

1 Article

2 **Tempo of degeneration across independently evolved non-recombining**
3 **regions**

4

5 Fantin Carpentier^{1,2}, Ricardo C. Rodríguez de la Vega^{*1}, Paul Jay¹, Marine Duhamel^{1,3}, Jacqui
6 A. Shykoff¹, Michael H. Perlin⁴, R. Margaret Wallen⁴, Michael E. Hood^{#5}, Tatiana Giraud^{#*1}

7

8 # These authors co-supervised the study

9

10 ¹ Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay,
11 France

12 ² Université de Lille, CNRS, UMR 8198-Evo-Eco-Paleo F-59000, Lille, France

13 ³ Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

14 ⁴ Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, United
15 States of America.

16 ⁵ Department of Biology, Amherst College, 01002-5000 Amherst, Massachusetts, United States of America.

17

18 ***Corresponding authors:** Tatiana Giraud and Ricardo C. Rodríguez de la Vega
19 Laboratoire Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Saclay, 91400
20 Orsay France
21 phone: +33 1 69 15 56 69 + 33 7 86 01 67 59 fax: +33 1 69 15 46 97
22 tatiana.giraud@universite-paris-saclay.fr; ricardo.rodriguezdelavega@gmail.com

23 **Running title:**

24 **Key words:** synonymous codon usage, genomic degeneration, degeneration tempo, mating-
25 type chromosomes, recombination suppression, frequency of optimal codon, fungi,
26 introgression, evolutionary strata

27

28

29

30

31

32

33

34
35
36
37

38 **Abstract**

39

40 Recombination is beneficial over the long term, allowing more effective selection. Despite
41 long-term advantages of recombination, local recombination suppression can evolve and lead
42 to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo
43 of degeneration in non-recombining regions, i.e., the function curve for the accumulation of
44 deleterious mutations over time, leveraging on 22 independent events of recombination
45 suppression identified on mating-type chromosomes of anther-smut fungi, including newly
46 identified ones. Using previously available and newly generated high-quality genome
47 assemblies of alternative mating types of 13 *Microbotryum* species, we estimated degeneration
48 levels in terms of accumulation of non-optimal codons and non-synonymous substitutions in
49 non-recombining regions. We found a reduced frequency of optimal codons in the non-
50 recombining regions compared to autosomes, that was not due to less frequent GC-biased gene
51 conversion or lower ancestral expression levels compared to recombining regions. The
52 frequency of optimal codons rapidly decreased following recombination suppression and
53 reached an asymptote after ca 3 Mya. The strength of purifying selection remained virtually
54 constant at $d_N/d_S = 0.55$, i.e. at an intermediate level between purifying selection and neutral
55 evolution. Accordingly, non-synonymous differences between mating-type chromosomes
56 increased linearly with stratum age, at a rate of 0.015 per MY. We thus develop a method for
57 disentangling effects of reduced selection efficacy from GC-biased gene conversion in the
58 evolution of codon usage and we quantify the tempo of degeneration in non-recombining
59 regions, which is important for our knowledge on genomic evolution and on the maintenance
60 of regions without recombination.

61
62
63
64
65
66
67
68
69
70
71
72

73 **Introduction**

74

75 Recombination is beneficial over the long term in most situations, allowing higher
76 selection efficacy and therefore more rapid adaptation. Meiotic recombination, through
77 crossing-over resulting in the reciprocal exchange of DNA segments between two homologous
78 chromosomes, shuffles allelic combinations, such that more beneficial combinations might be
79 formed (Fisher 1930; Müller 1932) and selection at different loci can be decoupled (Bernstein, et
80 al. 1981; Otto and Lenormand 2002). Over long time scales, crossover events indeed occur along
81 chromosomes and selection can apply at each locus independently. Recombination prevents
82 selection interference between loci (Hill and Robertson 1966), thereby facilitating the purge of
83 deleterious mutations. In the absence of recombination, selection on strongly beneficial alleles
84 can increase the frequency of linked deleterious alleles through genetic hitchhiking (Maynard
85 Smith and Haigh 1974). Recombination also prevents the accumulation of deleterious mutations
86 by generating chromosomes with fewer deleterious mutations than parental ones, thus avoiding
87 the increase in the frequency of genotypes with a higher number of harmful mutations, known
88 as Muller's ratchet (Fisher 1930; Muller 1932).

89 Despite these long-term advantages of recombination, local recombination suppression
90 can be selected for, thereby maintaining beneficial allelic combinations and leading to a genetic
91 structure known as a supergene with multiple linked genes that are transmitted as a single locus
92 (Gutiérrez-Valencia, et al. 2021; Schwander, et al. 2014). Examples of complex phenotypes
93 controlled by supergenes include wing patterns in *Heliconius* butterflies (Nadeau 2016; Saenko,
94 et al. 2019), social systems in ants (Wang, et al. 2013) and mating compatibility systems, such as
95 sex chromosomes or mating-type loci (Charlesworth and Charlesworth 1978; Hartmann, et al. 2021;
96 Ohno 1967; Westergaard 1958). The suppression of recombination can thus arise and be
97 maintained by selection, but the corresponding genomic regions then accumulate deleterious
98 mutations through interferences between loci and Muller's ratchet (Bachtrog 2013; Charlesworth
99 and Charlesworth 2000; Gutiérrez-Valencia, et al. 2021; Jay, et al. 2021a; Stolle, et al. 2019). Typical
100 deleterious mutations include non-synonymous substitutions (Berlin and Ellegren 2006; Brion, et
101 al. 2020; Hough, et al. 2014; Nicolas, et al. 2004; Papadopoulos, et al. 2015; Whittle, et al. 2011) which
102 alter the amino-acid sequence of a protein and may result in protein dysfunction. Deleterious
103 mutations also include frameshift mutations, gene losses and substitutions leading to
104 suboptimal gene expression level (Bachtrog 2005; Bartolomé and Charlesworth 2006; Steinemann
105 and Steinemann 1992). Such deleterious mutations in sex chromosomes may be responsible for
106 genetic diseases (Bianchi 2009; Lee, et al. 2016). Genomic rearrangements (Badouin, et al. 2015),

107 epigenetic modifications (Yan, et al. 2005) and transposable elements (Steinemann and Steinemann
108 1992; Stolle, et al. 2019) also accumulate in non-recombining regions; they are not *per se*
109 deleterious mutations but may disrupt gene function or expression and impose strong energetic
110 costs (Hollister and Gaut 2009; Li, et al. 2016).

