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Abstract

The Internet of Things (IoT) provides a simple framework to easily control online
devices. IoT is now a commonplace tool used by technology companies, but it is rarely used
in biology experiments. IoT can benefit research through alarm notifications, automation,
and the real-time monitoring of experiments. We developed and implemented an IoT
architecture to control biological devices used in experiments. We developed our own
electrophysiology, microscopy, and microfluidic devices so that may be controlled through
a unified IoT architecture. The system allows each device to be monitored and controlled
through an online web tool. We present our IoT architecture so other labs may replicate
it for their own experiments.
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1. Introduction

Cloud biology uses internet protocols to connect biological devices online. This allows
live experiments to be monitored and controlled through a web application. In the past,
cloud biology has been used for biology education |[Hossain et al.| (2018} 2016), ecology |Guo
et al.| (2015)), agriculture [Friha et al.| (2021)) and marine biology Xu et al.| (2019). Cloud
systems are advantageous for research experiments where live sensors are spread across
vast distances. For example, ecology and marine biology experiments use cloud biology to
control a fleet of sensors as they traverse through their ecosystem. Cloud biology has been
suggested for the online control of high-throughput cellular biology Wong et al.| (2018). A
backbone of many cloud biology systems are small inexpensive computing devices that
are managed by a centralized server, which are used to control aspects of a biological
experiment. In particular, Raspberry Pi computers have become a standard device in
many cloud biology experiments Jolles| (2021)).

The Internet of Things (IoT) is a framework of communication that is often used to
manage multiple small devices so that they are able to work in unison. IoT has become
commonplace as technology used in home sensors, distributed robotic factories, and
personal wearables. The framework is designed for devices to be easily connected together
and controlled through underlying messaging protocols like MQTT (Message Queuing
Telemetry Transport). IoT has been less commonly used for cloud biology, however,
examples exist from ecology and Amazon Alexa integration of lab devices Knight et al.
(2020), to commercial devices [Perkel| (2017a)). To our knowledge, no IoT system has yet
been developed for cellular biology.

IoT systems can provide many benefits to cloud-based biology experiments. IoT
provides a standardized framework of communication that dramatically reduces the
amount of effort required to connect each device to the cloud. Fleets of devices can be
controlled with negligibly more effort than that of controlling a single device, because of
the modular nature of the IoT framework. Live data streaming becomes possible using
the same straightforward protocols as basic communication. IoT also provides its own
method for instant notifications. This is particularly useful when an alarm notification
should be sent to a scientist notifying them that their experiment is in danger Perkel
(2017b).

In this article, we introduce an IoT architecture for cell biology. We demonstrate the
architecture and its usage with laboratory benchtop experiments in electrophysiology,
microscopy, and microfluidics. The electrophysiology, microscopy, and microfluidics
devices were all built by us. They all use a standardized Raspberry Pi IoT architecture
so that the system is unified and simple to control. Our IoT system provides us with
real-time control and monitoring of live experiments through an online web tool. This
provides us with the ability to automate research and receive live updates of the health
of experiments. This architecture benefits our research and will hopefully benefit other
labs who implement something similar.

2. System Design

Cost, scalability, maintainability, and scientific reproducibility were the fundamental
requirements for our high throughput experimentation software. Low-cost is made
possible by cloud computing platforms offering affordable commodity compute and storage
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Figure 1: IoT Cloud Laboratory: Experiments are automated through cloud connected devices to allow
scalability, reproducibility, and online monitoring.

resources at supercomputer scales. Scalability and maintainability are achieved through
ToT management of devices and software containerization of data analysis processes, which
both offer plug-and-play approaches with minimal dependencies between components.
Scientific reproducibility is embedded through standards-based workflow definitions using
Nextflow and Dockstore.

