

1 **Neuroprotective, antioxidant and antiproliferative activity of**

2 **grapefruit IntegroPectin on SH-SY5Y cells**

3 **Domenico Nuzzo ¹, Miriana Scordino ², Antonino Scurria ³, Costanza Giardina ², Francesco Giordano ³, Francesco**
4 **Meneguzzo ⁴, Giuseppa Mudò ², Mario Pagliaro ³, Pasquale Picone ¹, Alessandro Attanzio ⁵, Stefania Raimondo ⁶,**
5 **Rosaria Ciriminna ^{3,*} and Valentina Di Liberto ^{2,*}**

6 ¹ Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy

7 ² Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory
8 129, 90134 Palermo, Italy

9 ³ Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy

10 ⁴ Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

11 ⁵ Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via
12 Archirafi 32, 90123 Palermo, Italy

13 ⁶ Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Via Divisi 83,
14 90133 Palermo, Italy

15 * Correspondence: valentina.diliberto@unipa.it; rosaria.ciriminna@cnr.it.

16 **Abstract:** Tested *in vitro* on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful
17 neuroprotective, antioxidant and antiproliferative agent. The strong antioxidant properties of
18 grapefruit IntegroPectin, and its ability to preserve mitochondrial membrane potential and mor-
19 phology, severely impaired in neurodegenerative disorders, make this new biopolymer highly sol-
20 uble in water an attractive therapeutic agent for oxidative stress-associated brain disorders. Simi-
21 larly, the ability of this new citrus pectin rich in naringin, linalool, linalool oxide and limonene ad-
22 sorbed at the outer surface to inhibit cell proliferation or even kill, at high doses, neoplastic cells,
23 coupled to its excellent health and safety profile, opens up new therapeutic strategies in cancer re-
24 search. In order to take full advantage of its vast therapeutic and preventive potential, detailed stu-
25 dies of molecular mechanism involved in the antiproliferative and neuroprotective of IntegroPectin
26 are urgently needed.

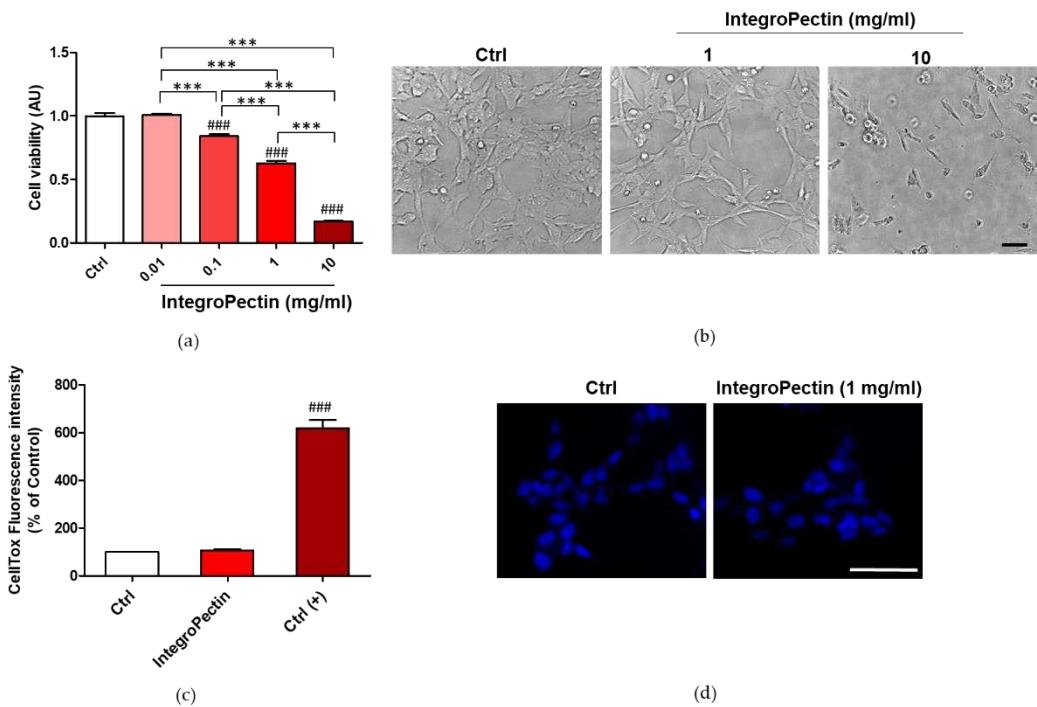
27 **Keywords:** pectin; cell cycle; hydrodynamic cavitation; oxidative stress; mitochondria; neurological
28 disease; neurodegeneration; anticancer; antitumor; phytochemicals

30 **1. Introduction**

31 Globally contributing 16.5% of deaths from all causes and 11.6% of global disability-
32 adjusted life-years in year 2016, neurological disorders (NDs) are the second leading
33 group cause of deaths in the world [1]. In recent years NDs have increased significantly
34 due to the ageing of the population, malnutrition, various forms of environmental pollu-
35 tion, lifestyle, diet [2], viral infections and other environmental and social factors [3]. Caus-
36 ing cell damage, oxidative stress is one of the main mechanisms involved in NDs, since it
37 alters numerous cellular processes such as mitochondrial homeostasis [4], DNA repair
38 and cell signalling propagating cell damage and leading to incurable neurodegenerative
39 diseases [5].

40 To date, no effective synthetic or natural drugs are available for preventing or treating
41 NDs such as Alzheimer's, Parkinson's disease, and amyotrophic lateral sclerosis. Hence,
42 plentiful research has been devoted to search bioactive natural compounds to be used as
43 neuroprotective and neuroregenerative agents. For example, algae-derived antioxidant
44 molecules such as phycocyanins have been successfully used to inhibit cellular oxidative
45 stress, mitochondrial dysfunction and apoptosis, and increase neuronal viability in an *in*
46 *vitro* model of Alzheimer's disease [6,7]. In general, antioxidant molecules from naturally
47 derived sources exhibit high bioavailability and significantly greater efficacy than syn-

98


2. Results

99

2.1. Effect on SH-SY5Y cell viability

100

We first evaluated the effect of different concentrations of grapefruit IntegroPectin on cell viability of SH-SY5Y cells. As shown in Figure 1a, displaying the outcomes of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay, 24 h treatment with the new citrus pectin caused a dose-dependent reduction in cell viability, which became significant for doses exceeding 0.1 mg/ml. At 10 mg/ml dose, only a few cells remained viable. Similar results were obtained for treatment prolonged up to 48 h, and in human lung carcinoma cells H292 (data not shown). However, while the dose of 10 mg/ml produced clear cytotoxic effects, as evidenced by morphological analysis (Figure 1b), the 1 mg/ml dose was not associated to alteration of cell morphology (Figure 1b) and to significant increase in cell death, as shown by the cytotoxicity (CellTox) assay (Figure 1c) and by the healthy morphology of cell nuclei counterstained with DAPI (4',6-diamidino-2-phenylindole) fluorescent dye (Figure 1d).

112

Figure 1. Dose dependent effects of grapefruit IntegroPectin on neuronal cell viability. (a) Cell viability of IntegroPectin treatment (24 h) in dose dependent experiment; (b) Representative morphological images of untreated cells (Ctrl) or cells treated with different doses (1, 10 mg/ml) of IntegroPectin (24 h); (c) Cytotoxicity associated to IntegroPectin treatment (1 mg/ml, 24h), evaluated by fluorescence developed by CellTox Green Cytotoxicity Assay. Positive control Ctrl (+) is represented by cell exposure to lysis buffer; (d) Microscopy inspection of DAPI-labeled nuclei in Ctrl cells or treated with IntegroPectin (24 h). ### p < 0.001 as compared to control (Ctrl) group; *** p < 0.001. Scale bar 50 μ m.

