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Abstract: Brain shift is an important obstacle to the application of image guidance during neurosurgical inter-
ventions. There has been a growing interest in intra-operative imaging to update the image-guided surgery
systems. However, due to the innate limitations of the current imaging modalities, accurate brain shift
compensation continues to be a challenging task. In this study, the application of intra-operative
photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR images is
proposed to compensate for brain deformation. Finding a satisfactory registration method is challenging due
to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is proposed for
photoacoustic -MR image registration, which can capture the interdependency of the two modalities. The
proposed algorithm works based on the minimization of the mapping transform via a pair of analysis oper-
ators that are learned by the alternating direction method of multipliers. The method was evaluated using
experimental phantom and ex-vivo data obtained from the mouse brain. The results of phantom data show
about 63% improvement in target registration error in comparison with the commonly used normalized
mutual information method. Results proved that intra-operative photoacoustic images could become a
promising tool when the brain shift invalidated pre-operative MRI.

Keywords: brain shift; photoacoustic imaging; multimodal image registration; dictionary learning;
co-sparse analysis.

1. Introduction

Maximal Safe resection of brain tumors in eloquent regions is optimally performed
under image-guided surgery systems [1,2]. The accuracy of the image-guided neuro-
surgery system is drastically affected by intra-operative tissue deformation, called brain
shift. Brain shift is a dynamic and complex spatiotemporal phenomenon that happens
after performing a craniotomy and invalidates the pre-operative image of patients [3,4].
The brain shift, which is known as brain deformation, is a combination of a wide variety
of biological, physical, and surgical causes and occurs in both cortical and deep brain
structures [2,5-7]. Brain shift calculation and compensation methods are based on up-
dating the pre-operative images with regard to the intraoperative tissue deformation.
These methods fall into two main categories: biomechanical models and intra-operative
imaging approaches. Biomechanical model-based approaches are time and computa-
tion-consuming methods; however, they could be highly accurate [8-10]. The main
drawback of model-based techniques is that tissue deformation that occurs during in-
traoperative neurosurgical procedures is difficult to accurately model in real-time pro-
cesses and thus is often not considered [2]. As a result, most of the recent studies have
focused on using intra-operative imaging, including intraoperative computed tomogra-
phy (CT) [11], magnetic resonance imaging (MRI) [12-14], fluorescence-guided surgery
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[15], and ultrasound (US) imaging [16-18] during neurosurgery. In fact, interventional
imaging systems are becoming an integral part of modern neurosurgeries to update pa-
tient’s coordinate during surgery using registration of intra-operative images with
pre-operative images [19]. However, each of these modalities has been proven to have
well-known limitations [20]. Radiation exposure and low spatial resolution in CT, the
requirement for an expensive equipped MR compatible operating room, and
time-consuming imaging in MRI, limited imaging depth in fluorescence imaging, and
poor quality of the US images are the major challenges of the common intra-operative
imaging modalities [21].

Recently, the application of hybrid imaging modalities such as photoacoustic (PA)
imaging has gained considerable interest for various applications such as differential
diagnostic of pathologies [22,23], depicting tissue vasculature [24], oral health [25,26] and
image-guided surgeries [27-29]. The PA is a non-ionizing hybrid imaging method that
combines optical and ultrasound imaging modalities based on the PA effect: the for-
mation of sound waves following pulsed light absorption in a medium [30-32]. PA im-
aging inherits the advantages of high imaging contrast from optical imaging as well as
the spatial and temporal resolution of US imaging [33-37]. During PA image acquisition,
the tissue is illuminated by short laser pulses, which are absorbed by endogenous (or
exogenous) chromophores and cause the generation of ultrasound emission due to
thermoelastic expansion. Endogenous chromophores such as hemoglobin provide a
strong PA signal due to high optical absorption coefficients, which in turn demonstrate
the crucial structural information [30,38]. One of the main advantages of PA imaging is
the ability to visualize the blood vessel meshwork of brain tissue, which is considered as
the main landmark during neurosurgery [21,39,40]. On the other hand, PA imaging
has demonstrated the potential to be used during image-guided interventions [41-43]. As
a result, PA imaging as a noninvasive intra-operative imaging could enable the real-time
visualization of regions of interest including vessel meshwork during neurosurgery.
Finally, registration of intra-operative PA images with pre-operative MR images of brain
tissue could enable real-time compensation of brain shift.

Many investigations have tried to overcome the limitations of multimodal image
registration algorithms in processes of brain shift compensation. Nevertheless, finding a
single satisfactory solution is a challenging task due to the complex and unpredictable
nature of brain deformation during neurosurgery [44]. So far, most of the studies have
focused on the registration of intra-operative US with pre-operative MR algorithms.
Major findings reported by Reinertsen et. al. [45], Chen et. al. [46], and Farnia et. Al. [47]
via feature-based registration methods. However, extraction of the corresponding fea-
tures in two different modalities is an issue that directly affects the accuracy of these
methods. In the intensity-based area, the different nature of US and MRI contrast mech-
anisms leads to failure of the common similarity measures such as mutual information
[48,49]. However, effective solutions have been proposed by Wein et. al. [50], Coupé et.
al. [51], Rivas et. al. [52,53], and Machado et. al. [54] for multimodal image registration
which face different limitations.

Recently, multimodal image registration based on sparse representation of images
has attracted enormous interest. The main idea of image registration based on sparse
representation lies in the fact that different images can be represented as a combination of
a few atoms in an over-complete dictionary [55]. Therefore, the sparse coefficients de-
scribe the salient features of the images. Generally, over-complete dictionaries can be
constructed via two different approaches. In the first category, the standard fixed trans-
form is applied as an over-complete dictionary. Fixed dictionaries such as discrete cosine
transform, wavelet, and curvelet are used for multi-modal image registration [19,56,57].
Using fixed dictionaries benefits from simplicity and fast implementation. However, it is
not customized for different types of data. In the second approach, an over-complete
dictionary was constructed via learning methods. Among learning methods, the
K-singular value decomposition (K-SVD) method has been widely used for image regis-
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104 tration [58]. There are some studies which used synthesis sparse models for multimodal
105 image registration [59]. However, a learned dictionary includes a large number of atoms.
106 This leads to the increased computational complexity of multi-modal image registration,
107 which is not suitable for real-time compensation of brain shift.
108 The analysis sparse model, named the co-sparse analysis model, represents a pow-
109 erful alternative to the synthesis sparse representation approach in order to reduce the
110 computational time [60]. Co-sparse analysis models can yield richer feature representa-
111 tions and better results for image registration in real-time processes. As a result of richer
112 feature representation using co-sparse analysis models, a better results for image regis-
113 tration can be obtained in real-time processes [61,62]. There are a few studies for mul-
114 ti-modal image registration via a co-sparse analysis model, and none of them were in the
115 medical field. Kiechle et. al. proposed an analysis model in a joint co-sparsity setup for
116 different modalities of depth and intensity images [63]. Chang Han et. al. utilized the
117 analysis sparse model for remote sensing images [64] and Gao et. al. used it to register
118 multi-focus noisy images with higher quality images [65]. In our previous work, we
119 could apply an analysis sparse model for US-MR image registration to compensate for
120 the brain shift [66].
121 To date, a few research studies have investigated PA and MR image registration.
122 Ren et. al. proposed a PA-MR image registration method based on mutual information to
123 yield more insights into physiology and pathophysiology [67]. Gehrung et. al. proposed
124 co-registration of PA and MR images of murine tumor models for assessment of tumor
125 physiology [68]. However, these studies were dedicated to solve the rigid registration
126 problems and also did not focus on the intra-operative application of PA imaging, and
127 therefore did not face any complicated brain deformation.
128 To the best of our knowledge, in this study for the first time, PA and MR image
129 registration was used for the purpose of compensating complicated brain shift phe-
130 nomena. The co-sparse analysis model is proposed for PA-MR image registration which
131 is able to capture the interdependency of two modalities. The algorithm works based on
132 the minimization of mapping transform by using a pair of analysis operators which are
133 learned by the alternating direction method of multipliers (ADMM).
134
135 2. Materials and Methods
136 2.1. Brain-mimicking phantom data
137 To assess the performance of the multi-modal image registration algorithm to com-
138 pensate for brain shift, a phantom that mimics brain tissue was prepared. The phantom
139 was made of Polyvinyl Alcohol Cryogel (PVA-C) which has been successfully used for
140 mimicking brain tissue in previous studies [19]. The PVA-C material also has been ap-
141 plied in the fabrication of phantoms for ultrasound, MRI, and recently PA imaging [69].
142 A 10% by weight PVA in water solution was used to form PVA-C, which is solidified
143 through a freeze-thaw process. The dimensions of the phantom were approximately 150
144 x 40 mm, with a curved top surface mimicking the shape of a head as shown in Figure 1
145 (a). Two plastic tubes with 1.2 and 1.4 mm inside diameters were inserted randomly into
146 the mold before the freeze-thaw cycle to simulate blood vessels. Figure 1 (b) shows the
147 3D model of the phantom including random vessels. Two types of chromophores, copper
148 sulfate pentahydrate (CuSOs (H20)s) and human blood (1:100 dilution); were used to fill