Figure [I] depicts the high-level overview of the system. Data acquisition modules
(devices) execute experiments in the lab. Each module performs a specific task such as
electrophysiology, microscopy, and biochemical assays. Users interact with the devices
through a web-based user interface, or a lower-level software API. The software API
controls devices and enables any program to control the flow of experiments. Logistics of
device management, communication, and data storage are handled through the Pacific
Research Platform (PRP, a nonprofit) and Amazon Web Services (AWS, for profit). In
the following sections, we describe each component of the architecture.

2.1. Device management, communication, and control using IoT and MQTT

The data acquisition modules are lightweight and general-purpose IoT devices. The
ToT devices connect to the various services that support user control, data storage, analysis,
and visualization via the MQTT (Message Queuing Telemetry Transport) protocol. MQTT
is a well-supported, industry-standard publish-subscribe messaging protocol.

Figure [2] depicts the central role MQTT plays in coordinating data acquisition mod-
ules and user interface communications. The MQTT protocol maintains the state and
connection status for each device. It also provides a simple, lightweight publish-subscribe
platform with defined topics. The topics are used by devices or user interface components
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to organize communication. There are two types of topics: a topic per each device
(electrophysiology, microscopy, or any device performing experimental measurements or
recording), and a topic per each running experiment. Each experiment is also assigned a
UUID (Universally Unique IDentifier) which becomes an active topic for the period of
operation.
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Figure 2: Inter-device MQTT message broker. The MQTT message broker provides integration
and control over multiple internet-connected instruments. The functionality supports clients, data
acquisition modules or software applications, to connect and subscribe to topics set by a publisher, such
as the user interface (UI), with the proper authentication protocols. By doing so, clients subscribed
to the topic will be informed of the state of each data acquisition module (e.g., start, stop, etc.) and
parameter changes throughout an experiment.

An experiment starts when MQTT messages are published to the appropriate experi-
ment and device topics. Devices subscribed to those topics receive the messages and take
the appropriate action. Actions can also be taken automatically based on sensor readings.
For example, a temperature sensor that detects overheating can publish an emergency
stop message to the appropriate devices, and turn this device off. Actions may involve
sending users alerts explaining errors or requesting intervention.

2.2. Data storage using Ceph/S3

Figure |3| shows how devices store experimental data. Primary storage and data
processing are implemented on the PRP through a distributed commodity compute
cluster based on Kubernetes and the Ceph (Weil et all [2006) distributed file system.
Ceph provides a highly scalable S3 interface to a virtually unlimited data store. Ceph/S3
is the primary storage for all datasets, small to terabyte-scale, commonly recorded by
electrophysiology, microscopy, and biochemical assays. Our larger parallelized data
processing tasks have peaked at over 5 GB/sec of concurrent I/0 from S3, demonstrating
the substantial scalability of the file system. Access to the Ceph/S3 data store is
universally available on the internet, making it an excellent place to share large datasets
across institutions.

As a research-oriented compute cluster, the PRP (Pacific Research Platform) does
not provide strong SLAs (Service Level Agreements) for the data store. Network outages
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due to local network, power, or user error can cause temporary service disruptions. No
guarantee is made against data loss, though the Ceph filesystem provides mechanisms
to guard against common failures such as losing a node or storage media. We mitigate
against data loss by scheduling a Kubernetes Cron Job with a nightly backup of all
data from Ceph/S3 to AWS Deep Glacier, a cloud IaaS (Infrastructure as a Service)
service providing a long-term tape storage solution. Also, all data-producing edge devices
maintain a local cache that can withstand a temporary service disruption.

Local Storage
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Figure 3: Data storage architecture. Data storage is buffered to the local device before being
delivered to cloud S3 storage. Network and cloud service disruptions are expected. With the real-time
data feed, interruptions only impact active visualizations of the data, which is acceptable, but the loss
of experimental data is not. Each device buffers data to its local storage before making a best-effort
attempt to upload it to the S3 distributed object store. Data may be buffered until the local storage is
exhausted (typically enough for at least a day). The S3 distributed store is backed up to AWS Glacier to
guard against user error (accidental deletion) and the loss of the S3 service. Cloud providers like AWS,
GCP, and Azure have strong S3 service level agreements, unlike academic clusters such as the PRP.

