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Abstract
Crop breeding involves two selec琀椀on steps: choosing progenitors and selec琀椀ng o昀昀spring within progenies. 

Genomic predic琀椀on, based on genome-wide marker es琀椀ma琀椀on of gene琀椀c values, could facilitate these steps. 

However, its poten琀椀al usefulness in grapevine (Vi琀椀s vinifera L.) has only been evaluated in non-breeding contexts 

mainly through cross-valida琀椀on within a single popula琀椀on. We tested across-popula琀椀on genomic predic琀椀on in a 

more realis琀椀c breeding con昀椀gura琀椀on, from a diversity panel to ten bi-parental crosses connected within a half-

diallel ma琀椀ng design. Predic琀椀on quality was evaluated over 15 traits of interest (related to yield, berry 

composi琀椀on, phenology and vigour), for both the average gene琀椀c value of each cross (cross mean) and the gene琀椀c 

values of individuals within each cross (individual values). Genomic predic琀椀on in these condi琀椀ons was found 

useful: for cross mean, average per-trait predic琀椀ve ability was 0.6, while per-cross predic琀椀ve ability was halved on 

average, but reached a maximum of 0.7. Mean predic琀椀ve ability for individual values within crosses was 0.26, 

about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-

popula琀椀on predic琀椀ve ability values are promising for implemen琀椀ng genomic selec琀椀on in grapevine breeding. This 

study also provided key insights on variables a昀昀ec琀椀ng predic琀椀ve ability. Per-cross predic琀椀ve ability was well 

predicted by gene琀椀c distance between parents and when this predic琀椀ve ability was below 0.6, it was improved by 

training set op琀椀miza琀椀on. For individual values, predic琀椀ve ability mostly depended on trait-related variables 

(magnitude of the cross e昀昀ect and heritability). These results will greatly help designing grapevine breeding 

programs assisted by genomic predic琀椀on.

Keywords: genomic predic琀椀on, grapevine, half-diallel, mul琀椀-parental popula琀椀on, diversity panel, 

across-popula琀椀on
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Introduction
Breeding for perennial species is mostly based on phenotypic selec琀椀on and is hindered by cumbersome 昀椀eld 

trials and the long genera琀椀on 琀椀me. Genomic predic琀椀on (GP), based on genome-wide predic琀椀on of gene琀椀c 

values 1, has been widely adopted in modern plant and animal breeding programs, for its superiority in terms of 

cost and 琀椀me saved compared to tradi琀椀onal phenotypic selec琀椀on, but also because it allows handling traits with

complex gene琀椀c determinism. GP requires a model training step within a reference popula琀椀on, prior to model 

applica琀椀on to a target popula琀椀on of selec琀椀on candidates 2. In perennial crops, a universal popula琀椀on 

encompassing most of the species' gene琀椀c diversity could be par琀椀cularly interes琀椀ng as a training popula琀椀on to 

reduce phenotyping e昀昀ort, since breeding cycle and juvenile phase are long.

Breeding schemes typically involve 昀椀rst the choice of parents (individuals to be crossed) and then the selec琀椀on 

of o昀昀spring within crosses. GP is adapted both for predic琀椀ng cross mean and for ranking genotypes within a 

cross (Mendelian sampling). These steps correspond to the components of the predic琀椀ve ability (PA) of GP. It is 

indeed de昀椀ned as the sum of cross mean and Mendelian sampling terms, as detailed in Werner et al. 3. 

Under an addi琀椀ve framework, cross mean is expected to be the sum of the breeding values of parents, but 

some devia琀椀on may result from dominance or epistasis 4. So far, a few studies only have inves琀椀gated cross 

mean PA 5, 6, 7, 8, although none of them clearly inves琀椀gated its in昀氀uencing parameters. 

In contrast, the predic琀椀on of gene琀椀c values within a cross (Mendelian sampling), has been widely studied, both 

with simulated and real data. Various parameters a昀昀ec琀椀ng PA have been pointed out, including the sta琀椀s琀椀cal 

method used 9, the composi琀椀on and size of training and valida琀椀on popula琀椀ons 10, 11, the trait gene琀椀c 

architecture and heritability 12, 13 and marker density 14. Gene琀椀c rela琀椀onship between the training and valida琀椀on 

sets is known to strongly a昀昀ect PA 15, with low or even some琀椀mes nega琀椀ve accuracies for across-breed GP in 

animals 16. This can be explained by the loss of linkage phase between the marker and QTL or by di昀昀erences in 

linkage disequilibrium among popula琀椀ons 17. Another explana琀椀on is the presence of speci昀椀c allelic e昀昀ects and 

allele frequencies, due to the gene琀椀c background 18. All these e昀昀ects are linked to gene琀椀c rela琀椀onship. Some 

studies speci昀椀cally derived determinis琀椀c equa琀椀ons to predict PA for across-popula琀椀on GP, based on gene琀椀c 

rela琀椀onship and heritability (e.g., 19, 20, 21).

In grapevine (Vi琀椀s vinifera subsp. vinifera), very few authors have assessed the poten琀椀al interest of GP. Viana et

al. 22 inves琀椀gated GP within a bi-parental popula琀椀on from a cross between an interspeci昀椀c hybrid and a seedless

table grape. Later, Migicovsky et al. 23 used a panel of 580 V.vinifera accessions to perform both GP and 

genome-wide associa琀椀on study (GWAS) for 33 phenotypes. More recently, Brault et al. 24 inves琀椀gated GP within

a bi-parental popula琀椀on from a cross between Syrah and Grenache. In a related study, Fodor et al. 25 had 

simulated a structured and highly diverse grapevine panel and bi-parental popula琀椀ons with parents origina琀椀ng 

from the panel. They applied GP and found li琀琀le di昀昀erence between PA values es琀椀mated within the panel or 

across popula琀椀ons. Finally, Flutre et al. 26 studied 127 traits with GWAS and GP within a diversity panel; they 

also applied across-popula琀椀on GP, but with 23 test o昀昀spring and for one trait only. Before genomic selec琀椀on 

can be deployed in grapevine, evalua琀椀ng PA across popula琀椀ons is thus crucially needed. In par琀椀cular, PA should 

be evaluated with a diversity panel and a bi-parental progeny as training and valida琀椀on sets, respec琀椀vely, a 
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con昀椀gura琀椀on much more likely to occur in actual breeding schemes than GP within the same popula琀椀on. As in 

grape, studies inves琀椀ga琀椀ng across-popula琀椀on GP are also lacking in most clonally propagated crops.