111 A less studied type of deleterious mutation concerns some synonymous substitutions.
112 Synonymous substitutions are usually considered neutral because they do not alter the amino-
113 acid sequences of proteins. However, synonymous codons are often not used randomly (Duret
114 2002; Sharp, et al. 1995), some codons being preferentially used over their synonymous
115 alternative codons. This preference is thought to result from selection on either the rate or the
116 accuracy of translation (Machado, et al. 2020), with the preferred codons called optimal codons.
117 Optimal codons tend to correspond to the most abundant tRNAs (Ikemura 1981; Post, et al. 1979),
118 and are most frequent in highly expressed genes for which it is most important to avoid
119 limitations in tRNAs (Novoa and Ribas de Pouplana 2012; Zhou, et al. 2016; Wint et al. 2022).

120 The existence of preferred codons among synonymous alternatives leads to a codon
121 usage bias, which is directly proportional to the recombination rate along genomes (Kliman and
122 Hey 1993). Such deviations from preferred codon usage is thought to result from low selection
123 efficacy in regions with low or no recombination (Bartolomé and Charlesworth 2006). Compared
124 to recombining regions, lower frequencies of optimal codons have been reported in the non-
125 recombining region of the mating-type chromosomes in the fungus *Neurospora tetrasperma*
126 (Whittle, et al. 2011), in the non-recombining dot chromosomes in *Drosophila americana*
127 (Betancourt and Welch 2009) and in twelve other *Drosophila* species (Vicario, et al. 2007).
128 However, codon biases could also result from the biased mutational pattern caused by GC-
129 biased gene conversion. Occurring in regions of frequent recombination, gene conversion
130 results from the resolution of base-pair mismatches in the heteroduplex of the recombination
131 process (Duret and Galtier 2009). GC-biased gene conversion occurs in bacteria (Lassalle, et al.
132 2015) and eukaryotes (Duret and Galtier 2009; Marais 2003; Pessia, et al. 2012; Weber, et al. 2014).
133 Thus, reduced codon bias in non-recombining regions would be consistent with either fewer
134 GC-biased gene conversion events or less efficient selection, and the respective effects of these
135 two processes may be difficult to disentangle. Few studies have tried to distinguish the roles of
136 relaxed selection versus GC-biased gene conversion (Kostka, et al. 2012) and no study to our
137 knowledge specifically attempted to control for the effect of GC-biased gene conversion in
138 assessing the effect of the lack of recombination on the frequency of optimal codons.

139 While the accumulation of deleterious mutations in non-recombining regions has been
140 reported in numerous systems, only a few studies with limited data have addressed the question
141 of the tempo of degeneration *i.e.* the rate at which deleterious mutations accumulate over time
142 (Charlesworth 2021). Theoretical works based on the mammalian Y-chromosome predict that
143 degeneration through gene losses should occur rapidly in young non-recombining regions,
144 mainly due to Muller's ratchet and background selection, and more slowly in older non-
145 recombining regions in which genetic hitchhiking is a major driving force (Bachtrog 2008, 2013).
146 Such patterns of slower gene loss rate with increasing age of recombination suppression have
147 been observed not only in mammals (Bellott, et al. 2014; Hughes and Rozen 2012) but also in
148 the plant *Silene latifolia*, where the sex chromosomes underwent two successive recombination
149 suppression events, *i.e.*, evolutionary strata (Lahn and Page 1999). These have been losing genes
150 at estimated rates of 4.64% and 6.92% per million year (MY) for the older and younger
151 evolutionary strata, respectively (Krasovec, et al. 2018). However, a formal study of the tempo of
152 degeneration requires data from a large number of independent events of recombination
153 suppression of varying ages, which has not been available so far (Charlesworth 2021).
154 Recombination suppression has however evolved numerous times in a wide range of organisms,
155 even sometimes multiple independent times within the same genus (Ma and Veltsos 2021;
156 Mrackova, et al. 2008). Moreover, the evolutionary strata present in some sex chromosomes
157 represent stepwise extension events of recombination suppression that occurred at different
158 time points; *e.g.*, the four successive steps of recombination suppression on the mammalian Y
159 chromosome (Lahn and Page 1999; Ross, et al. 2009; Skaletsky, et al. 2003).