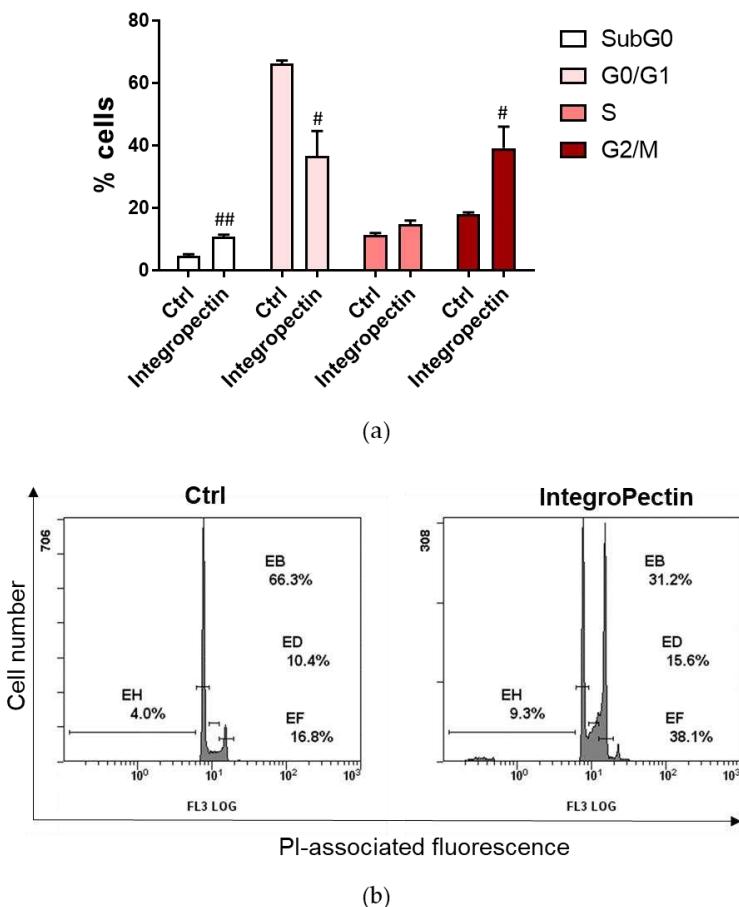
120

121

Therefore, in order to understand the results of the MTT test and the absence of cell death at the dose of 1 mg/ml, we next analyzed the eventual cytostatic effects.

122

123

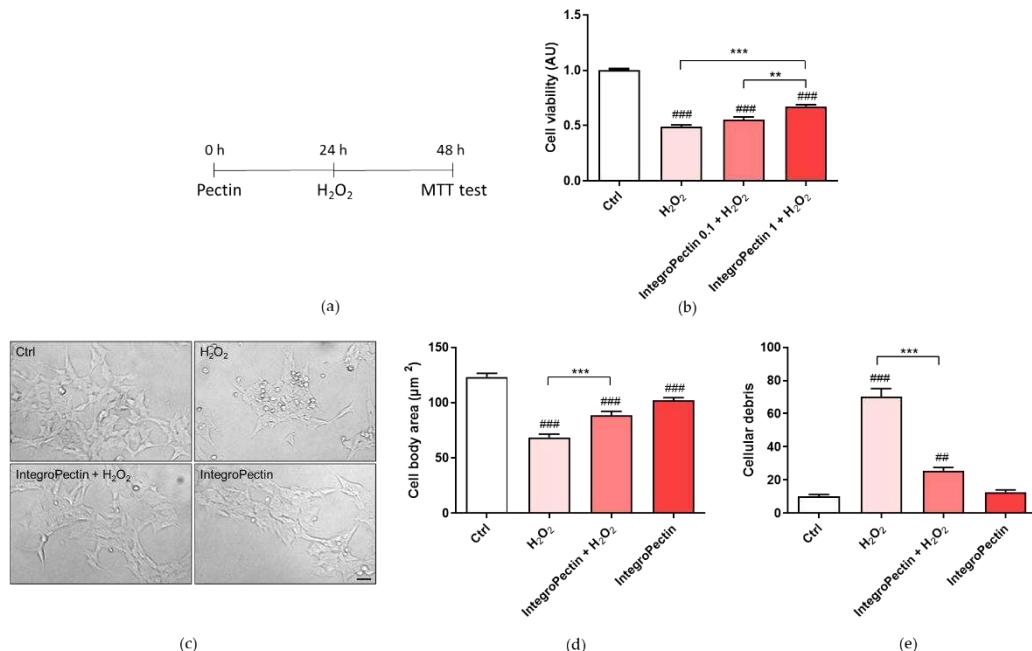

124

125

126

127 2.2. Cytostatic effect on SH-SY5Y cells

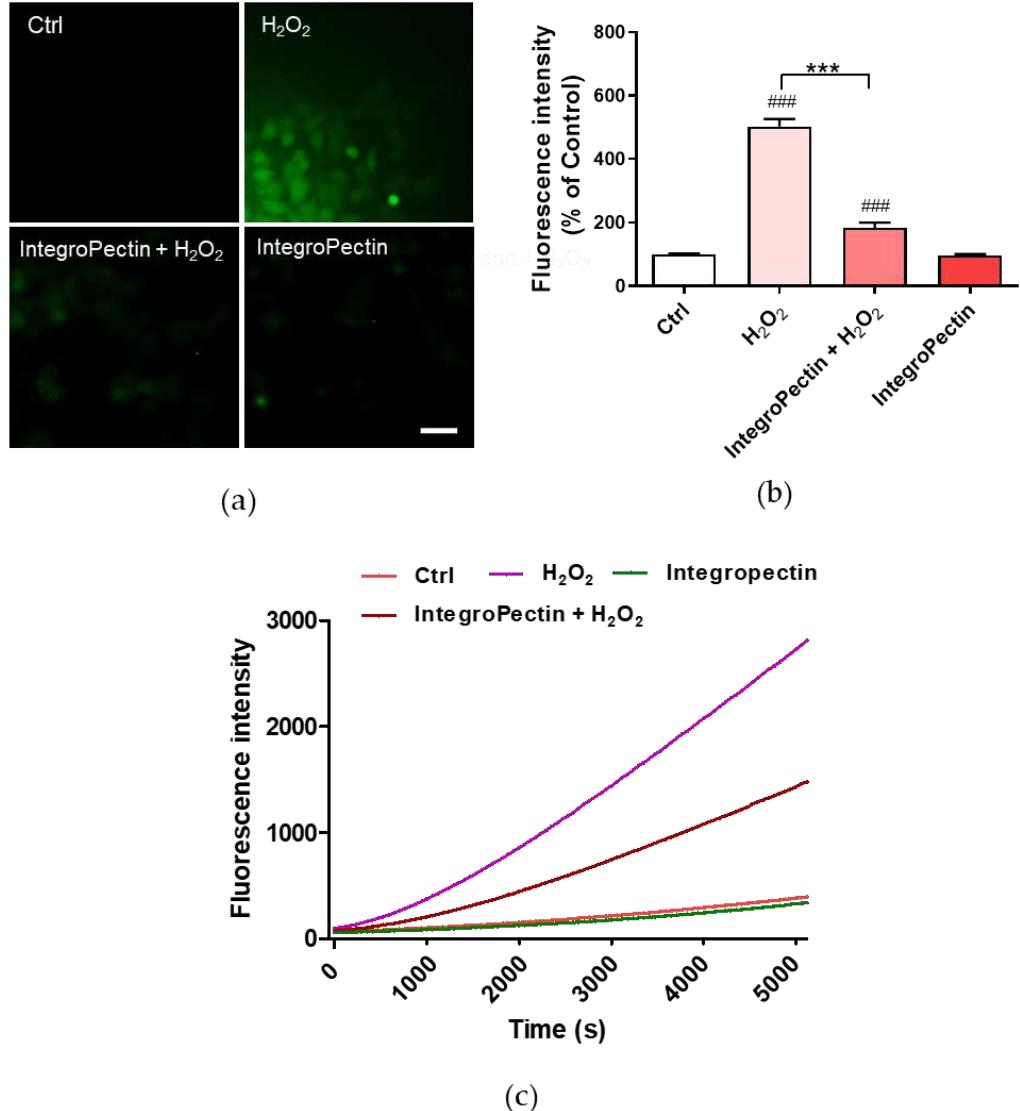
128 The distribution of cells in the different phases of the cell cycle, analyzed by cyto-
129 fluorimetry analysis of cellular DNA content following cell staining with propidium iodide (PI),
130 shed insight on the cytostatic effect of the new grapefruit pectin on neuronal
131 model cells. As shown in Figure 2, treatment with grapefruit IntegroPectin produces a cell
132 cycle arrest exactly at the G₂/M phase. We briefly remind that the growth 2 phase (G₂
133 phase) is the third subphase of interphase in the cell cycle directly preceding mitosis, and
134 that cell cycle arrest at the G₂/M phase indicates that the damage of intracellular DNA is
135 difficult to repair [25]. The G₂/M-phase checkpoint usually prevents cells with damaged
136 DNA from undergoing mitosis by the inhibition of the mitotic complex CDK1-cyclin B
137 and activation of the apoptosis cascade [26]. However, we did not detect any increase in
138 cell death when treatment was prolonged up to 5 days (data not shown).