149 embedded vessels before PA imaging (Figure 1 (c)).
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Human Blood 3

150
151 Figure 1. Brain-mimicking phantom design and fabrication (a) The dimensions of the phantom
152 were about 150 x 40 mm, (b) a 3D model of the phantom including two simulated vessels with 1.2
153 and 1.4 mm inside diameters were inserted randomly to the phantom, (c) The cross-section of the
154 phantom with vessels are filled using two different contrast agents CuSOs (H20)s and human
155 blood.
156 To acquire MR images of the phantom before any deformations, the phantom was
157 scanned using a Siemens scanner 1.5 Tesla using a standard T1 and T2 weighted protocol.
158 Pulse-sequence parameters were set to TR=600 ms, TE=10 ms, Ec=1/1 27.8 kHz for T1
159 weighted and TR=8.6, TE=3.2, TI=450, Ec=1/1 31.3 kHz for T2 weighted considering 1mm
160 slice thickness with full brain phantom coverage and 1 mm isotropic resolution.
161 PA images were achieved by using an ultrasound scanner (Vantage 128, Verasonics
162 Inc, Kirkland, WA, USA) with a 128-element linear array US transducer (L11-4v,
163 Verasonics, Inc.,, Kirkland, WA, USA) operating at a frequency range between 4 to 9
164 MHz. A pulsed tunable laser (PhocusCore, Optotek, California, USA) and Nd:YAG/OPO
165 nanosecond pulsed laser (Phocus core system, OPOTEK Inc., USA), with the pulse repe-
166 tition rate of 10 Hz at wavelengths of 700, 800, and 900 nm were used to illuminate the
167 phantom. The scan resolution was 1 mm, and the laser fluence was ~1 mJ/cm2 (Figure 2).
168
Verasonics Data Acquisition
__| Synchronization/ and
Confrol Unit Processing Platform
lran!dm:er ) ;
Laser Triggering Signal ] !
Nd:YAG Laser/
=» ! Ilrlln Phantom with
169 Ll hsial Embedded Vessels
170 Figure 2. Schematic of the PA imaging setup, which includes a tunable pulsed laser and a pro-
171 grammable ultrasound data acquisition system.
172 2.2. Murine brain data
173 For further evaluation of the proposed image registration method, we used ex-vivo
174 mouse brain data which was provided by Ren. et. al. in a previous study [67]. After re-

175 moval of the mouse brain skull, the whole brain of mouse was embedded in agar 3% in


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 50f 18
176 phosphate-buffered saline and then was imaged ex-vivo. To acquire T>-weighted MR
177 images of the mouse brain, a 2-D spin-echo sequence with imaging parameters of
178 TR=2627.7 ms, TE=36 ms, slice thickness of 0.7 mm, a field of view of 20 x20 mm, and
179 scanning time of 12.36 min were used. For PA imaging, the laser excitation pulses of 9 ns
180 were delivered at five wavelengths (680, 715, 730, 760, 800, and 850 nm) in coronal ori-
181 entation with a field of view of 20 x20 mm, step sizes of 0.3 mm moving along horizontal
182 direction, and scan time of 20 minutes. To validate these data, five natural anatomical
183 landmarks were manually selected as registration targets (Figure 3).

184
185 Figure 3. Ex-vivo head of mouse data (a) MR image, (b) PA image, five registration targets are
186 shown in red and blue markers in (a) and (b) respectively, to assess the performance of the regis-
187 tration algorithm [67].
188 2.3. Inducing Brain Deformation
189 The proposed algorithm was designed to compensate for brain deformation during
190 neurosurgery. Since the brain deformation is a complicated non-linear transformation, it
191 is a challenging task to implement it physically on the phantom or mouse brain data. To
192 evaluate our proposed registration algorithm, we performed brain deformation numeri-
193 cally by applying pre-defined pixel shifts to images. For this purpose, we used
194 pre-operative and intra-operative MR images of brain tissue. The intra-operative MR
195 image was considered as a gold standard. The deformation matrix was obtained by
19 mono-modal registration of these images using the residual complexity algorithm [70]
197 (Figure 4). Then the obtained brain deformation matrix was applied on PA images of
198 brain phantom and mouse brain data.

71 71

08 {08

n.é |6

Bt 04

B2 H
199 . o 0 v
200 Figure 4. (a) Pre-operative MR image, (b) Intra-operative MR image, (c) Brain deformation filed
201 was achieved by registration of intra-operative and pre-operative MR images using residual com-
202 plexity method.
203
204 2.4. PA-MR Image Registration Framework
205 The workflow for automatic multi-modal image registration to compensate for the
206 brain deformation was shown in Figure 5. After preparing two data sets, including

207 brain-mimicking phantom data and murine brain data, pre-deformation MR images were
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208 set as reference images, and pre-deformation PA images were set as float images. Then a
209 real brain deformation matrix which was achieved by registration of intra-operative and
210 pre-operative patient MR images using the residual complexity method was applied on
211 PA images to generate deformed PA images. Then, by using the proposed registration
212 method based on joint co-sparse analysis, registration of the MR image and deformed PA
213 image was done. Finally, image registration results were evaluated and visualized for
214 brain shift calculation. To evaluate the registration algorithm, root mean square error
215 (RMSE) was calculated for phantom and mouse image registration. Additionally, target
216 registration error (TRE) was calculated for defined targets in phantom and mouse brain
217 data. Furthermore, we used the Hausdorff Distance (HD) between the PA and MR im-
218 ages. The HD between two point sets is defined as:
219
220 HD (I pa, I yr) = Max [Max Min d(1p,, 1 yr), Min Max d(lpa, | yr)]
221
222 where, d(.,.) is the Euclidean distance between the locations, and a smaller value of
223 HD indicates a better alignment of the boundaries. To avoid the effect of outliers [73], we
224 used 95% HD instead of maximum HD.
225

Reterence Image
(MRI) Joint CojSparsc Image Brain Shift
Analysis of MRI and [===s Repistration Caleulation
Float Image (PA) |—» ggf;:niﬁ'ég - P Tmages

226
227 Figure 5. The workflow for automatic multi-modal image registration to compensate for brain
228 deformation. MR and PA images including pre-defined targets were set as a reference and float
229 images, respectively. After applying brain deformation on PA images, registration of MR and de-
230 formed PA was done and evaluated.
231
232 2.5. Co-sparse analysis model
233 Image (I) can be approximated via the sparse representation X€ R" which is a linear
234 combination of a few non-zero elements (named atoms) in an over-complete dictionary
235 matrix De R™(n << k).
236 X=Da )
237 where o€ R is a sparse vector with the fewest k non-zero elements. The sparse
238 coefficients describe the salient features of the images. Therefore, the sparse representa-
239 tion problem could be solved as the following optimization problem:
240
241 m(inH(x‘o,stHx— D(){H2 <e )
242 Here, ||, is the zero norm of (X that represents the number of non-zero values in a
243 vector (). The sparse representation of an image considers that a synthesis dictionary