The aim of this study was to assess across-popula琀椀on genomic PA and to provide a more thorough 

understanding of parameters a昀昀ec琀椀ng PA in a situa琀椀on close to the one typically encountered in a breeding 

context, i.e. across popula琀椀ons, for a clonally propagated crop such as grapevine. Our study was based on 

phenotypic data for 15 traits, related to yield, berry composi琀椀on, phenology and vigour, measured both in a 

diversity panel 27, and in a half-diallel with 10 bi-parental crosses. We assessed PA under three scenarios, 昀椀rst 

for cross mean, and then for Mendelian sampling term; the results provided keys to understand PA 

determinants in both cases. Finally, we implemented training popula琀椀on op琀椀miza琀椀on to inves琀椀gate under 

which condi琀椀ons PA can be improved. 

Results

Extent of genetic diversity within the half-diallel 
population
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Figure 1: Descrip琀椀on of the half-diallel, rela琀椀ve to the diversity panel. a: PCA of the diversity panel based on 32,894 SNPs with the 3 sub-

popula琀椀ons dis琀椀nguished by di昀昀erent colors, on which half-diallel progenies (dots) and parents (triangles) were projected. b: Broad-sense 

heritability es琀椀mates in the whole half-diallel (red) and in the diversity panel (blue) for the 15 traits studied (le昀琀 axis), with shape 

corresponding to the transforma琀椀on applied to raw data; the rela琀椀ve variance due to the cross e昀昀ect and the R² of the subpopula琀椀on e昀昀ect, for

the half-diallel (red) and the diversity panel (blue), respec琀椀vely, are also reported with '+' (right axis). c, d, e: genotypic value BLUP distribu琀椀on 

in each subpopula琀椀on or progeny, for mean berry weight, mean cluster width and vigour, respec琀椀vely; BLUPs for parents are indicated by their 

ini琀椀al le琀琀ers (Table S4). Number of genotypes per subpopula琀椀on/progeny is indicated below the subpopula琀椀on/progeny name. These traits 

were chosen to represent various levels of H² and rela琀椀ve importance of cross e昀昀ect. BLUP distribu琀椀ons for all traits are presented in Figure S3.

We 昀椀rst evaluated the gene琀椀c variability of half-diallel crosses with respect to the diversity panel, through their 

projec琀椀on on the 昀椀rst plane of a PCA based on genotypic data at 32,894 SNPs within the diversity panel. The 

half-diallel crosses were gene琀椀cally close to the wine west (WW) subpopula琀椀on from the diversity panel (Figure 

1a), which was expected, given that all half-diallel parents except Grenache are wine varie琀椀es from western 

Europe (Figure 1a, Figure S1). The half-diallel diversity covered the whole range of WW diversity, and progenies,

all located exactly between their respec琀椀ve parents, were well separated from each other along the 昀椀rst two 

PCA axes (Figure 1a).

We then inves琀椀gated broad-sense heritability values (H²) for 15 traits related to yield, berry composi琀椀on, 

phenology and vigour. Overall H² values were medium to high, ranging from 0.49 for mcwi in the half-diallel to 

0.92 for mbw in the panel (Figure 1b; Table S1). Correla琀椀on between half-diallel and diversity panel heritability 

values was 0.31. Per-cross H² values for each trait varied among half-diallel crosses (Figure S2), which might 

result from the fairly small number of o昀昀spring per cross (from 64 to 70). Nevertheless, we observed a 0.68 

correla琀椀on between overall and per-cross H². Mean cluster width displayed extreme varia琀椀on in H² per cross 

(from 0.02 to 0.67). This might be due to the di昀케culty to phenotype this speci昀椀c trait because of the presence 

of lateral wings in some individuals.

Within the half-diallel and for all traits, the cross e昀昀ect was retained in the mixed model for gene琀椀c value 

es琀椀ma琀椀on, but its magnitude with respect to the total gene琀椀c variance varied depending on the trait, ranging 

from less than 10% to ca. 50% (Figure 1b; Table S1). Depending on the trait or cross, the distribu琀椀on of 

genotypic BLUPs varied widely (Figure 1c-e; Figure S3), some traits such as vigour being quite comparable 

among crosses, while others such as mbw or mcwi varied greatly. We also observed transgressive segrega琀椀on 

within the half-diallel progenies (Figure 1c-e; Figure S3) for most traits and subpopula琀椀ons. The 15 traits studied

represented a large phenotypic diversity, structured among crosses (Figure S4). 
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Prediction of cross mean and Mendelian sampling 
within- and across-populations

Prediction of cross mean

Figure 2: Schema琀椀c descrip琀椀on of the three scenarios tested. TS: training set, VS: valida琀椀on set. In scenario 1a, GP was applied within the half-

diallel popula琀椀on with 10-fold cross-valida琀椀on repeated 10 琀椀mes. In scenario 1b, half-sib families from each parent were used separately as TS. 

In scenario 2, TS was the diversity panel. See details in Table S5.

