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8 Abstract

9 The invasion of cancer cells into the surrounding tissues is one of the hallmarks
10 of cancer. However, a precise quantitative understanding of the spatiotemporal pat-
11 terns of cancer cell migration and invasion still remains elusive. A promising approach
12 to investigate these patterns are 3D cell cultures, which provide more realistic mod-
13 els of cancer growth compared to conventional 2D monolayers. Quantifying the spatial
14 distribution of cells in these 3D cultures yields great promise for understanding the spa-
15 tiotemporal progression of cancer. In the present study, we present an image process-
16 ing and segmentation pipeline for the detection of 3D GFP-fluorescent Triple-Negative
17 Breast Cancer cell nuclei, and we perform quantitative analysis of the formed spa-
18 tial patterns and their temporal evolution. The performance of the proposed pipeline
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19 was evaluated using experimental 3D cell culture data, and was found to be com-

20 parable to manual segmentation, outperforming four alternative automated methods.

21 The spatiotemporal statistical analysis of the detected distributions of nuclei revealed

2 transient, non-random spatial distributions that consisted of clustered patterns across

23 a wide range of neighbourhood distances, as well as dispersion for larger distances.

% Overall, the implementation of the proposed framework revealed the spatial organiza-

25 tion of cellular nuclei with improved accuracy, providing insights into the 3 dimensional

2 inter-cellular organization and its progression through time.

27 keywords: Cell segmentation, Point Pattern analysis, Confocal microscopy, 3D cell

s cultures

» 1 Introduction

s An important aspect of cancer progression is the migration of cancer cells to the surrounding
a1 tissues. Both in-vivo and in-vitro studies on cancer cell migration have shown that cancers
2 can exhibit several types of patterns including single cell migration, multicellular streaming
13 and collective cell migration, as well as passive patterns, such as tissue folding, and expan-
. sive growth.'? Some of these patterns are found in invasive tumours such as breast cancer.
35 Previous studies have shown that the tumour border of breast cancers is dominated by col-
s lective cell migration forming small acinar structures.!'? Evidence of multicellular streaming
s also exist from orthotopic breast cancer in xenograft mouse models.?% Other clinical studies
;s on the morphology of the surface of infiltrating ductal adenocarcinoma have shown that the
3 fractal dimension of cancerous tissue is larger compared to normal breast tissue.?! Despite
w0 the fact that a significant amount of knowledge has been recently obtained for the qualitative
a1 characteristics of cancer invasion both in-vivo and in-vitro, there is still incomplete informa-
2 tion regarding the quantitative characterization of cancer progression, and the investigation
s of the tumour organization.

” To this end, 3D cell culture models have become a very promising experimental tool.
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»s The main reasons are the increased control of the experimental conditions, the flexibility of
s data collection compared to in-vivo experiments, and their more realistic representation of
s tumour progression compared to 2D cultures. Differences between 3D and 2D cultures have
s been observed in cancer growth and its related biochemical processes, such as the secretion
o of extracellular matrix (ECM) components, and intercellular interaction components!® while
so the histological and molecular features of in-vitro 3D spheroids exhibit more similarities with
51 xenografts than the conventional 2D monolayers.'® Another advantage of 3D cell culture
s models is their flexibility with regards to incorporating more than one cell populations,
53 such as stromal cells, as well as on changing the stiffness of the ECM. The heterotypic
s« intercellular interactions between cancer cells and stromal cells, such as fibroblasts, results
ss in altered cancer cell proliferation and migration, as well as the formation of more compact
ss spheroids compared to equivalent 3D cell mono-culture systems.'® Additionally, the collection
sz of imaging data for in-vitro 3D cell cultures is generally easier and more accurate than in-vivo
ss models. Intravital imaging is a common way of data collection for in-vivo models; however,
so this technique suffers from technical challenges such as passive drift of cells or tissues, low
o penetration depth, tissue heating, and limitations on imaging intervals.'? On the other hand,
&1 confocal microscopy used for in-vitro 3D cell cultures can produce higher resolution images,
&2 and the data collection intervals are more flexible. Although, 3D cell cultures cannot yet
3 capture the full complexity of tumour growth in a living tissue, overall they have a lot to
&« offer as they provide the opportunity to track even single cells.