2.8. User interface using Plotly Dash

A Plotly Das}ﬂ interface is easy to develop and code in Python, a common language
for data science. Plotly offers a rich set of interactive plotting functionality, including
specialized biology-focused visualizations. Dash provides a template to build user interfaces
that implement the Observer Design Pattern making for an extensible
and maintainable environment.

A dedicated server runs a single Plotly Dash instance under which the user interface and
visualizations run as a multi-page Plotly Dash web application (see the “Visualization and
control” in Figure [4)). This topic will be further discussed in the “Results and Discussion”
section (Figure |§| “Control’). This application can plot data from past experiments
saved on Ceph/S3, or it can publish MQTT messages to the device or experiment topics
in real time. Figure [6] and Section [3] shows a how a user would visualize a “Piphys”
electrophysiology device streaming data.

Shttps://plotly.com
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2.4. Data streaming using Redis

Real-time streaming and real-time feedback are facilitated through a Redis service.
Redis is a high speed database that acts as an inter-server and inter-process communication
service. It is straightforward to interact with Redis using many languages, including Bash,
Python, and C. Raw data feeds are sent to Redis only when the user is actively interacting
with a data stream, e.g., looking at a real-time visualization, the UI client sends MQTT
keep-alive messages to keep the data stream active. While MQTT is appropriate for small
messages, Redis is the main communication method for larger blocks of data.
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Figure 4: Real-time data visualization: (1) Electrophysiology, Microscopy, and Experimental Assay IoT
devices produce real-time data streams on-demand only when a user is connected to a visualization that
utilizes that stream. (2) Data transformations process raw data into a variety of helpful forms. Each
independently containerized transformation reads a data stream and produces a new data stream. (3)
Visualization and alerting notify IoT devices via MQTT that data streams are needed.

Figure [4 introduces a mechanism for handling large-scale real-time data streams. Redis
provides common data structures with the inter-process locking required to coordinate
between services running on separate devices. It provides a way for a data producer
to publish a real-time stream of data, such as an electrophysiology recording, and for
a consumer of that data, such as the Plotly Dash U, to coordinate with each other
without direct dependencies between them. Data transformations using Redis shown in
Figure [4 are discussed in Section A Redis stream is effectively a queue that can be
capped in length, so that old data is automatically dropped once the maximum size of
the stream is reached. Consumers, such as the Plotly Dash website, can send a recurring
MQTT message to the relevant data producer to start the data stream and read the
data as it is produced. A Redis service interruption merely pauses data visualization.
The data producers stream a raw data feed to Redis in real-time while logging data in
batches to Ceph/S3. The Ceph/S3 object store remains the primary source for data
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storage, and the data transfer to Ceph/S3 is resilient to service disruptions. There is no
guarantee against the loss of data in the streaming approach, which is why Ceph/S3 is
the primary datastore, and the Redis stream is reserved for visualizations that can incur
service interruptions without lasting consequences.

2.5. Data processing using containerization and workflow definitions

Longitudinal electrophysiology, microscopy and microfluidic experiments commonly
produce datasets on the multi-terabyte scale. Big data analysis is performed using
containerized workflows built with Docker and Kubernetes and then deployed using
Nextflow. Large scale machine learning especially relies on S3 for reading terabyte scale
datasets. Data analytics tasks such as neural voltage signal analysis, machine learning,
and image analysis require substantial computing resources and processing in multiple
stages.

To provide substantial computation power and resources with simple cloud manage-
ment, we utilize containerization in our infrastructure. This is the process of packaging
up code and all its dependencies, so an application runs reliably in any computing en-
vironment because the code and all of its software dependencies, APIs, and versions
are packaged into a binary. Containers are efficient and lightweight, they share a single
host operating system (OS), and each container acts as an independent virtual machine
without additional overhead (unlike full hypervisor virtual machines which replicate the
0OS). The container can be uploaded to a repository (for example, on Docker Hub) and
downloaded and run on any computer. This includes servers in a cluster or a local lab
computer.