We 昀椀rst implemented cross mean predic琀椀on, as if aiming to select parents for future crosses, selec琀椀ng the 

method best adapted to gene琀椀c architecture between RR and LASSO (see Material and Methods).  Predic琀椀ve 

ability (PA) was assessed as Pearson's correla琀椀on between the observed mean genotypic value per half-diallel 

cross and the one predicted based on parental average genotypes (Table S2). Three scenarios were tested 

(Material and Methods, Figure 2): allelic e昀昀ects es琀椀mated within the whole half-diallel (scenario 1a), in families 

with one parent in common (scenario 1b), or within the whole diversity panel (scenario 2).
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Figure 3: Boxplots of PA values for the three scenarios (1a: within whole half-diallel predic琀椀on; 1b: half-sib predic琀椀on within half-diallel; 2: 

across-popula琀椀on predic琀椀on with diversity panel as training set and each half-diallel cross as valida琀椀on set). Each PA value was the best one 

obtained between RR and LASSO methods. Average PA is indicated next to each boxplot. 

a: per-cross PA, b: per-trait PA. 

 In scenario 2, per-trait and per-cross predic琀椀ve ability was lower and more variable than in scenarios 1a and 1b 

(Figure 3). Average per-cross PA was 0.56, 0.62 and 0.29 in scenarios 1a, 1b and 2, respec琀椀vely (Figure 3a). 

Average per-trait PA was close to 1 for most traits in scenarios 1a and 1b (Figure 3b), and s琀椀ll high (around 0.75)

in scenario 2, when excluding nbclu and vigour (Table S3). Overall PA (over the 150 cross x trait combina琀椀ons) 

was 0.32. There was upward or downward bias for some traits, scenarios or methods, and in scenario 1a, LASSO

resulted in larger bias (Figure S5).
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Prediction of Mendelian sampling
We then measured PA for individual o昀昀spring within each half-diallel cross, thus considering separately the 

Mendelian sampling component. For each cross and trait, we compared the observed and predicted genotypic 

values in the three scenarios (Figure 2; Figure S6) 
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Figure 4: a: Mendelian sampling PA per trait and cross for scenario 1a with the best method between RR and LASSO. Ver琀椀cal bars represent the 

standard error around the mean (95 % of the con昀椀dence interval), based on the outer cross-valida琀椀on replicates. PA corresponds to the 

Pearson's correla琀椀on between the BLUPs of the genotypic value and the predicted genotypic values.

b: Di昀昀erence between PA of scenario 1a and of the other scenarios. S2 is displayed with a triangle, and S1b by circles, colored according to the 

parental training set and 昀椀lled if the best method was RR and empty otherwise.

In scenario 1a (Figure 4a), average PA per trait ranged from 0.18 for vermatu to 0.58 for mbw, with a 0.47 

overall average (Figure S7a). The extent of PA varia琀椀on among crosses depended on the trait and could be very 

large, as for vermatu (from -0.074 to 0.443). Unlike for traits, no cross had constantly high or low PA (Figure 

S7b). RR method yielded the highest PA values in most cases (91% of the 150 trait x cross combina琀椀ons).

In scenario 1b (Figure 4b), there were two PA values per cross, one for each parental training set (TS). The 

di昀昀erence between these two values varied widely, depending on the cross and trait (up to about 0.5 for 

mal.ripe in GxS), with an overall average of 0.39. Most o昀琀en, PA was lower in scenario 1b than in scenario 1a, 

likely because no full-sibs were included in the training set. However, there were several cases with PA values 

similar or higher in scenario 1b for one parental TS compared to scenario 1a. RR method produced the best PA 

in 61% of the 300 combina琀椀ons (2 parents x 15 traits x 10 crosses).

In scenario 2 (Figure 4b), overall average PA (0.26) was nearly halved compared to scenario 1a, with trait 

dependent di昀昀erences in PA between both scenarios. Some traits such as vigour, clucomp and maltar.ripe 

displayed a par琀椀cularly marked decrease. On the opposite, mcwi and vermatu reached equivalent PA values in 

both scenarios. RR provided the best PA in 61% of the 150 combina琀椀ons.

Exploring factors a昀昀ecting predictive ability, and 
training set optimization
We sought those variables a昀昀ec琀椀ng the PA values observed above, both for predic琀椀on of cross mean and 

Mendelian sampling. We then implemented training set (TS) op琀椀miza琀椀on in an a琀琀empt to increase PA.

Variables a昀昀ecting the prediction of cross mean
In scenario 2, per-cross PA was highly nega琀椀vely correlated (-0.9) with the cross parents' pairwise distance on 

the 昀椀rst axis of the diversity panel PCA (Figure 5a, Figure S8a). Correla琀椀on with the addi琀椀ve rela琀椀onship 

between parents was slightly lower (0.75) and non-signi昀椀cant at 5% (Figure S8a). No such strong correla琀椀on was

found for per-cross PA in scenarios 1a or 1b (Figure S8a). The propor琀椀on of non-segrega琀椀ng markers showed 

low correla琀椀on with per-cross PA in all scenarios (Figure S8a).
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Figure 5: a: Plot of per-cross PA for cross mean in scenario 2, obtained with the best method between RR and LASSO for each cross, against the 

distance between cross parents on the 昀椀rst axis of the diversity panel PCA (Figure 1a). Best method is indicated with the triangle 昀椀lling and cross

with the color. b: Rela琀椀ve importance of variables a昀昀ec琀椀ng PA for Mendelian sampling in the three scenarios tested. Variables were selected 

from an overall model, a昀琀er a model selec琀椀on step. Response individual PA values were obtained either as the best one between RR and 

LASSO, with RR or with LASSO. Rela琀椀ve importance was es琀椀mated with pmvd method, from relaimpo R-package version 2.2-5.

Since varia琀椀on in per-cross PA for scenario 2 was extremely large, from -0.3 for GxPN to 0.72 for CSxS (Figure 

3a), we implemented TS op琀椀miza琀椀on for each cross, to try and increase low PA values. Op琀椀miza琀椀on actually 

improved PA for crosses with PA ini琀椀ally below 0.6, for TS sizes between 50 and 150 (Figure 6). The largest 

improvement, from -0.29 to 0.62, was observed for GxPN cross.
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Figure 6: PA for cross mean predicion a昀琀er training set op琀椀miza琀椀on and with the best method between RR and LASSO, for each cross. Best 

method is indicated with the triangle 昀椀lling and TS op琀椀miza琀椀on method with the color. For comparison, random selec琀椀on of TS genotypes (in 

grey) was performed and repeated ten 琀椀mes, error bars correspond to 95% of the con昀椀dence interval around the mean. We also report per-

cross PA with the whole diversity panel (in red), with a maximum TS size of 279 which may vary depending on traits.

