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Abstract: Brain shift is an important obstacle to the application of image guidance during neurosurgical 16 

ventions. There has been a growing interest in intra-operative imaging to update the image-guided su17 

systems. However, due to the innate limitations of the current imaging modalities, accurate brain18 

compensation continues to be a challenging task. In this study, the application of intra-ope19 

photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR ima20 

proposed to compensate for brain deformation. Finding a satisfactory registration method is challengin21 

to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is propos22 

photoacoustic -MR image registration, which can capture the interdependency of the two modalitie23 

proposed algorithm works based on the minimization of the mapping transform via a pair of analysis24 

ators that are learned by the alternating direction method of multipliers. The method was evaluated 25 

experimental phantom and ex-vivo data obtained from the mouse brain. The results of phantom data 26 

about 63% improvement in target registration error in comparison with the commonly used norm27 

mutual information method. Results proved that intra-operative photoacoustic images could beco28 

promising tool when the brain shift invalidated pre-operative MRI. 29 

Keywords: brain shift; photoacoustic imaging; multimodal image registration; dictionary lear30 

co-sparse analysis. 31 

1. Introduction 32 

Maximal Safe resection of brain tumors in eloquent regions is optimally perfor33 

under image-guided surgery systems [1,2]. The accuracy of the image-guided ne34 

surgery system is drastically affected by intra-operative tissue deformation, called b35 

shift. Brain shift is a dynamic and complex spatiotemporal phenomenon that hap36 

after performing a craniotomy and invalidates the pre-operative image of patients 37 

The brain shift, which is known as brain deformation, is a combination of a wide va38 

of biological, physical, and surgical causes and occurs in both cortical and deep b39 

structures [2,5-7]. Brain shift calculation and compensation methods are based on40 

dating the pre-operative images with regard to the intraoperative tissue deforma41 

These methods fall into two main categories: biomechanical models and intra-oper42 

imaging approaches. Biomechanical model-based approaches are time and comp43 

tion-consuming methods; however, they could be highly accurate [8-10]. The m44 

drawback of model-based techniques is that tissue deformation that occurs durin45 

traoperative neurosurgical procedures is difficult to accurately model in real-time 46 

cesses and thus is often not considered [2]. As a result, most of the recent studies 47 

focused on using intra-operative imaging, including intraoperative computed tomo48 

phy (CT) [11], magnetic resonance imaging (MRI) [12-14], fluorescence-guided sur49 
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[15], and ultrasound (US) imaging [16-18] during neurosurgery. In fact, interventional 50 

imaging systems are becoming an integral part of modern neurosurgeries to update pa-51 

tient’s coordinate during surgery using registration of intra-operative images with 52 

pre-operative images [19]. However, each of these modalities has been proven to have 53 

well-known limitations [20]. Radiation exposure and low spatial resolution in CT, the 54 

requirement for an expensive equipped MR compatible operating room, and 55 

time-consuming imaging in MRI, limited imaging depth in fluorescence imaging, and 56 

poor quality of the US images are the major challenges of the common intra-operative 57 

imaging modalities [21]. 58 

Recently, the application of hybrid imaging modalities such as photoacoustic (PA) 59 

imaging has gained considerable interest for various applications such as differential 60 

diagnostic of pathologies [22,23], depicting tissue vasculature [24], oral health [25,26] and 61 

image-guided surgeries [27-29]. The PA is a non-ionizing hybrid imaging method that 62 

combines optical and ultrasound imaging modalities based on the PA effect: the for-63 

mation of sound waves following pulsed light absorption in a medium [30-32]. PA im-64 

aging inherits the advantages of high imaging contrast from optical imaging as well as 65 

the spatial and temporal resolution of US imaging [33-37]. During PA image acquisition, 66 

the tissue is illuminated by short laser pulses, which are absorbed by endogenous (or 67 

exogenous) chromophores and cause the generation of ultrasound emission due to 68 

thermoelastic expansion. Endogenous chromophores such as hemoglobin provide a 69 

strong PA signal due to high optical absorption coefficients, which in turn demonstrate 70 

the crucial structural information [30,38]. One of the main advantages of PA imaging is 71 

the ability to visualize the blood vessel meshwork of brain tissue, which is considered as 72 

the main landmark during neurosurgery [21,39,40]. On the other hand, PA imaging 73 

has demonstrated the potential to be used during image-guided interventions [41-43]. As 74 

a result, PA imaging as a noninvasive intra-operative imaging could enable the real-time 75 

visualization of regions of interest including vessel meshwork during neurosurgery. 76 

