an interesting feature is discovered (e.g. sam-
ples cluster by sample collection date when sample collection
date was not expected to influence gene expression). Glimma
1.0 only allowed the user to plot consecutive pairs of dimen-
sions together (i.e. 1 and 2 in conjunction, 2 and 3, etc).
Version 2.0 remedies this limitation by providing drop-down
menus which allow the user to plot any combination of di-
mensions on the x and y axes. This allows the creation of
plots that show separation of samples based on two exper-
imental factors when there is a confounding factor driving
an intermediate MDS dimension. Moreover, the interactive
plots allow one to check variations of the plot (higher dimen-
sions or combination of dimensions) without having to retro-
spectively code and save extra plots to an analysis. The new
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Fig. 2. Screenshot of a markdown-embedded Glimma 2.0 MDS plot with the first and second dimensions on display. Each sample point is coloured and shaped according to
the experimental group and scaled by the library size. The bar plot on the right displays the proportion of variance accounted for by each dimension. The drop-down boxes
allow users to view the combination of any two dimensions, and change the attribute for which points are scaled, coloured and shaped using a selection of colour schemes.
The plots can be saved as a static plot for presentations and publication using the “Save Plot” button.

“Save Plot” button (see Figure 2) is also useful for adding
any variation of the MDS plots to reports, presentations and
publications when the interactive form is not needed or when
working outside of R Markdown documents.

Summary-Expression Plot Improvements. Summary-
expression plots in Glimma, which include MA, volcano and
XY plots, share a common front-end user interface (see Fig-
ure 3), with a main plot of gene-wise summary statistics on
the top-left and an expression plot showing the abundance
of the selected gene in each sample on the top-right. Be-
neath these plots lies a table containing annotation data and
DE analysis statistics which is interactively linked to both the
summary and expression plots.

The MA plot, which is called via the gl immaMA function,
is used to visualise logFC (M) on the y-axis versus aver-
age abundance (A) on the x-axis. The volcano plot, called
via the glimmaVolcano function, displays a measure of
statistical significance on the y-axis, specifically this is the
-logi9-p-value of genes where higher values reflect greater
significance, versus logFC on the x-axis. The generic XY
plot, which is called via glimmaXY, displays two user-
parameterised vectors on the x-and y-axes of the summary
plot. The vectors are required to be same length as the num-
ber of genes in the dataset, such that the points in the sum-
mary plot must match the number of columns in the expres-
sion data.

Numerous improvements have been made to the R function
interfaces and common front-end for this trio of summary-
expression plots. These are summarised below.
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Volcano Plot. In previous versions of Glimma, volcano plots
could only be generated by manually extracting and log-
transforming the relevant x and y axis vectors, and then pass-
ing these to the g1 immaXY () function. Version 2.0 provides
a new glimmaVolcano function that automatically ex-
tracts and transforms statistical significance alongside logFC
from edgeR, limma and DESeq2 objects to generate an inter-
active volcano plot widget as per Figure 3.

Multiple Gene Selections. In DE analysis we are often inter-
ested in the transcription profile of a set of multiple genes. In
the initial release of Glimma, researchers had to query genes
one-by-one in order to locate them on the plot. Version 2.0
remedies this by allowing for multiple genes to be simultane-
ously highlighted. Users can search and sort genes in the ta-
ble of summary statistics and annotation data. Selecting any
number of rows on the table will highlight the corresponding
points on the graph. For instance, the three most significant
genes on the X chromosome have been highlighted in Figure
3. Interaction is bi-directional: users can also click on points
in the summary plot to toggle their selection, which will filter
the table beneath to display data for just the selected genes.
The expression plot on the right shows the expression val-
ues measured in loge-counts-per-million (log-CPM) across
all samples for the most recently selected gene, stratified by
experimental group.

Automatic Highlighting of Significant Genes. Version 2.0
auto-highlights significant genes on behalf of the user by
calling 1imma: :decideTests () on MArrayLM objects
and edgeR: :decideTestsDGE () on DGEExact and
DGELRT objects. These sensible defaults can be overridden
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Fig. 3. Screenshot of a markdown-embedded Glimma 2.0 volcano plot displaying gene-wise logFC on the x-axis against —log,,(p — value) on the y-axis. The three
most significant genes on the X chromosome are highlighted. Hovering over points in the summary plot displays tabular details about the gene. The expression plot for the
most recently selected gene, Drp2 with Entrez gene identifier 13497, is shown on the right with log-CPM plotted against experimental groups. Hovering over points in the
expression plot displays the sample name and expression value. The filtered table beneath provides full summary statistics and annotations for the selected genes.

using the status argument.

User-Specified Colours for Expression Plot. Summary-
expression plots take an optional sample.cols vector ar-
gument which allows users to vary the colours of samples in
the expression plot on. This creates a visualisation whereby
samples are separated by treatment group but coloured by an-
other factor such as gender or batch.

X-axis Label Rotation. Feedback from version 1.0 users sug-
gested that when a large number of groups were plotted on
the expression plot, distinguishing between the labels of each
group became impossible. Version 2 allows a larger number
of clearly readable x-axis labels by rotating each label by 45
degrees anti-clockwise.