We introduced Dockstore.org (O’Connor et al., [2017)) in our design as the next logical
step in scientific reproducibility, building on containerization technology. Dockstore.org is
a website dedicated to hosting containerized scientific workflows formalized by workflow
definitions. The formal definition of a workflow is its inputs, outputs, steps, dependencies,
and the containers they run on. A common workflow language formalizes a container-
ized software process to ensure that organizations can run each other’s software in a
standards-compliant manner. Several formal workflow definition languages exist: Nextflow
(Di Tommaso et al., 2017), Common Workflow Language (CWL) (Amstutz et al. [2016),
and Workflow Description Language (WDL) and are all supported by Dockstore.

Besides being a formalized workflow language, Nextflow provides a workflow runtime
engine capable of deploying containerized processes to various platforms such as Kuber-
netes, AWS, Google Cloud, and Azure. Figure ] depicts a standard electrophysiology data
processing workflow we developed run by Nextflow and deployed to the Kubernetes-based
platform on the PRP. All workflows receive a standard UUID (Universally Unique IDenti-
fier) pointer to a dataset, allowing the workflows to find the raw data or pre-processed
data produced by a dependent workflow.

2.5.1. Example: electrophysiology data processing workflow

Let us consider an example workflow for an electrophysiology experiment. The goal
is to detect the action potentials (spikes) of neurons by analyzing voltage recordings on
multiple channels. This is part of a larger procedure called "spike sorting". The workflow
consists of 3 Jobs that occur in sequence:
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Figure 5: An electrophysiology experiment post data processing workflow. (Job 1) A subset
of the data is analyzed to determine which channels are active, (Job 2) raw data for each active channel
is converted into the form necessary for data analysis (this step takes advantage of cluster parallelism,
splitting tasks by data file), and (Job 3) the data analysis including spike sorting, and other custom
analysis tasks, is performed in parallel by an active channel.

For Job 1, a subset of the electrophysiology data is scanned to identify active channels.
A JSON file with active channel information is recorded to Ceph/S3. This step requires a
single task/container to run.

For Job 2, the dataset is converted from its raw 2-byte data (int16) format into a
4-byte floating-point format (float32) necessary for data analysis. Since the dataset is
typically large (commonly in Terabytes), the information is stored in multiple files where
the number of files is directly proportional to the size of the deadset. The substantial
compute and I/O workload must be distributed across the cluster. One job per data file
is launched, downloading the raw 2-byte data file from Ceph/S3 and uploading a 4-byte
data file (float32) back to a temporary location on Ceph/S3. In the process, the data
is separated into individual channels for processing in the next step. Notice that the
conversion process must download and re-upload the full dataset because multi-terabyte
datasets are too big to fit on local nodes.

For Job 3, the data for active channels is pulled from the distributed filesystem, then
spike sorting and spike timing analysis is performed. The results are placed back on the
distributed filesystem.

While each job runs in series and depends on the last, there are no dependencies
between the jobs other than those involving the data that is posted to the primary
datastore Ceph/S3. Each dataset has a unique ID (UUID) which also serves as a location
pointer to where data is stored on the Ceph/S3. This UUID is the only parameter passed
between jobs.

Beside the illustrated example in this section, Figure [7] shows a more general overview
of resources employed and parallelization of the data processing by workflows including
imaging and biochemical assays.
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2.6. Real-time analysis, data processing, and transformations

Deploying containerized workflows via Nextflow works well for large-scale post-
processing and data analysis but does not provide a mechanism for real-time visualizations
and experiment control.