Finally, registration of intra-operative PA images with pre-operative MR images of brain 77 

tissue could enable real-time compensation of brain shift. 78 

Many investigations have tried to overcome the limitations of multimodal image 79 

registration algorithms in processes of brain shift compensation. Nevertheless, finding a 80 

single satisfactory solution is a challenging task due to the complex and unpredictable 81 

nature of brain deformation during neurosurgery [44]. So far, most of the studies have 82 

focused on the registration of intra-operative US with pre-operative MR algorithms. 83 

Major findings reported by Reinertsen et. al. [45], Chen et. al. [46], and Farnia et. Al. [47] 84 

via feature-based registration methods. However, extraction of the corresponding fea-85 

tures in two different modalities is an issue that directly affects the accuracy of these 86 

methods. In the intensity-based area, the different nature of US and MRI contrast mech-87 

anisms leads to failure of the common similarity measures such as mutual information 88 

[48,49]. However, effective solutions have been proposed by Wein et. al. [50], Coupé et. 89 

al. [51], Rivas et. al. [52,53], and Machado et. al. [54] for multimodal image registration 90 

which face different limitations. 91 

Recently, multimodal image registration based on sparse representation of images 92 

has attracted enormous interest. The main idea of image registration based on sparse 93 

representation lies in the fact that different images can be represented as a combination of 94 

a few atoms in an over-complete dictionary [55]. Therefore, the sparse coefficients de-95 

scribe the salient features of the images. Generally, over-complete dictionaries can be 96 

constructed via two different approaches. In the first category, the standard fixed trans-97 

form is applied as an over-complete dictionary. Fixed dictionaries such as discrete cosine 98 

transform, wavelet, and curvelet are used for multi-modal image registration [19,56,57]. 99 

Using fixed dictionaries benefits from simplicity and fast implementation. However, it is 100 

not customized for different types of data. In the second approach, an over-complete 101 

dictionary was constructed via learning methods. Among learning methods, the 102 

K-singular value decomposition (K-SVD) method has been widely used for image regis-103 
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tration [58]. There are some studies which used synthesis sparse models for multimodal 104 

image registration [59]. However, a learned dictionary includes a large number of atoms. 105 

This leads to the increased computational complexity of multi-modal image registration, 106 

which is not suitable for real-time compensation of brain shift.  107 

The analysis sparse model, named the co-sparse analysis model, represents a pow-108 

erful alternative to the synthesis sparse representation approach in order to reduce the 109 

computational time [60]. Co-sparse analysis models can yield richer feature representa-110 

tions and better results for image registration in real-time processes. As a result of richer 111 

feature representation using co-sparse analysis models, a better results for image regis-112 

tration can be obtained in real-time processes [61,62]. There are a few studies for mul-113 

ti-modal image registration via a co-sparse analysis model, and none of them were in the 114 

medical field. Kiechle et. al. proposed an analysis model in a joint co-sparsity setup for 115 

different modalities of depth and intensity images [63]. Chang Han et. al. utilized the 116 

analysis sparse model for remote sensing images [64] and Gao et. al. used it to register 117 

multi-focus noisy images with higher quality images [65]. In our previous work, we 118 

could apply an analysis sparse model for US-MR image registration to compensate for 119 

the brain shift [66]. 120 

To date, a few research studies have investigated PA and MR image registration. 121 

Ren et. al. proposed a PA-MR image registration method based on mutual information to 122 

yield more insights into physiology and pathophysiology [67]. Gehrung et. al. proposed 123 

co-registration of PA and MR images of murine tumor models for assessment of tumor 124 

physiology [68]. However, these studies were dedicated to solve the rigid registration 125 

problems and also did not focus on the intra-operative application of PA imaging, and 126 

therefore did not face any complicated brain deformation. 127 

To the best of our knowledge, in this study for the first time, PA and MR image 128 

registration was used for the purpose of compensating complicated brain shift phe-129 

nomena. The co-sparse analysis model is proposed for PA-MR image registration which 130 

is able to capture the interdependency of two modalities. The algorithm works based on 131 

the minimization of mapping transform by using a pair of analysis operators which are 132 

learned by the alternating direction method of multipliers (ADMM).  133 

 134 

2. Materials and Methods 135 

2.1. Brain-mimicking phantom data 136 

To assess the performance of the multi-modal image registration algorithm to com-137 

pensate for brain shift, a phantom that mimics brain tissue was prepared. The phantom 138 

was made of Polyvinyl Alcohol Cryogel (PVA-C) which has been successfully used for 139 

mimicking brain tissue in previous studies [19]. The PVA-C material also has been ap-140 

plied in the fabrication of phantoms for ultrasound, MRI, and recently PA imaging [69]. 141 

