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Abstract

Prostate cancer is the second most occurring cancer in men worldwide. To better understand
the mechanisms of tumorigenesis and possible treatment responses, we developed a
mathematical model of prostate cancer which considers the major signalling pathways known
to be deregulated.

We personalised this Boolean model to molecular data to reflect the heterogeneity and specific
response to perturbations of cancer patients. 488 prostate samples were used to build patient-
specific models and compared to available clinical data. Additionally, eight prostate cell-line-
specific models were built to validate our approach with dose-response data of several drugs.

The effects of single and combined drugs were tested in these models under different growth
conditions. We identified 15 actionable points of interventions in one cell-line-specific model
whose inactivation hinders tumorigenesis. To validate these results, we tested nine small
molecule inhibitors of five of those putative targets and found a dose-dependent effect on four
of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power
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of our personalized Boolean models and illustrate how they can be used for precision
oncology.

Introduction

Like most cancers, prostate cancer arises from mutations in single somatic cells that induce
deregulations in processes such as proliferation, invasion of adjacent tissues and metastasis.
Not all prostate patients respond to the treatments in the same way, depending on the stage
and type of their tumour (Chen & Zhou, 2016) as well as to differences in their genetic and
epigenetic profiles (Yang et al, 2018; Toth et al, 2019). The high heterogeneity of these profiles
can be explained by a large number of interacting proteins and the complex cross-talks
between the cell signalling pathways that can be altered in cancer cells. Because of this
complexity, understanding the process of tumorigenesis and tumour growth would benefit from
a systemic and dynamical description of the disease. At the molecular level, this can be tackled
by a simplified mechanistic cell-wide model of protein interactions of the underlying pathways,
dependent on external environmental signals.

Although continuous mathematical modelling has been widely used to study cellular
biochemistry dynamics (e.g., ordinary differential equations) (Goldbeter, 2002; Tyson et al,
2019; Le Novere, 2015; Sible & Tyson, 2007; Kholodenko et al, 1995), this formalism does
not scale up well to large signalling networks, due to the difficulty of estimating kinetic
parameter values (Babtie & Stumpf, 2017). In contrast, the logical (or logic) modelling
formalism represents a simpler mean of abstraction where the causal relationships between
proteins (or genes) are encoded with logic statements and dynamical behaviours are
represented by transitions between discrete states of the system (Thomas, 1973; Kauffman,
1969). In particular, Boolean models, the simplest implementation of logical models, describes
each protein as a binary variable (ON/OFF). This framework is flexible, requires in principle
no quantitative information, can be hence applied to large networks combining multiple
pathways, and can also provide a qualitative understanding of molecular systems lacking
mechanistic detailed information.

In the last years, logical and in particular Boolean modelling has successfully been used to
describe the dynamics of human cellular signal transduction and gene regulations (Helikar et
al, 2008; Calzone et al, 2010; Grieco et al, 2013; Flobak et al, 2015; Cho et al, 2016; Traynard
et al, 2016) and their deregulation in cancer (Fumia & Martins, 2013; Hu et al, 2015).
Numerous applications of logical modelling have shown that this framework is able to delineate
the main dynamical properties of complex biological regulatory networks (Faure et al, 2006;
Abou-Jaoudé et al, 2011).

However, the Boolean approach is purely qualitative and does not consider real time of cellular
events (half time of proteins, triggering of apoptosis, etc.). To cope with this issue, we
developed the MaBoSS software to compute continuous Markov Chain simulations on the
model state transition graph (STG), in which a model state is defined as a vector of nodes that
are either active or inactive. In practice, MaBoSS associates transition rates for activation and
inhibition of each node of the network, enabling it to account for different time scales of the
processes described by the model. Given some initial conditions, MaBoSS applies a Monte-
Carlo kinetic algorithm (or Gillespie algorithm) to the STG to produce time trajectories (Stoll et
al, 2012, 2017) such that time evolution of the model state probabilities can be estimated.
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Stochastic simulations can easily explore the model dynamics with different initial conditions
by varying the probability of having a node active at the beginning of the simulations and by
modifying the model such that it accounts for genetic and environmental perturbations (e.qg.,
presence or absence of growth factors, or death receptors). For each case, the effect on the
probabilities of selected read-outs can be measured (Cohen et al, 2015; Montagud et al,
2017).

When summarizing the biological knowledge into a network and translating it into logical terms,
the obtained model is generic and cannot explain the differences and heterogeneity between
patients’ responses to treatments. Models can be trained with dedicated perturbation
experiments (Saez-Rodriguez et al, 2009; Dorier et al, 2016), but such data can only be
obtained with non-standard procedures such as microfluidics from patients’ material (Eduati
et al, 2020). To address this limitation, we developed a methodology to use different omics
data that are more commonly available to personalise generic models to individual cancer
patients or cell lines and verified that the obtained models correlated with clinical results such
as patient survival information (Béal et al, 2019). In present work, we apply this approach to
prostate cancer to suggest targeted therapy to patients based on their omics profile (Figure
1). We first built 488 patient- and eight cell line-prostate-specific models using data from The
Cancer Genome Atlas (TCGA) and the Genomics of Drug Sensitivity in Cancer (GDSC)
projects, respectively. Simulating these models with the MaBoSS framework, we identified
points of intervention that diminish the probability of reaching pro-tumorigenic phenotypes.
Lastly, we developed a new methodology to simulate drug effects on these data-tailored
Boolean models and present a list of viable drugs and regimes that could be used on these
patient- and cell-line-specific models for optimal results. Experimental validations were
performed on the LNCaP prostate cell line with two predicted targets, confirming the
predictions of the model.
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Figure 1: Workflow to build patient-specific Boolean models and to uncover personalized drug
treatments from present work. We gathered data from Fumia and Martins (2013) Boolean model,
Omnipath (Tadrei et al, 2021) and pathways identified with ROMA (Martignetti et al, 2016) on the
TCGA data to build a prostate-specific prior knowledge network. This network was manually
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converted into a prostate Boolean model that could be stochastically simulated using MaBoSS (Stoll
et al, 2017) and tailored to different TCGA and GDSC datasets using our PROFILE tool to have
personalized Boolean models. Then, we studied all the possible single and double mutants on these
tailored models using our logical pipeline of tools (Montagud et al, 2017). Using these personalized
models and our PROFILE_v2 tool presented in this work, we obtained tailored drug simulations and
drug treatments for 488 TCGA patients and eight prostate cell lines. Lastly, we performed drug-dose
experiments on a short list of candidate drugs that were particularly interesting in the LNCaP prostate
cell line. Created with BioRender.com.

Results

Prostate Boolean model construction

A network of signalling pathways and genes relevant for prostate cancer progression was
assembled to recapitulate the potential deregulations that lead to high-grade tumours.
Dynamical properties were added onto this network to perform simulations, uncover
therapeutic targets and explore drug combinations. The model was built upon a generic cancer
Boolean model by Fumia and Martins (2013), which integrates major signalling pathways, and
their substantial cross-talks. The pathways include the regulation of cell death and proliferation
in many tumours.

This initial generic network was extended to include prostate-cancer-specific genes (e.g.,
SPOP, AR, etc.), pathways identified using ROMA (Martignetti et al, 2016), OmniPath (TUrei
et al, 2021) and up-to-date literature. ROMA is applied on omics data, either transcriptomics
or proteomics. In each pathway, the genes that contribute the most to the overdispersion are
selected. ROMA was applied to the TCGA transcriptomics data using gene sets from cancer
pathway databases (Appendix File, Figure S1). These results were used as guidelines to
extend the network to fully cover the alterations found in prostate cancer patients. OmniPath
was used to complete our network finding connections between the proteins of interest known
to play a role in prostate and the ones identified with ROMA, and the list of genes already
present in the model. The final network includes pathways such as androgen receptor, MAPK,
Wnt, NFkB, PIBK/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-mesenchymal
transition (EMT), apoptosis and DNA damage pathways.