65 Confocal microscopy of fluorescent cells, and cell segmentation algorithms are two im-
s portant tools for the study of 3D in-vitro cancer growth. However, some common technical
7 issues related to these two techniques may limit the tracking ability of cancer progression.
s Increased autofluorescence from out-of-focus cells, and variations in fluorescent signal inten-
s sity among the cells may pose challenges to cell segmentation algorithms resulting in over-
2 or under-segmentation of cells.!! At the same time, the problem of image segmentation is
n ill-posed, and up to now there are no algorithms that can be considered as a gold standard.

72 Some key algorithms developed for this purpose are intensity-23, boundary-2°, region-based
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73 and region-growing.2* However, they present limitations on the distinction of individual cells
72 in cases of uneven illumination, and in cases where the cells are in contact.

75 To account for this, algorithms that combine multiple methods have been proposed, thus
7 improving the segmentation performance.%3? Watershed segmentation algorithms have be-
77 come popular due to their capability to separate touching cells by utilizing information from
75 their geodesic distance maps, even though they are prone to over-segmentation.3! Several
7o variants of the watershed segmentation that address this issue have been proposed, with
o the marker controlled or seed based watershed transformation being the most popular.?®
&1 The separation of fused cells has also been approached with concavity-based techniques,
&2 which search for the optimal path between two concave points and separate the cells un-
s der the assumption that their fused shape contains concavities.?? More sophisticated energy
s« minimization techniques!® have also been developed; however, their application to datasets
s containing a large amount of cells can be computationally prohibitive. Novel machine learn-
s ing based methods exhibit improved performance, however their applicability may be limited
&7 to specific datasets, and their performance may be decreased in datasets with high cell shape
s and volume heterogeneity, as well as high cell density.?° Recent studies have mainly focused
s on the preprocessing of 3D image stacks, to improve the segmentation results of simpler
o segmentation algorithms, and are applicable to large datasets.?? Concluding, the advances
a1 made in both experimental and image processing methods provide us with the opportunity
e to further investigate the spatiotemporal organization and progression of cells in greater

o3 detail using 3D cell cultures.
9 [Figure 1 about here.]

o Even though technological advances have provided us appropriate tools for a detailed
o and quantitative study of spatiotemporal cancer progression, our knowledge so far is rather
or limited to mostly qualitative aspects of this progression. The possibility of interpreting
s a cell as a point in the 3D space allows more quantitative, spatial statistical techniques
w to be employed.!* Spatial statistical techniques including the Complete Spatial Randomness

o (CSR) test!?, the characterization of cell distributions using their Inter-Cellular and Nearest-

4
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1w Neighbour distances, and the analysis of cellular density profiles have already been applied
102 for the investigation of tumour morphology and heterogeneity in histology images”, the
103 whole-cell dynamic organization of lysosomes®, as well as the investigation of cell clustering
s and the correlation the genomic profile of tumours from tissue slices.?*

105 In this context, we present a processing, segmentation, and spatiotemporal analysis
ws pipeline for the detection of in-vitro 3D cultured fluorescent cancer cells and investigation
w7 of their spatiotemporal progression. The proposed pipeline, presented in Fig. 1, utilizes
s a combination of preprocessing and segmentation algorithms to improve the detection per-
o formance of GFP-fluorescent nuclei of Triple Negative Breast Cancer (TNBC) cells. The
no performance of the proposed pipeline was evaluated against manual segmentation, and four
11 alternative pipelines including established®, and novel machine learning algorithms.?%3° The
n2  segmented nuclei were subsequently used for the investigation of their spatiotemporal pro-
u3  gression using point-pattern analysis, and density analysis methods. The novel combination

s of these methods enabled us to detect the position of the cells in the 3D space with higher

us accuracy, as well as to examine the organization and progression of cancer growth.