244 represents the redundant signals.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 7of 18
245 There is also another representation of image based on the co-sparse analysis model
246 [60]. This alternative assumes that for a signal of interest ( X ), there exists an analysis
247 operator Qe R“"such that QX=as an analyzed vector is sparse for all Xe€ R". The
248 rows of (2 represent filters that provide sparse responses and indices of the filters with
249 zero response determine the subspace to which the signal belongs to. This subspace is the
250 intersection of all hyperplanes to which these filters are normal vectors, and therefore, the
251 information of signals is encoded in its zero responses. The index set of the zero entries of
252 (X is called the co-support of X as below:
253 cosupp(QX) = {j | (9, = 0} 3)
254 As the key property of analysis sparse models, these models put an emphasis on the
255 zeros in the analysis representation rather than the non-zeros in the sparse representation
256 of the signal. These zeros in the analysis representation model inscribe the
257 low-dimensional subspace which the signal belongs to. Consequently, analysis operator
258 learning procedures finds the suitable operator Q for signal Xas below:
259
260 Q' eagmin) Qx| 4)

i 0
261 Where € is the optimized operator Q. In order to relax the co-sparsity assumption, the
262 log-square function as a proper approximation of zero norm is used for large values of v
263 as below:
264 9(e) =Y log(l+ve,?) )
k
265 where v is the positive weight. Therefore, equation (4) could be converted to:
266
267 Q eargmind_ g(Qx) (6)
i
268 One should consider that there has been three main constraints on the € to avoid
269 trivial solutions as below [71]:
270 1. Therowsof € have unit Euclidean norm; Q" e obligue manifold .
271 2. The operator Q" has full rank, i.e,, it has the maximal number of linear independent
272 rows.
273 h(Q")=————log det(—Q" Q),
nlog( n) m
274 3. The rows of the operator 2" are not trivially linearly dependent.
275
276 Q) =-> log(l-(,'Q)%
k<l )

277 2.6. Multi-modal Image registration algorithm
278 In this study, we formulated the multimodal image registration problem in terms of
279 an analysis co-sparse model. There are different co-sparse models that could be used in
280 multimodal image registration approaches [72]. In our approach, a joint analysis
281 co-sparse model JACSM) was proposed for the registration of PA and MR images.
282 JACSM indicates that different signals from different sensors of the same scene form an
283 ensemble. The signals in an ensemble include a common sparse component, shared be-
284 tween all of them, and an innovation component which represents individual differences
285 [73].
286 Consider two images |, and |, which are provided through PA and MR imag-

287 ing, respectively, from a brain simulated phantom as the input data. The interdepend-
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288 ency of the two image modalities was modeled via JACSM and common sparse compo-
289 nents were considered in this study. This image pair has a co-sparse representation with
290 an appropriate pair of analysis operators (Q ,, ,Q,,s )€ R“"™ x R“™= . By considering
291 the structures of images encoded in their co-supports based on equation (3), there is a
292 pair of analysis operators so that the intersection of the co-supports of Q,1,,and
293 Q| vr is large. In particular, we try to learn the pair of co-sparse analysis operators
294 (Qps,Q,z) for two different image modalities.
295 On the other hand, the PA and MR images should be matched with a transformation
296 T such that:
297 Lyr (TX) = 154(X), for all pixel cordinate x ®)
298 which x determines homogeneous pixel coordinates in PA images. The goal of mul-
299 ti-modal image registration problem in this approach is to optimize T by using the pair
300 of analysis operators (Q,,,Q,,r) - We consider that for an optimized transformation,
301 there is a coupled sparsity measure to be minimized. Thus, by considering equation (6)
302 and constraints based on equation (7), we are searching for T such that:

s AR i .
T e argmin—->9(Qeul e el (1)) -
i=1
1 1 T 1 T
309 k ———[log det(=Qy Q) +l0g det(=Qp," Q0 )] - ©)
nlog(n)[ g 0et( Q. Ly ) +10g det(— Qs Ly )]
#10g(L (Qp, D)) +10g(L (i, Qu)*)-
r<l
304 To tackle the problem of equation (9), we propose the ADMM. In other words, the
305 analysis operators were learned by optimizing a JACSM via an ADMM. The ADMM as a
306 candidate solver for convex problems, breaking our main problem into smaller
307 sub-problems as below:
308
309 min f (X)+g(y), st. AX+By=c (10)
310
311 where xe R", ye R", Ae R™, and Be R”™. The augmentation Lagrangian for
312 the equation (10) can be written as:
2
313 L (%Y, 4) = f(x)+g(y) + 4" (Ax+ By—c)+(§)||Ax+ By—c|,
314 where the term p is a penalty term that is considered positive and A is the Lagrangian
315 multiplier. Equation (11) is solved over three steps: x-minimization, and y-minimization,
316 these two are split into N separate problems and followed by an updating step for the
317 multiplier A as follows:
X“t=argminL(x, ¥, £,
X
318 y“ti=argminL (x,y, 49, (12)
y
ﬁk-v-l = ﬂk + p(AXk+1 + Byk+1 _ C).

319 3. Results & Discussion
320 To implement the proposed image registration algorithm, a total of 20000 pairs of
321 square sample patches of size 7 pixels from the total of images in the training set were
322 randomly selected. It is notable that in our experiments, the patch sizes 3, 5, 7, 9, and 11
323 pixels were applied. Based on our experience, a small patch size would cause an over
324 smooth effect, and a larger patch size would lead to more computation. Therefore, based

325 on our results, the patch size of 7x7 was selected to balance the two effects.
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326 The performance of the JACSM-based registration method was evaluated using a
327 phantom with simulated vessels and using ex-vivo mouse brain data with anatomical
328 landmarks. In Figure 6, the performance of the proposed registration method for PA-MR,
329 US-MR, and MR-MR images on the phantom data were shown and compared. In the first
330 row, the MR image and its corresponding US and PA images were shown. Dashed yel-
331 low circles show the same fields of view in three different modalities (MRI, US, and PA).
332 Corresponding structures which are used to calculate target registration error are labeled
333 with numbers 1 to 3 in the three imaging modalities. The brain deformation field is ap-
334 plied to the images in the first row, and the second row represents deformed MR, US, and
335 PA images. As shown in Figure 6 (d), (e), and (f), labeled targets have been displaced due
336 to inducing deformation. Finally, the images in the third row show the image registration
337 results of MR, US, and PA after deformation (second row) with the original MRI before
338 deformation (Figure 6 (a)). The result of registration between the original MR image and
339 deformed MR image (Figure 6 (g)) is used as a gold standard to evaluate the proposed
340 algorithm. Also, the registration result of the deformed PA image (Figure 6 (i)) is com-
341 pared to the registration result of deformed ultrasound image (Figure 6 (h)) as a com-
342 monly used intra-operative imaging modality for brain shift compensation. As we have
343 shown in the third row, images registered more accurate in MR-MR images registration
344 compared to PA-MR image registration. Also, images registered more accurately in
345 PA-MR image registration compared to the US-MR image registration. As we have
346 shown with the blue arrow in the third-row images, the surface of the phantom is
347 matched accurately in the result of MR-MR image registration. It is while, registration of
348 US-MR has the worst performance in matching the surface of the phantom in two mo-
349 dalities, and registration of PA-MR has an acceptable performance in matching the sur-
350 face of the phantom in two modalities, PA and MRI.

B E 3

3]

Original image

Registered images Deformed images

351

352 Figure 6. The results of multi-modal image registration of phantom data. First row: Original im-
353 age of phantom data before deformation from three different modalities (a) MRI, (b) US, and (c)
354 PA, second row: Deformed images of (d) MRI, (e) US, and (f) PA. The third row shows the results of
355 registered images of (g) MR-MR, (f) US-MR, and (g) PA-MR. The blue arrows in third row repre-
356 sent the surface of the phantom in different modalities. Blue arrows A are related to the surface of
357 the phantom in original MR images and blue arrows B are related to the surface of the phantom in
358 deformed MR, deformed US, and deformed PA images, in (g), (h), and (i), respectively.