This network was then converted into a Boolean model where all variables can take two
values: 0 (inactivate or absent) or 1 (activate or present). Our model aims at predicting prostate
phenotypic behaviours for healthy and cancer cells in different conditions. Nine inputs that
represent some of these physiological conditions of interest were considered: EGF, FGF, TGF
beta, Nutrients, Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen. These input nodes
have no regulation and their values are fixed for each simulation, representing the cell’'s
microenvironmental characteristics.

We defined six variables as output nodes that allow the integration of multiple phenotypic
signals and simplify the analysis of the model. Two of these phenotypes represent the possible
growth status of the cell: Proliferation and Apoptosis. Apoptosis is activated by Caspase 8 or
Caspase 9, while Proliferation is activated by cyclins D and B (read-outs of the G1 and M
phases, respectively). The Proliferation output is described in published models as specific
stationary protein activation patterns, namely the following sequence of activation of cyclins:
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Cyclin D, then Cyclin E, then Cyclin A, and finally Cyclin B (Traynard et al, 2016). Here, we
considered a proper sequence when Cyclin D activates first, allowing the release of the
transcriptional factor E2F1 from the inhibitory complex it was forming with RB (retinoblastoma
protein), and then triggering a series of events leading to the activation of Cyclin B, responsible
for the cell’s entry into mitosis (Appendix File, Figure S4). We also define several phenotypic
outputs that are readouts of cancer hallmarks: Invasion, Migration, (bone) Metastasis and DNA
repair. The final model accounts for 133 nodes and 449 edges (Figure 2, SuppFile 1, and in
GINsim format at the address: http://ginsim.org/model/signalling-prostate-cancer).
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Figure 2: Prostate Boolean model used in present work. Nodes (ellipses) represent biological
entities, and arcs are positive (green) or negative (red) influences of one entity on another one.
Orange rectangles correspond to inputs (from left to right: EGF, FGF, TGFb, Nutrients, Hypoxia,
Acidosis, Androgen, fused_event, TNFalpha, SPOP, Carcinogen) and dark blue rectangles to
phenotypes (from left to right: Proliferation, Migration, Invasion, Metastasis, Apoptosis, DNA_repair),
the read-outs of the model.

Prostate Boolean model simulation

The model can be considered as a model of healthy prostate cells when no mutants (or fused
genes) are present. We refer to this model as the wild type model. These healthy cells mostly
exhibit quiescence (neither proliferation nor apoptosis) in the absence of any input (Figure
3A). When Nutrients and growth factors (EGF or FGF) are present, Proliferation is activated
(Figure 3B). Androgen is necessary for AR activation and helps in the activation of
Proliferation, even though it is not necessary when Nutrients or growth factors are present.
Cell death factors (such as Caspase 8 or 9) trigger Apoptosis in the absence of SPOP, while
Hypoxia and Carcinogen facilitate apoptosis, but are not necessary if cell death factors are
present (Figure 3C).

In our model, the progression towards metastasis is described as a stepwise process. Invasion
is first activated by known pro-invasive proteins: either (3-catenin (Francis et al, 2013) or a
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combination of CDHZ2 (De Wever et al, 2004), SMAD (Daroqui et al, 2012) or EZH2 (Ren et
al, 2012). Migration is then activated by Invasion and EMT and with either AKT or AR (Castoria
et al, 2011). Lastly, (bone) Metastasis is activated by Migration and one of three nodes:
RUNX2 (Altieri et al, 2009), ERG (Adamo & Ladomery, 2016) or ERG fused with TMPRSS2
(St John et al, 2012), FLI1, ETV1 or ETV4 (The Cancer Genome Atlas Research Network,
2015).

This prostate Boolean model was simulated stochastically using MaBoSS (Stoll et al, 2012,
2017) and validated by recapitulating known phenotypes of prostate cells under physiological
conditions (Figure 3). In particular, we tested that combinations of inputs lead to non-aberrant
phenotypes such as growth factors leading to apoptosis in wild type conditions; we also
verified that the cell cycle events occur in a proper order: as CyclinD gets activated, RB1 is
phosphorylated and turned OFF, allowing E2F1 to mediate the synthesis of CyclinB (see
SuppFile 2 for the jupyter notebook and the simulation of diverse cellular conditions).


https://doi.org/10.1101/2021.07.28.454126
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.454126; this version posted July 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

A - Wild type allinputs OFF  ___ Apoptosis
——— CyclinD
—— DNA_Repair
0.4 — E2F1
9 —— Metastasis
g —— Proliferation
£ 0.3 1
= — p53
o
©
3 0.2 1
o
=z
0.1 1
0.0 A
0 5 10 15 20 25 30 35 40
Time (a.u.)
B 1.0 1 Wild type - GF ON
0.8 1
= —— Apoptosis
S ——— CyclinD
_g 0.6 1 —— DNA_Repair
2 — E2F1
© — "
© 0.4 Met.astas!s
3 —— Proliferation
z —— p53
0.2 1
0.0 1
0 5 10 15 20 25 30
Time (a.u.)
C 1.0 Wild type — death signals ON
0.8 1
= —— Apoptosis
S —— CyclinD
"E 0.6 1 —— DNA_Repair
3 — E2F1
$ 0.4 - —— Metastasis
B8 —— Proliferation
=z —— p53
0.2 1
0.0 1
0 5 10 15 20 25 30 35 40
Time (a.u.)

Figure 3: Prostate Boolean model MaBoSS simulations. (A) The model was simulated with all
initial inputs set to 0 and all other variables random. All phenotypes are 0 at the end of the
simulations, which should be understood as a quiescent state, where neither proliferation nor
apoptosis are active. (B) The model was simulated with growth factors (EGF and FGF), Nutrients and
Androgen ON. (C) The model was simulated with Carcinogen, Androgen, TNFalpha, Acidosis, and
Hypoxia ON.
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Personalisation of the prostate Boolean model

Personalised TCGA prostate cancer patient Boolean models

We tailored the generic prostate Boolean model to a set of 488 TCGA prostate cancer patients
(Appendix File, Figure S7) using our personalisation method (PROFILE, (Béal et al, 2019)),
constructing 488 individual Boolean models, one for each patient. Personalised models were
built using three types of data: discrete data such as mutations and copy number alterations
(CNA) and continuous data such as RNAseq data. For discrete data, the nodes corresponding
to the mutations or the CNA were forced to 0 or 1 according to the effect of alterations, based
on a priori knowledge (i.e., if the mutation was reported to be activating or inhibiting the gene’s
activity). For continuous data, the personalisation method modifies the value for the transition
rates of model variables and their initial conditions to influence the probability of some
transitions. This corresponds, in a biologically-meaningful way, to translating genetic
mutations as lasting modifications making the gene independent of regulation, and to
translating RNA expression levels as modulation of a signal but not changing the regulation
rules (see Materials and Methods and in Appendix File, Figure S8-S12).