1w 2  Materials and Methods

w 2.1  Experiments

us 2.1.1 Cell preparation

e TNBC cells from the MDA-MB-231 cell line with nuclear GFP (histone transfection), were
1o thawed and cultured at 5% CO2, 37 °C in DMEM (Gibco) at pH 7.2 supplemented with 10%
121 fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin, 100 ug/mL streptomycin, and
122 0.25 ug/mL, and amphotericin B (Sigma) in T-75 flasks (Corning). The cells were passaged
123 before reaching 85% confluence. Three passages were performed before the 3D cultures; cells
12e - were rinsed twice with DPBS and trypsin-EDTA (0.25%-1X, Gibco) was used to harvest

125 them.
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e 2.1.2 3D cell cultures

7 A cell-Matrigel (Corning) suspension was created using 0.25 mL of Matrigel (4 °C) and
s 5 x 10* MDA-MB-231/GFP cells. Droplets of 5 uL cell-Matrigel mixture were manually
120 deposited onto a high performance #1.5 glass bottom 6-well plate (Fisher Scientific). Data
10 acquisition was performed using a confocal microscope (Nikon A1R HD25) coupled with a
1 cell-culture chamber every 2-3 days for a total of 15 days. The dimensions of the 3D cultures
12 were approximately 2500 x 2500 x 900 um?. Cell localization was made possible by the GFP
133 fluorophore that is present in cell nuclei (supplementary Fig. S.1). For this study 12 datasets

134 were produced with samples from days 0, 2, 5, 7, 12, 14 each.

s 2.2 Image preprocessing
s 2.2.1 Denoising

Poisson-noise is commonly found in low intensity fluorescent microscopy images.'” The se-
lected denoising method was the Poisson Unbiased Risk Estimation-Linear Ezpansion of
Thresholds (PURE-LET) technique implemented on ImageJ.!™?" This method is based on;
1) the search of the closest possible noise-free signal by minimizing the unbiased estimate of
the mean squared error (MSE) between the noise-free signal estimates and the noisy signal,
2) the linearity of the estimates, and 3) the use of interscale predictors for the denoising

process. The method utilizes a mixed Poisson-Gaussian noise model of the following form
y~aP(r) +N(6,07) (1)

137 where y is the noisy input data, x the noise-free data, P(z) the Poisson-corrupted input
s data, o the detector gain, d the detector offset, and ¢ the standard deviation of the additive

130 white Gaussian noise. The estimation of the noise parameters («a, d,0) is fully automated.

uw 2.2.2 Intensity attenuation correction

Confocal microscopy image stacks are usually accompanied by decreasing intensity effects as

the depth of the sample increases. The algorithm selected for the attenuation correction? is
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implemented on ImageJ, and assumes a stationary background throughout an image stack
and rectifies the average intensity and standard deviation by applying a linear transformation
to each image slice according to

Linitiat — m
it 2
- (2)

*
Icorrected =m +s

w1 where m* and s* are the background average intensity and standard deviation of the reference
12 slice respectively, and m, s are the background average intensity and standard deviation of
13 the current slice. For each slice, the background is estimated by applying a morphological
s opening with a flat structuring element of radius equal to the radius of the smallest observed

us nucleus. The estimated background is then subtracted from the corrected image.

us 2.2.3 Background subtraction

17 The background subtraction step during the correction of the attenuated intensity was found
us to be insufficient, because it subtracts only the local background around the nuclei. To
1o fully eliminate background effects, we performed two additional steps. The first step was
150 the background subtraction using the rolling ball algorithm.? The rolling ball algorithm
11 calculates a local background value for every pixel by averaging over a large ball surrounding
152 the pixel. Using High-Low Look Up Tables (HiLo LUTs) we examined the background effects,
153 and proceeded to manual thresholding of low intensity values, if these effects persisted. In
1ss our dataset this threshold was ~20 for 8-bit images, however its selection was performed

155 separately for each image, due to varying intensity distributions across samples.

156 2.2.4 Interpolation

157 Our sample consisted of images with resolution 999 x 999 pixels that corresponded to an
1ss area of around 2.5 x 2.5 mm?. A nucleus cross-section may have an approximate area of 130
159 um?, which corresponds to a radius 6.43 ym, under the assumption that the cross-section is
1o circular. This translates to a radius of 2.6 pixels. The small size of the nucleus may pose

11 problems during the segmentation due to the fact the intensity gradients may be very steep
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12 and narrow. To account for this, we upscaled 10 times each slice of the image stack using