160 In the fungal genus *Microbotryum*, recombination suppression has evolved
161 independently in several species, leading to mating-type chromosomes of different ages, some
162 showing stepwise extension of recombination suppression and thereby the formation of
163 evolutionary strata (Branco, et al. 2017; Branco, et al. 2018; Carpentier, et al. 2019; Duhamel,
164 et al. 2022). In these pathogenic anther-smut fungi, mating occurs mostly between haploid cells
165 resulting from the same meiosis event (*i.e.*, intra-tetrad mating or automixis (Hood and
166 Antonovics 2000)) and between cells bearing distinct alleles at the two mating-type loci, *i.e.* the
167 PR locus (carrying pheromone and pheromone receptor genes controlling gamete fusion) and
168 the HD locus (carrying homeodomain genes whose proteins undergo dimerization to induce
169 post-mating growth). Recombination suppression linking a few genes within each of the two
170 mating-type loci is required for ensuring correct mating-type functions, and is the ancestral
171 condition in the basidiomycete fungi (Coelho, et al. 2017; Hartmann, et al. 2021). In *Microbotryum*

172 and some other selfing basidiomycetes, the linkage of the two mating-type loci to each other or
173 the linkage of each mating-type locus to its respective centromere has been favoured by
174 selection (Branco, et al. 2017; Branco, et al. 2018; Carpentier, et al. 2019; Hartmann, et al. 2021).
175 Indeed, under intra-tetrad mating these linkage relationships increase the odds of gamete
176 compatibility (producing only two inter-compatible mating-type phenotypes among haploid
177 meiotic products) compared to independent segregation (producing up to four different mating
178 types among gametes following a meiosis). Across the *Microbotryum* genus, five independent
179 recombination suppression events have been shown to link the PR and HD loci to each other
180 (Branco, et al. 2017; Branco, et al. 2018). The two mating-type loci were ancestrally located on
181 different chromosomes, and multiple PR-HD linkage events across lineages involved distinct
182 rearrangements (fusion and/or fission) of the ancestral PR and HD chromosomes (Branco, et al.
183 2018). Two additional recombination suppression events in other *Microbotryum* species
184 independently linked each of the PR and HD loci to its respective centromere (Carpentier, et al.
185 2019). Furthermore, extensions of recombination suppression have occurred stepwise and
186 independently in several *Microbotryum* species, forming evolutionary strata of different ages
187 (Branco, et al. 2017; Branco, et al. 2018). The evolutionary strata linking HD and PR loci to
188 each other or to centromeres were all called “black evolutionary strata”, though they
189 corresponded to several independent events, often trapping different sets of genes. In some
190 cases, the full recombination cessation linking the HD and PR loci occurred in several steps and
191 the corresponding strata were distinguished as grey and black (Duhamel, et al. 2022).
192 Extensions of recombination suppression to non-mating-type genes were called coloured
193 evolutionary strata (Branco, et al. 2017; Branco, et al. 2018). The oldest evolutionary strata
194 extending recombination suppression to non-mating-type genes occurred around each of the PR
195 and HD loci; these strata likely evolved before the radiation of the *Microbotryum* genus because
196 they are shared by all species studied so far. Other species-specific strata arose more recently
197 and distal to the fused PR-HD loci. All species retain a recombining region at least at one
198 extremity of their mating-type chromosome, called the pseudo-autosomal region (PAR).

199 The non-recombining regions in the *Microbotryum* mating-type chromosomes seem to
200 have accumulated multiple footprints of degeneration, in the form of higher rate of non-
201 synonymous substitutions, transposable element accumulation, gene losses and reduced gene
202 expression (Fontanillas, et al. 2015). However, our understanding of the mating-type chromosome
203 content and evolution has changed since, with improved assembly quality and the discovery of
204 the independent origins of the non-recombining regions across species as well as multiple

205 evolutionary strata within species. High-quality assemblies permitted us to detect independent
206 recombination suppression in five *Microbotryum* species, with accompanying degeneration
207 including gene gain/loss and transposable element accumulation (Branco, et al. 2018). Regions
208 with older recombination suppression appeared more degenerated (Branco, et al. 2018), but the
209 tempo of degeneration was not studied. Degeneration in terms of gene expression level was
210 also found based on the high-quality assembly of *M. lychnidis-dioicae*, with reduced expression
211 being associated with different types of degenerative mutations (Ma, et al. 2020).

212 Here, we investigated the tempo of degeneration in non-recombining regions, *i.e.*, the
213 relationship between deleterious mutation accumulation and time since recombination
214 cessation, taking advantage of the multiple independent linkage events and of evolutionary
215 strata of different ages in the anther-smut fungi. We first identified three additional independent
216 events of recombination suppression that arose from linking the PR and HD loci on the mating-
217 type chromosomes, using the genome assemblies reported here for the first time of *M. v.*
218 *tatarinowii*, *M. v. melanantha* and *M. coronariae*. We also identified two additional old strata
219 in the large non-recombining mating-type chromosome of *M. v. paradoxa*. Using high-quality
220 genome assemblies of alternative mating types of 13 *Microbotryum* species we estimated the
221 degeneration levels in terms of the accumulation of non-optimal codons and non-synonymous
222 substitutions in 22 independent evolutionary strata of different ages. We identified optimal
223 codons as those enriched in highly expressed autosomal genes and tested whether these were
224 less frequent in non-recombining regions after controlling for the following possible
225 confounding effects: i) lower GC-biased gene conversion in non-recombining regions, by
226 comparing GC content in coding versus non-coding regions, because selection on codon usage
227 acts only in exons while GC-biased gene conversion also impacts introns and inter-genic
228 sequences, and ii) lower ancestral expression levels in non-recombining regions, taking as a
229 proxy the expression level in a closely related outgroup without recombination suppression. We
230 then investigated the relationship between degeneration level (in terms of non-synonymous
231 substitution accumulation and decrease in frequency of optimal codons) and the time since
232 recombination suppression in the different evolutionary strata and species. We found that the
233 frequency of optimal codons rapidly decreased following recombination suppression and
234 reached an asymptote at ca 3 MY. The strength of purifying selection remained virtually
235 constant at an intermediate level between purifying selection and neutral evolution: the ratio of
236 non-synonymous over synonymous differences between alleles on alternative mating-type
237 chromosomes (d_N/d_S) indeed remained at 0.55. Accordingly, the non-synonymous mutation

238 differences (d_N) between mating-type chromosomes increased linearly with stratum age.
239 Understanding the tempo of degeneration is important for our knowledge on genomic evolution,
240 in particular for the maintenance of regions without recombination, that can be associated with
241 lower fitness and human genetic diseases (Wilson 2021).