A 10% by weight PVA in water solution was used to form PVA-C, which is solidified 142 

through a freeze-thaw process. The dimensions of the phantom were approximately 150 143 

× 40 mm, with a curved top surface mimicking the shape of a head as shown in Figure 1 144 

(a). Two plastic tubes with 1.2 and 1.4 mm inside diameters were inserted randomly into 145 

the mold before the freeze-thaw cycle to simulate blood vessels. Figure 1 (b) shows the 146 

3D model of the phantom including random vessels. Two types of chromophores, copper 147 

sulfate pentahydrate (CuSO4 (H2O)5) and human blood (1:100 dilution); were used to fill 148 

embedded vessels before PA imaging (Figure 1 (c)). 149 
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 150 

Figure 1. Brain-mimicking phantom design and fabrication (a) The dimensions of the pha151 

were about 150 × 40 mm, (b) a 3D model of the phantom including two simulated vessels wit152 

and 1.4 mm inside diameters were inserted randomly to the phantom, (c) The cross-section o153 

phantom with vessels are filled using two different contrast agents CuSO4 (H2O)5 and hu154 

blood. 155 

To acquire MR images of the phantom before any deformations, the phantom156 

scanned using a Siemens scanner 1.5 Tesla using a standard T1 and T2 weighted prot157 

Pulse-sequence parameters were set to TR=600 ms, TE=10 ms, Ec=1/1 27.8 kHz fo158 

weighted and TR=8.6, TE=3.2, TI=450, Ec=1/1 31.3 kHz for T2 weighted considering 1159 

slice thickness with full brain phantom coverage and 1 mm isotropic resolution. 160 

PA images were achieved by using an ultrasound scanner (Vantage 128, Veraso161 

Inc., Kirkland, WA, USA) with a 128-element linear array US transducer (L1162 

Verasonics, Inc., Kirkland, WA, USA) operating at a frequency range between 4 163 

MHz. A pulsed tunable laser (PhocusCore, Optotek, California, USA) and Nd:YAG/164 

nanosecond pulsed laser (Phocus core system, OPOTEK Inc., USA), with the pulse r165 

tition rate of 10 Hz at wavelengths of 700, 800, and 900 nm were used to illuminat166 

phantom. The scan resolution was 1 mm, and the laser fluence was ~1 mJ/cm2 (Figur167 

 168 

 169 

Figure 2. Schematic of the PA imaging setup, which includes a tunable pulsed laser and a170 

grammable ultrasound data acquisition system. 171 

2.2. Murine brain data 172 

For further evaluation of the proposed image registration method, we used ex173 

mouse brain data which was provided by Ren. et. al. in a previous study [67]. Afte174 

moval of the mouse brain skull, the whole brain of mouse was embedded in agar 3175 
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phosphate-buffered saline and then was imaged ex-vivo. To acquire T2-weighted176 

images of the mouse brain, a 2-D spin-echo sequence with imaging parameter177 

TR=2627.7 ms, TE=36 ms, slice thickness of 0.7 mm, a field of view of 20 ×20 mm,178 

scanning time of 12.36 min were used. For PA imaging, the laser excitation pulses of179 

were delivered at five wavelengths (680, 715, 730, 760, 800, and 850 nm) in corona180 

entation with a field of view of 20 ×20 mm, step sizes of 0.3 mm moving along horizo181 

direction, and scan time of 20 minutes. To validate these data, five natural anatom182 

landmarks were manually selected as registration targets (Figure 3).  183 

 184 

Figure 3. Ex-vivo head of mouse data (a) MR image, (b) PA image, five registration target185 

shown in red and blue markers in (a) and (b) respectively, to assess the performance of the r186 

tration algorithm [67]. 187 

2.3. Inducing Brain Deformation  188 

The proposed algorithm was designed to compensate for brain deformation du189 

neurosurgery. Since the brain deformation is a complicated non-linear transformatio190 

is a challenging task to implement it physically on the phantom or mouse brain dat191 

evaluate our proposed registration algorithm, we performed brain deformation num192 

cally by applying pre-defined pixel shifts to images. For this purpose, we 193 

pre-operative and intra-operative MR images of brain tissue. The intra-operative194 

image was considered as a gold standard. The deformation matrix was obtaine195 

mono-modal registration of these images using the residual complexity algorithm196 