Fixing Expression Y-axis. By default, selecting a gene causes
the vertical axis of the expression plot to re-scale itself ac-
cording to the maximum expression value for that gene.
Feedback from biologists indicated that this made it difficult
to notice when there were large changes in expression relative
to another gene they had clicked on. Version 2.0 remedies
this by adding the max_y_axis input form allowing the
user to fix the y-axis maximum to the numeric value specified
(see Figure 3), which overrides the auto-scaling behaviour.
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User Interface Improvements. Plots now display gene sym-
bol text above selected points, allowing genes to be visually
identified without additional manipulation in [llustrator. Leg-
ends were added to the summary plot indicating the colour
associated with the DE status of the gene (1 for upregulated,
0 for non-DE, -1 for downregulated). A list of gene identi-
fiers beneath the plots indicates the current selection of genes
highlighted across the entire table or plot, helping the user to
keep track of what they have highlighted.

Data Export. The “Save Data” button allows researchers to
export the table data concatenated with expression data as a
CSV file. Researchers can optionally save only the selected
subset of genes, or all genes in the table. This is useful for fur-
ther interrogation of the data using external programs and/or
manipulation into other plotting styles outside of Glimma.

Streamlined Function Arguments. Plots in version 1.0 had
lengthy function prototypes that required the user to manu-
ally extract gene counts, test results and experimental groups
from data structures which already contained this informa-
tion. Version 2.0 significantly reduces the verbosity of func-
tion calls by automating data extraction for the user. For in-
stance, function calls for the MArrayIM data structure from
limma now require two arguments down from four:
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# version 1 - MArrayLM

glMDPlot (fit, counts=rnaseg$counts,
status=limma: :decideTests (fit),
groups=rnaseqgS$samplesS$group)

# version 2 - MArrayLM
glimmaMA (fit, dge=rnaseq)

In a similar fashion, analysis plot function prototypes for
edgeR and DESeq? data structures now require 2-3 fewer ar-
guments to generate the equivalent plots.

Plots for scRNA-seq data. The Glimma package was orig-
inally designed and developed with bulk RNA-seq data in
mind. However, we have found that users are also applying
the plots to scRNA-seq data. In light of this, we have pro-
vided preliminary support for single cells as a new vignette
to demonstrate the use of Glimma version 2.0 for single cell
data. Briefly, MDS plots can be created using the full set
of single cells, while summary-expression plots can be cre-
ated for pseudo-bulk samples or a sub-sample of the single
cells. Sub-sampling of the single cells is currently necessary
to meet performance constraints, but a random sub-sample is
still informative to the distribution of the full set of samples.
Rotation of x-axis labels has also improved the applicability
of Glimma to scRNA-seq analyses which often contain a high
number of sample groups or cell types.

DISCUSSION

In this paper we presented R markdown-ready interactive
plots for gene expression analysis, designed for convenient
use for biologists and end users. A highly requested fea-
ture pack has been implemented which improves the repro-
ducibility and interactivity of the package, with major inroads
also made to supporting single cell RNA-seq analysis. Re-
implementing Glimma using high-level libraries has greatly
increased the extensibility of the package, future-proofing it
for new capabilities to be added rapidly in response to user
demand. For instance, version 2 achieved a 63.8% reduction
in lines of R code (1,175 versus 3,246 in version 1.0) despite
incorporating many more features due to the use of exter-
nal libraries and modularisation. This translates into a vastly
more manageable codebase.

Another noteworthy concern is the file size of knitted HTML
from R markdown containing Glimma 2.0 interactive plots.
For the plots demonstrated in this paper drawn from a dataset
with nine samples and 27,000 genes, we recorded file sizes
of 1.1 and 4.5 megabytes for the MDS and volcano plots re-
spectively. As we expect file sizes to increase linearly with
the cardinality of the datasets used in analysis, compressing
exported plots may be prudent in order to share them around
more efficiently.

A Bioconductor tool that shares similar goals to Glimma is
the iSEE package (9) which allows users to dynamically con-
figure data displays such that one panel transmits certain fea-
tures of the data to another receiving panel. For instance, pan-
els can be arranged such that selecting rows in a transmitting
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table filters points in a receiving graph, achieving a similar
effect to the Glimma analysis plots. In Glimma, transmission
and reception of data between displays is pre-configured and
immutable, sacrificing flexibility for ease of use and minimal
set-up.

Future Work. Glimma’s interactive analysis plots can be
prohibitively slow to use on scRNA-seq analyses. This is due
to the size of scRNA-seq counts matrices which can contain
many thousands of samples. Taking advantage of the fact that
the vast majority of counts are zero in single cell expression
data, we are exploring sparse matrix objects for JavaScript
to improve performance. The main challenge in this space
is selecting and testing an open-source sparse matrix imple-
mentation which maximises the efficiency for our use case
(storing scRNA-seq data) while adding minimal bulk to the

package.
In addition, the direct support of
SingleCellExperiments objects from Biocon-

ductor is challenging due to the lack of consensus among
different packages on how final summary statistics are to
be stored. Direct support of SingleCellExperiment
objects can be added when a consensus or dominant method
emerges.

In future versions of Glimma, we aim to extend the interac-
tive front-end for the MDS plot to support UMAP (25) and
tSNE (26) dimensionality reduction visualisations. Further
improvements to reproducibility of the MDS plot could also
be achieved by allowing users to pre-set the initial colour,
shape or size of points using function arguments.
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