242

243 **Results**

244

245 **PR-HD linkage in three new *Microbotryum* genomes**

246 We sequenced (long-read Pacific Bioscience technology) and assembled the genomes from
247 haploid cells bearing opposite mating types (called a_1 and a_2) of a single diploid individual, for
248 the following species: *Microbotryum violaceum* (s.l.) parasitizing *Silene melanantha* (called *M.*
249 *v. melanantha*), *M. violaceum* (s.l.) parasitizing *S. tatarinowii* (called *M. v. tatarinowii*) and *M.*
250 *coronariae* parasitizing *Silene flos-cuculi* (Syn. *Lychnis flos-cuculi*) (Figure 1A; Table S1). In
251 most species, the mating-type chromosomes were assembled in one or few contigs, in the latter
252 case being broken not at the same position in the two mating-type chromosomes within diploid
253 individuals (Figure S1), which allowed joining contigs. We reconstructed the evolutionary
254 history of mating-type chromosomes by comparing their genome structure to those of *M.*
255 *intermedium*, taken as a proxy for the genomic ancestral state, following previous studies
256 (Branco, et al. 2017; Branco, et al. 2018). In *M. intermedium*, the PR and the HD mating-type loci
257 are located on distinct mating-type chromosomes (Figure S2). In the case of *M. coronariae*, we
258 could not assess the respective positions of several contigs within the non-recombining region
259 (Figure S1), but this did not affect the general scenario of rearrangements (Figure 1A) as these
260 contigs could be assigned to the non-recombining region given the rearrangements between
261 mating types and could be assigned to ancestral mating-type chromosome arms (Figure S1).
262 For reconstructing the scenarios of chromosomal rearrangements, mating-type chromosome
263 fissions (always at centromeres) were inferred by assessing what chromosome arms became
264 autosomes (*i.e.*, completely collinear between mating types and assembled separately from the
265 mating-type chromosomes in both haploid genomes; Figure S1). The orientations of ancestral
266 mating-type chromosome fusions were inferred by assessing on Figure S1 what edges of
267 ancestral mating-type chromosomes remained recombining (*i.e.* became PARs, the other edge
268 or centromere then corresponding to the fusion point).

269 In *M. v. melanantha* and *M. coronariae*, the mating-type chromosomes carried both PR and HD
270 loci and were found to result from the fusion of the whole ancestral PR chromosome with the
271 short arm of the ancestral HD chromosome (Figures 1A and S1), as was previously found in *M.*
272 *lychnidis-dioicae*, *M. silenes-dioicae* and *M. violaceum sensu stricto* (Branco, et al. 2017; Branco,
273 et al. 2018). Thus, the mating-type chromosomes of the five species in this clade resulted from
274 the same chromosomal rearrangements. However, trans-specific polymorphism analyses,
275 detailed below, suggested three independent events of complete recombination cessation in this
276 clade (Figure 1E). Indeed, as soon as recombination cessation links a gene to the mating-type
277 locus, the alleles of this gene associated to the alternative mating-type alleles start diverging
278 and accumulate mutations independently. The alleles of such a non-mating-type gene will thus
279 cluster per mating type, even across speciation events. The node to which trans-specific
280 polymorphism extends therefore indicates the date of complete recombination cessation
281 (Hartmann, et al. 2021). Despite the different rearrangements having led to HD and PR linkage
282 across the *Microbotryum* phylogeny, a subset of 32 genes was shared among nearly all types of
283 black strata, i.e. were initially located between the mating-type loci for all types of
284 rearrangements except in *M. silenes-acaulis*. Genealogies for these 32 genes, including also
285 their sequences from *M. silenes-acaulis* and *M. intermedium*, despite being in recombining
286 regions in these species, revealed patterns of trans-specific polymorphism consistent with three
287 independent events of complete recombination cessation (Figure 1E): one in *M. v. melanantha*
288 (with no trans-specific polymorphism), one in the lineage leading to *M. lychnidis-dioicae* and
289 *M. silenes-dioicae* (two species sharing trans-specific polymorphism), and one in the lineage
290 leading to *M. coronariae* on *L. flos-cuculi* and *M. violaceum* (s.s.) on *S. nutans* (also sharing
291 trans-specific polymorphism one with each other). Alternatively, there could have been a single
292 chromosomal rearrangement event in the common ancestor of the clade encompassing these
293 five species, but without initially complete recombination cessation, this occurring later,
294 independently in the three lineages. For our purposes, studying the consequences of
295 recombination suppression, the three independent events of complete recombination cessation
296 are the important events, regardless of whether the initial chromosome fusion occurred once or
297 three times independently, and we therefore considered in the following these three black
298 evolutionary strata as independent.

299 In *M. v. tatarinowii*, the mating-type chromosomes resulted from the fusion of a part of the long
300 arm of the PR chromosome with the short arm of the HD chromosome (Figure 1A; Figure S1).
301 We found the remaining part of the ancestral PR chromosome on an autosomal contig in the

302 two haploid genomes of *M. v. tatarinowii*. This represents the same type of chromosomal
303 rearrangement leading to PR-HD linkage as previously found in *M. v. caroliniana* (Branco, et
304 al. 2018). However, the phylogenetic placement of the two species shows that they represent
305 independent events (Figure 1A). In addition, we improved the assemblies of *M. scabiosae*
306 (Table S2) and refined the chromosomal rearrangement scenario for *M. v. caroliniana*. We
307 could thus refine the breakpoint locations for the fissions and fusion generating their mating-
308 type chromosomes (Figure S3).

