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ABSTRACT

Alzheimer’s disease (AD) accounts for 60% of dementia cases worldwide; patients with the disease typically
suffer from irreversible memory loss and progressive decline in multiple cognitive domains. With brain imaging
techniques such as magnetic resonance imaging (MRI), microscopic brain changes are detectable even before
abnormal memory loss is detected clinically. Patterns of brain atrophy can be measured using MRI, which
gives us an opportunity to facilitate AD detection using image classification techniques. Even so, MRI scanning
protocols and scanners differ across studies. The resulting differences in image contrast and signal to noise
make it important to train and test classification models on multiple datasets, and to handle shifts in image
characteristics across protocols (also known as domain transfer or domain adaptation). Here, we examined
whether adversarial domain adaptation can boost the performance of a Convolutional Neural Network (CNN)
model designed to classify AD. To test this, we used an Attention-Guided Generative Adversarial Network (GAN)
to harmonize images from three publicly available brain MRI datasets - ADNI, AIBL and OASIS - adjusting for
scanner-dependent effects. Our AG-GAN optimized a joint objective function that included attention loss, pixel
loss, cycle-consistency loss and adversarial loss; the model was trained bidirectionally in an end-to-end fashion.
For AD classification, we adapted the popular 2D AlexNet CNN to handle 3D images. Classification based on
harmonized MR images significantly outperformed classification based on the three datasets in non-harmonized
form, motivating further work on image harmonization using adversarial techniques.
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1. INTRODUCTION

Alzheimer’s disease (AD) - the most prevalent form of dementia - affects more than 20 million individuals
worldwide. The disease is characterized by progressive memory loss, and patients often show impairments across
multiple cognitive domains that worsen over a period of many years. Neuroimaging can identify anatomical and
molecular brain changes in AD - beyond those typically seen with normal aging - such as accelerated gray and
white matter atrophy, build-up of beta-amyloid deposits, and abnormal tau protein aggregates 1. In the U.S.
alone, there are over 6 million cases of AD 2 - a number projected to double by the year 2050 3.

In 2018, a new consensus definition of biological Alzheimer’s disease was proposed, based on the presence of
abnormal biomarkers such as elevated brain amyloid and tau proteins, and neurodegeneration detected as atrophy
on brain MRI. Of the biomarkers considered, the high cost and limited availability of PET, and the invasiveness
of lumbar puncture procedures to measure protein in the cerebro-spinal fluid, led to interest in more convenient
and less invasive assessments such as brain MRI. A convenient diagnostic test for AD based on conventional
brain MRI would be highly beneficial to assist diagnosis and to help screen individuals for drug trials, perhaps
as a precursor to more invasive but definitive tests such as PET or direct measures of CSF 4. MRI scans capture
the spreading profile of neuronal cell loss progressing from the brain’s medial temporal lobes and hippocampus
to the association regions of the cortex, eventually spreading to frontal and primary sensory cortices 5, 6.
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Various machine learning methods based on convolutional neural networks (CNNs) have demonstrated re-
markable performance in a broad range of image classification tasks, from handwritten digit identification to
labeling of natural images 7,8. Even so, CNNs such as AlexNet, VGG and ResNet are trained on vast image
datasets, that greatly outnumber the available public datasets of medical imaging data. This calls for techniques
that that generalize well across multiple data sources even when trained on smaller datasets (typically hundreds
of images).

1.1 Relevant Prior Work

Many prior machine learning studies have used brain MRI, often combined with other imaging modalities or
genetic data, to distinguish patients with Alzheimer’s disease from age-matched cognitively normal elderly indi-
viduals, or from people with other diseases or subtypes of dementia. Unsupervised clustering has also been used
to subtype patients with different types of dementia 9, and to predict cognitive decline, such as conversion from
mild cognitive impairment to AD over a given time period 10.

Within the class of deep learning models based on CNNs in particular, we recently proposed a multi-task 3D
CNN that uses an attention mechanism to classify AD and also estimate a person’s age from their MRI scan, a
popular benchmarking task, known as the brain age problem 11.

Variations on this basic CNN architecture include the use of hybrid recurrent neural networks (RNNs) to
compile information across series of 2D MRI slices 12 as well as techniques for boosting performance, including
data augmentation and pre-training 13.