We assess the general behaviour of the individual patient-specific models by comparing the
model outputs (i.e., probabilities to reach certain phenotypes) with clinical data. Here, the
clinical data consist of a Gleason score associated with each patient, which in turn
corresponds to the gravity of the tumour based on its appearance and the stage of invasion
(Gleason, 1977, 1992; Chen & Zhou, 2016). We gathered output probabilities for all patient-
specific models and confronted them to their Gleason scores. The phenotype DNA_repair,
which can be interpreted as a sensor of DNA damage and genome integrity which could lead
to DNA repair, seems to separate low and high Gleason scores (Figure 4A) confirming that
DNA damage pathways are activated in patients (Marshall et al, 2019) but may not lead to the
triggering of apoptosis in this model (Figure S9). Also, the centroids of Gleason groups tend
to move following Proliferation, Migration and Invasion variables. We then looked at the
profiles of the phenotype scores across patients and their Gleason group and found that the
density of high Proliferation score (close to 1, Figure 4B) tends to increase as the Gleason
score increases (from low to intermediate to high). The Apoptosis phenotype, however, only
shows a slight change in probabilities in groups with low or high Gleason scores (Figure 4C).
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Figure 4: Associations between simulations and Gleason groups (GG). A) Centroids of the PCA
of the samples according to their GG. The personalisation recipe used was mutations and copy
number alterations (CNA) as discrete data and RNAseq as continuous data. Density plots of
Proliferation (B) and Apoptosis (C) scores according to GG; each vignette corresponds to a specific
sub-cohort with a fixed GG.

Personalised drug predictions of TCGA Boolean models

Using the 488 TCGA-patient-specific models, we looked in each patient for genes that, when
inhibited, hamper Proliferation or promote Apoptosis in the model. We focused on these
inhibitions as most drugs interfere with the protein activity related to these genes, even though
our methodology allows us to study increased protein activity related to over-expression of
genes as well (Montagud et al, 2017; Béal et al, 2019). Interestingly, we found several genes
that were found as suitable points of intervention in most of the patients (MYC_MAX complex
and SPOP were identified in more than 80% of the cases) (Appendix File, Figure S17 and
S18), but others were specific to only some of the patients (MXI1 was identified in only 4
patients, 1% of the total, GLI in only 7% and WNT in 8% of patients). All the TCGA-specific
personalised models can be found in SuppFile 3 and the TCGA mutants and their phenotype
scores can be found in SuppFile 4.
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Furthermore, we explored the possibility of finding combinations of treatments that could
reduce the Proliferation phenotype. To lower the computational power need, we have
narrowed down the list of potential candidates to reduce Proliferation or increase Apoptosis
by performing the analysis of all the single perturbations and selecting the combined
perturbations of a set of selected genes that are targets of already-developed drugs relevant
in cancer progression (Table 1).

We used the models to grade the effect that the combined treatments have in each one of the
488 TCGA-patient-specific models’ phenotypes. This list of combinations of treatments can be
used to compare the effects of drugs on each TCGA patient and allows us to propose some
of them for individual patients and to suggest drugs suitable to groups of patients (SuppFile
4). Indeed, the inactivation of some of the targeted genes had a greater effect in some patients
than in others, suggesting the possibility for the design of personalised drug treatments. For
instance, for the TCGA-EJ-5527 patient, the use of MYC_MAX complex inhibitor reduced
Proliferation to 66%. For this patient, combining MYC_MAX with other inhibitors, such as AR
or AKT did not further reduce Proliferation score (67% in these cases). Other patients have
MYC_MAX as an interesting drug target, but the inhibition of this complex did not have such
a dramatic effect in their Proliferation scores as in the case of TCGA-EJ-5527. Likewise, for
the TCGA-H9-A6BX patient, the use of SPOP inhibitor increased Apoptosis by 87%, while the
use of a combination of cFLAR and SPOP inhibitors further increased Apoptosis by 89%. For
the rest of this section, we focus on the analysis of clinical groups rather than individuals.

Studying the decrease of Proliferation, we found that AKT is the top hit in Gleason Groups 1,
2, and 3, seconded by SPOP in Group 1, PIP3 in Group 2 and MYC_MAX in Group 3.
MYC_MAX is the top hit in Group 4, seconded by AR. In regards to the increase of Apoptosis,
SPORP is the top hit in all groups. SSH is second in Groups 1 and 2 and AKT in Group 3. It is
interesting to note here that many of these genes are targeted by drugs (Table 1). Notably,
AR is the target of the drug Enzalutamide, which is indicated for men with an advanced stage
of the disease (Scott, 2018), or that MYC is the target of BET bromodomain inhibitors and are
generally effective in castration-resistant prostate cancer cases (Coleman et al, 2019).

The work on patient data provided some possible insights and suggested patient- and group-
specific potential targets. To validate experimentally our approach, we personalised the
prostate model to different prostate cell lines where we performed drug assays to confirm the
predictions of the model.

Personalised drug predictions of LNCaP Boolean model

We applied the methodology for personalisation of the prostate model to eight prostate cell
lines available in GDSC (lorio et al, 2016): 22RV1, BPH-1, DU-145, NCI-H660, PC-3, PWR-
1E and VCaP (results in Appendix file and are publicly available in SuppFile 5). We decided
to focus the validation on one cell line, LNCaP.

LNCaP, first isolated from a human metastatic prostate adenocarcinoma found in a lymph
node (Horoszewicz et al, 1983), is one of the most widely used cell lines for prostate cancer
studies. Androgen-sensitive LNCaP cells are representative of patients sensitive to treatments
as opposed to resistant cell lines such as DU-145. Additionally, LNCaP cells have been used
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to obtain numerous subsequent derivatives with different characteristics (Cunningham & You,
2015).

The LNCaP personalisation was performed based on mutations as discrete data and RNA-
Seq as continuous data. The resulting LNCaP-specific Boolean model was then used to
identify all possible combinations of mutations (interpreted as effects of therapies) and to study
the synergy of these perturbations. For that purpose, we automatically performed single and
double mutant analyses on the LNCaP-specific model (knock-out and overexpression)
(Montagud et al, 2017) and focused on the model phenotype probabilities as read-outs of the
simulations. The analysis of the complete set of simulations for the 32258 mutants can be
found in the Appendix File and in SuppFile 6, where the LNCaP-cell-line-specific mutants and
their phenotype scores are reported for all mutants. Among all combinations, we identified the
top 20 knock-out mutations that depleted Proliferation or increased Apoptosis the most. As
some of them overlapped, we ended up with 29 nodes: AKT, AR, ATR, AXIN1, Bak, BIRCS5,
CDH2, cFLAR, CyclinB, CyclinD, E2F1, eEF2K, eEF2, eEF2K, EGFR, ERK, HSPs, MED12,
mTORC1, mTORC2, MYC, MYC_MAX, PHDs, PI3K, PIP3, SPOP, TAK1, TWIST1, and VHL.
We used the scores of these nodes to further trim down the list to have 10 final nodes (AKT,
AR, cFLAR, EGFR, ERK, HSPs, MYC_MAX, SPOP and PI3K) and added 7 other nodes
whose genes are considered relevant in cancer biology, such as AR_ERG fusion, Caspases,
HIF1, GLUT1, MEK1_2, p14ARF, ROS and TERT (Table 1). We did not consider the
overexpression mutants as they have a very difficult translation to drug uses and clinical
practices.

To further analyse the mutant effects, we simulated the LNCaP model with increasing node
inhibition values to mimic the effect of drugs’ dosages using a methodology we specifically
developed for these purposes (PROFILE_v2). Six simulations were done for each inhibited
node, with 100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (full knock-out)
(see Methods). A nutrient-rich media with EGF was used for these simulations and we show
results on three additional sets of initial conditions in the Appendix File, Figure S24: a nutrient-
rich media with androgen, with androgen and EGF, and with none, that correspond to
experimental conditions that are tested here. We applied this gradual inhibition, using
increasing drugs’ concentrations, to a reduced list of drug-targeted genes relevant for cancer
progression (Table 1). We confirmed that the inhibition of different nodes affected differently
the probabilities of the outputs (Appendix File, Figure S29 and S30). Notably, Apoptosis score
was slightly promoted when knocking out SPOP under all growth conditions (Appendix File,
Figure S30). Likewise, Proliferation depletion was accomplished when HSPs or MYC_MAX
were inhibited under all conditions and, less notably, when ERK, EGFR, SPOP or PI3K were
inhibited (Appendix File, Figure S30).