309

310 **Evolutionary strata**

311 We investigated the existence of evolutionary strata in *M. v. melanantha*, *M. v. tatarinowii* and
312 *M. coronariae* following the methods used previously (Branco, et al. 2017; Branco, et al. 2018),
313 *i.e.*, by plotting the synonymous divergence calculated between the alleles from the genomes
314 of opposite mating types along the ancestral-like gene order of *M. intermedium* (Figure 2). The
315 rationale of this method is that, as soon as some genes become linked to the mating-type genes,
316 the alleles associated with the two mating-type alleles gradually accumulate substitutions
317 independently, so that their differentiation increases with the time since recombination
318 suppression. Stepwise extension of recombination suppression therefore yields a pattern of
319 discrete strata with different levels of differentiation between alleles on the mating-type
320 chromosomes. In contrast, we expect high levels of homozygosity in these selfing species in
321 recombining regions, and therefore no differentiation between the two genomes derived from a
322 diploid individual, including in pseudo-autosomal regions. The evolutionary strata may
323 however be difficult to distinguish using only differentiation levels, so we delimited strata based
324 on: i) the distribution of recombination suppression across the phylogenetic tree to assess when
325 recombination suppression evolved and thereby identifying distinct evolutionary strata, *i.e.*
326 genomic regions that stopped recombining at different times (Figure 1D), as well as ii) the level
327 of trans-specific polymorphism (Figure 1E), that is also a strong indicator of the time of
328 recombination suppression.

329 We identified four evolutionary strata in each of *M. v. melanantha*, *M. v. tatarinowii* and *M.*
330 *coronariae*. Three strata are ancient and shared among most *Microbotryum* species, *i.e.*, the
331 purple stratum around the PR locus, the blue stratum around the HD locus, and the orange
332 stratum adjacent to the purple stratum (Figures 1A and 2A-D). In addition, recombination
333 suppression that linked the HD and PR loci together evolved at different times in these three

334 species (Figure 1D). We called all these regions involved in the different events of HD-PR
335 linkage the black evolutionary strata, but they resulted from different types of chromosomal
336 fissions and fusions and therefore encompass distinct gene sets (Figure 1A). We identified no
337 additional evolutionary strata younger than the PR-HD linkage events in any of the species that
338 we sequenced in the present study. For all statistical analyses we considered only independent
339 events of recombination suppression, analysing the genomic regions corresponding to the
340 species-specific strata or to the independent black strata (independent events linking HD and
341 PR loci to each other or to their centromere that often trapped different gene sets). We did not
342 include in our statistical analyses the oldest strata shared by multiple species that arose in a
343 common ancestor, although we checked that similar results were obtained when including all
344 strata.

345 The mating-type chromosome of *M. v. paradoxa* was formed by the fusion of the whole HD
346 and PR ancestral mating-type chromosomes (Branco, et al. 2018). The two most recent strata
347 in *M. v. paradoxa* identified previously are distal to the mating-type loci and were called pink
348 and white strata (Figure 2E). The analysis of single-copy genes in its mating-type chromosomes
349 showed that the recombination suppression previously called black stratum in *M. v. paradoxa*
350 actually occurred in multiple steps. The oldest event of recombination suppression
351 corresponded to the genes located ancestrally between the HD-chromosome centromere and the
352 PR locus (“brown” stratum, Figure 2F), thus linking the two mating-type loci. Recombination
353 later stopped distal to the ancestral HD chromosome centromere on the long arm of the ancient
354 HD chromosome (“light-brown” stratum), spreading to non-mating-type genes (Figure 2F).
355 This was followed by an introgression from an ancestor of *M. lagerheimii* and *M. saponariae*,
356 with still-recombining mating-type chromosomes, thus restoring recombination between the
357 centromere and the PR locus. Recombination was subsequently again suppressed in this
358 introgressed region (“black” stratum of *M. v. paradoxa*, Figure 2F). The introgression and the
359 independence and timing of the different events of recombination cessation are supported by i)
360 the non-overlapping distributions of the estimated times of recombination suppression for the
361 brown and black strata (Figure 1D), ii) the different levels of differentiation between mating-
362 type chromosomes (Figure 2E) and iii) the different tree topologies for the genes in the brown
363 or light-brown strata versus the black stratum (Figure 1E), as explained below. The light brown
364 stratum may even be constituted itself of different strata or represent a gradual extension of
365 recombination suppression, as its ds values seem to decrease progressively when going away
366 from the mating-type locus (Figure 2E).

367 The black in *M. v. paradoxa* indeed displayed a different placement of *M. v. paradoxa*
368 compared to the species tree: *M. v. paradoxa* was sister species to the clade encompassing *M.*
369 *coronarie*, *M. lychnidis-dioicae* and *M. violaceum* s.s. in the species tree (Figure 1A), while it
370 was placed as a sister species to the *M. lagerheimii*-*M. saponariae* clade in the black stratum
371 tree (Figure 1E). This discrepancy strongly supports an introgression event of the black stratum
372 in *M. v. paradoxa* shortly after speciation, from the ancestor of *M. lagerheimii* and *M.*
373 *saponariae* (Figure 2F). This reinforces the view that mating-type chromosomes in fungi may
374 be particularly prone to introgression, as this process may counteract the effect of degeneration
375 following recombination suppression (Corcoran, et al. 2016; Hartmann, et al. 2020; Sun, et al.
376 2012). The black stratum in the ancestor of *M. v. paradoxa* has indeed been introgressed from
377 the ancestor of *M. lagerheimii* and *M. saponariae* that had likely not yet stopped recombining
378 in these regions, as their recombination suppression events in this region is younger than their
379 speciation (Carpentier, et al. 2019). This introgression from recombining regions has likely
380 temporarily restored recombination in these regions in the *M. v. paradoxa* lineage, explaining
381 the younger recombination suppression date and the presence of the introgression on both *M.*
382 *v. paradoxa* mating-type chromosomes. The introgression despite recombination suppression
383 in the *M. v. paradoxa* lineage could have occurred via gene conversion and/or because the
384 recombination was not suppressed with the recombining chromosomes of the ancestor of *M.*
385 *lagerheimii* and *M. saponariae*. The brown stratum of *M. v. paradoxa* also had a different
386 placement than the species tree and from the black stratum (Figure 1E), possibly resulting from
387 an introgression from an unidentified species.