139 **Figure 2.** Effect of grapefruit IntegroPectin on the cell cycle distribution of SH-SY-5Y cells. Percent-
140 age (%) of cell distribution of untreated (Ctrl) cells and cells treated for 24 h with IntegroPectin (1
141 mg/ml) in different phases of the cell cycle, assessed by flow cytometry analysis after propidium
142 iodide (PI) staining; (b) Representative images. # p < 0.05, ## p < 0.01 as compared to control (Ctrl) group
143

144 We thus assessed the potential antioxidant and neuroprotective properties of the
145 new citrus pectin in cells exposed to concentrated (0.2 M) aqueous H₂O₂.
146

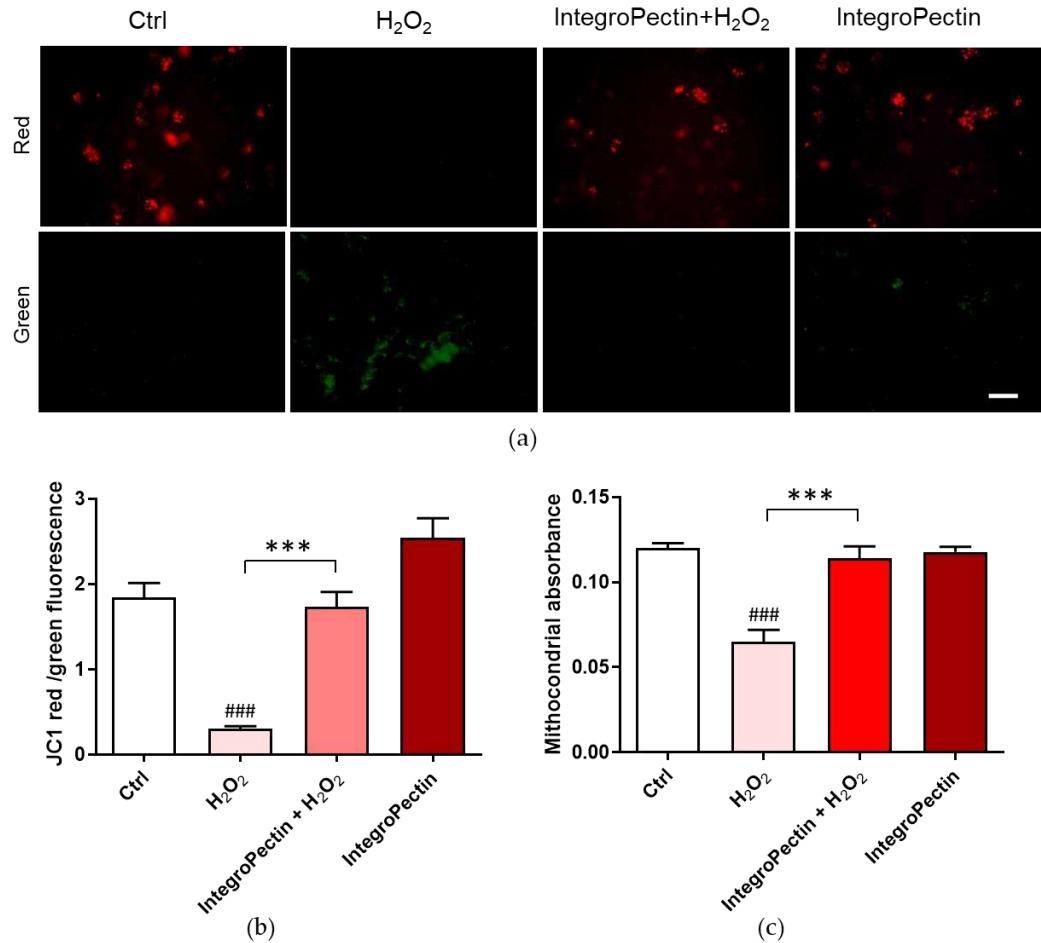
151
152 2.3 Neuroprotective effect on SH-SY5Y cells
153
154


155 Pretreatment (Figure 3a) with grapefruit IntegroPectin at a dose of 1 mg/ml, *per se*
156 cytostatic, was able to significantly counteract cell death induced by the treatment with
157 0.2 M H₂O₂ (Figure 3b). The same treatment was also able to recover cell morphology and
158 cell body area, impaired by H₂O₂ treatment (Figures 3c and 3d). Furthermore, Figures 3c
159 and 3e show that pretreatment with the newly sourced citrus pectin was able to reduce
the number of cell debris, indicative of cell protection. Similar results were obtained when
the new grapefruit IntegroPectin was applied along with aqueous H₂O₂ (data not shown).

160
161 **Figure 3.** Effect of grapefruit IntegroPectin on cell viability and morphology of SH-SY5Y cells im-
162 paired by H₂O₂ treatment. (a) Scheme of cell pretreatment with IntegroPectin; (b) Histogram show-
163 ing cell viability of untreated cells (Ctrl) or treated with IntegroPectin or with H₂O₂ alone or in
164 combination with IntegroPectin; (c) Representative bright field morphological images of untreated cells
165 (Ctrl) or treated with IntegroPectin or with H₂O₂ alone or in combination with IntegroPectin; (d)
166 Cell body area histogram of untreated cells (Ctrl) or treated with IntegroPectin or with H₂O₂ alone
167 or in combination with IntegroPectin; (e) Number of cells debris histogram of untreated cells (Ctrl)
168 or treated with IntegroPectin or with H₂O₂ alone or in combination with IntegroPectin. Scale bar
169 50 μ m. Tukey test: ## p < 0.01, ### p < 0.001 as compared to control (Ctrl) group; ** p < 0.01, *** p <
170 0.001.