One very large scale study (using 85,721 MRI scans) 14 applied a state-of-the-art deep CNN, Inception-
ResNet-V2, to a sex classification task, and then adapted the pre-trained network to AD classification, achieving
over 90% accuracy on 3 public datasets.

Even so, domain transfer is an important issue for such algorithms: MRI scanners and protocols vary, and
algorithms trained on data from one scanner can perform poorly when tested on data collected on another
scanner, or with a different protocol. Efforts to mitigate this problem include the use of generative adversarial
networks (GANSs) to adjust images so that they resemble those in a reference set or training set (also known as
adversarial domain adaptation). GANs can be combined with variational autoencoders (VAEs) to embed the
imaging information into a latent space that is designed to be scanner-invariant; in that case, the adversary
(discriminator) in the GAN can be designed to determine what site or scanner the scan came from, and a data
embedding can be generated that makes it harder for the discriminator to determine this, while still retaining
features important for other primary tasks, such as classification, and also minimizing a measure of image
reconstruction loss. In one such approach, Dinsdale et al. 15 developed a GAN to create scanner-invariant
features while simultaneously maintaining performance on a task of interest, which was predicting brain age.
Others have used cycleGAN methods on paired data (from a set of people scanned on multiple scanners or with
multiple protocols) to interconvert data across scanning protocols 16.

Others have used StyleGANSs to separate the content and style of images, and to translate images from one
domain to another, without requiring paired training data 17,18. In a recent innovation, Zuo et al. proposed a
multisite image harmonization framework, CALAMITI, that learns a disentangled latent space to interconvert
multimodal MRI across 8 scan sites. In their approach, by separating the anatomical representation, which is
is scanner-invariant from a contrast representation, which contains scan protocol-specific information, they were
able to generate harmonized data for any pair of individuals and scanners.19

In this work, we examined whether adversarial domain adaptation can boost the performance of a CNN model
that is designed to classify Alzheimer’s disease. To train and test the method on data with realistic diversity of
scanners and populations, we evaluated our method on three public datasets, ADNI, OASIS, and AIBL (detailed
in the Methods section). Adopting a recent innovation, we used an attention mechanism to focus the GAN
on key features in the image for harmonization; we then translated MRI images from AIBL and OASIS to the
reference ADNI format using the Attention-Guided GAN; finally, we compared the performance of our image
classification model for classifying Alzheimer’s disease in two sets of data - one consisting of GAN-harmonized
images and the other consisting of the original, uncorrected data. Our work is similar in spirit to that of Guan
et al. whose attention-guided deep domain adaptation framework (AD?A) classified patients with Alzheimer’s
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disease across 2 public domain datasets using an attention mechanism to identify discriminative regions (as we
did in 11) and adversarial learning for domain transfer. Our approach differs in several respects from that paper
as we use an attention mechanism to guide domain transfer, rather than to identify discriminative regions for
disease classification 20.

2. METHOD
2.1 Dataset details

In this work, we analyzed three publicly available brain MRI datasets, consisting of standard high quality T1-
weighted 3D anatomical scans. The first dataset consisted of scans from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) 21. This included 1,016 subjects, of whom 329 were clinically diagnosed with AD and the
remainder were from the control group. The scans include patients primarily from the ADNI2 and ADNI3
studies (second and third phases of ADNI), along with participants from the baseline study (ADNI1) as well
as ADNI-GO. The scans were pre-processed by performing reorientation using 22, followed by skull stripping
using HDBet 23 which was then followed by bias field correction using N/BiasCorrection 24 and then finally
performing a 6 degrees of freedom (rigid-body) registration to MNI152 space using FSL 22. The scans were then
down-sampled to 2-mm resolution using ANTS 25.

The second dataset consisted of T1-weighted brain MRI scans from the Australian Imaging Biomarker and
Lifestyle study (AIBL) 26, which included 628 participants, all clinically diagnosed with AD.

The final dataset was from the Open Access Series of Imaging Studies (OASIS); this dataset included 235
subjects of whom 47 were clinically diagnosed with AD, and the rest were cognitively normal controls.

For harmonization of MRI scans from AIBL to the ADNI format, we selected 620 subjects at random from
ADNI and AIBL. In addition, for the conversion from OASIS to ADNI we selected 234 subjects at random from
ADNI and OASIS. The above subjects were divided into training and testing sets as per the distribution shown
in first part of Table 1.