(Figure 4). Then the obtained brain deformation matrix was applied on PA imag197 

brain phantom and mouse brain data. 198 

199 

Figure 4. (a) Pre-operative MR image, (b) Intra-operative MR image, (c) Brain deformation200 

was achieved by registration of intra-operative and pre-operative MR images using residual 201 

plexity method. 202 

 203 

2.4. PA-MR Image Registration Framework 204 

The workflow for automatic multi-modal image registration to compensate fo205 

brain deformation was shown in Figure 5. After preparing two data sets, inclu206 

brain-mimicking phantom data and murine brain data, pre-deformation MR images w207 
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set as reference images, and pre-deformation PA images were set as float images. Th208 

real brain deformation matrix which was achieved by registration of intra-operative209 

pre-operative patient MR images using the residual complexity method was applie210 

PA images to generate deformed PA images. Then, by using the proposed registra211 

method based on joint co-sparse analysis, registration of the MR image and deformed212 

image was done. Finally, image registration results were evaluated and visualized213 

brain shift calculation. To evaluate the registration algorithm, root mean square 214 

(RMSE) was calculated for phantom and mouse image registration. Additionally, ta215 

registration error (TRE) was calculated for defined targets in phantom and mouse b216 

data. Furthermore, we used the Hausdorff Distance (HD) between the PA and MR217 

ages. The HD between two point sets is defined as: 218 

 219 

)],(),,([),( MRPAMRPAMRPA IIdMaxMinIIdMinMaxMaxIIHD =    220 

 221 

where, (.,.)d  is the Euclidean distance between the locations, and a smaller valu222 

HD indicates a better alignment of the boundaries. To avoid the effect of outliers [73223 

used 95% HD instead of maximum HD. 224 

 225 

 226 

Figure 5. The workflow for automatic multi-modal image registration to compensate for 227 

deformation. MR and PA images including pre-defined targets were set as a reference and228 

images, respectively. After applying brain deformation on PA images, registration of MR an229 

formed PA was done and evaluated. 230 

 231 

2.5. Co-sparse analysis model 232 

Image (I) can be approximated via the sparse representation
nRx ∈ which is a li233 

combination of a few non-zero elements (named atoms) in an over-complete dictio234 

matrix 
knRD ×∈ ( kn << ). 235 

αDx ≈                           236 

where 
kR∈α  is a sparse vector with the fewest k non-zero elements. The sp237 

coefficients describe the salient features of the images. Therefore, the sparse represe238 

tion problem could be solved as the following optimization problem: 239 

 240 

εαα
α

≤−
20

.,min Dxts               241 

Here,
0

α is the zero norm ofα that represents the number of non-zero values242 

vector (α ). The sparse representation of an image considers that a synthesis dictio243 

represents the redundant signals.  244 
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There is also another representation of image based on the co-sparse analysis model 245 

[60]. This alternative assumes that for a signal of interest ( x ), there exists an analysis 246 

operator nkR ×∈Ω such that α≈Ωx as an analyzed vector is sparse for all
nRx ∈ . The 247 

rows of Ω represent filters that provide sparse responses and indices of the filters with 248 

zero response determine the subspace to which the signal belongs to. This subspace is the 249 

intersection of all hyperplanes to which these filters are normal vectors, and therefore, the 250 

information of signals is encoded in its zero responses. The index set of the zero entries of 251 

xΩ  is called the co-support of x as below: 252 

{ }0)(:)(cos =Ω=Ω jxjxupp                (3) 253 

As the key property of analysis sparse models, these models put an emphasis on the 254 

zeros in the analysis representation rather than the non-zeros in the sparse representation 255 

of the signal. These zeros in the analysis representation model inscribe the 256 

low-dimensional subspace which the signal belongs to. Consequently, analysis operator 257 

learning procedures finds the suitable operator Ω for signal x as below: 258 

 259 

0

minarg ∑ Ω∈Ω∗

i
ix                           (4) 260 

Where 
∗Ω  is the optimized operator Ω. In order to relax the co-sparsity assumption, the 261 

log-square function as a proper approximation of zero norm is used for large values of ν 262 

as below: 263 

∑ +=
k

kg )1log(:)( 2ναα                      (5) 264 

where ν is the positive weight. Therefore, equation (4) could be converted to: 265 