The variable that most a昀昀ected per-trait PA was the σ C

2 /(σC

2 +σG

2 ) ra琀椀o (rela琀椀ve variance of cross e昀昀ect). It was 

strongly correlated with PA in scenarios 1a and 1b (0.82 and 0.88, respec琀椀vely), but not in scenario 2 (Figure 

S8b). 

No other explanatory variable displayed any signi昀椀cant impact despite a fairly high correla琀椀on with per-trait or 

per-cross PA, which could be due to low sample sizes (15 and 10 for per-trait and per-cross PA, respec琀椀vely).

Factors a昀昀ecting Mendelian sampling prediction
To model Mendelian sampling PA for each scenario and method selected for each trait (RR, LASSO or best), we 

applied mul琀椀ple linear regression on six to nine variables depending on the scenario, as detailed in Material and

Methods. The highest coe昀케cient of determina琀椀on (44.2%) was obtained in scenario 1a with the best method 

(Figure 5b). Coe昀케cients of determina琀椀on were equivalent, lower and higher for LASSO compared to RR in 

scenarios 1a, 1b and 2, respec琀椀vely. Three variables were found to impact PA in all scenarios: half-diallel overall 
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H², per-cross H² and the propor琀椀on of non-segrega琀椀ng markers. Surprisingly, half-diallel overall H² was not 

selected in scenario 2 with either RR or best method, while it had a strong e昀昀ect in other modali琀椀es.

The selected variables were quite similar between scenarios 1a and 1b, with a high e昀昀ect of half-diallel overall 

and per-cross H², but di昀昀ered in scenario 2 in which more variables were selected. Overall, most of the rela琀椀ve 

importance came from variables related to the trait and not to the gene琀椀c composi琀椀on of TS or valida琀椀on set 

(VS). 

We also calculated individual PA with op琀椀mized TSs derived from the diversity panel (Figure S9). However, we 

did not observe any improvement compared to using the whole diversity panel. This is consistent with the fact 

that gene琀椀c rela琀椀onship seemed not to impact PA (Figure 5b).

Discussion
Our study allowed us to thoroughly explore GP poten琀椀al in grapevine breeding, by scanning a large range of 

poten琀椀ally useful con昀椀gura琀椀ons: (i) with 15 weakly related traits with variable levels of H² and phenotypic 

structure (subpopula琀椀on or cross e昀昀ects on phenotypic data) (Figure S4), (ii) in across-popula琀椀on scenarios with

TS ranging from half-sibs (scenario 1b) to a diversity panel (scenario 2), (iii) with 10 balanced VS crosses. 

Moreover, we decomposed PA into cross mean and Mendelian sampling components, each being useful in 

breeding to select parental genotypes and o昀昀spring within crosses, respec琀椀vely. All these results allowed us to 

get insight into main factors a昀昀ec琀椀ng PA. We will focus our discussion on predic琀椀on with the diversity panel as 

TS, since this is the most sought-a昀琀er con昀椀gura琀椀on in perennial species breeding.

Range of PA values
For the predic琀椀on of cross mean, overall PA was 0.32 in scenario 2, equivalent to the average per-cross PA 

(0.29), while the average per-trait PA was twice as high (0.6) (Figure 3). In other studies concerning other plant 

crops, the average per-cross PA was not reported 5, 6, 7, 8, probably because, in most cases, there were not 

enough traits to es琀椀mate it. Bernardo et al. 5 and Osthushenrich et al. 6 also reported a high-average per-trait 

PA, above 0.9, while Yamamoto et al. 8 reported PA values from 0.21 to 0.57 depending on the trait.

For the predic琀椀on of Mendelian sampling, overall average PA was slightly lower than overall PA for cross mean 

in scenario 2 (0.26 and 0.32, respec琀椀vely). Yet, Mendelian sampling PA was s琀椀ll quite high, considering that TS 

was essen琀椀ally unrelated to VS, i.e., with no 昀椀rst-degree rela琀椀onship with predicted progenies. The same 

diversity panel was previously used in Flutre et al. 26 for predic琀椀ng individual genotypic values of 23 addi琀椀onal 

Syrah x Grenache o昀昀spring. The reported PA for mbw was 0.56, whereas in the present study, we obtained 0.35

in the Grenache x Syrah progeny (n=59). We further inves琀椀gated such discrepancy, and found it related to a 

sampling bias due to the small VS size in Flutre et al. 26 (data not shown).

The range of average per-trait Mendelian sampling PA observed in scenario 2 (from 0.15 to 0.38) was consistent

with those described on fruit perennial species where individual predic琀椀on was performed with a TS not directly

related to the VS (neither half-sib nor full-sib). In Co昀昀ea, Ferrao et al. 28 reported di昀昀erences in per-trait PA, 

from slightly nega琀椀ve values up to ca. 0.60. But, in this study, overall PA was calculated for all crosses of the VS, 

thus encompassing both cross mean and Mendelian sampling predic琀椀ons, making comparison with our 

Mendelian sampling results alone impossible. In contrast, some studies in apple yielded within cross individual 
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PA values. For instance, Muranty et al. 29 reported average per-trait PA ranging from -0.14 to 0.37, and Roth et 

al. 30 found PA values from -0.29 to 0.72 for fruit texture, highly dependent on the cross for all traits. Conversely,

our PA values were mainly stable over crosses and variable over traits, in the three scenarios (Figure S7). This 

di昀昀erence might partly be due to the larger trait diversity we explored as compared to Roth et al. 30, as 

suggested by comparing our Figure S4 with their Figure 1A. A complementary explana琀椀on could be that progeny

size varied from 15 to 80 in Roth et al. 30, while here progeny sizes were very close and thus less likely prone to 

sampling variability and to upward or downward bias.