171
172 2.4 Antioxidative effect on SH-SY5Y cells

173 The impact of grapefruit IntegroPectin on H₂O₂-induced oxidative stress was as-
174 sessed measuring reactive oxygen species (ROS) production by the dichlorofluorescein
175 diacetate (DCFH-DA) fluorescence intensity assay, a widely used probe for detecting ox-
176 idative stress and intracellular reactive species [27]. Fluorescence microscope inspection
177 (Figure 4a) and fluorescence intensity measurement (Figure 4b) showed that treatment of
178 neuronal cells with grapefruit IntegroPectin almost completely counteracted ROS for-
179 mation driven by exposure to concentrated H₂O₂. The kinetics of ROS production after
180 exposure of SH-SY5Y cells to H₂O₂ shows that treatment with IntegroPectin is indeed
181 quickly and highly effective in lowering and delaying ROS production due to hydrogen
182 peroxide addition (Figure 4c).
183
184



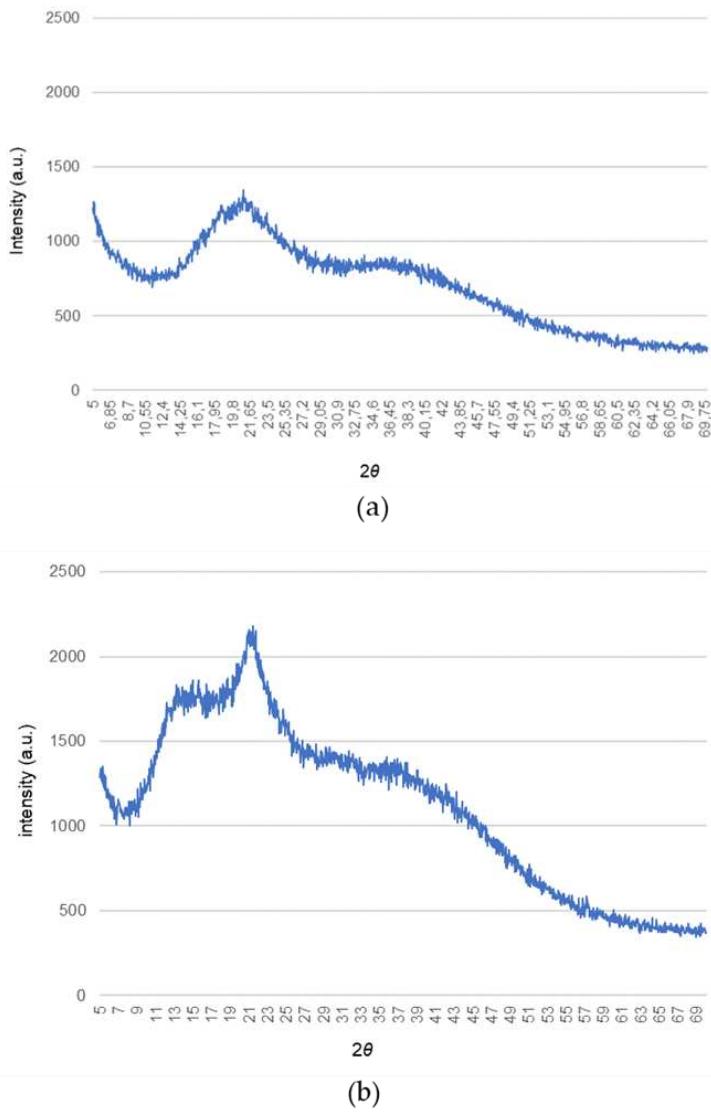
185
186
187
188
189
190
191
192
193
194
195
Figure 4. Effects of IntegroPectin on ROS production driven by exposure to aqueous H₂O₂. (a) DCFH-DA fluorescence microscopy images of untreated cells (Ctrl) or treated with IntegroPectin or with H₂O₂ alone or in combination with IntegroPectin; (b) Histogram of fluorescence intensity of untreated cells (Ctrl) or treated with IntegroPectin or with H₂O₂ alone or in combination with IntegroPectin measured by DCFH-DA fluorescence assay; (c) Oxidation kinetics of untreated cells (Ctrl) or treated with IntegroPectin or with H₂O₂ alone or in combination with IntegroPectin, monitored by DCFH-DA fluorescence assay. Scale bar: 50 μ m. Tukey test: ## p < 0.001 as compared to control (Ctrl) group, *** p < 0.001.

2.5 Mitoprotective effect on SH-SY5Y cells

Variations in the physiological mitochondrial membrane potential, an indicator of cells' health and functional status in response to oxidative stress, were measured as changes in the accumulation of JC-1 cyanine dye red and green fluorescence signals in the cells. When excited at 488 nm, JC-1 monomers emit green fluorescence with a maximum at 530 nm (green), whereas J-aggregates emit orange-red fluorescence with a maximum at 595 nm (orange-red) [28]. The green fluorescent JC-1 dye forms red fluorescent aggregates when concentrated in energized mitochondria in response to their higher membrane potential, which is affected by oxidative stress.

As displayed in Figure 5a and Figure 5b, JC-1 red/green fluorescent signal significantly decreased following cell exposure to H₂O₂, while treatment of cells with IntegroPectin significantly reversed this effect.

Figure 5. Effects of grapefruit IntegroPectin on mitochondria protection. (a) Fluorescence microscope inspection of untreated cells (Ctrl) or treated with IntegroPectin or with H_2O_2 alone or in combination with IntegroPectin submitted to JC-1 assay; (b) Histogram of the ratio between JC-1 red and green fluorescence intensity; (C) Histogram of mitochondria absorbance. Scale bar 100 μ m. Tukey test: ### p < 0.001 as compared to control (Ctrl) group; *** p < 0.001.


Sustained mitochondrial damage triggers mitochondrial swelling due to increased colloidal osmotic pressure in the matrix accompanied by mitochondrial membrane depolarization and ATP hydrolysis. We assessed mitochondrial swelling by monitoring the decrease in light scattering at 540 nm. Treatment with the newly obtained IntegroPectin fully counteracted the significant H_2O_2 -driven mitochondrial swelling (Figure 5c), supporting its mitoprotective function.

3. Discussion

Along with high *in vitro* neuroprotective and antioxidant action on human neuroblastoma cell line SH-SY5Y, grapefruit IntegroPectin extracted via hydrodynamic cavitation exerts powerful antiproliferative activity. On one hand treatment with grapefruit IntegroPectin (10 mg/ml) produces cell death. On the other a lower dose (1 mg/ml) is associated to cell cycle arrest exactly at the G₂/M phase. Future studies will investigate whether the cell cycle arrest and antiproliferative effects observed might be indicative of cell differentiation process triggering. Undifferentiated SH-SY5Y cells, though sharing few properties with mature neurons, after differentiation to enhance their usefulness as neuronal models, have even increased oxidative vulnerability [29]. In this respect, the high tolerance to oxidation by concentrated (0.2 M) H_2O_2 , exhibited by the SH-SY5Y cells treated with 1 mg/ml of grapefruit IntegroPectin along with the antiproliferative activity is highly

233 promising in light of *in vivo* experiments and future practical use of this new citrus pectin
234 as antioxidant and antitumor agent.