 266 

∑ Ω∈Ω∗

i
ixg )(minarg                       (6) 267 

One should consider that there has been three main constraints on the 
∗Ω  to avoid 268 

trivial solutions as below [71]:  269 

1. The rows of 
∗Ω  have unit Euclidean norm; .manifoldoblique∈Ω ∗   270 

2. The operator 
∗Ω  has full rank, i.e., it has the maximal number of linear independent 271 

rows. 272 

),
1

det(log
)log(

1
)( ∗∗∗ ΩΩ−=Ω

T

mnn
h

 

273 

3. The rows of the operator 
∗Ω are not trivially linearly dependent. 274 

 275 

∑
<

∗ ΩΩ−−=Ω
1

2 ))(1log()(
k

l
T

kr
                    (7) 

276 

2.6. Multi-modal Image registration algorithm 277 

In this study, we formulated the multimodal image registration problem in terms of 278 

an analysis co-sparse model. There are different co-sparse models that could be used in 279 

multimodal image registration approaches [72]. In our approach, a joint analysis 280 

co-sparse model (JACSM) was proposed for the registration of PA and MR images. 281 

JACSM indicates that different signals from different sensors of the same scene form an 282 

ensemble. The signals in an ensemble include a common sparse component, shared be-283 

tween all of them, and an innovation component which represents individual differences 284 

[73].  285 

Consider two images PAI and MRI which are provided through PA and MR imag-286 

ing, respectively, from a brain simulated phantom as the input data. The interdepend-287 
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ency of the two image modalities was modeled via JACSM and common sparse compo-288 

nents were considered in this study. This image pair has a co-sparse representation with 289 

an appropriate pair of analysis operators MRPA nknk
MRPA RR ×× ×∈ΩΩ ),( . By considering 290 

the structures of images encoded in their co-supports based on equation (3), there is a 291 

pair of analysis operators so that the intersection of the co-supports of PAPA IΩ and 292 

MRMR IΩ is large. In particular, we try to learn the pair of co-sparse analysis operators 293 

),( MRPA ΩΩ  for two different image modalities. 294 

On the other hand, the PA and MR images should be matched with a transformation 295 

� such that: 296 

xcordinatepixelallforxITxI PAMR ),()( ≈                (8) 297 

which x determines homogeneous pixel coordinates in PA images. The goal of mul-298 

ti-modal image registration problem in this approach is to optimize � by using the pair 299 

of analysis operators ),( MRPA ΩΩ . We consider that for an optimized transformation, 300 

there is a coupled sparsity measure to be minimized. Thus, by considering equation (6) 301 

and constraints based on equation (7), we are searching for 
*T such that: 302 

∑

∑

<

∗∗∗∗

=

∗

ΩΩ−+ΩΩ−

−ΩΩ+ΩΩ

−ΩΩ∈

1

22

1

)()(

).)(1log())(1log(

)]
1

det(log)
1

det([log
)log(

1

))(,(
1

minarg

r
lMR

T

rMRlPA
T

rPA

PA

T

PAMR

T

MR

N

i

i
MRMR

i
PAPA

mmnn
k

TxIIg
N

T

µ

         (9) 303 

To tackle the problem of equation (9), we propose the ADMM. In other words, the 304 

analysis operators were learned by optimizing a JACSM via an ADMM. The ADMM as a 305 

candidate solver for convex problems, breaking our main problem into smaller 306 

sub-problems as below: 307 

 308 

cByAxtsygxf =++ ..),()(min                  (10) 309 

 310 

where 
nRx ∈ , mRy ∈ , 

npRA ×∈ , and 
mpRB ×∈ . The augmentation Lagrangian for 311 

the equation (10) can be written as: 312 

2

2
)

2
()()()(),,( cByAxcByAxygxfyxL T

p −++−+++=
ρ

λλ      (11) 313 

where the term ρ is a penalty term that is considered positive and λ  is the Lagrangian 314 

multiplier. Equation (11) is solved over three steps: x-minimization, and y-minimization, 315 

these two are split into N separate problems and followed by an updating step for the 316 

multiplier λ  as follows:  317 

).(:

),,,(minarg:

),,,(minarg:

111

11

1

cByAx

yxLy

yxLx

kkkk

kk
p

y

k

kk
p

x

k

−++=

=

=

+++

++

+

ρλλ

λ

λ

                   (12) 318 

3. Results & Discussion 319 

To implement the proposed image registration algorithm, a total of 20000 pairs of 320 

square sample patches of size 7 pixels from the total of images in the training set were 321 

randomly selected. It is notable that in our experiments, the patch sizes 3, 5, 7, 9, and 11 322 

pixels were applied. Based on our experience, a small patch size would cause an over 323 

smooth effect, and a larger patch size would lead to more computation. Therefore, based 324 

on our results, the patch size of 7×7 was selected to balance the two effects. 325 
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The performance of the JACSM-based registration method was evaluated usi326 

phantom with simulated vessels and using ex-vivo mouse brain data with anatom327 

landmarks. In Figure 6, the performance of the proposed registration method for PA-328 

US-MR, and MR-MR images on the phantom data were shown and compared. In the329 

row, the MR image and its corresponding US and PA images were shown. Dashed330 

low circles show the same fields of view in three different modalities (MRI, US, and 331 

Corresponding structures which are used to calculate target registration error are lab332 

with numbers 1 to 3 in the three imaging modalities. The brain deformation field i333 

plied to the images in the first row, and the second row represents deformed MR, US,334 

PA images. As shown in Figure 6 (d), (e), and (f), labeled targets have been displaced335 

to inducing deformation. Finally, the images in the third row show the image registra336 

results of MR, US, and PA after deformation (second row) with the original MRI be337 

deformation (Figure 6 (a)). The result of registration between the original MR image338 

deformed MR image (Figure 6 (g)) is used as a gold standard to evaluate the prop339 

algorithm. Also, the registration result of the deformed PA image (Figure 6 (i)) is c340 

pared to the registration result of deformed ultrasound image (Figure 6 (h)) as a c341 

monly used intra-operative imaging modality for brain shift compensation. As we 342 

shown in the third row, images registered more accurate in MR-MR images registra343 

compared to PA-MR image registration. Also, images registered more accuratel344 

PA-MR image registration compared to the US-MR image registration. As we 345 

shown with the blue arrow in the third-row images, the surface of the phanto346 

matched accurately in the result of MR-MR image registration. It is while, registratio347 

US-MR has the worst performance in matching the surface of the phantom in two348 

dalities, and registration of PA-MR has an acceptable performance in matching the349 

face of the phantom in two modalities, PA and MRI. 350 

351 

Figure 6. The results of multi-modal image registration of phantom data. First row: Origina352 

age of phantom data before deformation from three different modalities (a) MRI, (b) US, an353 

PA, second row: Deformed images of (d) MRI, (e) US, and (f) PA. The third row shows the resu354 

registered images of (g) MR-MR, (f) US-MR, and (g) PA-MR. The blue arrows in third row r355 

sent the surface of the phantom in different modalities. Blue arrows A are related to the surfa356 

the phantom in original MR images and blue arrows B are related to the surface of the phanto357 

deformed MR, deformed US, and deformed PA images, in (g), (h), and (i), respectively. 358 
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To quantitative evaluation of the proposed registration method, RMSE, TRE,360 

HD for PA-MR, US-MR, and MR-MR image registration were calculated and show361 

Table.1. Also, for further evaluation the results of our proposed method were comp362 

to the commonly used normalized mutual information (NMI) registration metho363 

total, we used 23 phantom data. Registration accuracy of MR and MR images was 364 

sidered as a gold standard. Also, the algorithms are implemented in MATLAB,365 

tested on an Intel Corei7 3.2 GHz CPU with 8GB RAM. 366 

Table 1. Evaluation of proposed registration methods on phantom data. 367 

Multimodal 

Registration 

 RMSE 

(mean±std) 

TRE (mean±std) 

Number of targets: 3 

HD 

(mean±std) 

MR-MR JACSM 0.62±0.04 0.32±0.03 

0.51±0.04 

0.21±0.03 

0.46±0.07 NMI 0.98±0.09 

US-MR JACSM 1.17±0.13 

1.87±0.15 

0.96±0.08 

1.58±0.11 

0.51±0.03 

1.23±0.13  NMI 

PA-MR JACSM 0.73±0.05 0.58±0.04 0.32±0.04 

 NMI 1.18±0.09 0.96±0.08 0.68±0.05 
 368 

The results of the phantom study showed that PA-MR image registration has b369 

RMSE, TRE, and HD about 60%, 65%, and 59% compared to US-MR image registratio370 

a common imaging modality for brain shift compensation, respectively. On the o371 

hand, the proposed method reached an RMSE of about 0.73 mm which is acceptab372 

comparison with MR-MR image registration as a gold standard with an RMSE of a373 

0.62 mm. The proposed method improved the results of RMSE and TRE of about 60%374 