Additionally, these gradual inhibition analyses can be combined to study the interaction of two
simultaneously inhibiting nodes (Appendix File, Figure S31 and S32). For instance, the
combined gradual inhibition of ERK and MYC_MAX nodes affects Proliferation score in a
balanced manner (Figure 5A) even though MYC_MAX seems to affect this phenotype more,
notably at low activity levels. By extracting subnetworks of interaction around ERK and
MYC_MAX and comparing them, we found that the pathways they belong to have
complementary downstream targets participating in cell proliferation through targets in MAPK
and cell cycle pathways. This complementarity could explain the synergistic effects observed
(Figure 5A and 5C).
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Lastly, drug synergies can be studied using Bliss Independence using the results from single
and combined simulations with gradual inhibitions. This score compares the combined effect
of two drugs with the effect of each one of them, with a synergy when the value of this score
is lower than 1. We found that the combined inhibition of ERK and MYC_MAX nodes on
Proliferation score was synergistic (Figure 5C). Another synergistic pair is the combined
gradual inhibition of HSPs and PI3K nodes that also affects Proliferation score in a joint
manner (Figure 5B), with some Bliss Independence synergy found (Figure 5D). A complete
study on the Bliss Independence synergy of all the drugs considered in present work on
Proliferation and Apoptosis phenotypes can be found in Appendix File, Figure S33.
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Figure 5: Phenotype score variations and synergy upon combined ERK and MYC_MAX (A and
C) and HSPs and PI3K (B and D) inhibition under EGF growth condition. Proliferation score
variation (A) and Bliss Independence synergy score (C) with increased node activation of nodes ERK
and MYC_MAX. Proliferation score variation (B) and Bliss Independence synergy score (D) with
increased node activation of nodes HSPs and PI3K. Bliss Independence synergy score < 1 is
characteristic of drug synergy, grey colour means one of the drugs is absent and thus no synergy
score is available.
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Experimental validation of predicted targets

Drugs associated with the proposed targets

To identify drugs that could act as potential inhibitors of the genes identified with the Boolean
model, we explored the drug-target associations in DrugBank (Wishart et al, 2018) and
ChEMBL (Gaulton et al, 2017). We found drugs that targeted almost all genes corresponding
to the nodes of interest in Table 1, except for cFLAR, p14ARF and SPOP. However, we could
not identify experimental cases where drugs targeting both members of the proposed
combinations were available (Appendix File and in SuppFile 6). One possible explanation is
that the combinations predicted by the model suggest in some cases to overexpress the
potential target and most of the drugs available act as inhibitors of their targets.

Using the cell-line specific models, we tested if the LNCaP cell line was more sensitive than
the rest of the prostate cell lines to the LNCaP-specific drugs identified in Table 1. We
compared GDSC'’s Z-score of these drugs in LNCaP with their Z-scores in all GDSC cell lines
(Figure 6). We observed that LNCaP is more sensitive to drugs targeting AKT or TERT than
the rest of the studied prostate cell lines. Furthermore, we saw that the drugs that targeted the
genes included in the model allowed the identification of cell line specificities (Appendix File).
For instance, target enrichment analysis showed that LNCaP cell lines are especially sensitive
to drugs targeting PISK/AKT/MTOR, hormone-related (AR targeting) and Chromatin
(bromodomain inhibitors, regulating Myc) pathways (adjusted p-values from target
enrichment: 0.001, 0.001 and 0.032, respectively, Appendix File, Table S1), which
corresponds to the model predictions (Table 1). Also LNCaP cell line is more sensitive to drugs
targeting model-identified nodes than to drugs targeting other proteins (Figure S27, Mann-
Whitney p-value 0.00041) and this effect is specific for LNCaP cell line (Mann-Whitney p-
values ranging from 0.0033 to 0.38 for other prostate cancer cell lines).

® AKT ERK @ MEK1 2 @ TERT
Target nodes:
® EGFR @ HSPs @ PI3K Other targets
LNCap 22RV1 BPH-1 DU-145 C-3 PWR-1E VCaP

-2- [ ®

Figure 6: Model-targeting drugs’ sensitivities across prostate cell lines. GDSC z-score was
obtained for all the drugs targeting genes included in the model for all the prostate cell lines in GDSC.
Negative values means that the cell line is more sensitive to the drug. Drugs included in Table 1 were

highlighted. "Other targets" are drugs targeting model-related genes that are not part of Table 1.
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Overall, the drugs proposed through this analysis suggest the possibility to repurpose drugs
that are used in treating other forms of cancer for prostate cancer and open the avenue for
further experimental validations based on these suggestions.

Experimental validation of drugs in LNCaP

To validate the model predictions of the candidate drugs, we selected four drugs that target
HSPs and PI3K and tested them in LNCaP cell line experiments by using endpoint cell viability
measurement assays and real-time cell survival assays using the xCELLigence system (see
Methods). The drug selection was a compromise between the drugs identified by our analyses
(Table 1) and their effect in diminishing LNCaP’s proliferation (see previous section). In both
assays, drugs that target HSP90OAA1 and PI3K/AKT pathway genes retrieved from the model
analyses were found to be effective against cell proliferation.

The Hsp90 chaperone is expressed abundantly and plays a crucial role in the correct folding
of a wide variety of proteins such as protein kinases and steroid hormone receptors (Schopf
et al, 2017). Hsp90 can act as a protector of less stable proteins produced by DNA mutations
in cancer cells (Barrott & Haystead, 2013; Hessenkemper & Baniahmad, 2013). Currently,
Hsp90 inhibitors are in clinical trials for multiple indications in cancer (lwai et al, 2012; Le et
al, 2017; Chen et al, 2019). The PISK/AKT signalling pathway controls many different cellular
processes such as cell growth, motility, proliferation, and apoptosis and is frequently altered
in different cancer cells (Carceles-Cordon et al, 2020; Shorning et al, 2020). Many PISK/AKT
inhibitors are in different stages of clinical development and some of them are approved for
clinical use (Table 1).

Notably, Hsp90 (NMS-E973,17-DMAG) and PI3K/AKT pathway (PI-103, Pictilisib) inhibitors
showed a dose-dependent activity in the endpoint cell viability assay determined by the
fluorescent resazurin after a 48-hour incubation (Figure 7).
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Figure 7: Cell viability assay determined by the fluorescent resazurin after a 48-hours
incubation showed a dose-dependent response to different inhibitors. A) Cell viability assay of
LNCaP cell line response to 17-DMAG HSP90 inhibitor. B) Cell viability assay of LNCaP cell line
response to PI-103 PIBK/AKT pathway inhibitor. C) Cell viability assay of LNCaP cell line response to
NMS-E973 HSP90 inhibitor. D) Cell viability assay of LNCaP cell line response to Pictilisib PISK/AKT
pathway inhibitor. Concentrations of drugs were selected to capture their drug-dose response curves.
The concentrations for the NMS-E973 are different from the rest as this drug is more potent than the
rest (see Material and methods).