235 From a structural viewpoint, grapefruit IntegroPectin is very different when com-
236 pared to commercial citrus pectin extracted via conventional hydrolytic extraction in hot
237 acidic water followed by precipitation with alcohol. Figure 6 shows the X-ray diffraction
238 (XRD) patterns of IntegroPectin and commercial citrus pectin.
239

254 of esterification (DE), explains also the significantly larger solubility of the IntegroPectin
255 in water at room temperature when compared to the poorly soluble commercial citrus
256 pectin. Indeed, grapefruit IntegroPectin obtained upon freeze-drying is a low-methoxyl
257 citrus pectin (DE = 14% [23] compared to 69% for commercial citrus pectin [24]), contain-
258 ing also a uniquely high amount of naringin (4',5,7-trihydroxyflavonone-7-rhamnogluco-
259 side), approaching 74 mg/g [20], adsorbed at its surface. For comparison, the highest yield
260 values reported for naringin extracted from fresh grapefruit albedo is 10.5 mg/g [34]. Due
261 to its anti-cancer, anti-apoptotic, anti-atherogenic, anti-inflammatory and antioxidant
262 properties, naringin is currently intensively researched in light of utilization for cancer
263 prevention and treatment [35]. One of the main limitations to its use as therapeutic agent
264 is the poor solubility in water (0.5 g/L [36]) which leads to poor pharmacokinetics [35]. It
265 is likely that its dispersion on the highly soluble fibers of grapefruit IntegroPectin obtained
266 upon freeze drying enhances its bioavailability. Grapefruit IntegroPectin, furthermore, is
267 rich in adsorbed limonene, linalool and linalool oxide (predominantly the *cis* isomer) [21].
268 Both linalool [37] and linalool oxide [38] have been lately shown to exert neuroprotective
269 and anticonvulsant and antinociceptive activities *in vitro* and *in vivo*, respectively.
270

271 RG-I enriched grapefruit IntegroPectin, however, does not act simply as a carrier of
272 bioactive naringin, but possesses high bioactivity in itself which magnifies the activity of
273 the adsorbed flavonoid. This was observed also for ultrasonically-obtained grapefruit pectin
274 which at 2 mg/mL concentration has a free radical scavenging activity nearly twice
275 higher than that of commercial citrus pectin [31], ascribed by Liu and co-workers to its
276 lower viscosity in solution which would enhance effective interaction between the pectin's
277 hydroxyl groups and free radicals [39]. Remarkably, enzymatically extracted apple pectin
278 enriched in galactose, rhamnose and phenolic compounds as apple pectin extracted from
279 dried apple pomace using sulfuric acid in hot water, was recently shown to possess anti-
280 oxidant and antitumor activity on human adenocarcinoma and melanoma cell lines [40].
281 Finally, in light of forthcoming *in vivo* and clinical trials of the newly developed citrus
282 IntegroPectin it is also relevant that both pectin [41] and citrus flavonoids [42] and essen-
283 tial oils (terpenes and other oxygenated compounds) [43] share an excellent health and
284 safety profile.
285

286 4. Materials and Methods

287 4.1. Solubilization of IntegroPectin

288 Grapefruit IntegroPectin was solubilized dissolving 10 mg of pectic polymer powder
289 in 1 mL of cell culture medium. The solution was filtered using a 0.45 µm sartorius filter
290 and stored at +4 °C.
291

292 4.2. Cell Cultures and Treatment

293 SH-SY5Y cells were cultured in T25 tissue culture flasks in Complete Dulbecco's
294 Modified Eagle's Medium and F12 (DMEM/F12; 1:1), supplemented with 10% fetal bovine
295 serum (FBS), 100 U/mL penicillin and 100 U/mL streptomycin and 2 mM L-Glutamine, in
296 a humidified atmosphere of 95% air and 5% CO₂ at 37 °C. The cell culture medium was
297 changed every three days, and the cells were sub-cultured once they reached 90% conflu-
298 ence. The effects of grapefruit IntegroPectin were tested in cells cultured in 96-wells plates.
299 All treatments were performed at least 24h after plating. Based on the experimental
300 groups, the cells received the following treatments: H₂O₂ (200 µM for 24h), Integropectin
301 (10 mg/mL, 1 mg/mL, 0.1mg/mL and 0.01 mg/mL for 24h or 48h), a combination of In-
302 tegroPectin and H₂O₂, with pectins administered 24h before (pretreatment) or immedi-
303 ately before (co-treatment). The control (Ctrl) group was treated with an equal volume of
304 cell medium.
305

306
307

4.3. Cell Viability and Cell Morphology

Cells were grown at a density of 2×10^4 cell/well on 96-well plates in a final volume of 100 μ L/well. Cell viability was assessed by measuring the reduction of a yellow tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 0.5 mg/mL) to purple formazan crystals by mitochondrial succinate dehydrogenase expressed in metabolically active cells after 3h incubation at 37 °C. Absorbance was measured at 570 nm with background subtraction after extracting MTT-formazan product with dimethyl sulfoxide (DMSO) 100 μ L/well. Cell viability was expressed as arbitrary units, with the control group set to 1.

For the analysis of cell morphology, cells were grown at a density of 5×10^3 cells/well on 96-well plates in a final volume of 100 μL /well. To this end, cells were fixed with 4% formaldehyde solution for 15 min at room temperature and washed twice with Phosphate-buffered saline (PBS). For analysis of cell nuclei morphology, nuclei were counter-stained with the fluorescent stain 4',6-diamidino-2-phenylindole (DAPI). The cellular images obtained using the Zeiss Axio Scope 2 microscope (Carl Zeiss, Oberkochen, Germany) were analyzed with the ZEISS-ZEN imaging software, measuring each time the cell body size and the number of cell debris per field, and examining nuclei signal.

4.4. CellTox Green Cytotoxicity Assay

Cells were grown at a density of 2×10^4 cell/well on 96-well plates in a final volume of 100 μ L/well. Grapefruit Integropectin cytotoxicity was assessed by CellTox™ Green Cytotoxicity Assay (Promega Corporation, Madison, WI 53711 USA). At the end of treatment, CellTox™ Green Reagent (100 μ L) was added to each well. After 15 min of incubation, fluorescence was read using a Microplate Reader GloMax fluorimeter (Promega Corporation, Madison, WI 53711 USA) at the excitation wavelength of 485 nm and emission wavelength 530 nm. For positive control of toxicity, lysis solution was added to replicate wells 30 min before reading. After background subtraction, results were expressed as a percentage of the control group.

4.5. Flow Cytometry analysis of cell cycle

Cells were grown at a density of 1.2×10^5 cell/well on 24-well plates in a final volume of $500 \mu\text{L}$ /well. At the end of treatment, cells were harvested by centrifugation, washed with PBS and incubated for 30 min in the dark in a PBS solution containing Triton X100 (0.1%), 20 $\mu\text{g}/\text{mL}$ PI (Merck, Milan, Italy) and 200 $\mu\text{g}/\text{mL}$ RNase (Thermo Fisher, Milan, Italy) [44]. At least 1×10^4 cells were analyzed for each sample.