388

389 **Absolute dating of recombination suppression events**

390 We estimated the dates when recombination was suppressed for the 22 strata for which we had
391 at least ten genes or 10,000 aligned codons among single-copy genes in non-recombining
392 regions. As soon as a gene is permanently linked to the mating-type loci, its alleles will
393 independently accumulate substitutions that will remain associated with their linked mating-
394 type allele. We therefore inferred the age of recombination suppression by estimating the
395 divergence time between the alleles associated with the a₁ and a₂ mating types, using Beast
396 v2.5.0. We used the split of *M. lychnidis-dioicae* and *M. silenes-dioicae* at 0.42 MYA as a
397 calibration point (Gladieux, et al. 2011). The estimated times ranged from 3.6 to 0.15 million
398 years before present for the various independent black strata (Table S3). We estimated

399 divergence times ranging from 3.82 to 0.15 million years in *M. v. paradoxa* strata and in the
400 range of 0.07 to 0.25 million years for the young strata such as the light-blue stratum of *M. v.*
401 *caroliniana* and the red stratum of *M. lychnidis-dioicae* and *M. silenes-dioicae* (Table S3).

402

403 **Identification of optimal codons**

404 To identify optimal codons in *Microbotryum* fungi, we investigated which codons were
405 preferentially used in highly expressed autosomal genes in the two distantly related species, *M.*
406 *lychnidis-dioicae* and *M. intermedium* (Figure 1). Codon usage bias is expected to be strongest
407 for the most highly expressed genes and selection for optimal codon use to be more effective
408 on autosomes because recombination occurs. We had expression data for haploid cells
409 cultivated clonally on nutritive medium (Table S4), for the two mating types separately. To
410 study autosomal codon usage, we performed a within-group correspondence analysis (WCA;
411 (Charif, et al. 2005)), *i.e.*, a multivariate statistical method summarizing codon count data,
412 normalizing the count of each codon by the average count of all the codons encoding for the
413 same amino acid (Suzuki, et al. 2008). For the *M. intermedium* a_1 mating type, the first principal
414 component axis summarized 16.55% of the codon usage variation (Figure S4) and was
415 significantly negatively correlated with the gene expression level (Table S5). Therefore, the
416 genes with the lowest coordinates on the first principal component axis were those most highly
417 expressed, where we expect strongest bias towards optimal codons. We performed chi-square
418 tests to compare the codon counts per amino acid of the genes with the 10% highest coordinates
419 and the 10% lowest coordinates on the first axis. For each amino acid, we inferred the optimal
420 codon to be the one with the highest adjusted standardized residuals (*i.e.*, largest counts
421 compared to expected under the hypothesis of random use of synonymous codons) in highly
422 expressed genes from chi-square tests (Table 1). We inferred the same optimal codons when
423 using the autosomes from the a_2 mating type of *M. intermedium* or from either of the two *M.*
424 *lychnidis-dioicae* mating types (Table S6). Because *M. intermedium* and *M. lychnidis-dioicae*
425 are very distantly related species in our dataset (last common ancestor at ca. 20 million years
426 before present, Figure 1A), and share the same optimal codons, we assumed the optimal codons
427 to be the same in all other *Microbotryum* species. The optimal codons were more GC rich than
428 the other synonymous codons (Table 1).

429

430 **Decrease in optimal codon frequency in non-recombining regions**

431 We determined whether each codon was optimal or not. We did this for each haploid genome
432 of the 13 *Microbotryum* species included in this study, separately for on the autosomes and the
433 different compartments of the mating-type chromosomes, *i.e.* the recombining pseudo-
434 autosomal regions (PARs) and distinct evolutionary strata with different ages of recombination
435 suppression. However, several of these evolutionary strata are small and contain few genes,
436 which precludes a reliable estimate of optimal codon usage. We therefore only considered the
437 22 largest non-recombining regions (with at least 19 genes; Figure 1). This was to test whether
438 the frequencies of optimal codons differed between genes in these non-recombining regions
439 and in autosomes. However, because we found that optimal codons were enriched in GC in
440 *Microbotryum*, a decrease in the frequency of optimal codons in the non-recombining regions
441 compared to recombining regions could not only be due to a lower efficacy of selection for
442 optimal codon usage but also a reduction in GC-biased gene conversion in non-recombining
443 regions. It should be possible to distinguish these two effects because GC-biased gene
444 conversion affects both coding and non-coding sequences while lower efficacy of selection on
445 codons should only impact coding sequences (*i.e.* on exons but not on introns). We therefore
446 introduced the difference in GC content between coding sequences (GC^{exon}) and introns
447 (GC^{intron}) per gene as a covariate in the analyses of optimal codons as an estimation of the
448 relative effects of GC-biased gene conversion versus selection on codon usage. We performed
449 a logistic ANCOVA for each genome to explain the variation in the status of codons (*i.e.*,
450 optimal versus non-optimal) by the genomic compartment, by the difference in GC content
451 between coding sequences (GC^{exon}) and introns (GC^{intron}), and by their interactions (see Figure
452 S5 for raw data distribution). These factors allowed us to test (i) whether the optimal codon
453 usage varied significantly among the different genomic compartments, (ii) whether the optimal
454 codons usage varied with the difference in GC content between coding sequences and introns
455 ($GC^{exon} - GC^{intron}$), which estimates the impact of GC-biased gene conversion, and (iii) whether
456 the strength or direction of the relationship between optimal codon use and GC-biased gene
457 conversion varied among the different genomic compartments. We wanted to assess whether
458 codons were less often optimal in non-recombining regions (tested through the genomic
459 compartment effect), and to assess whether this could be adequately explained solely by a lower
460 frequency of GC-biased conversion in non-recombining regions, which was tested through the
461 interaction between the genomic compartment and the quantitative measure of the effect of GC-
462 biased conversion.