We studied the real-time response of LNCaP cell viability upon drug addition and saw that the
LNCaP cell line is sensitive to Hsp90 and PISK/AKT pathway inhibitors (Figure 8 and 9,
respectively). Both Hsp90 inhibitors tested, 17-DMAG and NMS-E973, reduced the cell
viability 12 hours after drug supplementation (Figure 8A for 17-DMAG and Figure 8E for NMS-
E973), with 17-DMAG having a stronger effect and in a more clear concentration-dependent
manner than NMS-E973 (Figure 7B-D for 17-DMAG and Figure 7F-H for NMS-E973).
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Likewise, both PIBK/AKT pathway inhibitors tested, Pictilisib and PI-103, reduced the cell
viability immediately after drug supplementation (Figure 9A for Pictilisib and Figure 9E for PI-
103), in a concentration-dependent manner (Figure 9B-D for Pictilisib and Figure 9F-H for PI-
103). In addition, Hsp90 inhibitors had a more prolonged effect on the cells’ proliferation than
PIBK/AKT pathway inhibitors.
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Figure 8: Hsp90 inhibitors resulted in dose-dependent changes in the LNCaP cell line. A) Real-
time cell electronic sensing (RT-CES) cytotoxicity assay of Hsp90 inhibitor, 17-DMAG. The yellow
dotted line represents 17-DMAG addition. The brown dotted lines are indicative of the cytotoxicity
assay results at 24 hours (B), 48 hours (C) and 72 hours (D) after 17-DMAG addition. E) RT-CES

cytotoxicity assay of Hsp90 inhibitor, NMS-E973. The yellow dotted line represents NMS-E973
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addition. The brown dotted lines are indicative of the cytotoxicity assay results at 24 hours (F), 48
hours (G) and 72 hours (H) after NMS-E973 addition.
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Figure 9: PI3K/AKT pathway inhibition with different PI3K/AKT inhibitors shows dose-
dependent response in LNCaP cell line. A) Real-time cell electronic sensing (RT-CES) cytotoxicity
assay of PIBK/AKT pathway inhibitor, PI-103. The yellow dotted line represents PI-103 addition. The
brown dotted lines are indicative of the cytotoxicity assay results at 24 hours (B), 48 hours (C) and 72
hours (D) after PI-103 addition. E) RT-CES cytotoxicity assay of PI3BK/AKT pathway inhibitor, Pictilisib.

The yellow dotted line represents Pictilisib addition. The brown dotted lines are indicative of the
cytotoxicity assay results at 24 hours (F), 48 hours (G) and 72 hours (H) after Pictilisib addition.
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Discussion

Clinical assessment of cancers is moving towards more precise, personalised treatments, as
the times of one-size-fits-all treatments are no longer appropriate, and patient-tailored models
could boost the success rate of these treatments in clinical practice. In this study, we set out
to develop a methodology to investigate drug treatments using personalised Boolean models.
Our approach consists of building a model that represents the patient-specific disease status
and retrieving a list of proposed interventions that affect this disease status, notably by
reducing its pro-cancerous behaviours. In this work, we have showcased this methodology by
applying it to TCGA prostate cancer patients and to GDSC prostate cancer cell lines, finding
patient- and cell-line-specific targets and validating selected cell-line-specific predicted targets
(Figure 1).

First, a prostate cancer Boolean model that encompasses relevant signalling pathways in
cancer was constructed based on already published models, experimental data analyses and
pathway databases (Figure 2). The influence network and the assignment of logical rules for
each node of this network were obtained from known interactions described in the literature
(Figure 3). This model describes the regulation of invasion, migration, cell cycle, apoptosis,
androgen and growth factors signalling in prostate cancer (Appendix file).

Second, from this generic Boolean model, we constructed personalised models using the
different datasets, i.e. 488 patients from TCGA and eight cell lines from GDSC. We obtained
Gleason-score-specific behaviours for TCGA’s patients when studying their Proliferation and
Apoptosis scores, observing that high Proliferation scores are higher in high Gleason groups
(Figure 4). Thus, the use of these personalised models can help rationalise the relationship of
Gleason grading with some of these phenotypes.

Likewise, GDSC data was used with the prostate model to obtain prostate-specific cell-line
models (Figure 6). These models show differential behaviours, notably in terms of /nvasion
and Proliferation phenotypes (Figure S19). One of these cell-line-specific models was chosen,
LNCaP, and the effects of all its genetic perturbations were thoroughly studied. We studied
32258 mutants, including single and double mutants, knock-out and over-expressed, and their
phenotypes (Appendix File, Figure S25 and S26). 32 knock-out perturbations that depleted
Proliferation and/or increased Apoptosis were identified and 16 of them were selected for
further analyses (Table 1). The LNCaP-specific model was simulated using different initial
conditions that capture different growth media’s specificities, such as RPMI media with and
without androgen or epidermal growth factor (Appendix File, Figure S24).

Third, these personalised models were used to simulate the inhibition of druggable genes and
proteins, uncovering new treatment’s combination and their synergies. We developed a
methodology to simulate drug inhibitions in Boolean models, termed PROFILE_v2, as an
extension of previous works (Béal et al, 2019). The LNCaP-specific model was used to obtain
simulations with nodes and pairs of nodes corresponding to the genes of interest inhibited with
varying strengths. This study allowed us to compile a list of potential targets (Table 1) and to
identify potential synergies among genes in the model (Figure 5). Some of the drugs that
targeted these genes, such as AKT and TERT, were identified in GDSC as having more
sensitivity in LNCaP than in the rest of the prostate cancer cell lines (Figure 6). In addition,
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drugs that targeted genes included in the model allowed the identification of cell line
specificities (Appendix File).

Fourth, we validated experimentally the effect of Hsp90 and PI3K/AKT pathway inhibitors on
the LNCaP cell line, finding a concentration-dependent inhibition of the cell line viability as
predicted, confirming the role of the drugs targeting these proteins in reducing LNCaP’s
proliferation (Figure 7 and 8). Notably, these targets have been studied in other works on
prostate cancer (Chen et al, 2019; Le et al, 2017).

The study presented here enables the study of drug combinations and their synergies. One
reason for searching for combinations of drugs is that these have been described for allowing
the use of lower doses of each of the two drugs reducing their toxicity (Bayat Mokhtari et al,
2017), evading compensatory mechanisms and combating drug resistances (Al-Lazikani et al,
2012; Krzyszczyk et al, 2018).

Even if this approach is attractive and promising, it has some limitations. First, the analyses
performed with the mathematical model do not aim at predicting drug dosages per se but to
help in the identification of potential candidates. The patient-specific changes in Proliferation
and Apoptosis scores upon mutation are maximal theoretical yields that are used to rank the
different potential treatments and should not be used as a direct target for experimental results
or clinical trials. Our methodology suggests treatments for individual patients, but the obtained
results vary greatly from patient to patient, which is not an uncommon issue of personalized
medicine (Ciccarese et al, 2017; Molinari et al, 2018). This variability is an economical
challenge for labs and companies to pursue true patient-specific treatments and also poses
challenges in clinical trial designs aimed at validating the model based on the selection of
treatments (Cunanan et al, 2017). Nowadays and because of these constraints, it might be
more commercially interesting to target group-specific treatments, which can be more easily
related to clinical stages of the disease.

Mathematical modelling of patient profiles helps to classify them in groups with differential
characteristics, providing, in essence, a grade-specific treatment. We therefore based our
analysis on clinical grouping defined by the Gleason grades, but some works have
emphasized the difficulty to properly assess them (Chen & Zhou, 2016) and as a result may
not be the perfect predictor for the patient subgrouping in this analysis, even though it is the
only available one for these datasets. The lack of subgrouping that stratifies patients
adequately may undermine the analysis of our results and could explain the Proliferation and
Apoptosis scores of high-grade and low-grade Gleason patients.