4.6. Analysis of ROS and Oxidation Kinetics

To assess intracellular ROS concentration, SH-SY5Y cells were plated at a density of 1×10^4 cells/well on 96-well plates in a final volume of 100 μ L/well. At the end of the treatments, 2',7'-Dichlorofluorescin diacetate (DCFH-DA, Merck, Darmstadt, Germany, 1 mM) dissolved in PBS was added to each well and the plate was placed in the dark for 10 min at room temperature for cell uptake. Upon cleavage of the acetate groups by intracellular esterases and oxidation, the nonfluorescent DCFH-DA is converted to the highly fluorescent 2',7'-dichlorofluorescein (DCF). The oxidation kinetics was investigated by placing SH-SY5Y cells at a density of 1×10^4 cell/well on 96-well plates in a final volume of 100 μ L/well. The kinetics of ROS production was evaluated for 90 minutes after the addition of H_2O_2 . After washing with PBS, DCF fluorescence intensity was analyzed by the fluorescence Zeiss Axio Scope 2 microscope (Carl Zeiss, Oberkochen, Germany) and using a Microplate Reader GloMax fluorimeter (Promega Corporation, Madison, WI 53711 USA) at the excitation wavelength of 475 nm and emission wavelength 555 nm. Results were expressed as a percentage of the control group.

361 4.7. *Mitochondrial Membrane Potential Analysis*

362 The mitochondrial transmembrane potential was measured by incubating the cells
363 for 30 min at 37 °C with 2 mM JC-1 red dye (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) using the MitoProbe JC-1 assay kit (Molecular Probes, USA).
364 Mitochondrial depolarization is indicated by a decrease in the red/green fluorescence in-
365 tensity ratio, evaluated by the aforementioned fluorimeter and fluorescence microscope
366 equipped with a 488 nm excitation laser.
367

369 4.8. *Swelling of Isolated Mitochondria*

370 The mitochondrial swelling was evaluated by measuring the decrease in the absorb-
371 ance of the mitochondrial suspensions. The absorbance of isolated mitochondria was
372 monitored for 5 min at 37 °C at 540 nm, using a GloMax Discover multimode plate reader
373 (Promega Corporation, Madison, WI 53711 USA).

375 4.9. *XRD Measurements*

376 The pectin samples were analyzed by a D5005 X-ray diffractometer (Bruker AXS,
377 Karlsruhe, Germany) operating at 40 kV and 30 mA. The X-ray radiation was generated
378 via a copper (K α) anode and made monochromatic via the instrument's secondary mon-
379 ochromator. The diffraction profile of both grapefruit IntegroPectin and commercial citrus
380 pectin (galacturonic acid ≥74.0 %, dried basis) purchased from Sigma-Aldrich (Merck Life
381 Science, Milan, Italy) at 0.15°/min acquisition rate over the 5.0°–70.0° 2 θ range.
382

383 4.8. *Statistical Analysis*

384 Data analysis was performed using GraphPad Prism 5 software (GraphPad Soft-
385 ware, San Diego, CA, USA). The results are presented as mean ± SE, and in some cases are
386 expressed as arbitrary units, with controls equal to 1, or as percentage of control. Statistical
387 evaluations were performed by one-way ANOVA, followed by Tukey Post-Hoc test, or t-
388 test. Differences in *p*-value less than 0.05 were considered statistically significant.
389

390 5. **Conclusions**

391 Tested *in vitro* on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin rich in nar-
392 ningin, linalool, linalool oxide and limonene adsorbed at the outer surface was found to
393 exert powerful neuroprotective, antioxidant and antiproliferative activites. Besides pre-
394 serving the highly bioactive RG-I regions usually degraded in the conventional hydrolytic
395 process used to produce pectin on commercial scale, the hydrodynamic cavitation extrac-
396 tion process nearly eliminates the crystalline regions of the semicrystalline pectic biopol-
397 ymer. This ensures quick dissolution of this new pectin in water at room temperature en-
398 abling the biopolymer in solution to exert its multiple biological actions. The ability of this
399 new pectin to inhibit cell proliferation or even kill, at high doses, neoplastic cells, coupled
400 to the excellent health and safety profile of pectin, citrus flavonoids and essential oils,
401 opens up new therapeutic strategies in cancer research. Indeed, cancer is a multifactorial
402 disease, involving both endogenous/exogenous factors, in which free radicals play a key
403 role. Cancer cells have a high free radical formation activity as compared to healthy cells,
404 and the inhibition of this process can lead to benefits in tumor progression. It has been
405 shown that ROS, and the subsequent oxidation of macromolecules, facilitate mutagenesis,
406 tumor growth and metastasis [45]. Furthermore, epidemiological studies suggest that the
407 incidence of cancer is lower in populations where the diet is rich in antioxidants such as
408 those found in fruits and vegetables [46] Therefore, the combination of antioxidant and
409 antiproliferative effect can represent a winning combination against tumor progression.

410 Similarly, the strong antioxidant properties of grapefruit IntegroPectin and its ability
411 to preserve mitochondrial membrane potential and morphology, severely impaired in

412 neurodegenerative disorders, make this new biomolecule an attractive therapeutic agent
413 for oxidative stress-associated brain disorders.

414 Detailed molecular mechanism studies underlying the antiproliferative and neuro-
415 protective effects of IntegroPectin are urgently needed in order to take full advantage of
416 its vast therapeutic and preventive potential.
417

418 **Author Contributions:** Conceptualization, V.D., D.N.; methodology, R.C.; software, G.M; formal
419 analysis, C.G., M.S., P.P., A.A., S.R., F.G., A.S.; investigation, D.N., P.P., V.D., C.G., M.S.; resources,
420 D.N., F.M., M.P., G.M.; data curation, D.N.; C.G., M.S., V.D.; writing—original draft preparation,
421 V.D., D.N., M.P.; writing—review and editing, V.D., D.N., M.P., G.M.; supervision, V.D., D.N. All
422 authors have read and agreed to the published version of the manuscript.

423 **Funding:** This research received no external funding

424 **Data Availability Statement:** All experimental data are available by contacting the corresponding
425 Authors.

426 **Acknowledgments:** We thank OPAC Campisi Società Cooperativa Agricola (Siracusa, Italy) for a
427 generous gift of waste grapefruit peel from which the IntegroPectin was extracted. S.R. is research
428 fellow funded by European Union- FESR FSE, PON Ricerca e Innovazione 2014–2020 (AIM line 1).

429 **Conflicts of Interest:** The authors declare no conflict of interest.