359
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360 To quantitative evaluation of the proposed registration method, RMSE, TRE, and
361 HD for PA-MR, US-MR, and MR-MR image registration were calculated and shown in
362 Table.1. Also, for further evaluation the results of our proposed method were compared
363 to the commonly used normalized mutual information (NMI) registration method. In
364 total, we used 23 phantom data. Registration accuracy of MR and MR images was con-
365 sidered as a gold standard. Also, the algorithms are implemented in MATLAB, and
366 tested on an Intel Corei7 3.2 GHz CPU with 8GB RAM.
367 Table 1. Evaluation of proposed registration methods on phantom data.
Multimodal RMSE TRE (meanzstd) HD
Registration (meantstd) Number of targets:3 (meanzstd)
MR-MR JACSM  0.62+0.04 0.32+0.03 0.21+0.03
NMI 0.98+0.09 0.51+0.04 0.46+0.07
US-MR JACSM  1.17#0.13 0.96+0.08 0.51+0.03
NMI 1.87+0.15 1.58+0.11 1.23+0.13
PA-MR JACSM  0.730.05 0.58+0.04 0.32+0.04
NMI 1.18+0.09 0.96+0.08 0.68+0.05
368
369 The results of the phantom study showed that PA-MR image registration has better
370 RMSE, TRE, and HD about 60%, 65%, and 59% compared to US-MR image registration as
371 a common imaging modality for brain shift compensation, respectively. On the other
372 hand, the proposed method reached an RMSE of about 0.73 mm which is acceptable in
373 comparison with MR-MR image registration as a gold standard with an RMSE of about
374 0.62 mm. The proposed method improved the results of RMSE and TRE of about 60% and
375 63% (on average) compared to NMI.
376 For further evaluation of the proposed method, ex-vivo mouse brain data was used.
377 In Figure 7, the performance of the JACSM-based registration method for PA-MR image
378 registration for mouse brain data was shown and compared with MR-MR image regis-
379 tration. Figure 7 (a) and (b) represent MR and PA images of the mouse brain before any
380 deformation, respectively. The PA image after applying non-linear deformation is shown
381 in Figure 7 (c), and the registration result of deformed PA and original MR of mouse
382 brain images is shown in Figure 7 (d). Also, in panel (e), the mean of RMSE, TRE, and HD
383 of PA-MR image registration for all data of the mouse brain was calculated and com-
384 pared to the result of MR-MR image registration.
e ®
B MR-VR B MR-PA
RWISE TRE 1]
385
386 Figure 7. The results of multi-modal image registration of mouse brain data. (a) MRI, (b) PA image,
387 (c) PA image after applying non-linear deformation, and (d) registration of deformed PA and MRI
388 of mouse data. Panel (e) shows the mean of RMSE, TRE, and HD of PA-MR image registration for

389 all data of the mouse brain.
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390 The results acquired from the ex-vivo mouse brain also proved the ability of the
391 proposed registration method to recover non-linear deformation with calculated mean of
392 RMSE, TRE, and HD of 1.13, 0.98, and 0.85 mm, respectively. The results are acceptable
393 when compared to the results of MRI-MRI registration as a gold standard, with RMSE,
394 TRE, and HD of about 0.98, 0.85, and 0.77 mm. In fact, intra-operative PA imaging as a
395 real-time imaging with about 15% RMSE increase, could be a good alternative to in-
396 tra-operative MR imaging. Additionally, with a 60% improvement in registration accu-
397 racy, PA imaging could be an alternative for intra-operative ultrasound imaging,.
398 Having a closer look at the comparison between synthesis and analysis models, the
399 synthesis model contains very few low-dimensional subspaces and an increasingly large
400 number of subspaces of higher dimension. In contrast, the analysis model includes a
401 combinatorial number of low-dimensional subspaces with fewer high-dimensional sub-
402 spaces. The co-sparse analysis models can yield richer feature representations, and joint
403 co-sparse analysis models consider the common sparse components of different signals
404 from different sensors. Therefore, the JACSM-based registration method was found to be
405 more suitable for multi-modal image registration.
406 4. Conclusions
407 There has been a growing interest in intra-operative imaging approaches to update
408 the pre-operative images with real-time data when tissue deformation occurs during
409 surgery. In particular, accurate and real-time brain shift compensation remains a chal-
410 lenging problem during neurosurgery. For the first time in this study, we proposed the
411 application of PA imaging as an interventional solution during neurosurgery in combi-
412 nation with pre-operative modalities such as MRI to track brain deformation. However,
413 the accurate combination of PA and MR images requires the development of a real-time
414 and robust image registration algorithm. Accurate registration of intra-operative PA
415 images with pre-operative MR images of brain tissue could calculate and compensate for
416 brain deformation. In this study, the JACSM based registration is proposed for PA-MR
417 image registration which can capture the interdependency of two modalities. The pro-
418 posed algorithm works based on the minimization of mapping transform by using a pair
419 of analysis operators in PA and MR images which are learned by the ADMM. The algo-
420 rithm was tested on two data sets of phantom and mouse brain data and the results
421 showed more accurate performance for PA imaging versus US imaging for brain shift
422 calculation. Furthermore, the proposed method showed about a 60% improvement in
423 TRE in comparison with the common NMI registration method. The co-sparse analysis
424 models can yield richer feature representations and better accuracy for medical image
425 registration in the real-time process, which is crucial for surgeons during neurosurgery to
426 compensate for brain shift. Finally, by using this JACSM-based registration, the in-
427 tra-operative PA images could become a promising tool when the brain shift invalidated
428 pre-operative MRL
429
430 Author Contributions: Authors have made a group effort for this research. The conceptualization
431 and study design were done by P.F and B.M. The methodology and algorithm were implemented
432 by P. F under supervision of B. M. The phantom was designed and made by E. N under supervision
433 of M. A. MR images was provided by E. N. The PA and ultrasound data was provided by M.B and
434 Y.Y under the supervision of M.M. P.F and E. N wrote original draft and revised by M. M. and A.A.
435 All the works done under supervision of A.A.
436 Funding: This research received no external funding.
437 Institutional Review Board Statement: Not applicable.
438 Informed Consent Statement: Not applicable.
439
440 Acknowledgments: The authors gratefully acknowledge the Dr. Ruiging Ni from University of

441 Zurich and ETH Zurich for providing mouse brain data.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 12 0of 18

442 Conflicts of Interest: The authors declare no conflict of interest.

443

444 References

445 1. D. A Orringer, A. Golby, and F.J. E. r. 0. m. d. Jolesz, “Neuronavigation in the surgical management of brain tumors: current
446 and future trends,” vol. 9, no. 5, pp. 491-500, 2012.

447 2. I. J. Gerard, M. Kersten-Oertel, K. Petrecca, D. Sirhan, J. A. Hall, and D. L. Collins, “Brain shift in neuronavigation of brain
448 tumors: A review,” Medical image analysis, vol. 35, pp. 403-420, 2017.

449 3. Y. Xiao, H. Rivaz, M. Chabanas, M. Fortin, I. Machado, Y. Ou, M. P. Heinrich, J. A. Schnabel, X. Zhong, and A. Maier, “Evalu-
450 ation of MRI to ultrasound registration methods for brain shift correction: The CuRIOUS2018 Challenge,” IEEE Transactions
451 on Medical Imaging, 2019.

452 4. I. J. Gerard, M. Kersten-Oertel, . A. Hall, D. Sirhan, and D. L. J. F. i. O. Collins, “Brain Shift in Neuronavigation of Brain Tu-
453 mors: An Updated Review of Intra-Operative Ultrasound Applications,” vol. 10, pp. 3390, 2021.

454 5. T. Mitsui, M. Fujii, M. Tsuzaka, Y. Hayashi, Y. Asahina, and T. Wakabayashi, “Skin shift and its effect on navigation accuracy
455 in image-guided neurosurgery,” Radiological physics and technology, vol. 4, no. 1, pp. 3742, 2011.

456 6. D.L. Hill, C. R Maurer, R. J. Maciunas, R. J. Maciunas, J. A. Barwise, ]. M. Fitzpatrick, and M. Y. Wang, “Measurement of in-
457 traoperative brain surface deformation under a craniotomy,” Neurosurgery, vol. 43, no. 3, pp. 514-526, 1998.

458 7. M. A. Hammoud, B. L. Ligon, R. Elsouki, W. M. Shi, D. F. Schomer, and R. Sawaya, “Use of intraoperative ultrasound for lo-
459 calizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging,” Journal of
460 neurosurgery, vol. 84, no. 5, pp. 737-741, 1996.