Several factors may in昀氀uence Mendelian sampling PA in our study compared to others. Among poten琀椀al 

in昀氀a琀椀ng factors, we can men琀椀on a slight over-representa琀椀on of phenotyped individuals from the WW panel 

subpopula琀椀on, to which four out of the 昀椀ve parents of the half-diallel belong, leading to a higher gene琀椀c 

rela琀椀onship between e昀昀ec琀椀ve TS and VS. Factors poten琀椀ally decreasing PA could be di昀昀erences between TS 

and VS experimental designs since the diversity panel and the half-diallel were not phenotyped on the same 

years, had di昀昀erent plant management systems (overgra昀琀ing or simple gra昀琀ing, respec琀椀vely) and were planted 

a few kilometers apart. Nevertheless, for most studied traits, two years of phenotyping were used to compute 

genotypic BLUPs, which could at least compensate for di昀昀erences between years, usually referred to as the 

millesime e昀昀ect.

Variables a昀昀ecting PA in across-population genomic 
prediction
We focused on PA obtained with the best method between RR and LASSO, to take into account the part of 

variability among traits associated with gene琀椀c architecture. Indeed, LASSO is supposed to be be琀琀er adapted to 

traits underlined by few QTLs, while RR would yield be琀琀er PA for highly polygenic traits. However, we showed 

that for a given trait x cross combina琀椀on, i.e., for a given gene琀椀c architecture, the best method selected 

changed depending on the scenario: LASSO was more o昀琀en selected for scenario 2 than for scenario 1a, both 

for cross mean and individual predic琀椀on. This means that the best method choice also depends on the 

rela琀椀onship between TS and VS. This was also suggested in ca琀琀le breeding by MacLeod et al. 31, who found that 

BayesRC method (comparable to LASSO) yielded be琀琀er results than GBLUP (comparable to RR) for across-

popula琀椀on GP.

Regarding the other factors a昀昀ec琀椀ng PA, for cross mean predic琀椀on in scenario 2, no tested variable signi昀椀cantly 

a昀昀ected per-trait PA. Conversely, per-cross PA was strongly a昀昀ected by the gene琀椀c distance between parents 

(Figure 5a, Figure S8a). To our knowledge, such correla琀椀on has never been reported before, most probably 

because previous works inves琀椀gated too few traits to a昀昀ord per-cross PA calcula琀椀on. We could hypothesize 

that when one parent is farthest from WW -the most represented panel subpopula琀椀on in TS- (e.g., Grenache, 

Figure 1a, Figure S1), marker e昀昀ects for this parent might re昀氀ect di昀昀erent QTLs or allelic frequencies, compared 

to WW ones, thereby explaining the decrease in PA for crosses related to Grenache. Such di昀昀erences underlying

marker e昀昀ects were already described in maize 32. Simultaneously, some QTLs in this parent might be less 

gene琀椀cally linked to causal polymorphisms due to more recombina琀椀ons. However, this cannot be the only 

explana琀椀on for the large correla琀椀on of per-cross PA with pairwise parent distance, because the correla琀椀on 

between PA and gene琀椀c distance between TS and VS was much lower (Figure S8a).

For the predic琀椀on of Mendelian sampling, the variables explaining individual PA in scenario 2 were quite 

di昀昀erent from those explaining cross mean PA. Trait-related variables had a large impact on individual PA: half-
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diallel overall and per-cross heritability, but also the rela琀椀ve variance of cross e昀昀ect (Figure 5b). Surprisingly, 

gene琀椀c rela琀椀onship between TS and VS had li琀琀le to no impact on PA, although this factor has o昀琀en been 

reported to a昀昀ect PA 17,15. Most studies reported separately the e昀昀ects of di昀昀erent variables on individual PA. 

Riedelsheimer et al. 33 also performed mul琀椀ple linear regression of individual PA on several factors to study their

impact. They found that TS composi琀椀on (number of crosses and their rela琀椀onship with VS) explained most of 

the variance (41.7 %), followed by trait (27.6%) and VS composi琀椀on (4.8%). The variance in gene琀椀c rela琀椀onship 

between TS and VS may be smaller in our study.

Practical consequences on breeding programs
Across-popula琀椀on GP with model training in a diversity panel appeared to be promising in grapevine breeding 

for some traits and crosses, par琀椀cularly for parent choice (Figure 3; Figure 4; Table S3; Figure S7).

The usefulness of GP for be琀琀er selec琀椀ng parents for future crosses can be at 昀椀rst assessed by the low overall 

correla琀椀on between mean parental genotypic values (BLUPs) and mean o昀昀spring BLUPs (0.28; see also Figure 

S10). This correla琀椀on was much lower than overall PA for cross mean in scenario 1b (0.66) and slightly lower 

than overall PA for cross mean in scenario 2 (0.32). In strawberry, Yamamoto et al. 8 also evidenced the interest 

of GP for predic琀椀ng cross mean, with no addi琀椀onal bene昀椀t from including dominance e昀昀ects into GP models, 

even if cross means were not equal to parental means. Moreover, in some cases, GP could provide other 

advantages over mean parental gene琀椀c values, for instance when parents are not phenotyped for some 

reasons, because too young or without representa琀椀ve phenotypes (e.g., using microvine 34, in a new 

environment, etc). This was actually the case, in our half-diallel trial, for the Terret Noir parent, which su昀昀ered 

from mortality probably due to rootstock incompa琀椀bility and consequently had no phenotypic record for most 

studied traits.

Even though PA was quite high for some traits and crosses in scenario 2, on average it remained moderate both 

for cross mean and individual predic琀椀on. Both PAs were much higher in scenario 1a, due to increased 

rela琀椀onship between training and valida琀椀on sets. Nevertheless, such an extreme con昀椀gura琀椀on is rarely used in 

plant breeding programs, especially in perennial species, because it requires to partly phenotype the cross to be

predicted. An intermediate con昀椀gura琀椀on, scenario 1b, could be implemented in breeding programs when PA 

from scenario 2 is not su昀케cient and half-sib families are available, because in this scenario, cross mean PA was 

similar as in scenario 1a and individual PA intermediate between scenarios 1a and 2.