For the second task, i.e., classification of Alzheimer’s disease, we studied two different scenarios: the first
used a combination of scans from ADNI, AIBL and OASIS in non-harmonized form and the other included AIBL
and OASIS scans after being converted to ADNI format by the AG-GAN network, along with the original ADNI
scans. We used 30 2D slices per scan, selected from specific coordinate positions from the axial, sagittal and
coronal sections, as described in section 2.2. The training, testing and validation split was performed randomly
and - to ensure a fair comparison - the corresponding training, testing and validation sets for the harmonized
and non-harmonized scenarios consisted of identical sets of 2D slices. The dataset distribution by number of
patients is shown in the second part of Table 1.

CN | AD
Training subjects 700 | 796
Validation subjects | 87 99
Test subjects 88 100

AIBL to ADNI | OASIS to ADNI
train subjects 496 187
test subjects 124 47

Table 1. Domain adaptation and AD prediction task dataset distributions

2.2 Image Pre-processing

For both harmonization and prediction tasks we used sets of 2D slices from the 3D MRI scans. Based on our
prior work comparing fully 3D convolutions (with 3D kernels) to 2D convolutions performed on sets of slices, the
latter are more efficient to train and test and lead to more compact models with fewer parameters but comparable
performance.

Ten slices were taken respectively from each of the coronal, sagittal and axial sections, yielding 30 slices of 2D
images per subject. For the harmonization task, the images were resized to 128*128. However, for our prediction
task, we performed multiple experiments by slicing the 3D scans at different indices. As the images were first


https://doi.org/10.1101/2021.07.26.453862
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453862; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

linearly registered to a standard coordinate space, there is consistent sampling of anatomy across scans, despite
some individual variations in anatomy. Hence, ten slices of images around the chosen indexes (5 before and 5
after the index) for each of the three canonical views were selected as sets of 2D images to create our dataset. An
assumption of this approach is that the predictive information is not found solely in the discarded slices, which
is a fair assumption for Alzheimer’s disease as its effects are diffuse throughout the brain, with some redundancy
of information (we test this assumption and evaluate slice selection later in the paper). The images were resized
to 224*224 for input to AlexNet. Figures 1, 2 and 3 show examples of the selected 2D slices for participants
from ADNI, OASIS and AIBL respectively at specific canonical slice locations. The figures show example slices
from the 3 canonical views per scan, as discussed above.

Figure 1. 2D slice representation showing y-coronal, x-sagittal, and z-axial views of the brain (MNI template, ADNI
scan) when for slices intersecting at (15,15,15) and (25,25,25).

Figure 2. 2D slice representation showing y-coronal, x-sagittal, and z-axial views of the brain (MNI template, OASIS
scan) when for slices intersecting at (15,15,15) and (25,25,25).

Figure 3. 2D slice representation showing y-coronal, x-sagittal, and z-axial views of the brain (MNI template, AIBL
scan) when for slices intersecting at (15,15,15) and (25,25,25).

2.3 Attention GAN

For our MRI image harmonization task, we adapted the attention GAN model from 17, which was previously
introduced to adjust facial expressions (e.g., smiling to not smiling) in 2D color photographs of faces, via style
transfer.

Generative adversarial networks are capable of image translation from one domain to another; recent in-
novations enable this to be performed using unpaired image data. However, the generators may be incapable
of identifying the most distinctive parts of the images, leading to low-quality generated images and failures to
translate their high-level content. This challenge was handled in 17 using a novel AG-GAN model, also known as
an attention GAN. A key advantage of this model is the ability to limit undesirable changes to the image content
without relying on additional domain-specific information, along with the ability to detect distinctive features
across imaging protocols. The AG-GAN uses attention-guided generators which have in-built architecture to
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Figure 4. The framework of the Attention-Guided Generative Adversarial Network (AG-GAN) model used here, showing
the mathematical transformation mapping for translating subject « to subject y. There are in-built attention mechanisms
in the generators to identify the part of images with maximum distinctions. Architecture adapted from 17, with component
panels shown from our neuroimaging application.
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Figure 5. Output of the AG-GAN model given an input domain image along with the attention masks, content masks
and the harmonized target domain image

generate attention masks and incorporate those with the input image; this, in turn, generates high-quality target
domain images.