461 8. O. ékrinjar, A. Nabavi, and J. J. M. i. a. Duncan, “Model-driven brain shift compensation,” vol. 6, no. 4, pp. 361-373, 2002.

462 9. A.Wittek, R. Kikinis, S. K. Warfield, and K. Miller, "Brain shift computation using a fully nonlinear biomechanical model.” pp.
463 583-590.

464 10. M.I Miga, K. Sun, I. Chen, L. W. Clements, T. S. Pheiffer, A. L. Simpson, R. C.J. L j. o. c. a. r. Thompson, and surgery, “Clinical

465 evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases,” vol. 11, no. 8,
466 pp. 1467-1474, 2016.

467 11. P. Grunert, W. Miiller-Forell, K. Darabi, R. Reisch, C. Busert, N. Hopf, and A.]J. C. A. S. Perneczky, “Basic principles and clin-
468 ical applications of neuronavigation and intraoperative computed tomography,” vol. 3, no. 4, pp. 166-173, 1998.

469 12. C. Nimsky, O. Ganslandt, S. Cerny, P. Hastreiter, G. Greiner, and R. J. N. Fahlbusch, “Quantification of, visualization of, and
470 compensation for brain shift using intraoperative magnetic resonance imaging,” vol. 47, no. 5, pp. 1070-1080, 2000.

471 13. D. Kuhnt, M. H. Bauer, and C. J. C. R i. B. E. Nimsky, “Brain shift compensation and neurosurgical image fusion using in-
472 traoperative MRI: current status and future challenges,” vol. 40, no. 3, 2012.

473 14. O. Clatz, H. Delingette, I.-F. Talos, A.J. Golby, R. Kikinis, F. A. Jolesz, N. Ayache, and S. K. Warfield, “Robust nonrigid regis-
474 tration to capture brain shift from intraoperative MRL” IEEE transactions on medical imaging, vol. 24, no. 11, pp. 1417-1427,
475 2005.

476 15. P. A.Valdés, X. Fan, S. Ji, B. T. Harris, K. D. Paulsen, D. W. J. S. Roberts, and f. neurosurgery, “Estimation of brain deformation
477 for volumetric image updating in protoporphyrin IX fluorescence-guided resection,” vol. 88, no. 1, pp. 1-10, 2010.

478 16. J. W. Trobaugh, W. D. Richard, K. R. Smith, and R. D. Bucholz, “Frameless stereotactic ultrasonography: method and applica-
479 tions,” Computerized Medical Imaging and Graphics, vol. 18, no. 4, pp. 235-246, 1994.

480 17.  A. Roche, X. Pennec, M. Rudolph, D. Auer, G. Malandain, S. Ourselin, L. M. Auer, and N. Ayache, "Generalized correlation
481 ratio for rigid registration of 3D ultrasound with MR images." pp. 567-577.

482 18. ]. Koivukangas, J. Ylitalo, E. Alasaarela, and A. Tauriainen, “Three-dimensional ultrasound imaging of brain for neurosur-
483 gery,” Annals of clinical research, vol. 18, pp. 65-72, 1986.

484 19. P. Farnia, A. Ahmadian, T. Shabanian, N. D. Serej, and ]J. Alirezaie, “Brain-shift compensation by non-rigid registration of
485 intra-operative ultrasound images with preoperative MR images based on residual complexity,” International journal of
486 computer assisted radiology and surgery, vol. 10, no. 5, pp. 555-562, 2015.

487 20. S.Bayer, A. Maier, M. Ostermeier, and R. . I. j. o. b. i. Fahrig, “Intraoperative imaging modalities and compensation for brain
488 shift in tumor resection surgery,” vol. 2017, 2017.

489  21. P. Farnia, M. Mohammadi, E. Najafzadeh, M. Alimohamadi, B. Makkiabadi, and A. Ahmadian, “High-quality photoacoustic
490 image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging,” Biomed-
491 ical Physics & Engineering Express, 2020.

492 22, M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both
493 thermoacoustic (TA) and photoacoustic (PA) tomography,” Medical physics, vol. 35, no. 6Partl, pp. 2218-2223, 2008.

494 23, M. Mehrmohammadji, S. Joon Yoon, D. Yeager, and S.J. C. M. 1. Y Emelianov, “Photoacoustic imaging for cancer detection and
495 staging,” vol. 2, no. 1, pp. §9-105, 2013.

496 24. E. Najafzadeh, H. Ghadiri, M. Alimohamadi, P. Farnia, M. Mehrmohammadi, and A. Ahmadian, “Application of mul-
497 ti-wavelength technique for photoacoustic imaging to delineate tumor margins during maximum-safe resection of glioma: A

498 preliminary simulation study,” Journal of Clinical Neuroscience, 2019.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 18

25. S. Arabpou, E. Najafzadeh, P. Farnia, A. Ahmadian, H. Ghadiri, and M. S. A. Akhoundi, “Detection of Early Stages Dental
Caries Using Photoacoustic Signals: The Simulation Study,” Frontiers in Biomedical Technologies, 2019.

26. C.Moore, Y. Bai, A. Hariri, J. B. Sanchez, C.-Y. Lin, S. Koka, P. Sedghizadeh, C. Chen, and J. V. Jokerst, “Photoacoustic imaging
for monitoring periodontal health: A first human study,” Photoacoustics, vol. 12, pp. 67-74, 2018.

27. Y. Yan, S. John, M. Ghalehnovi, L. Kabbani, N. A. Kennedy, and M. J. S. r. Mehrmohammadi, “photoacoustic Imaging for Im-
age-guided endovenous Laser Ablation procedures,” vol. 9, no. 1, pp. 1-10, 2019.

28. E. Petrova, H. Brecht, M. Motamedi, A. Oraevsky, S. J. P. i. M. Ermilov, and Biology, “In vivo optoacoustic temperature im-
aging for image-guided cryotherapy of prostate cancer,” vol. 63, no. 6, pp. 064002, 2018.

29. B. Eddins, and M. A. L. ].]. 0. b. 0. Bell, “Design of a multifiber light delivery system for photoacoustic-guided surgery,” vol.
22, no. 4, pp. 041011, 2017.

30. L.V.Wang, and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” science, vol. 335, no. 6075, pp.
1458-1462, 2012.

31. L.V.Wang, and]. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nature methods, vol. 13, no. 8, pp.
627, 2016.

32. A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical
photoacoustic imaging: Current and future trends,” Photoacoustics, pp. 100144, 2019.

33. P. Beard, “Biomedical photoacoustic imaging,” Interface focus, vol. 1, no. 4, pp. 602-631, 2011.

34. A Rosencwaig, and A. Gersho, “Theory of the photoacoustic effect with solids,” Journal of Applied Physics, vol. 47, no. 1, pp.
64-69, 1976.

35. S. Zackrisson, S. Van De Ven, and S. Gambhir, “Light in and sound out: emerging translational strategies for photoacoustic
imaging,” Cancer research, vol. 74, no. 4, pp. 979-1004, 2014.

36. [36] M. Xu, and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of scientific instruments, vol. 77, no. 4, pp.
041101, 2006.

37. P. Farnia, E. Najafzadeh, A. Hariri, S. N. Lavasani, B. Makkiabadi, A. Ahmadian, and J. V. Jokerst, “Dictionary learning tech-
nique enhances signal in LED-based photoacoustic imaging,” Biomedical Optics Express, vol. 11, no. 5, pp. 2533-2547, 2020.

38. C. Hoelen, F. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Op-
tics letters, vol. 23, no. 8, pp. 648-650, 1998.

39. P. Raumonen, and T. Tarvainen, “Segmentation of vessel structures from photoacoustic images with reliability assessment,”
Biomedical optics express, vol. 9, no. 7, pp. 2887-2904, 2018.

40. E. Najafzadeh, H. Ghadiri, M. Alimohamadi, P. Farnia, M. Mehrmohammadi, and A. Ahmadian, “Evaluation of mul-
ti-wavelengths LED-based photoacoustic imaging for maximum safe resection of glioma: a proof of concept study,” Interna-
tional Journal of Computer Assisted Radiology and Surgery, 2020.