The Redis in-memory database service coordinates the real-time exchange of data
between many producers and consumers. For example, an electrophysiology recording on
32 channels at 25 kHz will produce a data stream of 1.6 MB/sec, which a user may want
to monitor in real-time. Equivalently, a microscopy recording could provide a stream
of images for visualization for real-time experimental metrics, such as 600 MB every
recording for all the images with 24 cameras each capturing 10 pictures.

Transformation of data with visual enhancements applied in real-time is often more
informative than seeing raw data. Data transformations are performed by containerized
processes that read a stream of data and write a new stream of transformed data. For
example, a container reads a raw electrophysiology stream and writes a new steam with
the bandpass filtered data. After applying the data transformation, a visualization
such as a Plotly Dash web page would read the appropriate data stream output. Data
transformations have no dependencies other than the Redis stream they read from and
can be entirely independent workflows. Transformations can easily be added or changed
without changing any other software infrastructure components.

3. Results and Discussion

This software architecture supports different modes of data acquisition that measure
and report data. Here we focus on three types of modules for proof of concept: (1)
Electrophysiology — recording and stimulation of neural cell cultures (2) Microscopy —
imaging of cell cultures (3) Automated culture — feeding cells and sampling media for
metabolites and RNA expression using a programmable microfluidics system. These
modules are implemented and presented in Figure [6]

We will look at each of these data acquisition modules (IoT-based edge devices) in
turn and discuss how they interact with the software architecture and user. For this
example, we assume users will interact with devices through the web UI application.
Users can be located anywhere on the Internet without concern for the location of these
physical devices. This facilitates cross-campus and cross-institutional collaborations. For
instance, we often perform electrophysiology and microscopy experiments from Santa
Cruz on devices located 90 miles away in San Francisco. Of course, experiments still
require some manipulation by a researcher at the local site (i.e., placing cell cultures on
the devices and performing adjustments if components are misaligned).

To begin an electrophysiology experiment, a user opens the browser with the Plotly
Dash web application (Figure @ Control). The application queries AWS IoT service for
online electrophysiology devices (Figure |§|, Assay). The device can be Piphys (Voitiuk
et al.l [2021) or any platform/recording system whose computer runs the same code that
responds to the IoT architecture and can control the system programmatically. When
the user selects a device, an MQTT ‘ping’ message is sent to the relevant device every
30 seconds, indicating that a user is actively monitoring data from that device. As long
as the electrophysiology device receives these pings, it will send raw data to its Redis
stream (Figure |§|, Infrastructure). Since the device is responsible for only a single data
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Figure 6: An outline of existing tools that utilize the platform described in this paper. (Assay) shows
the Picroscope Ly et al.| (2021); |[Baudin et al.| (2021)) for microscopy, the Piphys [Voitiuk et al.| (2021)
for electrophysiology recording, and a fully automated auto-culture system for media recording and
replacement. (Infrastructure) shows the primary suite of tools introduced in section and in
this paper. (Control) shows a snapshot of existing web based control of the edge devices. These web pages
are running on a server in UCSC Genomics Institute. (Analysis) demos some of the reports produced as
a result of the workflows that run as post-processing jobs. (the “Picroscope” and “Piphys” figures are
adapted from Ly et al.| (2021); [Baudin et al.| (2021) and |Voitiuk et al.|(2021))

stream, many users can monitor and interact with the particular device without additional
overhead. If the device has not received user messages for at least a minute, it will cease
streaming its data. This protocol ensures the proper decoupling of users from devices,
and devices are not dependent on a user gracefully shutting down the connection.

As shown in Figure [d] one or more data transformation processes can read the raw
data stream and post a processed stream of data, such as real-time spike sorting. The web
visualization can display the appropriate transformed data stream for the user (Figure @
Analysis).

Stopping the experiment will automatically initiate a batch processing workflow on the
Kubernetes compute platform. Users can configure the workflow to include job modules
such as spike sorting, clustering, and other customized metrics of neural activity.