163 cubic spline interpolation. The interpolation was performed in MATLAB. '8

w 2.3 Nuclei segmentation
s 2.3.1 Foreground segmentation

16 The interpolated images were then used as the input for the Marker based Watershed seg-
17 mentation algorithm. The foreground objects are marked and segmented, iteratively for
165 each image-slice by performing the following steps (supplementary section 2.1): 1) Contrast-
160 limited adaptive histogram equalization (CLAHE) on the initial interpolated grey-level im-
o age. 2) Erosion on the CLAHE image using a disk shaped mask of radius 10 pixels. 3)
1 “Opening by reconstruction” on the CLAHE image using the markers of step 2 to identify
12 high-intensity objects in the CLAHE image. 4) Dilation of the reconstructed image of step
173 3 using a disk shaped mask of radius 10 pixels. 5) “Closing by reconstruction” of the com-
e plement image of step 3 using the complement image of step 4 as marker. 6) Detection of
s regional maxima in the image of step 5. 7) Binarization of the image of step 5 using a locally
17 adaptive threshold calculated by Bradley’s method.® 8) Closing of the image of step 6 using a
w7 disk shaped mask of radius 5 pixels followed by morphological erosion, small object removal
s (with size less than 10 pixels), and filling of holes. 9) Gradient of the CLAHE image. 10)
7o Imposed minima on the result step 9 using as mask the union of the complement image of
150 step 7 and the image of step 8. 11) Watershed image of 10. The watershed map was then
121 binarized® and filtered to remove potentially small or very large artefacts that persisted.

122 The algorithm was implemented in MATLAB.

183 2.3.2 Fused Nuclei Separation & Centroid Detection

1« Fused nuclei usually exhibit overlapping intensity distributions that the Marker-Controlled
185 Watershed transform cannot separate. Instead, their separation can be achieved by taking

16 into account their morphological characteristics. In this step, we performed a classic dis-
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17 tance based watershed segmentation on the Euclidean distance map of the nuclei detected
188 by the afore mentioned Marker-Controlled Watershed algorithm. The centroids of the seg-
189 mented nuclei were then detected by tracing the edges of the segmentation masks using a

w0 26-connected neighbourhood tracing algorithm implemented in MATLAB.

101 [Figure 2 about here.]

w 2.4 Spatial Analysis
13 2.4.1 Complete Spatial Randomness Test of nucleic distributions

The Complete Spatial Randomness (CSR) test examines whether the observed spatial point
patterns can be described by a uniform random distribution.? The CSR test was performed
using Ripley’s K-function and the spatstat® package of R.?> The K-function!? is defined as
the ratio between the number of the events, i.e. locations of points, j within a distance ¢
from the event i, over the total number of events N, in the studied volume V' (2.5x2.5x0.9
mm?)
K(t)=A") "> I(dy <) (3)
i j#i
where A = N /V denotes the average density of events, N, in the studied volume V', d;; is
the distance between events ¢ and j, t is the search radius and [ a decision function
1, if z = true
I(x) = (4)
0, otherwise
1va  The K-function was calculated across all datasets and compared against complete spatial
s randomness that follows a Poisson process K (t) = 47t®/3 in 3D.'° Isotropic edge correction
s was applied in the calculation of the K-function. To assess the uncertainty of the random
17 variable K we produced a CSR envelope by generating 100 random distributions and cal-
108 culating the K-function for each of them. The envelope was created by keeping minimum

199 and maximum values of the resulted K values. A substantial upward separation of the
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20 observed K-function from the theoretical random K-function denotes clustered patterns,
21 while a downward separation denotes dispersed patterns respectively. Both separation types

202 suggest non-randomness in the distributions.

203 2.4.2 Characterization of the Nucleic Distributions

2¢ Inter-Nucleic (IN) Distance Distributions The IN Distance Distribution for a given
205 sample was calculated by the pairwise Euclidean distances between all nuclei. Given two

20 nuclei ¢ and j with centroid positions p; = (x;,v;,2;) and p; = (x},9;, ;) respectively,

207 their pairwise Euclidean distance is given by Dy = /(z; — ;)2 + (vi — y;)® + (2 — 25)%,
08 1,] = 1...N, i # j where N the total number of nuclei. The similarity between two IN
200 Distance Distributions of different time-points was estimated using the cosine similarity