41. M. S. Karthikesh, X. J. E. B. Yang, and Medicine, “Photoacoustic image-guided interventions,” vol. 245, no. 4, pp. 330-341, 2020.

42, S.H.]. N. Han, “Review of photoacoustic imaging for imaging-guided spinal surgery,” vol. 15, no. 4, pp. 306, 2018.

43. K. P. Kubelick, S. Y. J. U. i. M. Emelianov, and Biology, “A Trimodal Ultrasound, Photoacoustic and Magnetic Resonance Im-
aging Approach for Longitudinal Post-operative Monitoring of Stem Cells in the Spinal Cord,” vol. 46, no. 12, pp. 3468-3474,
2020.

44. D. H. Iversen, W. Wein, F. Lindseth, G. Unsgard, and I. Reinertsen, “ Automatic intraoperative correction of brain shift for
accurate neuronavigation,” World neurosurgery, vol. 120, pp. e1071-e1078, 2018.

45. 1. Reinertsen, M. Descoteaux, K. Siddiqi, and D. L. Collins, “Validation of vessel-based registration for correction of brain
shift,” Medical image analysis, vol. 11, no. 4, pp. 374-388, 2007.

46. S.].-S. Chen, I. Reinertsen, P. Coupé, C. X. Yan, L. Mercier, D. R. Del Maestro, and D. L. Collins, “Validation of a hybrid Dop-
pler ultrasound vessel-based registration algorithm for neurosurgery,” International journal of computer assisted radiology
and surgery, vol. 7, no. 5, pp. 667-685, 2012.

47. P. Farnia, A. Ahmadian, A. Khoshnevisan, A. Jaberzadeh, N. D. Serej, and A. F. Kazerooni, "An efficient point based registra-
tion of intra-operative ultrasound images with MR images for computation of brain shift; A phantom study.” pp. 8§074-8077.

48. T. Arbel, X. Morandi, R. M. Comeau, and D. L. Collins, "Automatic non-linear MRI-ultrasound registration for the correction of
intra-operative brain deformations." pp. 913-922.

49. S.Ji, A. Hartov, D. Roberts, and K. Paulsen, "Mutual-information-corrected tumor displacement using intraoperative ultra-
sound for brain shift compensation in image-guided neurosurgery." p. 69182H.

50. W. Wein, A. Ladikos, B. Fuerst, A. Shah, K. Sharma, and N. Navab, "Global registration of ultrasound to MRI using the LC 2
metric for enabling neurosurgical guidance." pp. 34-41.

51. P.Coupé, P. Hellier, X. Morandji, and C. Barillot, “3D rigid registration of intraoperative ultrasound and preoperative MR brain
images based on hyperechogenic structures,” Journal of Biomedical Imaging, vol. 2012, pp. 1, 2012.

52. H. Rivaz, Z. Karimaghaloo, and D. L. Collins, “Self-similarity weighted mutual information: a new nonrigid image registration
metric,” Medical image analysis, vol. 18, no. 2, pp. 343-358, 2014.

53. H.Rivaz, S.].-S. Chen, and D. L. Collins, “Automatic deformable MR-ultrasound registration for image-guided neurosurgery,”

IEEE transactions on medical imaging, vol. 34, no. 2, pp. 366-380, 2015.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 18

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

I. Machado, M. Toews, E. George, P. Unadkat, W. Essayed, ]J. Luo, P. Teodoro, H. Carvalho, J. Martins, and P. Golland, “De-
formable MRI-ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and
generality in multi-site data,” Neurolmage, vol. 202, pp. 116094, 2019.

Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, “Sparse representation based multi-sensor image fusion for multi-focus and
multi-modality images: A review,” Information Fusion, vol. 40, pp. 57-75, 2018.

P. Farnia, A. Ahmadian, T. Shabanian, N. D. Serej, and J. Alirezaie, "A hybrid method for non-rigid registration of in-
tra-operative ultrasound images with pre-operative MR images." pp. 5562-5565.

P. Farnia, B. Makkiabadi, A. Ahmadian, and J. Alirezaie, "Curvelet based residual complexity objective function for non-rigid
registration of pre-operative MRI with intra-operative ultrasound images." pp. 1167-1170.

K. Huang, and S. Aviyente, "Sparse representation for signal classification.” pp. 609-616.

A. Roozgard, N. Barzigar, P. Verma, and S. Cheng, “3D-SCoBeP: 3D medical image registration using sparse coding and belief
propagation,” International Journal of Diagnostic Imaging, vol. 2, no. 1, pp. 54, 2014.

S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The cosparse analysis model and algorithms,” Applied and Computational
Harmonic Analysis, vol. 34, no. 1, pp. 30-56, 2013.

N. Zhou, H. Jiang, L. Gong, and X. Xie, “Double-image compression and encryption algorithm based on co-sparse representa-
tion and random pixel exchanging,” Optics and Lasers in Engineering, vol. 110, pp. 72-79, 2018.

M. Kiechle, S. Hawe, and M. Kleinsteuber, "A joint intensity and depth co-sparse analysis model for depth map su-
per-resolution.” pp. 1545-1552.

M. Kiechle, T. Habigt, S. Hawe, and M. Kleinsteuber, “A bimodal co-sparse analysis model for image processing,” Interna-
tional Journal of Computer Vision, vol. 114, no. 2-3, pp. 233-247, 2015.

C. Han, H. Zhang, C. Gao, C. Jiang, N. Sang, and L. Zhang, “A Remote Sensing Image Fusion Method Based on the Analysis
Sparse Model,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 1, pp. 439-453,
2016.

R. Gao, S. A. Vorobyov, and H. Zhao, “Image fusion with cosparse analysis operator,” IEEE Signal Processing Letters, vol. 24,
no. 7, pp. 943-947, 2017.

P. Farnia, E. Najafzadeh, A. Ahmadian, B. Makkiabadi, M. Alimohamadi, and J. Alirezaie, "Co-sparse analysis model based
image registration to compensate brain shift by using intra-operative ultrasound imaging." pp. 1-4.

W. Ren, H. Skulason, F. Schlegel, M. Rudin, J. Klohs, and R. Ni, “Automated registration of magnetic resonance imaging and
optoacoustic tomography data for experimental studies,” Neurophotonics, vol. 6, no. 2, pp. 025001, 2019.

M. Gehrung, M. Tomaszewski, D. McIntyre, J. Disselhorst, and S. Bohndiek, “Co-Registration of Optoacoustic Tomography
and Magnetic Resonance Imaging Data from Murine Tumour Models,” Photoacoustics, pp. 100147, 2020.

K. Surry, H. Austin, A. Fenster, and T. Peters, “Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,”
Physics in Medicine & Biology, vol. 49, no. 24, pp. 5529, 2004.

A. Myronenko, and X. Song, “Intensity-based image registration by minimizing residual complexity,” IEEE transactions on
medical imaging, vol. 29, no. 11, pp. 1882-1891, 2010.

S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learning and its application to image reconstruction,” IEEE
Transactions on Image Processing, vol. 22, no. 6, pp. 2138-2150, 2013.

S. Cai, Z. Kang, M. Yang, X. Xiong, C. Peng, and M. J. S. Xiao, “Image denoising via improved dictionary learning with global
structure and local similarity preservations,” vol. 10, no. 5, pp. 167, 2018.

Q. Zhang, Y. Fu, H. Li, and J. Zou, “Dictionary learning method for joint sparse representation-based image fusion,” Optical
Engineering, vol. 52, no. 5, pp. 057006, 2013.

Orringer, D.A_; Golby, A; Jolesz, F.J.E.r.o.m.d. Neuronavigation in the surgical management of brain tumors: current and
future trends. 2012, 9, 491-500.

Gerard, 1].; Kersten-Oertel, M.; Petrecca, K.; Sirhan, D.; Hall, J.A.; Collins, D.L. Brain shift in neuronavigation of brain
tumors: A review. Medical image analysis 2017, 35, 403-420.

Xiao, Y.; Rivaz, H.; Chabanas, M.; Fortin, M.; Machado, I.; Ou, Y.; Heinrich, M.P.; Schnabel, J.A.; Zhong, X.; Maier, A.
Evaluation of MRI to ultrasound registration methods for brain shift correction: The CuRIOUS2018 Challenge. IEEE
Transactions on Medical Imaging 2019.