Microscopy, such as the Picroscope, typically operates at a lower sampling rate and over
a longer continuous period than electrophysiology. Microscopy devices record images of cell
culture morphology at varying focal layers and time-frequency. As with electrophysiology,
these images are initially buffered locally and then flushed to the Ceph/S3 filesystem every
few minutes. A user will view the data in the same web Ul portal as electrophysiology.
Since cell culture morphology changes relatively slowly, microscopy visualizations do not
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require real-time Redis streaming. The user may update the parameters of the microscopy
recording with MQTT messages sent to the device topic updating the state.

Assay devices support the lifecycle of the cell culture, providing new media and taking
regular measurements relevant to the cell culture’s health and environmental state. Much
like microscopy, most of these measurements are sampled continuously over the lifetime
of the culture and are posted directly to Ceph/S3 at regular time intervals. When the
user accesses a Ul page detailing the lifecycle of the culture, these metrics will be pulled
in near real-time from Ceph/S3. The user can update and change metrics related to eells
the lifecycle by an MQTT message from the Ul page to the device to update its state
and initiate a change in the device behavior.

3.1. Scaling

In the previous section, we considered one experiment with a few data acquisition
modules running in a single lab. This section considers hypothetical studies of tens to
thousands of experiments operating simultaneously. Each user will use different features
of the devices, and there would be a virtually infinite combinations of features when many
devices are deployed. We define three use cases and provide an analysis of these and
their assumptions, we call the use cases, Science, Student, and National. We provide a
distribution over the basic functions and devices that we expect the users will employ in
each case. For each case we provide estimates of CPU, Network, and Storage resources
required, visualized in Figure [} Also provided in Figure [7] is an estimate of cloud
computing and storage cost based on AWS pricing. The use of the PRP academic
compute cluster precludes the majority of these costs and speaks to the value the PRP
brings to academic institutions.

In the Science use case, we assume a higher degree of active imaging and electrophysi-
ology. This use case focuses on more resource-intensive lab use in the pursuit of scientific
inquiry at high detail. In this configuration, storage requirements are the most significant
bottleneck, growing at tens to hundreds of GB of data per hour. We find that tens of
devices are appropriate for this use case before resource utilization becomes excessive.

In the Student use case, we anticipate a limited number of universities using the
devices to teach classes in cell biology on live cultures hosted at a remote lab. In this use
case, we assume a scale on the order of hundreds of devices. Users in this scenario will
rely heavily on visualizations, including both real-time microscopy and electrophysiology.
The lab that hosts hundreds of experiments with the expectation of concurrent access will
require additional network bandwidth beyond what is available in a typical lab or office.
At least two Gigabit network ports and matching ISP bandwidth would be necessary to
support the load. At this scale, if electrophysiology is involved, limiting data that is sent
over the wire to active spiking events, rather than raw signal measurements, is imperative.
This requires on-device spike detection.

Lastly, in the National use case, we consider a scaled-out fleet of thousands to tens of
thousands of devices. This case assumes wide-scale adoption by laboratories or secondary
education facilities across the country or world. This scale requires substantial cloud
computing resources to support the load and serve microscopy images and electrophysiology
data to every user. It will also require significant wet lab infrastructure at the site(s)
housing the biology as well as expenses of cell culture maintenance. However, given this
investment, this infrastructure can enable remote experimentation by a large and diverse
population.
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4. Conclusion

This paper outlines an [oT software architecture that supports the control and analysis
of electrophysiology, microscopy, and experimental assays on cell cultures. We emphasize
the benefits of having a centralized online hub where automated experiments are managed
through a portal. Scientists benefit from receiving notifications on the status of their
experiments and monitor its progression without perturbing samples. Our architecture is
built on an open-source design with scientific reproducibility in mind. Future advances
in IoT architecture for cell biology may open new possibilities to scale high-throughput
experiments, which may benefit drug screens, gene knockout studies and a host of other
types of experiments. We hope our architecture examples will further advance the
implementation of IoT in cellular biology.
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