Moreover, the behaviours observed in the simulations of the cell-lines-specific models do not
always correspond to what is reported in the literature. The differences between simulation
results and biological characteristics could be addressed in further studies by including other
pathways, for example better describing the DNA repair mechanisms, or by tailoring the model
with different sets of data, as the data used to personalise these models do not allow to cluster
these cell lines according to their different characteristics (Appendix File, Figure S21 and S22).
In this sense, another limitation is that we use static data (or a snapshot of dynamic data) to
build dynamic models and to study its stochastic results. Thus, these personalised models
would likely improve their performance if they were fitted to dynamic data (Saez-Rodriguez &
Bluthgen, 2020) or quantitative versions of the models were built, such as ODE-based, that
may capture more fine differences among cell lines.
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The present work contributes to efforts aimed at using modeling (Rivas-Barragan et al, 2020;
Eduati et al, 2020; Zafudo et al, 2017) and other computational methods (Madani Tonekaboni
et al, 2018; Menden et al, 2019) for the discovery of novel drug targets and combinatorial
strategies. Our study expands the prostate drug catalogue and improves predictions of the
impact of these in clinical strategies for prostate cancer by proposing and grading the
effectiveness of a set of drugs that could be used off-label or repurposed. The insights gained
from this study present the potential of using personalised models to obtain precise,
personalised drug treatments for cancer patients.
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Materials and Methods

Data acquisition

Publicly available data of 489 human prostate cancer patients from TCGA described in
(Hoadley et al, 2018) were used in the present work. We gathered mutations, CNA, RNA and
clinical data from cBioPortal
(https://www.cbioportal.org/study/summary?id=prad tcga pan can atlas 2018) for all of
these samples resulting in 488 with complete omics datasets.

Publicly available data of cell lines used in the present work were obtained from Genomics of
Drug Sensitivity in Cancer database (GDSC) (lorio et al, 2016). Mutations, CNA and RNA
data, as well as cell lines  descriptors, were  downloaded  from
(https://www.cancerrxgene.org/downloads).

All these data were used to personalise Boolean models using our PROFILE method (Béal et
al, 2019).

Prior knowledge network construction

Several sources were used in building this prostate Boolean model and in particular the model
published by Fumia and Martins (2013). This model includes several signalling pathways such
as the ones involving receptor tyrosine kinase (RTKs), phosphatidylinositol 3-kinase
(PI3K)/AKT, WNT/b-Catenin, transforming growth factor-b (TGF-b)/Smads, cyclins,
retinoblastoma protein (Rb), hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-
telangiectasia mutated (ATM)/ataxia-telangiectasia and Rad3-related (ATR) protein kinases.
The model includes these pathways as well as the substantial cross-talks among them. For a
complete description of the process of construction, see Appendix File.

The model also includes several pathways that have a relevant role in our datasets identified
by ROMA (Martignetti et al, 2016), a software that uses the first principal component of a PCA
analysis to summarise the coexpression of a group of genes in the gene set, identifying
significantly overdispersed pathways with a relevant role in a given set of samples. This
software was applied on the TCGA transcriptomics data using the gene sets described in the
Atlas of Cancer Signaling Networks, ACSN (Kuperstein et al, 2015) (www.acsn.curie.fr) and
in Hallmarks (Liberzon et al, 2015) (Appendix File, Figure S1) and highlighted the signalling
pathways that show high variance across all samples, suggesting candidate pathways and
genes. Additionally, OmniPath (TUrei et al, 2021) was used to extend the model and complete
it connecting the nodes from Fumia and Martins and the ones from ROMA analysis. OmniPath
is a comprehensive collection of literature-curated human signalling pathways, which includes
several databases such as Signor (Perfetto et al, 2016) or Reactome (Fabregat et al, 2018)
and that can be queried using pypath, a Python module for molecular networks and pathways
analyses.

Fusion genes are frequently found in human prostate cancer and have been identified as a
specific subtype marker (The Cancer Genome Atlas Research Network, 2015). The most
frequent is TMPRSS2:ERG as it involves the transcription factor ERG, which leads to cell-
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cycle progression. ERG fuses with the AR-regulated TMPRSS2 gene promoter to form an
oncogenic fusion gene that is especially common in hormone-refractory prostate cancer,
conferring androgen responsiveness to ERG. A literature search reveals that ERG directly
regulates EZH2, oncogene c-Myc and many other targets in prostate cancer (Kunderfranco et
al, 2010).

We modelled the gene fusion with activation of ERG by the decoupling of ERG in a special
node AR_ERG that is only activated by AR, when the fused_event input node is active. In the
healthy case, fused_event (that represents TMPRSS2:ERG fusion event) is fixed to 0 or
inactive. The occurrence of the gene fusion is represented with the model perturbation where
fused_event is fixed to 1. This AR_ERG node is further controlled by tumour suppressor
NKX3-1 that accelerates DNA_repair response and avoids the gene fusion TMPRSS2:ERG.
Thus, loss of NKX3-1 favours recruitment to the ERG gene breakpoint of proteins that promote
error-prone non-homologous end-joining (Bowen et al, 2015).

The network was further documented using up-to-date literature and was constructed using
GINsim (Chaouiya et al, 2012), which allowed us to study its stable states and network
properties.

Boolean model construction

We converted the network to a Boolean model by defining a regulatory graph, where each
node is associated with discrete levels of activity (0 or 1). Each edge represents a regulatory
interaction between the source and target nodes and is labelled with a threshold and a sign
(positive or negative). The model is completed by logical rules (or functions), which assign a
target value to each node for each regulator level combination (Chaouiya et al, 2012; Abou-
Jaoudé et al, 2016). The regulatory graph was constructed using GINsim software (Chaouiya
et al, 2012) and then exported in a format readable by MaBoSS software (see below) in order
to perform stochastic simulations on the Boolean model.

The final model has a total of 133 nodes and 449 edges (SuppFile 1) and includes pathways
such as androgen receptor and growth factor signalling, several signalling pathways (Wnt,
NFkB, PISK/AKT, MAPK, mTOR, SHH), cell cycle, epithelial-mesenchymal transition (EMT),
Apoptosis, DNA damage, etc. This model has 9 inputs (EGF, FGF, TGF beta, Nutrients,
Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen presence) and 6 outputs
(Proliferation, Apoptosis, Invasion, Migration, (bone) Metastasis and DNA repair). This model
was deposited in the GINsim Database with identifier 252 (http://ginsim.org/model/signalling-
prostate-cancer) and in BioModels (Malik-Sheriff et al, 2019) with identifier
MODEL2106070001 (https://www.ebi.ac.uk/biomodels/MODEL2106070001). SuppFile 1 is
provided as a zipped folder with the model in several formats: MaBoSS, GINsim, SBML as
well as images of the networks and its annotations.

Stochastic Boolean model simulation

MaBoSS (Stoll et al, 2012, 2017) is a C++ software for stochastically simulating
continuous/discrete-time Markov processes defined on the state transition graph (STG)
describing the dynamics of a Boolean model (for more details, see (Chaouiya et al, 2012;
Abou-Jaoudé et al, 2016)). MaBoSS associates transition rates to each node’s activation and
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inhibition, enabling it to account for different time scales of the processes described by the
model. Probabilities to reach a phenotype (to have value ON) are thus computed by simulating
random walks on the probabilistic STG. Since a state in the STG can combine the activation
of several phenotypic variables, not all phenotype probabilities are mutually exclusive (like the
ones in Appendix File, Figure S25). Using MaBoSS we can study an increase or decrease of
a phenotype probability when the model variables are altered (nodes status, initial conditions
and transition rates), which may correspond to the effect of particular genetic or environmental
perturbation. In the present work, the outputs of MaBoSS focused on the readouts of the
model, but this can be done for any node of a model.

MaBoSS applies Monte-Carlo kinetic algorithm (i.e. Gillespie algorithm) to the STG to produce
time trajectories (Stoll et al, 2012, 2017) so time evolution of probabilities are estimated once
a set of initial conditions are defined and a maximum time is set to ensure that the simulations
reach asymptotic solutions. Results are analyzed in two ways: (1) the trajectories for particular
model states (states of nodes) can be interpreted as the evolution of a cell population as a
function of time and (2) asymptotic solutions can be represented as pie charts to illustrate the
proportions of cells in particular model states. Stochastic simulations with MaBoSS have
already been successfully applied to study several Boolean models (Calzone et al, 2010;
Remy et al, 2015; Cohen et al, 2015).