We found TS op琀椀miza琀椀on useful mostly for cross mean predic琀椀on for crosses with low PA. The advantage of TS 

op琀椀miza琀椀on was less clear for individual predic琀椀on. This was consistent with the fact that gene琀椀c parameters 

more strongly a昀昀ected cross mean PA than individual PA. In contrast, Roth et al. 30 observed in apple a 

systema琀椀c increase of individual PA with an op琀椀mized TS in the same context (i.e., with a diversity panel as TS 

and bi-parental families as VS, and common op琀椀miza琀椀on methods). To our knowledge, only a single study 

tested TS op琀椀miza琀椀on for cross mean predic琀椀on, by Heslot and Feok琀椀stov 35, who implemented op琀椀miza琀椀on of 

parent selec琀椀on for hybrid crossing in sun昀氀ower while selec琀椀ng individuals to phenotype, but did not calculate 

cross mean PA.

Since our results show that predic琀椀on of cross mean can be quite accurate and useful in scenario 2, we decided 

to go one step further and implemented cross mean predic琀椀on for all 38,781 possible crosses between the 279 

genotypes of the diversity panel, based on parental average genotypes (Table S2) and on marker e昀昀ects 

es琀椀mated with RR in this popula琀椀on. As predicted cross mean were biased for some traits in the ten half-diallel 
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crosses (Figure S5), we es琀椀mated the bias for each trait from these data to correct the predicted mean in the 

possible diversity panel crosses. Figure S11 shows the large poten琀椀al diversity to be explored through crossing 

in grape, for all the traits considered in the present study, illustra琀椀ng the 昀椀nding of Myles et al. 36  that gene琀椀c 

diversity in grapevine was largely unexploited. Such an example opens many prospects for the use of GP to 

design future crosses. Indeed, we limited here our predic琀椀on to the 279 panel genotypes represen琀椀ng the Vi琀椀s 

vinifera diversity, but poten琀椀ally any other (unphenotyped) genotype of interest with dense genotypic data 

could be used for this purpose as exempli昀椀ed with the half-diallel, since its 昀椀ve parents were not part of the 

diversity panel.

Prospects
Based on our results, the following improvements could be tested: i) increase SNP density 25, 37 and include 

structural variants ii) implement non-addi琀椀ve e昀昀ects in GP models such as dominance or epista琀椀c e昀昀ects and iii)

add crosses from other panel subpopula琀椀ons as VSs. Indeed, since all our half-diallel crosses had at least one 

parent belonging to the WW subpopula琀椀on, it would be bene昀椀cial to include crosses with parents from the WE 

and TE subpopula琀椀ons too. Speci昀椀c GP models that include gene琀椀c structure in marker e昀昀ect es琀椀ma琀椀on 38, 39 

could also be tested. 

Predic琀椀ng cross variance could also prove useful to design the o昀昀spring selec琀椀on step, more speci昀椀cally for 

choosing the number of o昀昀spring to test or produce for a given cross. Depending on the available funds and 

breeding program, a breeder may want to select crosses with high gene琀椀c variance, in order to maximize the 

probability to generate top-ranking genotypes. Conversely, choosing a cross with low variance could limit the 

risk of breeding poor genotypes.

Conclusion
We implemented GP in grapevine in a breeding context, i.e., across popula琀椀ons, on 15 traits, in ten related 

crosses, and obtained moderate to high PA values for some crosses and traits, thus showing GP usefulness in 

grapevine. Never before had genomic predic琀椀on been implemented for so many traits and crosses 

simultaneously in this species. We showed that per-cross PA was strongly correlated with the gene琀椀c distance 

between parents, whereas Mendelian sampling PA was largely determined by trait-related variables, such as 

heritability and the magnitude of the cross e昀昀ect.

Material and Methods

Plant material
The half-diallel consists of 10 pseudo-F1 bi-parental families obtained by crossing 昀椀ve Vi琀椀s vinifera cul琀椀vars: 

Cabernet-Sauvignon (CS), Pinot Noir (PN), Terret Noir (TN), Grenache (G) and Syrah (S) 40. Each family comprised 

between 64 and 70 o昀昀spring, with a total of 676 individuals including parents. 

The diversity panel consists of 279 cul琀椀vars selected as maximizing gene琀椀c diversity and minimizing kinship 

among cul琀椀vated grapevine. Grapevine gene琀椀c diversity is highly heterozygous and weakly structured into three

subpopula琀椀ons: WW (Wine West), WE (Wine East) and TE (Table East) 27.
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Field experiments
Field design

The half-diallel was created in 1998 at INRAE Montpellier, gra昀琀ed on Richter 110, and planted in 2005, at the 

Ins琀椀tut Agro experimental vineyard "Le Chapitre" in Villeneuve-lès-Maguelone (Southern France). The progenies

were planted in two randomized complete blocks, with plots of two consecu琀椀ve plants per o昀昀spring per block. 

The 昀椀eld design for the diversity panel was previously described in Flutre et al. 26. Brie昀氀y, cul琀椀vars were 

overgra昀琀ed on 6-year-old Marselan in 2009, itself originally gra昀琀ed on Fercal rootstock, a few kilometers away 

from the diversity panel. They were planted in 昀椀ve randomized complete blocks, with one plant per cul琀椀var per 

block. 