463 We found few significant differences in optimal codon usage between autosomes and the
464 recombining regions located on mating-type chromosomes (Table S7a). In contrast, across all
465 species and mating types, codons were significantly less often optimal in non-recombining
466 regions than in autosomes (Table S7a, Figure 3A, Figures S6 and S7), except for the very
467 recently evolved non-recombining region of the a₂ HD *M. lagerheimii* mating-type
468 chromosome (Table S7a). Codons were thus less often optimal in older non-recombining
469 evolutionary strata than in recombining regions. To understand whether this was a signal of
470 degeneration due to the lower efficacy of purifying selection in non-recombining regions, we
471 needed to ascertain whether the lower frequency of optimal codons could be explained simply
472 by a lower frequency of recombination-mediated gene conversion, gene conversion being
473 typically GC-biased and optimal codons being, on average, more GC rich than less optimal
474 codons. To test for this, we used the difference in GC^{exon} - GC^{intron} as a covariate. Because low
475 efficacy of selection on codon usage should influence only coding sequences while GC-biased
476 conversion should affect all sequences, large excesses in GC^{exon} compared to GC^{intron} points to
477 the predominant action of selection whereas no difference points to the predominant action of
478 GC-biased gene conversion. Across the genomic landscape of autosomes, genes that showed
479 low difference in GC content between exons and introns were most rich in optimal codons,
480 indicative of stronger influence of GC-biased conversion. As the difference in GC content
481 between exons and introns increased the frequency of optimal codons declined. This was the
482 case for all the genomes (Table S7a; Figure 3B), except the a₁ genomes of *M. lychnidis-dioicae*,
483 *M. v. melanantha* and *M. violaceum* (s.s.) for which the effect was not significant (Table S7a).
484 This suggests that GC-biased gene conversion, in addition to selection for optimal codon usage,
485 increases the frequency of optimal codons in autosomes. Indeed, selection for optimal codons
486 is strong only in highly expressed genes, while GC-biased conversion can act on all genes. This
487 also means that the generally lower frequency of optimal codons in non-recombining regions
488 could in principle be due to less frequent GC-biased gene conversion in these regions compared
489 to autosomes.

490 However, the relationship between the difference in GC^{exon} and GC^{intron} and optimum codon
491 usage rarely differed between autosomes and non-recombining regions, most interactions being
492 non-significant (Table S7a; Figure 3B). In most genomes, we indeed observed the same slope
493 of optimal codon frequency as a function of the difference in GC^{exon} and GC^{intron} in non-
494 recombining regions as in autosomes (Figures 3B and S6). This means that the codons were not
495 only less optimal in non-recombining regions in the genomic areas where GC-biased

496 conversion had the highest impact (low difference in GC^{exon} and GC^{intron} , left Figure 3B) but
497 also where it had little influence, i.e., where only selection acts (high difference in GC^{exon} and
498 GC^{intron} , right Figure 3B). Such similar slopes for autosomes and non-recombining regions,
499 together with lower overall values of optimal codon frequency in these non-recombining
500 regions, indicate that selection for optimal codons has a lower efficacy across the genomic
501 landscape in non-recombining regions and that the GC-biased conversion has similar impact in
502 recombining and non-recombining regions. We also performed the same statistics using all
503 evolutionary strata, even the shortest ones, and we obtained similar conclusions as when using
504 only the largest ones (Figure S8, Table S7b).

505

506 **Control for ancestral gene expression level**

507 Selection on codon usage of genes could be weaker in non-recombining regions if gene
508 expression in these regions had been, by chance, low in these genomic regions even before
509 recombination was suppressed. To investigate whether genomic compartments differed in the
510 average gene expression level before recombination suppression, we inferred the ancestral
511 expression level of each gene from the expression level of its ortholog in *M. intermedium*, which
512 has no recombination suppression on its mating-type chromosomes except in small regions
513 around the mating-type loci themselves. Of course, some gene-specific expression levels may
514 have changed in *M. intermedium* since its divergence from the last common ancestor, but,
515 without recombination suppression in this species, there has likely been no major change in
516 gene expression across large genomic regions since the last common ancestor of the studied
517 *Microbotryum* species. That gene expression level changed little across the *Microbotryum*
518 genus in recombining regions was supported by highly significant correlations of gene
519 expression levels of shared autosomal genes measured in similar culture conditions between *M.*
520 *intermedium* and *M. lychnidis-dioicae* (Tables S8 and S9).

521 For each of the two haploid genomes across the 13 species, we compared the mean and variance
522 of the inferred ancestral gene expression level (i.e., the gene expression level in *M.*
523 *intermedium*) between the current genomic compartments using a Kruskal-Wallis' test and a
524 Levene's test, respectively. For each species we tested for differences in the inferred ancestral
525 gene expression between the current genomic compartments, i.e., autosomes, PARs and the
526 various evolutionary strata that lack recombination. We found no significant difference in mean
527 or variance of the inferred ancestral gene expression level between the current recombining and

528 non-recombining regions for any genome (Table S10). Therefore, differences in frequencies of
529 optimal codons across the genomic compartments are unlikely to be explained by differences
530 in ancestral gene expression level between genomic compartments.