Data tailoring the Boolean model

Logical models were tailored to a dataset using PROFILE to obtain personalised models that
capture the particularities of a set of patients (Béal et al, 2019) and cell lines (Béal et al, 2021).
Proteomics, transcriptomics, mutations and CNA data can be used to modify different
variables of the MaBoSS framework such as node activity status, transition rates and initial
conditions. The resulting ensemble of models is a set of personalised variants of the original
model that can show great phenotypic differences. Different recipes (use of a given data type
to modify a given MaBoSS variable) can be tested to find the combination that better correlates
to a given clinical or otherwise descriptive data.

In the present case, TCGA-patient-specific models were built using mutations, CNA and/or
RNA expression data. After studying the effect of these recipes in the clustering of patients
according to their Gleason grouping (Appendix File, Figure S8-S12), we chose to use
mutations and CNA as discrete data and RNA expression as continuous data.

Likewise, we tried different personalisation recipes to personalise the GDSC prostate cell lines
models, but as they had no associated clinical grouping features, we were left with the
comparison of the different values for the model’s outputs among the recipes (Appendix File,
Figure S20). We used mutation data as discrete data and RNA expression as continuous data
as it included the most quantity of data and reproduced the desired results (Figure S20). We
decided not to include CNA as discrete data as it forced LNCAP proliferation to be zero, by
forcing E2F1 node to be 0 and SMAD node to be 1 throughout the simulation (for more details,
refer to Appendix File).

More on PROFILE’s methodology can be found in its own work (Béal et al, 2019) and at its
dedicated GitHub repository: https:/github.com/sysbio-curie/PROFILE.
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High-throughput mutant analysis of Boolean models

MaBoSS allows the study of knock-out or loss-of-function (node forced to 0) and gain-of-
function (node forced to 1) mutants as genetic perturbations and of initial conditions as
environmental perturbations. Phenotypes’ stabilities against perturbations can be studied and
allow to determine driver mutations that promote phenotypic transitions (Montagud et al,
2017).

Genetic interactions were thoroughly studied using our pipeline of computational methods for
Boolean modelling of biological networks (available at https:/github.com/sysbio-
curie/Logical modelling pipeline). LNCaP-specific Boolean model was used to perform single
and double knock-out (node forced to 0) and gain-of-function (node forced to 1) mutants for
each one of the 133 nodes, resulting in a total of 32258 models. These were simulated under
the same initial conditions, their phenotypic results were collected and a PCA was applied on
the wild-type-centred matrix.

The 488 TCGA-patient-specific models were studied in a similar way, but only perturbing 16
nodes shortlisted for their therapeutic target potential (AKT, AR, Caspase8, cFLAR, EGFR,
ERK, GLUT1, HIF-1, HSPs, MEK1_2, MYC_MAX, p14ARF, PI3K, ROS, SPOP and TERT).
Then, the nodes that mostly contributed to a decrease of Proliferation (Appendix File, Figure
S17) or an increase in Apoptosis (Appendix File, Figure S18) were gathered from the 488
models perturbed.

Additionally, the results of LNCaP model’s double mutants were used to quantify the level of
genetic interactions (epistasis or otherwise (Drees et al, 2005)) between two model genetic
perturbations (resulting from either the gain-of-function mutation of a gene or from its knock-
out or loss-of-function mutation) with respect to wild type phenotypes’ probabilities (Calzone
et al, 2015). The method was applied to the LNCaP model studying Proliferation and Apoptosis
scores (Appendix File, Figure S31 and S32).

This genetic interaction study uses the following equation for each gene pairs, which is
equation 2 in Calzone et al, (2015):

es(A, B) = f1P —(fi f2) (1)

A B _ _ AB
Where fé and /o are phenotype ¢ fitness values of single gene defects, 157 is the phenotype
¢ fitness of the double mutant, and ¥(2,Y) is one of the four functions:

WAPP(2,y) = 24+ Y (additive)
POz, y) = loga((2° = 1)(2 = 1) +1) (1)
M (2, y) = zx Yy (multiplicative)
M (2, y) = min(z,y)  (min) ()

To choose the best definition of ¥(Z.¥), the Pearson correlation coefficient is computed
between the fitness values observed in all double mutants and estimated by the null model
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X
(more information on (Drees et al, 2005)). Regarding 1§ fitness value, to a given phenotype

fX . fX . fX .
¢, 16 <1 represents deleterious, /¢ >1 beneficial and /¢ =1 neutral mutation.

Drug simulations in Boolean models

Logical models can be used to simulate the effect of therapeutic interventions and predict the
expected efficacy of candidate drugs on different genetic and environmental backgrounds by
using our PROFILE_v2 methodology. MaBoSS can perform simulations changing the
proportion of activated and inhibited status of a given node. This can be determined in the
configuration file of each model (see, for instance, “istate” section of the CFG files in SuppFiles
1, 3 and 5). For instance, out of 1000 trajectories of the Gillespie algorithm, MaBoSS can
simulate 50% of them with an activated AKT and 50% with an inhibited AKT node. The
phenotypes’ probabilities for the 1000 trajectories are averaged and these are considered to
be representative of a model with a drug that half-inhibits the activity of AKT.

In present work, LNCaP model has been simulated with different levels of node activity, with
100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (proper knock-out), under
four different initial conditions, a nutrient-rich media that simulates RPMI Gibco® media with
DHT (androgen), with EGF, with both and with none. In terms of the model, the initial
conditions are Nutrients is ON and Acidosis, Hypoxia, TGF beta, Carcinogen and TNF alpha
are set to OFF. EGF and Androgen values vary upon simulations.

Drug synergies have been studied using Bliss Independence. The Combination Index was
calculated with the following equation (Foucquier & Guedj, 2015):

OI = (Ea =+ Eb — Ea * Eb)/Eab (3)
Where Eq and Eb is the efficiency of the single drug inhibitions and Eas is the inhibition resulting

from the double drug simulations. A Combination Index (Cl) below 1 represents synergy
among drugs.

This methodology can be found in its own repository:
https://github.com/ArnauMontagud/PROFILE v2

|dentification of drugs associated with proposed targets

To identify drugs that could act as potential inhibitors of the genes identified with our models
(Table 1), we explored the drug-target associations in DrugBank (Wishart et al, 2018). For
those genes with multiple drug-target links, only those drugs that are selective and known to
have relevance in various forms of cancer are considered here.

In addition to DrugBank searches, we also conducted exhaustive searches in ChEMBL
(Gaulton et al, 2017) (http:/doi.org/10.6019/CHEMBL.database.23) to suggest potential
candidates for genes, whose information is not well documented in Drug Bank. From the large
number of bioactivities extracted from ChEMBL, we filtered human data and considered only
those compounds, whose bioactivities fall within a specific threshold (IC50/Kd/ Ki<100 nM).

We performed a target set enrichment analysis using the fgsea method (Korotkevich et al,
2016) from the piano R package (Varemo et al, 2013). We targeted pathway information from
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the GDSC1 and GDSC2 studies (lorio et al, 2016) as target sets and performed the enrichment
analysis on the normalised drug sensitivity profile of the LNCaP cell line. We normalised drug
sensitivity across cell lines in the following way: cells were ranked from most sensitive to least
sensitive (using In(IC50) as drug sensitivity metrics), and the rank was divided by the number
of cell lines tested with the given drug. Thus, the most sensitive cell line has 0, while the most
resistant cell line has 1 normalised sensitivity. This rank-based metric made it possible to
analyse all drug sensitivities for a given cell line, without drug-specific confounding factors,
like mean IC50 of a given drug, etc.