20 measure (supplementary section 3).1'3

a1 Nearest-Neighbour (NN) Distance Distributions The NN Distance Distribution for
212 a given sample was calculated using the distances between the nearest neighbours of the
213 nuclei. The NN distance for a given nucleus ¢ is given by the minimum IN Distance between
24 the nucleus ¢ and all the other nuclei of the sample, such as DYy = min, ;{D;;}, j € [1, N],
a5 7 7 4. Similarly, we used the cosine similarity measure to estimate the similarity between
26 two NN distance distributions from different time-points. The IN, and NN Distances, as well

217 as the similarity tests were computed in MATLAB.

as 2.4.3 Density profiles

29 The CSR test and the characterization of the nucleic distance distributions can provide
20 information on the structure of the spatial nucleic distributions. However, they do not
21 provide sufficient information about the location of these distributions in 3D space. The
22 final step of the spatial analysis was the examination of the regions where clustering takes
23 place. To investigate the density of the nucleic distributions and their corresponding locations

24 in 3D space, we estimated the density profiles of the centroids of the nuclei using the Kernel

10
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»s  Density estimation via the Diffusion method.?

e O ReSU.ltS

» 3.1 Preprocessing, Segmentation, and Assessment of Performance

228 [Figure 3 about here.]

229 The detection of the fluorescent of TNBC nuclei cultured in 3D Matrigel ECM was
20 performed using the proposed image preprocessing and segmentation pipeline. The prepro-
231 cessing stage consists of denoising, intensity attenuation correction, background subtraction,
2 and image interpolation, while the segmentation stage consists of foreground segmentation,
233 splitting of fused nuclei, and detection of the centroids of the segmented nuclei. The effects
2 of preprocessing and segmentation can be inspected in Fig. 2a-2e and Fig. 2f-2g. In Fig. 2h
235 the segmentation result is then rescaled to the original size of the image.

236 The detected centroids across the 7 time-points, as well as the average and standard
23 deviation of the total number of nuclei across all datasets are depicted in Fig. 3, and
28 supplementary Fig. S.2. The results show a biased movement of the cells towards the
230 bottom of the plate. Furthermore, the cells exhibit a sigmoidal proliferative characteristic
20 With numbers ranging from 1000 to 15000 nuclei.

211 The performance of the proposed preprocessing and segmentation pipeline (FluoDeSeg)
22 was assessed using manual segmentation, by drawing the approximate borders of the nuclei,
23 and compared to the performance of four alternative methods of Nasser et al.?°, a CellProfiler
2 pipeline®; and two pretrained models (cyto and nuclei) of the Cellpose deep-learning segmen-
s tation algorithm.®® The segmentation performance was calculated using the accuracy, recall,
26 precision, F1 score, Jaccard index (supplementary section 2.3). Additionally, the number of
27 the segmented nuclei from all methods were also compared. Our method exhibited compa-
2s rable accuracy compared to the manual annotation, and the highest accuracy, precision, F1

a9 score, and Jaccard index among the three methods, as depicted in the summarized statistics

11
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0 of Table 1 and supplementary Fig. S3a.
251 [Table 1 about here.]

252 [Figure 4 about here.]

x 3.2 Spatial Analysis

4 For the investigation of the spatial organization of the cells, we performed the CSR test, using
s Ripley’s K-function!?, to examine whether the fluorescent nuclei, are randomly distributed
6 in space. The results depicted in Fig. 5a indicate substantial differences from a uniform
7 random distribution. Specifically, we observe clustering for a wide range of neighbourhood
s radii, as well as an increasing dispersion for longer distances across all samples, with respect
250 to time.

260 The quantitative characterization of the spatial distribution of the cells was performed
21 using the IN, and the NN Euclidean distance distributions. The IN distance distributions
x2 quantify the positioning of the cells relative to one another, while the NN distributions
3 measure the distances between each cell and their nearest neighbouring cell. The resulting
s IN distance distributions, depicted in Fig. 5b, show that they remain relatively stable across
%5 all samples and time, with a characteristic peak distance at ~1 mm. The cosine similarity
x6  test yielded an average similarity value equal to 0.9946 4 0.0074, suggesting high similarity
»7  between two IN distance distributions across different time-points. Their similarity remained
»s high across all their time-point intervals as shown in supplementary Fig. S.3c. On the other
»0 hand, the NN distance distributions, presented in Fig. 5c, formed initially wide distributions
o0 that gradually tended to become narrower around lower neighbourhood radii values with
an respect to time, across all samples, with a characteristic peak at ~15 um. The average cosine
o2 similarity between two NN distance distributions from different time-points was found to be
a3 equal to 0.8447 + 0.1686. The similarity between two NN distance distributions was found
aa to decrease as a function of the time separation between them, as shown in supplementary