The authors of 17 also proposed area-specific attention-guided discriminators. The loss functions used by
the AG-GAN include attention loss, a pixel loss (defined as an L1 distance between the input images and the
generated images), a cycle-consistency loss and adversarial loss. The model was trained bidirectionally in an end
to end fashion. Figure 5 shows the framework outputs given an input domain image.

2.4 2D AlexNet

AlexNet is a widely-used 2D CNN with fully connected layers. The network contains a total of eight layers; the
first five are convolutional and the last three are fully connected. The AlexNet architecture, as shown in Figure
6, is reproduced from 7.

As defined in 7, a 1000-way softmax, capable of reproducing 1000 class label distributions is fed the output
from the last fully connected layer. A key factor that makes AlexNet effective is its ability to maximize the
multinomial logistic regression objective function. The 3rd convolutional layer’s kernels are connected to all of
the kernels from the previous layer whereas to make the network GPU efficient, the 2nd, 4th and 5th layer’s
kernels are only connected to those from the previous layer, which were on the same GPU. The fully connected
layers had all of their neurons connected to their previous layers. The output from each of the layers have RelLU
non-linearity applied to them. The input to the network is an image of size 224*224*3 which is then filtered by
96 kernels with a 4-pixels stride, each having size 11*11*3. As shown in Figure 6, we can see the representation of
functionalities among the GPUs. Both of them run separate layer parts at the top and bottom, and interaction
occurs only at specific layers.
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Figure 6. AlexNet architecture

3. RESULTS AND EVALUATION
3.1 AIBL to ADNI MRI Harmonization task

The goal of this task is to convert individual images from the AIBL dataset to appear as though they were
collected using the ADNI imaging protocol, with comparable contrast and features to the ADNI data, while
preserving the anatomical details of the person scanned. We trained the attention GAN network for 100 epochs
on the dataset distribution mentioned in section 2.1. Figure 7 and 8 show sample translations for AIBL to ADNI
domain adaptation and the training losses respectively.

Real AIBL Harmonized ADNI Real ADNI Harmonized AIBL
(A2B) (A2B) (B2A) (B2A)

Figure 7. AIBL to ADNI translation sample result

We evaluated the performance of the GAN models using the metrics listed below.

e SSIM (Structural similarity): compares the similarity between images before and after harmonization to
different scans using the structural similarity index measure (SSIM) as a metric. SSIM attempts to model
the perceived change in the structural information of the image 27.

e Locality sensitive hashing: uses LSH to find average similarity between images before and after harmoniza-
tion.

We achieved 0.65 SSIM value for the original AIBL images and 0.66 for the harmonized images which
suggests that the structural similarities between the subjects are preserved even after harmonization. Also, the
harmonized AIBL images had a LSH value of 0.90 as compared to 0.91 for the original images. The high LSH
similarity suggests that AIBL was translated to ADNI format with reasonable style similarity.

3.2 OASIS to ADNI MRI Harmonization task

Similar to the AIBL harmonization task, we trained the attention GAN network for 100 epochs on the dataset
distribution mentioned in section 2.1. Figure 9 and 10 show sample translations from OASIS to ADNI domain
adaptation and the training losses respectively.
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Figure 9. OASIS to ADNI translation sample result

We evaluated the performance of the GAN models using the metrics defined in section 2.5.1 and achieved
0.6706 SSIM value for the original OASIS images and 0.6717 for the harmonized images which again suggests
that the structural similarities were preserved. Also, the LSH values for harmonized images and original OASIS
images were 0.905 and 0.909 respectively thereby ascertaining that OASIS images were translated to ADNI
format preserving good style similarity.

Discriminator and Generator training loss curve GAN training loss

= Discriminator Loss == Generator Loss — GANloss A28 == GAN loss B2A

‘\Mm”v A M At

SNMANAA__ ]
80 100
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Figure 10. OASIS to ADNI translation loss curve

3.3 Alzheimer’s Disease classification

We trained the AlexNet model defined in section 2.4 for classifying Alzheimer’s disease from the sets of 2D
image slices. We conducted multiple experiments using different sets of input 2D images by slicing the scans
at various indices, to evaluate the impact of selecting different slice positions on the performance of the model
and to consolidate our hypothesis that domain adaptation improves Alzheimer’s detection using deep learning
methods irrespective of the slice index positions. We trained our model for 35 epochs for both harmonized and
non-harmonized datasets while maintaining identical hyperparameters for both sets of experiments, to observe
the difference in performance as a result of harmonization. Table 2 shows the accuracy of our model in classifying
people with Alzheimer’s disease, for both the original and harmonized sets of images.