Cell culture method

For in vitro drug perturbation validations we used the androgen-sensitive prostate
adenocarcinoma cell line LNCaP purchased from American Type Culture Collection (ATCC,
Manassas, WV, USA). Cells were maintained in RPMI-1640 culture media (Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) containing 4.5 g/L glucose, 10% fetal bovine serum
(FBS, Gibco), 1X GlutaMAX (Gibco) 1% PenStrep antibiotics (Penicillin G sodium salt, and
Streptomycin sulfate salt, Sigma-Aldrich, St. Louis, MI, USA). Cells were maintained in a
humidified incubator at 37 °C 5% CO2 (Sanyo, Osaka, Japan).

Drugs used in the cell culture experiments

We tested two drugs targeted at Hsp90 and two targeted at PIBK complex. 17-DMAG is an
Hsp90 inhibitor with an 1IC50 of 62 nM in a cell-free assay (Pacey et al, 2011). NMS-E973 is
an Hsp90 inhibitor with DC50 of <10 nM for Hsp90 binding (Fogliatto et al, 2013). Pictilisib is
an inhibitor of PI3Ka/® with IC50 of 3.3 nM in cell-free assays (Zhan et al, 2017). PI-103 is a
multi-targeted PI3K inhibitor for p110a/B/8/y with IC50 of 2 to 3 nM in cell-free assays and less
potent inhibitor to mMTOR/DNA-PK with IC50 of 30 nM (Raynaud et al, 2009). All drugs were
obtained from commercial vendors and added to the growth media to have concentrations of
2,8, 32,128 and 512 nM for NMS-E973 and 1, 5, 25, 125 and 625 nM for the rest of the drugs
in the endpoint cell viability and of 3.3, 10, 30 mM for all the drugs in the RT-CES cytotoxicity
assay.

Endpoint cell viability measurements

In vitro toxicity of the selected inhibitors was determined using the viability of LNCaP cells,
determined by the fluorescent resazurin (Sigma-Aldrich, Germany) assay as described
previously (Szebeni et al, 2017). Briefly, the LNCaP cells (10000) were seeded into 96-well
plates (Corning Life Sciences, Tewksbury, MA, USA) in 100 pl RPMI media and incubated
overnight. Test compounds were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich,
Germany). Cells were treated with an increasing concentration of test compounds. The highest
applied DMSO content of the treated cells was 0.4%. Cell viability was determined after 48
hours incubation. Resazurin reagent (Sigma—Aldrich, Budapest, Hungary) was added at a final
concentration of 25 pg/mL. After 2 hours at 37°C 5%, CO2 (Sanyo) fluorescence (530 nm
excitation/580 nm emission) was recorded on a multimode microplate reader (Cytofluor4000,
PerSeptive Biosystems, Framingham, MA, USA). Viability was calculated with relation to blank
wells containing media without cells and to wells with untreated cells.
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Real-time cell electronic sensing (RT-CES) cytotoxicity assay

Real-time cytotoxicity assay was performed as previously described (Ozsvari et al, 2010).
Briefly, RT-CES 96-well E-plate (BioTech Hungary, Budapest, Hungary) was coated with
gelatin solution (0.2% in PBS, phosphate buffer saline) for 20 min at 37 °C, then gelatin was
washed twice with PBS solution. Growth media (50 uL) was then gently dispensed into each
well of the 96-well E-plate for background readings by the RT-CES system prior to the addition
of 50 uL of the cell suspension containing 2x10* LNCaP cells. Plates were kept at room
temperature in a tissue culture hood for 30 min prior to insertion into the RT-CES device in the
incubator to allow cells to settle. Cell growth was monitored overnight by measurements of
electrical impedance every 15 min. Continuous recording of impedance in cells was reflected
by the cell index value. The next day cells were co-treated with different drugs. Treated and
control wells were dynamically monitored over 72 h by measurements of electrical impedance
every 5 min. Each treatment was repeated in 2 wells per plate during the experiments.
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Tables and their legends

Table 1: List of selected nodes, their corresponding genes and drugs that were included in the
drug analysis of the models tailored for TCGA patients and LNCaP cell line.

Node Gene Cc_m.lpound ! Clinical stage Source
Inhibitor name
PI-103 Preclinical Drug Bank
AKT1,
AKT AKT2, Enzastaurin Phase 3 Drug Bank
AKT3
Archexin, Pictilisib Phase 2 Drug Bank
Abiraterone,
Enzalutamide,
Formestane, Approved Drug Bank
Testosterone
AR AR propionate
5alpha-androstan- .
3beta-ol Preclinical Drug Bank
Caspase8 CASPS Bardoxolone Preclinical Drug Bank
cFLAR CFLAR - - -
Afatinib,
Osimertinib,
Neratinib, Erlotinib, | /\PPoOVed Drug Bank
Gefitinib
EGFR EGFR
Varlitinib Phase 3 Drug Bank
Olmutinib, Pelitinib Phase 2 Drug Bank
Isoprenaline Approved Drug Bank
ERK MAPKA1 Perifosine Phase 3 Drug Bank
Turpentine, .
SB220025, Preclinical Drug Bank
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Olomoucine,
Phosphonothreoni
ne
Arsenic trioxide Approved Drug Bank
MAPKS, Ulixertinib,
MAPK1 Seliciclib Phase 2 Drug Bank
Purvalanol Preclinical Drug Bank
Sulindac,
Cholecystokinin Approved Drug Bank
MAPK3
5-iodotubercidin Preclinical Drug Bank
GLUT1 SLC2A1 Resveratrol Phase 4 Drug Bank
HIF-1 HIF1A CAY-10585 Preclinical Drug Bank
HSP90AA1, Cladribine Approved Drug Bank
HSP90ABH1,
HSP90BH1,
HSPs HSPA1A, 17-DMAG Phase 2 Drug Bank
HSPA1B,
HSPB1 NMS-E973 Preclinical Drug Bank
Trametinib,
Selumetinib Approved Drug Bank
MAP2K1, Perifosine Phase 3 Drug Bank
MEK1_2 MAP2K2
PD184352 (Cl-
1040) Phase 2 Drug Bank
complex of )
MYC_MAX | MYC and 10058-F4 (for Preclinical Drug Bank
MAX)
MAX
p14ARF CDKN2A - - -
PI3K PI-103 Preclinical Drug Bank
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PIK3CA,
PIK3CB,
PIK3CG,
PIK3CD,
PIK3R1,
PIK3R2,
PIK3RS, o
PIK3R4, Pictilisib Phase 2 Drug Bank
PIK3R5,
PIK3R®,
PIK3C2A,
PIK3C2B,
PIK3C2G,
PIK3C3
NOX1,
NOXS3, Fostamatinib Approved Drug Bank
NOX4
Dextromethorphan Approved Drug Bank
ROS
Tetrahydroisoquino
NOX2 lines
(CHEMBL 3733336 Preclinical ChEMBL
CHEMBL3347550,
CHEMBL3347551)
SPOP SPOP -- -- -
Grn163l Phase 2 Drug Bank
TERT TERT
BIBR 1532 Preclinical ChEMBL

Supplementary materials

SuppFile 1, a zipped folder with the model in several formats: MaBoSS, GINsim, SBML as
well as images of the networks and its annotations.

SuppFile 2, a jupyter notebook to inspect Boolean models using MaBoSS.

SuppFile 3, a zipped folder with the TCGA-specific personalised models and their Apoptosis
and Proliferation phenotype scores.
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SuppFile 4, a TSV file with the Apoptosis and Proliferation phenotype scores of TCGA-
patient-specific mutations.

SuppFile 5, a zipped folder with the cell-lines-specific personalised models.

SuppFile 6, a TSV file with the Apoptosis and Proliferation phenotype scores of LNCaP-cell-
line specific mutations.
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