430 References

1. GBD 2016 Neurology Collaborators, Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016, *Lancet Neurol.* **2019**, *18*, 459-480. [doi:10.1016/s1474-4422\(18\)30499-x](https://doi.org/10.1016/s1474-4422(18)30499-x)
2. Picone, P.; Di Carlo, M.; Nuzzo, D. Obesity and Alzheimer's disease: molecular bases, *Eur. J. Neurosci.* **2020**, *52*, 3944-3950. [doi:10.1111/ejn.14758](https://doi.org/10.1111/ejn.14758)
3. Nuzzo, D.; Picone, P. Potential neurological effects of severe COVID-19 infection, *Neurosci. Res.* **2020**, *158*, 1-5. [doi:10.1016/j.neures.2020.06.009](https://doi.org/10.1016/j.neures.2020.06.009)
4. Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: different routes to Alzheimer's disease therapy, *Oxid. Med. Cell. Longev.* **2014**, *2014*, 780179. [doi:10.1155/2014/780179](https://doi.org/10.1155/2014/780179)
5. Picone, P.; Nuzzo, D.; Giacomazza, D.; Di Carlo, M. β -Amyloid peptide: The cell compartment multi-faceted interaction in Alzheimer's disease, *Neurotox. Res.* **2020**, *37*, 250-263. [doi:10.1007/s12640-019-00116-9](https://doi.org/10.1007/s12640-019-00116-9)
6. Nuzzo D, Presti G, Picone P, Galizzi G, Gulotta E, Giuliano S, Mannino C, Gambino V, Scoglio S, Di Carlo M., Effects of *Aphanizomenon flos-aquae* (Klamin) extract on a cell model of neurodegeneration, *Oxid. Med. Cell. Longev.* **2018**, *2018*, 9089016. [doi:10.1155/2018/9089016](https://doi.org/10.1155/2018/9089016)
7. Nuzzo D, Contardi M, Kossyvaki D, Picone P, Cristaldi L, Galizzi G, Bosco G, Scoglio S, Athanassiou A, Di Carlo M., Heat-resistant *Aphanizomenon flos-aquae* (AFA) extract (Klamin) as a functional ingredient in food strategy for prevention of oxidative stress, *Oxid. Med. Cell. Longev.* **2019**, *2019*, 9481390. [doi:10.1155/2019/9481390](https://doi.org/10.1155/2019/9481390)
8. R. Kahl, H. Kappus, Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E, *Z. Lebensm. Unters. Forsch.* **1993**, *196*, 329-338. [doi:10.1007/bf01197931](https://doi.org/10.1007/bf01197931)
9. Nuzzo D. Role of Natural Antioxidants on Neuroprotection and Neuroinflammation, *Antioxidants* **2021**, *10*, 608. [doi:10.3390/antiox10040608](https://doi.org/10.3390/antiox10040608)
10. O. Zaitseva, A. Khudyakov, M. Sergushkina, O. Solomina, T. Polezhaeva, Pectins as a universal medicine, *Fitoterapia* **2020**, *146*, 104676. [doi:10.1016/j.fitote.2020.104676](https://doi.org/10.1016/j.fitote.2020.104676)
11. Daher Firas B., Braybrook S.A., How to let go: pectin and plant cell adhesion, *Front. Plant Sci.* **2015**, *6*, 523. [doi:10.3389/fpls.2015.00523](https://doi.org/10.3389/fpls.2015.00523)
12. Beukema, M., Faas, M.M., de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells, *Exp. Mol. Med.* **2020**, *52*, 1364-1376. [doi:10.1038/s12276-020-0449-2](https://doi.org/10.1038/s12276-020-0449-2)
13. D. Seisun, N. Zalesny, Strides in food texture and hydrocolloids, *Food Hydrocoll.* **2021**, *117*, 106575. [doi:10.1016/j.foodhyd.2020.106575](https://doi.org/10.1016/j.foodhyd.2020.106575)
14. Ciriminna, R.; Chavarría-Hernández, N.; Hernández, A.R.; Pagliaro, M. Pectin: A new perspective from the biorefinery standpoint, *Biofuel. Bioprod. Bioref.* **2015**, *9*, 368-377. [doi:10.1002/bbb.1551](https://doi.org/10.1002/bbb.1551)
15. R. Ciriminna, A. Fidalgo, R. Delisi, L. M. Ilharco, M. Pagliaro, Pectin production and global market, *Agro Food Ind. Hi Tech* **2016**, *27*, 17-20.
16. G. Mao, D. Wu, C. Wei, W. Tao, X. Ye, R. J. Linhardt, C. Orfila, S. Chen, Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I, *Tr. Food Sci. Technol.* **2019**, *94*, 65-78. [doi:10.1016/j.tifs.2019.11.001](https://doi.org/10.1016/j.tifs.2019.11.001)

467 17. T. Zhang, Y. Lan, Y. Zheng, F. Liu, D. Zhao, K.H. Mayo, Y. Zhou, G. Tai, Identification of the bioactive components from pH-
468 modified citrus pectin and their inhibitory effects on galectin-3 function, *Food Hydrocoll.* **2016**, 58, 113-119.
469 [doi:10.1016/j.foodhyd.2016.02.020](https://doi.org/10.1016/j.foodhyd.2016.02.020)

470 18. F. Meneguzzo, C. Brunetti, A. Fidalgo, R. Ciriminna, R. Delisi, L. Albanese, F. Zabini, A. Gori, L. B. dos Santos Nascimento, A.
471 De Carlo, F. Ferrini, L. M. Ilharco, M. Pagliaro, Real-scale integral valorization of waste orange peel via hydrodynamic cavitation,
472 *Processes* **2019**, 7, 581. [doi:10.3390/pr7090581](https://doi.org/10.3390/pr7090581)

473 19. D. Nuzzo, L. Cristaldi, M. Sciortino, L. Albanese, A. Scurria, F. Zabini, C. Lino, M. Pagliaro, F. Meneguzzo, M. Di Carlo, R.
474 Ciriminna, Exceptional antioxidant, non-cytotoxic activity of integral lemon pectin from hydrodynamic cavitation, *Chemistry-
475 Select* **2020**, 5, 5066-5071. [doi:10.1002/slct.202000375](https://doi.org/10.1002/slct.202000375)

476 20. A. Scurria, M. Sciortino, L. Albanese, D. Nuzzo, F. Zabini, F. Meneguzzo, R. V. Alduina, A. Presentato, M. Pagliaro, G. Avellone,
477 R. Ciriminna, Flavonoids in lemon and grapefruit IntegroPectin, *Preprints* **2021**, 2021020620. [doi:10.20944/pre-prints202102.0620.v1](https://doi.org/10.20944/pre-
478 prints202102.0620.v1)

479 21. A. Scurria, M. Sciortino, A. Presentato, C. Lino, E. Piacenza, L. Albanese, F. Zabini, F. Meneguzzo, D. Nuzzo, M. Pagliaro, D. F.
480 Chillura Martino, R. Alduina, G. Avellone, R. Ciriminna, Volatile compounds of lemon and grapefruit IntegroPectin, *Molecules*
481 **2021**, 26, 51. [doi:10.3390/molecules26010051](https://doi.org/10.3390/molecules26010051)

482 22. A. Presentato, A. Scurria, L. Albanese, C. Lino, M. Sciortino, M. Pagliaro, F. Zabini, F. Meneguzzo, R. Alduina, D. Nuzzo, R.
483 Ciriminna, Superior antibacterial activity of integral lemon pectin from hydrodynamic cavitation, *ChemistryOpen* **2020**, 9, 628-
484 630. [doi:10.1002/open.202000076](https://doi.org/10.1002/open.202000076)

485 23. A. Presentato, E. Piacenza, A. Scurria, L. Albanese, F. Zabini, F. Meneguzzo, D. Nuzzo, M. Pagliaro, D. Chillura Martino, R.
486 Alduina, R. Ciriminna, A new water-soluble bactericidal agent for the treatment of infections caused by Gram-positive and
487 Gram-negative bacterial strains, *Antibiotics* **2020**, 9, 586. [doi:10.3390/antibiotics9090586](https://doi.org/10.3390/antibiotics9090586)

488 24. Nuzzo D., Picone P., Giardina C., Scordino M., Mudò G., Pagliaro M., Scurria A., Meneguzzo F., Ilharco L.M., Fidalgo A., Al-
489 duina R., Presentato A., Ciriminna R., Di Liberto V.. New neuroprotective effect of lemon IntegroPectin on neuronal cellular
490 model, *Antioxidants* **2021**, 10, 669. [doi: 10.3390/antiox10050669](https://doi.org/10.3390/antiox10050669)

491 25. Lezaja A., Altmeyer M., Inherited DNA lesions determine G1 duration in the next cell cycle, *Cell Cycle* **2018**, 17, 24-32.
492 [doi:10.1080/15384101.2017.1383578](https://doi.org/10.1080/15384101.2017.1383578)

493 26. G. K. Schwartz, M. A. Shah, Targeting the cell cycle: a new approach to cancer therapy, *J. Clin. Oncol.* **2005**, 23, 9408-9421.
494 [doi:10.1200/jco.2005.01.5594](https://doi.org/10.1200/jco.2005.01.5594)