275 Fig. S.3d.

12
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276 For the examination of the regions where clustering takes place, we estimated the density
o profiles of the centroids, using the Kernel Density Estimation via the Diffusion method?.
as The resulting density profiles, depicted in Fig. 6a-6g, suggest that cells were organized into

a9 clusters and these clusters tended to change positions in space with respect to time.
280 [Figure 5 about here.]

281 [Figure 6 about here.|

w» 4 Discussion

23 In this study, a novel preprocessing and segmentation pipeline allowed us to examine the
24 quantitative aspects of the spatiotemporal progression of cancer cells grown in cultured
25 3D Matrigel ECM. Based on this experimental setting, a more accurate detection of the
286 fluorescent nuclei was achieved, compared to alternative segmentation methods. The spatial
257 analysis revealed a dynamic behaviour of the detected nuclei across time, forming both
s clustered and dispersion patterns.

289 The pipeline was able to detect more accurately the fluorescent nuclei compared to the
200 four examined alternative methods, and achieved comparable accuracy to the manual an-
2 notation. Specifically, our method achieved the highest accuracy, precision, F1 score, and
2 Jaccard index score among the four methods (Table 1, supplementary Fig. S.3a). The lower
203 recall score was due to an increased amount of pixels classified as False Negative. This
200 Tesult may be due to the background subtraction, which narrows the intensity distribution
25 around the nuclei, even though the information about the location of the nuclei may not be
206 lost. The comparison of the nuclei count of the five methods against the manual annotation
207 showed that our method exhibited the best performance among all examined methods, with
208 A maximum over-segmentation of around 5%, and a maximum under-segmentation of 14%
20 as compared the nuclei count of the manual annotation (Fig. 4). The pipeline was applied to
30 image stacks with planar resolution of 999 x 999 pixels that correspond to 2.5 x 2.5 mm?, and

s a nucleus radius of ~2.6 pixels. In most cases, the quality of the image stacks was sufficiently
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2 good to visually detect fused nuclei from their cluster. However, a possible decrease of the
33 image resolution would most probably affect the segmentation performance. As a result,
54 it 18 expected that the configuration of the microscope can have a significant effect on the
w5 achieved segmentation performance.

306 The CSR test revealed that the nuclei maintained clustered patterns for a wide range
so7 - of neighbourhood radii across time and that they exhibited more pronounced dispersion
s patterns with respect to time (Fig. 5a). The biased movement of the cells towards the bottom
50 may have contributed to the increase of clustering patterns in smaller neighbourhood radii.
s Even though Ripley’s K-function provides a measure of the formed patterns, a limitation of
s this measure is its insensitivity to different point patterns. Specifically, two different point

2. Thus, further steps had to be performed to

sz patterns may result in the same K-function
a3 extract more information about the formed patterns and their behaviour.

314 To investigate the regions of clustering and dispersion, we estimated the density profiles
a5 of the centroids of the nuclei. The results revealed organization of cells into smaller clusters
s and a dynamic behaviour of them in time with lower clustering regions appearing not only at
a7 the edges but also close to the center of the space (Fig. 6a-6g). These results, in combination
a1 with the results of the CSR test suggest that dispersed patterns did not only appear at the
si9 borders of the space, but also within its inner regions of it. This dynamic behaviour can
20 be interpreted as a possible consequence of the need for balance between adhesiveness and
;21 access to nutrients, oxygen. While, it is crucial for cells to stay attached to each other,
32 cell crowding may compromise their survival in the inner core of a cluster, due to limited
»23  diffusion of nutrients, oxygen, and accumulation of toxic metabolic waste products. We are
224 currently investigating this behaviour by incorporating mathematical models.