Phenotyping

We studied 15 traits in both trials: berry composi琀椀on with malic (mal.ripe), tartaric (tar.ripe) and shikimic acid 

(shik.ripe) concentra琀椀ons in μeq . L
−1

 measured at ripe stage (20° Brix) (according to Rienth et al. 41), from which

two ra琀椀os were derived, shikimic / tartaric acid (shiktar.ripe) and malic / tartaric acid (maltar.ripe); 

morphological traits with mean berry weight (mbw, in g) measured on 100 random berries, mean cluster weight

(mcw, in g), mean cluster length (mcl, in cm) and mean cluster width (mcwi, in cm), measured on 3 clusters, 

number of clusters (nbclu) and cluster compactness (clucomp) measured on the OIV semi-quan琀椀ta琀椀ve scale; 

phenology traits with veraison date (onset of ripening; verday, in days since January 1st), maturity date 

corresponding to berries reaching 20° Brix (samplday, in days since January 1st) and the interval between 

veraison and maturity (vermatu, in days); vigour (vigour, in kg), derived as the ra琀椀o between pruning weight 

and the number of canes. Phenotypic data were collected between 2013 and 2017 for the half-diallel and in 

2011-2012 for the diversity panel. There was a slight over-representa琀椀on of phenotypes from the WW 

subpopula琀椀on because of fer琀椀lity issues in WE and TE subpopula琀椀ons

SNP genotyping
For the half-diallel, we used genotyping-by-sequencing (GBS) SNP markers derived by Tello et al. 40, 622 of the 

676 individuals being successfully genotyped, as well as the 昀椀ve parents. Raw GBS data were processed 

separately for each cross, and then markers from all crosses were merged together (390,722 SNPs), thus 

genera琀椀ng many missing data (85% of missing data per marker on average), since all markers did not segregate 

in all progenies. Markers with more than 80% of missing data were removed and remaining markers were 

imputed with FImpute3 42 (86,017 SNPs). Some parental cul琀椀vars were used either as female or male, depending

on the cross, a con昀椀gura琀椀on not allowed by FImpute3. We thus declared only a par琀椀al pedigree maximizing the 

number of crosses de昀椀ned with both parents (Table S4). For the diversity panel, we used the same SNP markers 

as in Flutre et al. 26, except that we applied a 昀椀lter on minor allelic frequency (5%) and no 昀椀lter on linkage 

disequilibrium, which yielded 83,264 SNPs.

Finally, we only retained the 32,894 SNPs common to both popula琀椀ons.

Phenotypic data analyses

Half-diallel
 Sta琀椀s琀椀cal modeling for es琀椀ma琀椀ng genotypic values

15

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454290doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454290
http://creativecommons.org/licenses/by/4.0/


Across-popula琀椀on genomic predic琀椀on in grapevine

For each trait, we excluded outlier values by visual inspec琀椀on of raw phenotypic data and computed a log or 

square-root transforma琀椀on if its distribu琀椀on looked skewed. Then, we 昀椀琀琀ed the following linear mixed full 

model by Maximum Likelihood:

y ijkl=μ+Gi+C j+Bk+Y l+(B :Y )kl+(G :Y )il+(C :Y ) jl+x+ y+x : y+ ( x :Y )l+( y :Y )l+ϵ ijkl

with y ijkl the phenotype of genotype i from cross j in block k and year l. Among the 昀椀xed terms, μ was the 

overall mean, and Bk and Y l the e昀昀ects of block k and year l. Among the random terms, Gi and C j were the 

e昀昀ects of genotype i nested within cross j, and x and y  the 昀椀eld coordinates. Interac琀椀ons are indicated with ":".

ε ijkl was the random residual term, assumed to be normally distributed.

Sub-model selec琀椀on was based on Fisher tests for 昀椀xed e昀昀ects and log-likelihood ra琀椀o tests for random e昀昀ects. 

It was performed with the step func琀椀on from lmerTest R-package 43. Variance components were es琀椀mated a昀琀er

re-昀椀琀�ng the selected model by Restricted Maximum Likelihood, and diagnos琀椀c plots were drawn to visually 

check the acceptability of model hypotheses such as homoscedas琀椀city or normality. Best Linear Unbiased 

Predictors (BLUPs) of cross (C) and genotype (G) values were computed. For genomic predic琀椀ons, we used their 

sum (C+G) as total genotypic values for both training and valida琀椀on data. Variance component es琀椀mates were 

used to compute the propor琀椀on of gene琀椀c variance due to di昀昀erences between crosses as: σ C

2 /(σC

2 +σG

2 ).

 Heritability es琀椀ma琀椀on

We es琀椀mated overall (for the whole half-diallel) broad-sense heritability for genotype-entry means 44 as:

H
2=

σ C

2+σG

2

σC

2 +σG

2 +
σC :Y

2 +σG :Y

2 +σx :Y

2 +σ y :Y

2

nyear

+
σ x

2+σ y

2+σ x : y

2 +σ ϵ

2

n year×nrep. year

with genotype (G) and cross (C) variances at the numerator. Random variance components involving year (Y) 

were divided by the mean number of years (n year). Other random variance components involving spa琀椀al e昀昀ects 

or residuals were divided by the mean number of years 琀椀mes the mean number of replicates per year (nrep . year).

We also es琀椀mated broad-sense heritability per cross (therea昀琀er used to name half-diallel full-sib family). For 

that, we applied the same selected model, but removed all e昀昀ects involving cross. Then, we es琀椀mated variance 

components within each cross, and heritability with the same formula, a昀琀er removing variances involving cross.

All informa琀椀on on analyses of phenotypic data and heritability of the half-diallel is detailed in Table S1.

Diversity panel
We used the genotypic values previously es琀椀mated in Flutre et al. 26 with a similar sta琀椀s琀椀cal procedure to the 

one described above for the half-diallel. All phenotypic analysis informa琀椀on is provided in Table S3 of Flutre et 

al. 26.

For each of the two popula琀椀ons, genotypic BLUPs were scaled, allowing comparison among traits.
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Genomic prediction statistical methods
Marker e昀昀ects were es琀椀mated using two methods to take into account varying gene琀椀c architecture among the 

traits studied. Ridge regression (RR) 45, best adapted to many minor QTLs, shrinks marker e昀昀ects towards 0. 