Gerard, 1]; Kersten-Oertel, M.; Hall, J.A_; Sirhan, D.; Collins, D.L.J.F.i.O. Brain Shift in Neuronavigation of Brain Tumors:
An Updated Review of Intra-Operative Ultrasound Applications. 2021, 10, 3390.

Mitsui, T.; Fujii, M.; Tsuzaka, M.; Hayashi, Y.; Asahina, Y.; Wakabayashi, T. Skin shift and its effect on navigation accuracy
in image-guided neurosurgery. Radiological physics and technology 2011, 4, 37-42.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 15 0f 18

6. Hill, D.L; Maurer, C.R; Maciunas, RJ.; Maciunas, R.J.; Barwise, J.A.; Fitzpatrick, J.M.; Wang, M.Y. Measurement of
intraoperative brain surface deformation under a craniotomy. Neurosurgery 1998, 43, 514-526.

7. Hammoud, M.A,; Ligon, B.L.; Elsouki, R,; Shi, W.M.; Schomer, D.F.; Sawaya, R. Use of intraoperative ultrasound for
localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. Journal
of neurosurgery 1996, 84, 737-741.

8. ékrinjar, O.; Nabavi, A.; Duncan, ].J.M.i.a. Model-driven brain shift compensation. 2002, 6, 361-373.

9. Wittek, A.; Kikinis, R.; Warfield, 5.K.; Miller, K. Brain shift computation using a fully nonlinear biomechanical model. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2005; pp.
583-590.

10. Miga, M.L; Sun, K,; Chen, I.; Clements, L.W.; Pheiffer, T.S.; Simpson, A.L.; Thompson, R.C.].Lj.o.c.a.r.; surgery. Clinical
evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. 2016, 11,
1467-1474.

11. Grunert, P.; Miiller-Forell, W_; Darabi, K., Reisch, R; Busert, C.; Hopf, N.; Perneczky, A.J.C.A.S. Basic principles and
clinical applications of neuronavigation and intraoperative computed tomography. 1998, 3, 166-173.

12. Nimsky, C.; Ganslandt, O.; Cerny, S.; Hastreiter, P.; Greiner, G.; Fahlbusch, RJ.N. Quantification of, visualization of, and
compensation for brain shift using intraoperative magnetic resonance imaging. 2000, 47, 1070-1080.

13. Kuhnt, D.; Bauer, M.H; Nimsky, C.J.C.Ri.B.E. Brain shift compensation and neurosurgical image fusion using
intraoperative MRI: current status and future challenges. 2012, 40.

14. Clatz, O.; Delingette, H.; Talos, I.-F; Golby, A.].; Kikinis, R Jolesz, F.A.; Ayache, N.; Warfield, S.K. Robust nonrigid
registration to capture brain shift from intraoperative MRL. [EEE transactions on medical imaging 2005, 24, 1417-1427.

15. Valdés, P.A,; Fan, X,; Ji, S.; Harris, B.T.; Paulsen, K.D.; Roberts, D.W.].S.; neurosurgery, f. Estimation of brain deformation
for volumetric image updating in protoporphyrin IX fluorescence-guided resection. 2010, 88, 1-10.

16. Trobaugh, JJW. Richard, W.D.; Smith, K.R; Bucholz, RD. Frameless stereotactic ultrasonography: method and
applications. Computerized Medical Imaging and Graphics 1994, 18, 235-246.

17. Roche, A.; Pennec, X.; Rudolph, M.; Auer, D.; Malandain, G.; Ourselin, S.; Auer, L.M.; Ayache, N. Generalized correlation
ratio for rigid registration of 3D ultrasound with MR images. In Proceedings of the International Conference on Medical
Image Computing and Computer-Assisted Intervention, 2000; pp. 567-577.

18. Koivukangas, J.; Ylitalo, J.; Alasaarela, E.; Tauriainen, A. Three-dimensional ultrasound imaging of brain for neurosurgery.
Annals of clinical research 1986, 18, 65-72.

19. Farnia, P,; Ahmadian, A.; Shabanian, T.; Serej, N.D.; Alirezaie, J. Brain-shift compensation by non-rigid registration of
intra-operative ultrasound images with preoperative MR images based on residual complexity. International journal of
computer assisted radiology and surgery 2015, 10, 555-562.

20. Bayer, S.; Maier, A.; Ostermeier, M.; Fahrig, R.J.1j.o.b.i. Intraoperative imaging modalities and compensation for brain
shift in tumor resection surgery. 2017, 2017.

21. Farnia, P.; Mohammadi, M.; Najafzadeh, E.; Alimohamadi, M.; Makkiabadi, B.; Ahmadian, A. High-quality photoacoustic
image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging.
Biomedical Physics & Engineering Express 2020.

22. Pramanik, M.; Ku, G.; Li, C.; Wang, L.V. Design and evaluation of a novel breast cancer detection system combining both
thermoacoustic (TA) and photoacoustic (PA) tomography. Medical physics 2008, 35, 2218-2223.

23, Mehrmohammadi, M.; Joon Yoon, S.; Yeager, D.; Y Emelianov, S.J.C.M.I. Photoacoustic imaging for cancer detection and

staging. 2013, 2, 89-105.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 18

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

Najafzadeh, E.; Ghadiri, H., Alimohamadi, M.; Farnia, P.; Mehrmohammadi, M.; Ahmadian, A. Application of
multi-wavelength technique for photoacoustic imaging to delineate tumor margins during maximum-safe resection of
glioma: A preliminary simulation study. Journal of Clinical Neuroscience 2019.

Arabpou, S.; Najafzadeh, E.; Farnia, P.; Ahmadian, A.; Ghadiri, H.; Akhoundi, M.S.A. Detection of Early Stages Dental
Caries Using Photoacoustic Signals: The Simulation Study. Frontiers in Biomedical Technologies 2019.

Moore, C; Bai, Y.; Hariri, A;; Sanchez, ].B.; Lin, C.-Y.; Koka, S.; Sedghizadeh, P.; Chen, C.; Jokerst, J.V. Photoacoustic
imaging for monitoring periodontal health: A first human study. Photoacoustics 2018, 12, 67-74.

Yan, Y.; John, S; Ghalehnovi, M.; Kabbani, L.; Kennedy, N.A.; Mehrmohammadi, M.J.S.r. photoacoustic Imaging for
Image-guided endovenous Laser Ablation procedures. 2019, 9, 1-10.

Petrova, E.; Brecht, H.; Motamedi, M.; Oraevsky, A.; Ermilov, S.J.P.iM.; Biology. In vivo optoacoustic temperature
imaging for image-guided cryotherapy of prostate cancer. 2018, 63, 064002.

Eddins, B.; Bell, M.A.L.J.]J.o.b.o. Design of a multifiber light delivery system for photoacoustic-guided surgery. 2017, 22,
041011.

Wang, L.V,; Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. science 2012, 335, 1458-1462.
Wang, L.V; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nature methods 2016, 13, 627.

Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.; Bi, R;; Ntziachristos, V.; Olivo, M. A review of clinical
photoacoustic imaging: Current and future trends. Photoacoustics 2019, 100144.

Beard, P. Biomedical photoacoustic imaging. Interface focus 2011, 1, 602-631.

Rosencwaig, A; Gersho, A. Theory of the photoacoustic effect with solids. Journal of Applied Physics 1976, 47, 64-69.
Zackrisson, S.; Van De Ven, S.; Gambhir, S. Light in and sound out: emerging translational strategies for photoacoustic
imaging. Cancer research 2014, 74, 979-1004.

Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Review of scientific instruments 2006, 77, 041101.

Farnia, P.; Najafzadeh, E.; Hariri, A,; Lavasani, 5.N.; Makkiabadi, B., Ahmadian, A.; Jokerst, ].V. Dictionary learning
technique enhances signal in LED-based photoacoustic imaging. Biomedical Optics Express 2020, 11, 2533-2547.

Hoelen, C.; De Mul, F.; Pongers, R.; Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Optics
letters 1998, 23, 648-650.