63% (on average) compared to NMI.  375 

For further evaluation of the proposed method, ex-vivo mouse brain data was u376 

In Figure 7, the performance of the JACSM-based registration method for PA-MR im377 

registration for mouse brain data was shown and compared with MR-MR image r378 

tration. Figure 7 (a) and (b) represent MR and PA images of the mouse brain before379 

deformation, respectively. The PA image after applying non-linear deformation is sh380 

in Figure 7 (c), and the registration result of deformed PA and original MR of m381 

brain images is shown in Figure 7 (d). Also, in panel (e), the mean of RMSE, TRE, and382 

of PA-MR image registration for all data of the mouse brain was calculated and c383 

pared to the result of MR-MR image registration. 384 

385 

Figure 7. The results of multi-modal image registration of mouse brain data. (a) MRI, (b) PA im386 

(c) PA image after applying non-linear deformation, and (d) registration of deformed PA and387 

of mouse data. Panel (e) shows the mean of RMSE, TRE, and HD of PA-MR image registratio388 

all data of the mouse brain. 389 
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The results acquired from the ex-vivo mouse brain also proved the ability of the 390 

proposed registration method to recover non-linear deformation with calculated mean of 391 

RMSE, TRE, and HD of 1.13, 0.98, and 0.85 mm, respectively. The results are acceptable 392 

when compared to the results of MRI-MRI registration as a gold standard, with RMSE, 393 

TRE, and HD of about 0.98, 0.85, and 0.77 mm. In fact, intra-operative PA imaging as a 394 

real-time imaging with about 15% RMSE increase, could be a good alternative to in-395 

tra-operative MR imaging. Additionally, with a 60% improvement in registration accu-396 

racy, PA imaging could be an alternative for intra-operative ultrasound imaging. 397 

Having a closer look at the comparison between synthesis and analysis models, the 398 

synthesis model contains very few low-dimensional subspaces and an increasingly large 399 

number of subspaces of higher dimension. In contrast, the analysis model includes a 400 

combinatorial number of low-dimensional subspaces with fewer high-dimensional sub-401 

spaces. The co-sparse analysis models can yield richer feature representations, and joint 402 

co-sparse analysis models consider the common sparse components of different signals 403 

from different sensors. Therefore, the JACSM-based registration method was found to be 404 

more suitable for multi-modal image registration. 405 

4. Conclusions 406 

There has been a growing interest in intra-operative imaging approaches to update 407 

the pre-operative images with real-time data when tissue deformation occurs during 408 

surgery. In particular, accurate and real-time brain shift compensation remains a chal-409 

lenging problem during neurosurgery. For the first time in this study, we proposed the 410 

application of PA imaging as an interventional solution during neurosurgery in combi-411 

nation with pre-operative modalities such as MRI to track brain deformation. However, 412 

the accurate combination of PA and MR images requires the development of a real-time 413 

and robust image registration algorithm. Accurate registration of intra-operative PA 414 

images with pre-operative MR images of brain tissue could calculate and compensate for 415 

brain deformation. In this study, the JACSM based registration is proposed for PA-MR 416 

image registration which can capture the interdependency of two modalities. The pro-417 

posed algorithm works based on the minimization of mapping transform by using a pair 418 

of analysis operators in PA and MR images which are learned by the ADMM. The algo-419 

rithm was tested on two data sets of phantom and mouse brain data and the results 420 

showed more accurate performance for PA imaging versus US imaging for brain shift 421 

calculation. Furthermore, the proposed method showed about a 60% improvement in 422 

TRE in comparison with the common NMI registration method. The co-sparse analysis 423 

models can yield richer feature representations and better accuracy for medical image 424 

registration in the real-time process, which is crucial for surgeons during neurosurgery to 425 

compensate for brain shift. Finally, by using this JACSM-based registration, the in-426 

tra-operative PA images could become a promising tool when the brain shift invalidated 427 

pre-operative MRI. 428 
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