495 27. B. Kalyanaraman, V. Darley-Usmar, K. J.A. Davies, P. A. Dennery, H. J. Forman, M. B. Grisham, G. E. Mann, K. Moore, L. J.
496 Roberts, II, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations,
497 *Free Radic Biol Med.* **2012**, 52, 1-6. [doi:10.1016/j.freeradbiomed.2011.09.030](https://doi.org/10.1016/j.freeradbiomed.2011.09.030)

498 28. F. Sivandzade, A. Bhalerao, L. Cucullo, Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a
499 sensitive fluorescent probe, *Bio Protoc.* **2019**, 9, e3128. [doi:10.21769/BioProtoc.3128](https://doi.org/10.21769/BioProtoc.3128)

500 29. J. I. Forster, S. Köglberger, C. Trefois, O. Boyd, A. S. Baumuratov, L. Buck, R. Balling, P. M. A. Antony, Characterization of
501 differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability, *J. Biomol. Screen.* **2016**, 21, 496-
502 509. [doi:10.1177/1087057115625190](https://doi.org/10.1177/1087057115625190)

503 30. R. Sharma, S. Kamboj, R. Khurana, G. Singh, V. Rana, Physicochemical and functional performance of pectin extracted by QbD
504 approach from *Tamarindus indica* L. pulp, *Carbohydr. Polym.* **2015**, 134, 364-374. [doi:10.1016/j.carbpol.2015.07.073](https://doi.org/10.1016/j.carbpol.2015.07.073)

505 31. W. Wang, X.Ma, P. Jiang, L. Hu, Z. Zhi, J. Chen, T. Ding, X. Ye, D. Liu, Characterization of pectin from grapefruit peel: A
506 comparison of ultrasound-assisted and conventional heating extractions, *Food Hydrocoll.* **2016**, 61, 730-739
507 [doi:10.1016/j.foodhyd.2016.06.019](https://doi.org/10.1016/j.foodhyd.2016.06.019)

508 32. K.J. Palmer, M.B. Hartzog, An X-ray diffraction investigation of sodium pectate, *J. Am. Chem. Soc.* **1945**, 67, 2122-2127.
509 [doi:10.1021/ja01228a022](https://doi.org/10.1021/ja01228a022)

510 33. R.M. Gohil, Synergistic blends of natural polymers, pectin and sodium alginate, *J. Appl. Polym. Sci.* **2010**, 120, 2324-2336.
511 [doi:10.1002/app.33422](https://doi.org/10.1002/app.33422)

512 34. M. M. Victor, J. M. David, M. C.K. Sakukuma, E. L. França, A. V. J. Nunes, A simple and efficient process for the extraction of
513 naringin from grapefruit peel waste, *Green Process. Synth.* **2018**, 7, 524-529. [doi:10.1515/gps-2017-0112](https://doi.org/10.1515/gps-2017-0112)

514 35. Ghanbari-Movahed M., Jackson G., Farzaei M. H., Bishayee A., A systematic review of the preventive and therapeutic effects
515 of naringin against human malignancies, *Front. Pharmacol.* **2021**, 12, 639840. [doi:10.3389/fphar.2021.639840](https://doi.org/10.3389/fphar.2021.639840)

516 36. G. N. Pulley, Solubility of naringin in water, *Ind. Eng. Chem. Anal. Ed.* **1936**, 8, 360. [doi: 10.1021/ac50103a020](https://doi.org/10.1021/ac50103a020)

517 37. R. Micheli, G. Lostia, G. Galleri, G. Rocchitta, P. A. Serra, V. Bassareo, E. Acquas, A. T. Peana, Neuroprotective effect of (R)-(-)-
518 linalool on oxidative stress in PC12 cells, *Phytomedicine Plus* **2021**, 1, 100073. [doi:10.1016/j.phyplu.2021.100073](https://doi.org/10.1016/j.phyplu.2021.100073)

519 38. F. Negromonte Souto-Maior, D. Vilar da Fonsêca, P. R. Rodrigues Salgado, L. de Oliveira Monte, D. Pergentino de Sousa, R.
520 Nóbrega de Almeida, Antinociceptive and anticonvulsant effects of the monoterpenoid linalool oxide, *Pharm. Biol.* **2017**, 55, 63-
521 67. [doi: 10.1080/13880209.2016.1228682](https://doi.org/10.1080/13880209.2016.1228682)

522 39. J. Ro, Y. Kim, H. Kim, S.B. Jang, H.J. Lee, S. Chakma, J.H. Jeong, J. Lee, Anti-oxidative activity of pectin and its stabilizing effect
523 on retinyl palmitate, *Korean J. Physiol. Pharmacol.* **2013**, 17, 197-201. [doi:10.4196/kjpp.2013.17.3.197](https://doi.org/10.4196/kjpp.2013.17.3.197)

524 40. A. Wikiera, M. Grabacka, L. Byczyński, B. Stodolak, M. Mika, Enzymatically extracted apple pectin possesses antioxidant and
525 antitumor activity, *Molecules* **2021**, 26, 1434. [doi:10.3390/molecules26051434](https://doi.org/10.3390/molecules26051434)

526 41. EFSA Panel on Food Additives and Nutrient Sources added to Food), Scientific Opinion on the re-evaluation of pectin (E 440i)
527 and amidated pectin (E 440ii) as food additives, *EFSA J.* **2017**, 15, 4866. [doi:10.2903/j.efsa.2017.4866](https://doi.org/10.2903/j.efsa.2017.4866)

528 42. O.M. Ahmed, S.F. AbouZid, N.A. Ahmed, M.Y. Zaky, H. Liu, An up-to-date review on citrus flavonoids: chemistry and benefits
529 in health and diseases, *Curr. Pharm. Des.* **2021**, 27, 513-530. [doi:10.2174/138161282666201127122313](https://doi.org/10.2174/138161282666201127122313)

530 43. H. Bora, M. Kamle, D.K. Mahato, P. Tiwari, P. Kumar, *Citrus* essential oils (CEOs) and their applications in food: an overview, *Plants* **2020**, 9, 357. [doi:10.3390/plants9030357](https://doi.org/10.3390/plants9030357)

531 44. I. Restivo, L. Tesoriere, A. Fazzitta, M.A. Livrea, A. Attanzio, M. Allegra, Anti-poliferative activity of a hydrophilic extract of
532 manna from *Fraxinus angustifolia* Vahl through mitochondrial pathway-mediated apoptosis and cell cycle arrest in human colon
533 cancer cells, *Molecules* **2020**, 25, 5055. [doi: 10.3390/molecules25215055](https://doi.org/10.3390/molecules25215055)

534 45. Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A., ROS in cancer
535 therapy: the bright side of the moon, *Exp. Mol. Med.* **2020**, 52, 192-203. [doi:10.1038/s12276-020-0384-2](https://doi.org/10.1038/s12276-020-0384-2)

536 46. C. Esquivel-Chirino, J. Esquivel-Soto, J.A. Morales-González, D. Montes Sánchez, J.L. Ventura-Gallegos, L.E. Hernández-Mora,
537 A. Zentella-Dehesa, Inflammatory Environmental, Oxidative Stress in Tumoral Progression In *Oxidative Stress and Chronic De-*
538 *generative Diseases - A Role for Antioxidants*, IntechOpen, Zagreb: 2013; pp.187-208. [doi:10.5772/51789](https://doi.org/10.5772/51789)

539