35 The IN distance distributions remained stable across all samples (Fig. 5b), maintaining
»s high similarity for different time-points (supplementary Fig. S.3c), and the NN distances
27 were initially widely distributed, and tended to become more narrow around smaller neigh-
»s  bourhood radii across time (Fig. 5¢), with a decreasing similarity as the distance between

20 time-points increases (supplementary Fig. S.3d). Although we would expect that the increas-
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a0 ing reduction of the NN distances of these distributions would destabilize the IN distance
s distributions, this was not found to be the case. The maintenance of the stability of these
s distributions can be interpreted as a result of the organization of cells into clusters, the fact
;33 that cells tended to concentrate towards the bottom of the space with respect to time, as
s well as their synchronized division.

335 Concluding, the improved performance of the proposed pipeline compared to alternative
16 methods allowed further quantitative investigation of the spatiotemporal progression of these
ssr cells. The employed spatial statistical methods allowed the extraction of information for
138 the behaviour of cells across space and time, and the total tumour organization. Future
139 directions include the application of the proposed framework to the investigation of in-vitro
s models with increased complexity, including the incorporation of stromal cell populations in
s 3D cell cultures, as well as the validation of more sophisticated spatiotemporal mathematical

sz models using 3D cell culture data.
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Figure 1: Proposed pipeline for the preprocessing of 3D image stacks, segmentation of fluo-
rescent nuclei, and their spatiotemporal statistical analysis.
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() (h)

Figure 2: Segmentation process for fluorescent nuclei of 3D cell culture model. (2a) Raw
image slice found at 80 ym height from the bottom of the well of a cell laden Matrigel
dome in the 9th day of the experiment. (2b) Zoomed raw image of the red box region of
(2a). (2c) Denoised and background subtraction result resulting from (2b). (2d) Zoomed
image of the red box in (2c¢). (2e) Interpolation result resulting from (2d). (2f) Marker
Controlled Watershed segmentation. (2g) Nuclei splitting with Distance Based Watershed
segmentation. (2h) Rescaling back to original image size.
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Figure 3: (3a)-(3g) Result from the application of the processing and segmentation pipeline in

a representative dataset. Title notation D# refers to the time-point of the image acquisition
in days. (3h) Mean and standard deviation for the nuclei count across 12 datasets.
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Figure 4: Normalized nuclei counts obtained by the three examined methods with respect to
the nuclei count achieved by the manual annotation. Values greater than 1, and less than 1
denote over-segmentation, and under-segmentation, respectively. The results overall suggest
that the proposed pipeline exhibits improved performance with respect to all the examined
measures, with the exception of the recall score.
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Figure 5: (5a) Average values of K-function across all samples and the corresponding stan-
dard error of mean (SEM). Upward separation of the observed K-function from the theoret-
ical random K-function denotes clustered patterns, while downward separation denotes dis-
persed patterns. (5b) Inter-Nucleic Distance Distributions across all samples. (5c) Nearest-
Neighbour Distance Distributions across all samples. The title (D#) denotes the time-point
in days.
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Figure 6: (6a)-(6g) Density profiles of a representative sample across time. The values in
the legends indicate the density values of the contours painted with the same colour.
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Table 1: Segmentation performance of the proposed pipeline (FluoDeSeg), the method de-
veloped by Nasser et al.?% the CellProfiler pipeline®, and the two Cellpose models (cyto and
nuclei)?® as compared to manual segmentation. Results are reported as Mean + Standard
Deviation. The symbols *, 1, I, and * denote p-value < 0.05 for the Kruskal-Wallis test??
between FluoDeSeg and Nasser et al., between FluoDeSeg and CellProfiler, FluoDeSeg and
Cellpose cyto, and FluoDeSeg and Cellpose nuclei, respectively.

Method FluoDeSeg  Nasser et al.?®  Cellprofiler® Cellpose cyto3® Cellpose nuclei?
Acuracy 1 0.978 £0.023 0.914 +£0.092 0.959 +0.040 0.913 £ 0.064 0.969 £ 0.028
Recall 11  0.642+0.119 0.895+0.086 0.828 £0.082 0.883 +0.102 0.445 £ 0.313
Precision *Ix 0.691 £0.691 0.2754+0.275 0.462 £ 0.462 0.201 £+ 0.201 0.372 +0.372
F1 *1% 0.653 +£0.109 0.402 +£0.127 0.563 £0.203 0.319 + 0.081 0.389 + 0.194
Jaccard *ix  0.487£0.060 0.260+0.136 0.4024+0.129 0.194 +0.111 0.265 4+ 0.244
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