To test whether it improved model performance, we increased the number of 2D image slices from 30 to 120
per scan for training and testing. We chose indexes 20-59 in order to retrieve those 120 slices per scan. From
Table 2 we can see that for index range 20-59 the model gives the highest accuracy for both harmonized and
non-harmonized data sets.
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Slice index range | Accuracy for original images | Accuracy for harmonized images
10:19 58.00% 76.60%
20:29 71.74% 83.20%
30:39 73.99% 84.09%
40:49 74.03% 83.39%
50:59 73.82% 82.87%
20:59 76.65% 84.79%

Table 2. Alzheimer’s Disease classification model performance

Figure 9 shows the training loss and training vs validation accuracy for the best performing case, using the
non-harmonized set of images for classifying Alzheimer’s disease.

training vs validation accuracy
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Figure 11. Training loss and training vs validation accuracy curves using non harmonized data for indices 20-59

The model when tested on test set images gave an accuracy of 76.65%.

We repeated the same experiment on the corresponding harmonized set of images - consisting of AIBL and
OASIS 2D slices translated to ADNI format along with original ADNI images, and we observed the training loss
and training vs validation accuracy shown in Figure 10.
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Figure 12. Training loss and training vs validation accuracy curves using harmonized data for slice indices 20-59

The model when tested on harmonized test set images gave an accuracy of 84.79%. We also performed
domain adaptation and performed AD classification on MRI scans registered using 9DOF (allowing scaling
rather than rigid-body alignment) with the same dataset distribution as the above experiment and achieved the

performance shown in Table 3.

The experimental results show that domain adaptation of MRI scans from different sources to a single source
increases Alzheimer’s disease classification performance by an average margin of more than 8% irrespective of

the slice index positions, as can be seen from Tables 2 and 3.


https://doi.org/10.1101/2021.07.26.453862
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.26.453862; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Slice index range | Accuracy for original images | Accuracy for harmonized images
20:59 71.81% 84.80%

Table 3. Alzheimer’s Disease classification model performance after 9DOF registration of scans

We also tested our hypothesis for both the brain hemispheres and for the range of indices (-70,-30) we achieved
the accuracy as shown below in Table 4.

Slice index range | Accuracy for original images | Accuracy for harmonized images
-70:-30 75.60% 84.20%

Table 4. Alzheimer’s Disease classification model performance using opposite hemisphere for training and testing

As AIBL comprised of only AD cases, we tested our hypothesis using only ADNI and OASIS, and observed a
2-3% increase in accuracy as shown in Table 5. The marginal increase in accuracy as compared to our previous
scenarios may reflect the lower number of OASIS subjects and a significant domain shift with ADNI dominating
the dataset.

Slice index range | Accuracy for original images | Accuracy for harmonized images
20:59 73.94% 75.20%

Table 5. Alzheimer’s Disease classification model performance using only ADNI and OASIS data with ADNI dominating
the domain shift

4. DISCUSSION

With over 20 million people worldwide suffering from Alzheimer’s disease - a number expected to double by
the year 2050, accurate detection of Alzheimer’s disease becomes an utmost priority. Neuroimaging provides
us with discernible information on changes in the brain’s macroscopic structure that can be leveraged by image
classification models. However, as MRI scanners vary, neural networks trained on data from one source can under-
perform when tested on data from a different source. It is therefore important to perform domain adaptation
across datasets collected from different imaging centers. As scanners differ, as do the scanning protocols employed,
the MRI scans generated across sites differ in contrast, resolution, and tissue class differentiation, yielding
different intensities that can lead to poor performance in image classification. In this work, we showed that
harmonizing MRI scans from different sources to a uniform format significantly improved the classification
performance as compared to the case when we use the original, heterogeneous MRI formats. This can help us
to merge medical imaging data from multiple sources to learn a better model. This is especially valuable when
data relevant to a task is limited. For future work we plan to train our model with even less harmonized data to
determine if models based on harmonized data can learn discriminative features more efficiently. We also plan
to study how the selection of the reference dataset affects the results. We also plan to compare our method to
alternative approaches that perform harmonization directly on 3D MRI scans rather than selected sets of 2D
image slices.
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