Raumonen, P; Tarvainen, T. Segmentation of vessel structures from photoacoustic images with reliability assessment.
Biomedical optics express 2018, 9, 2887-2904.

Najafzadeh, E.; Ghadiri, H.; Alimohamadi, M.; Farnia, P.; Mehrmohammadi, M.; Ahmadian, A. Evaluation of
multi-wavelengths LED-based photoacoustic imaging for maximum safe resection of glioma: a proof of concept study.
International Journal of Computer Assisted Radiology and Surgery 2020.

Karthikesh, M.S.; Yang, X.J.E.B.; Medicine. Photoacoustic image-guided interventions. 2020, 245, 330-341.

Han, S.H.J.N. Review of photoacoustic imaging for imaging-guided spinal surgery. 2018, 15, 306.

Kubelick, K.P.; Emelianov, S.Y.J.U.i.M.; Biology. A Trimodal Ultrasound, Photoacoustic and Magnetic Resonance Imaging
Approach for Longitudinal Post-operative Monitoring of Stem Cells in the Spinal Cord. 2020, 46, 3468-3474.

Iversen, D.H.; Wein, W.; Lindseth, F.; Unsgard, G.; Reinertsen, I. Automatic intraoperative correction of brain shift for
accurate neuronavigation. World neurosurgery 2018, 120, €1071-e1078.

Reinertsen, I.; Descoteaux, M.; Siddiqi, K.; Collins, D.L. Validation of vessel-based registration for correction of brain shift.
Medical image analysis 2007, 11, 374-388.

Chen, S.J.-S.; Reinertsen, I; Coupé, P.; Yan, C.X.; Mercier, L.; Del Maestro, D.R.; Collins, D.L. Validation of a hybrid
Doppler ultrasound vessel-based registration algorithm for neurosurgery. International journal of computer assisted radiology

and surgery 2012, 7, 667-685.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 18

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Farnia, P.; Ahmadian, A.; Khoshnevisan, A.; Jaberzadeh, A.; Serej N.D.; Kazerooni, A.F. An efficient point based
registration of intra-operative ultrasound images with MR images for computation of brain shift; A phantom study. In
Proceedings of the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the
IEEE, 2011; pp. 8074-8077.

Arbel, T.; Morandi, X.; Comeau, R.M.; Collins, D.L. Automatic non-linear MRI-ultrasound registration for the correction of
intra-operative brain deformations. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2001; pp. 913-922.

Ji, S.; Hartov, A, Roberts, D.; Paulsen, K. Mutual-information-corrected tumor displacement using intraoperative
ultrasound for brain shift compensation in image-guided neurosurgery. In Proceedings of the Medical Imaging 2008:
Visualization, Image-Guided Procedures, and Modeling, 2008; p. 69182H.

Wein, W,; Ladikos, A.; Fuerst, B.; Shah, A.; Sharma, K.; Navab, N. Global registration of ultrasound to MRI using the LC 2
metric for enabling neurosurgical guidance. In Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2013; pp. 34-41.

Coupé, P.; Hellier, P.; Morandi, X.; Barillot, C. 3D rigid registration of intraoperative ultrasound and preoperative MR
brain images based on hyperechogenic structures. Journal of Biomedical Imaging 2012, 2012, 1.

Rivaz, H.; Karimaghaloo, Z.; Collins, D.L. Self-similarity weighted mutual information: a new nonrigid image registration
metric. Medical image analysis 2014, 18, 343-358.

Rivaz, H.; Chen, S.J.-S.; Collins, D.L. Automatic deformable MR-ultrasound registration for image-guided neurosurgery.
IEEE transactions on medical imaging 2015, 34, 366-380.

Machado, I; Toews, M.; George, E.; Unadkat, P.; Essayed, W.; Luo, J.; Teodoro, P.; Carvalho, H.; Martins, J.; Golland, P.
Deformable MRI-ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy
and generality in multi-site data. Neurolmage 2019, 202, 116094.

Zhang, Q.; Liu, Y.; Blum, R.S; Han, ].; Tao, D. Sparse representation based multi-sensor image fusion for multi-focus and
multi-modality images: A review. Information Fusion 2018, 40, 57-75.

Farnia, P.; Ahmadian, A.; Shabanian, T.; Serej, N.D.; Alirezaie, J. A hybrid method for non-rigid registration of
intra-operative ultrasound images with pre-operative MR images. In Proceedings of the Engineering in Medicine and
Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014; pp. 5562-5565.

Farnia, P.; Makkiabadi, B.; Ahmadian, A.; Alirezaie, J. Curvelet based residual complexity objective function for non-rigid
registration of pre-operative MRI with intra-operative ultrasound images. In Proceedings of the Engineering in Medicine
and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, 2016; pp. 1167-1170.

Huang, K. Aviyente, S. Sparse representation for signal classification. In Proceedings of the Advances in neural
information processing systems, 2007; pp. 609-616.

Roozgard, A.; Barzigar, N.; Verma, P.; Cheng, S. 3D-SCoBeP: 3D medical image registration using sparse coding and belief
propagation. International Journal of Diagnostic Imaging 2014, 2, 54.

Nam, S.; Davies, M.E.; Elad, M.; Gribonval, R. The cosparse analysis model and algorithms. Applied and Computational
Harmonic Analysis 2013, 34, 30-56.

Zhou, N.; Jiang, H.,; Gong, L.; Xie, X. Double-image compression and encryption algorithm based on co-sparse
representation and random pixel exchanging. Optics and Lasers in Engineering 2018, 110, 72-79.

Kiechle, M.; Hawe, S.; Kleinsteuber, M. A joint intensity and depth co-sparse analysis model for depth map
super-resolution. In Proceedings of the Proceedings of the IEEE international conference on computer vision, 2013; pp.

1545-1552.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

757
758

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.453095; this version posted October 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 18

63. Kiechle, M.; Habigt, T.; Hawe, S.; Kleinsteuber, M. A bimodal co-sparse analysis model for image processing. International
Journal of Computer Vision 2015, 114, 233-247.

64. Han, C.; Zhang, H.; Gao, C,; Jiang, C.; Sang, N.; Zhang, L. A Remote Sensing Image Fusion Method Based on the Analysis
Sparse Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2016, 9, 439-453.

65. Gao, R.; Vorobyov, S.A.; Zhao, H. Image fusion with cosparse analysis operator. [EEE Signal Processing Letters 2017, 24,
943-947.

66. Farnia, P.; Najafzadeh, E.; Ahmadian, A.; Makkiabadi, B.; Alimohamadi, M.; Alirezaie, J. Co-sparse analysis model based
image registration to compensate brain shift by using intra-operative ultrasound imaging. In Proceedings of the 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018; pp. 1-4.

67. Ren, W; Skulason, H.; Schlegel, F.; Rudin, M.; Klohs, J.; Ni, R. Automated registration of magnetic resonance imaging and
optoacoustic tomography data for experimental studies. Neurophotonics 2019, 6, 025001.

68. Gehrung, M.; Tomaszewski, M.; Mclntyre, D.; Disselhorst, J.; Bohndiek, S. Co-Registration of Optoacoustic Tomography
and Magnetic Resonance Imaging Data from Murine Tumour Models. Photoacoustics 2020, 100147.

69. Surry, K.; Austin, H.; Fenster, A.; Peters, T. Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging.
Physics in Medicine & Biology 2004, 49, 5529.

70. Myronenko, A.; Song, X. Intensity-based image registration by minimizing residual complexity. IEEE transactions on
medical imaging 2010, 29, 1882-1891.

71. Hawe, S.; Kleinsteuber, M.; Diepold, K. Analysis operator learning and its application to image reconstruction. IEEE
Transactions on Image Processing 2013, 22, 2138-2150.

72. Cai, S.; Kang, Z.; Yang, M.; Xiong, X.; Peng, C.; Xiao, M.].S. Image denoising via improved dictionary learning with global
structure and local similarity preservations. 2018, 10, 167.

73. Zhang, Q.; Fu, Y.; Li, H.; Zou, ]. Dictionary learning method for joint sparse representation-based image fusion. Optical

Engineering 2013, 52, 057006.


https://doi.org/10.1101/2021.07.28.453095
http://creativecommons.org/licenses/by-nd/4.0/