Least Absolute Shrinkage and Selec琀椀on Operator (LASSO) 46, best adapted to a few major QTLs, applies a L1 

norm on allelic e昀昀ects, thus forcing some to be exactly 0. Both methods were implemented with R/glmnet 

package 47 and the amount of shrinkage, controlled by λ parameter, was calibrated by 昀椀ve-fold inner cross-

valida琀椀on within each training set, using cv.glmnet func琀椀on. 

Genomic prediction scenarios
We assessed predic琀椀on within half-diallel crosses under three di昀昀erent training scenarios (Figure 2; Table S5):

 Scenario 1a: whole half-diallel predic琀椀on. We applied random outer 10-fold cross-valida琀椀on over the 

whole half-diallel popula琀椀on. In each fold, 90% of the phenotyped o昀昀spring were used as the training 

set (TS) and the remaining 10% as the valida琀椀on set (VS). Cross-valida琀椀on was replicated ten 琀椀mes.

 Scenario 1b: half-sib predic琀椀on. For each half-diallel cross used as VS, we trained the model with the 

three half-sib crosses of each parent in turn, thus predic琀椀ng each cross twice.

 Scenario 2: across-popula琀椀on predic琀椀on. We used the whole diversity panel as TS and each half-diallel 

cross as VS.

Predictive ability assessment
In order to account for the e昀昀ect of gene琀椀c architecture, we applied both RR and LASSO methods for each trait 

and cross and kept the best PA, for both cross mean and within cross individual predic琀椀on.

Prediction of cross mean
Cross mean PA was assessed as Pearson's correla琀椀on between the average value of observed total genotypic 

values (sum of genotype and cross BLUPs for each o昀昀spring) for each cross, and the mean predicted genotypic 

value per cross, calculated in two ways, as:

  average predicted value over all o昀昀spring of the cross. In scenario 1a, each o昀昀spring was predicted 10 

琀椀mes, thus we also averaged the predicted value over the 10 replicates.

  predicted value for the parental average genotype, de昀椀ned at each locus and for each cross as the 

mean allelic dosage according to the expected segrega琀椀on pa琀琀ern based on parents' genotypes (Table 

S2).

 genotypic values predicted with these two modali琀椀es were highly correlated (above 0.98) in the three 

scenarios and for the two methods (partly shown in Figure S12). Therefore, in subsequent analyses, we 

used only predic琀椀on with parental average genotypes.

Pearson’s correla琀椀on between observed and predicted values was calculated on all cross x trait combina琀椀ons 

(overall PA), for each trait (per-trait PA) and for each cross (per-cross PA).

Within-cross individual prediction
We measured PA within each cross in each scenario as Pearson's correla琀椀on between observed total genotypic 

values and predicted genotypic values. 
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Test of variables a昀昀ecting predictive ability
We tested the e昀昀ect of several variables on within-cross individual PA, in each scenario. We built a mul琀椀ple 

linear regression model with PA per trait x cross combina琀椀on as the response variable and as predictors, a set of

variables common to all three scenarios plus speci昀椀c variables for scenarios 1b and 2. Common variables were: 

the propor琀椀on of non-segrega琀椀ng markers in the cross, overall and per-cross broad-sense heritability, the 

distance between the parents of the cross measured either as the addi琀椀ve rela琀椀onship or as the distance on the

昀椀rst or 昀椀rst two axes of the panel PCA (Figure 1a) and the propor琀椀on of gene琀椀c variance due to di昀昀erences 

between crosses (σ C

2 /(σC

2 +σG

2 )ra琀椀o). A speci昀椀c variable for scenarios 1b and 2 was the mean addi琀椀ve 

rela琀椀onship between training and valida琀椀on sets. In scenario 2, it was calculated for each trait only with 

phenotyped individuals. Speci昀椀c variables for scenario 2 were: broad-sense heritability in the diversity panel 

(retrieved from Flutre et al. 26 and Table S1) and the percentage of trait variance explained by the subpopula琀椀on

factor (see below). A昀琀er 昀椀琀�ng the overall model, we applied a forward-backward stepwise regression, with the 

AIC criterion to select the best explanatory model. Then, we es琀椀mated the rela琀椀ve importance of each variable 

selected in this model with the pmvd method 48, which allows to decompose the R² of correlated regressors 

with the R-package relaimpo 49.

The percentage of trait variance within the diversity panel explained by subpopula琀椀on (WW, WE or TE) was 

evaluated by 昀椀琀�ng for each trait the following linear model: G=P+ϵ , where G is the genotypic (BLUP) value 

within the diversity panel, P is a 昀椀xed subpopula琀椀on e昀昀ect, and ϵ  a random residual term. The percentage of 

variance due to di昀昀erences between subpopula琀椀ons was then es琀椀mated as the coe昀케cient of determina琀椀on (R²)

of the model.

Training set optimization
We tested three methods for op琀椀mizing TS in scenario 2, for both cross mean and within-cross individual 

predic琀椀on. We used the STPGA R-package50  to implement Predic琀椀on Error Variance (PEVmean) and CDmean 

(based on the coe昀케cient of determina琀椀on)10. Moreover, we computed the mean rela琀椀onship criterion 

(MeanRel), as the mean addi琀椀ve rela琀椀onship between each genotype in TS and all genotypes in VS. Each 

op琀椀mized TS was speci昀椀c to a cross. The realized addi琀椀ve rela琀椀onship based on marker data was es琀椀mated 

using the rrBLUP R-package51 with the A.mat func琀椀on implemen琀椀ng the formula from VanRaden et al. 52. For 

each of these three op琀椀miza琀椀on methods, we tested 昀椀ve TS sizes (50, 100, 150, 200, 250). PA values obtained 

with each op琀椀mized TS were compared with those obtained with a random sample of genotypes of the same 

size, repeated 10 琀椀mes.

Data availability
All analyses were conducted using free and open-source so昀琀ware, mostly R. Phenotypic and genotypic data, R 

scripts and result tables are available at h琀琀ps://data.inrae.fr/privateurl.xhtml?token=1925c973-a11b-45ad-

b297-69db8ec2c270 . 
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