531

532 **Tempo of degeneration in codon usage and in protein-coding genes**

533 The multiple independent events of recombination suppression in the *Microbotryum* genus
534 provides an excellent case study for investigating the tempo of degeneration, allowing analysis
535 of the relationship between degeneration level and time in non-recombining regions using
536 independent data points. Here, we investigated the tempo of degeneration using the genes
537 present in the regions with independent recombination suppression events between PR and HD
538 loci, as well as the large species-specific strata. We excluded the shared strata common to most
539 species because they do not provide independent data points (purple, blue and orange strata)
540 and those that contain insufficient numbers of genes to ensure reliable estimates of the time
541 since recombination suppression (e.g., the green strata in *M. lychnidis-dioicae*). For the black
542 strata shared by multiple species (Figure 1), we took the mean value of variables for species
543 descended from the same recombination suppression event to avoid pseudo-replication. In
544 total, we thus considered 22 evolutionary strata for these analyses (Table S11).

545 We tested whether the odds for a codon to be optimal ($N^{\text{optimal}} / N^{\text{non-optimal}}$), the non-synonymous
546 differences between alleles on the two mating-type chromosomes (d_N) and the ratio of non-
547 synonymous versus synonymous substitution rates (d_N/d_S) for the genes located in the non-
548 recombining regions covaried with the time since recombination suppression, including species
549 as a cofactor and, for optimal-codon analyses, ancestral gene expression level as a covariate.
550 We tested linear, logarithmic or quadratic relationships with the time since recombination
551 suppression on the one hand and d_N , d_N/d_S or the odd for a codon to be optimal on the other
552 hand.

553 The odds for a codon to be optimal was best explained by considering the joint effect of its
554 ancestral expression level, the species and a quadratic effect of the age since recombination
555 suppression (Figure 4a, Table S12). This means that the decrease in the frequency of optimal
556 codons slowed with time, reaching an asymptote at ca. 3MY (Figure 4a). As expected, the odds
557 for a codon to be optimal increased with its ancestral expression level (Figure S9; Table S12).
558 The asymptote for the frequency of optimal codons seemed at a higher value than expected
559 under random codon usage. There are indeed 18 amino-acids encoded by more than one codon

560 and 59 codons in total discarding the three stop codons and the two single-codon aminoacids;
561 this gives a frequency of optimal codons of $18/59=0.30$ under random usage while the
562 asymptote is at ca. 0.43 and the lowest frequencies at 0.40 (Figure 4a).

563 The d_N/d_S ratio rapidly increased following recombination suppression and was best explained
564 by the log of time since recombination suppression (Figure 4b, Table S12). However, the d_N/d_S
565 ratio very rapidly reached a plateau, actually remaining almost constant at a value around 0.55.
566 This means that purifying selection decreased very rapidly following recombination
567 suppression to a constant level, intermediate between strong purifying selection ($d_N/d_S=0$) and
568 neutral evolution ($d_N/d_S=1$). Accordingly, non-synonymous differences between mating-type
569 chromosomes (d_N) increased linearly with stratum age, at a rate of 0.015 per MY (Figure 4c).
570 In contrast, both d_N and d_S were near zero in recombining regions between alleles from haploid
571 cultures of opposite mating types deriving from a diploid individual (Figure 5), these fungi
572 being highly homozygous due to high selfing rates.

573 For the degeneration tempo analysis, we used one single point per recombination suppression
574 event to avoid pseudoreplication and we excluded the small strata with too few genes to provide
575 reliable age estimates. Plotting the values for all strata and all species (Figures 5 and S8) showed
576 similar degeneration levels among species in shared strata and thus repeatability of
577 degeneration; this further supports the degeneration tempo analyses above. Figures 4 and 5 also
578 show that the frequencies of optimal codons in recombining regions (autosomes and PAR) were
579 high and relatively homogeneous among species.

580

581 **Discussion**

582 This study takes advantage of multiple events of recombination suppression on the mating-type
583 chromosomes of closely related fungal species to document the tempo of genomic degeneration
584 in non-recombining regions (*i.e.*, the pace at which deleterious mutations accumulate over
585 time). We quantified the rate of degeneration by estimating the age of each non-recombining
586 region, *i.e.*, the time since recombination suppression, and by examining how the degree of
587 degeneration estimated using two different measures, *i.e.*, non-synonymous substitution
588 accumulation and the reduction in optimal codon usage, varied with age. Few studies have
589 focused on the degeneration of codon usage. This study further proposes a method for
590 disentangling the effect of less efficient selection from other factors that influence codon usage
591 in non-recombining regions. Indeed, codon usage is likely to be affected by ancestral gene

592 expression level and GC-biased gene conversion, so studies of the consequences of relaxed
593 selection on codon usage in non-recombining regions need to control for these two processes.
594 We found that genes in non-recombining regions had fewer optimal codons than those in
595 recombining regions. Controlling for levels of ancestral gene expression and GC-biased gene
596 conversion allowed us to conclude that this was due to a decrease in selection efficacy in non-
597 recombining regions. Furthermore, by examining independent non-recombining regions of
598 varying age, we observed a rapid initial decrease in the frequency of optimal codon usage that
599 then slowed to reach an asymptote. Non-synonymous substitutions, in contrast, accumulated in
600 a nearly linear manner over the last 4 million years of suppressed recombination on
601 *Microbotryum* mating-type chromosomes, in agreement with a steady level of purifying
602 selection, intermediate between neutral evolution and strong selection against non-synonymous
603 changes ($d_N/d_S = 0.55$).

604 Multiple independent events of recombination suppression involving mating-type loci have
605 been reported in anther-smut fungi (Branco, et al. 2017; Branco, et al. 2018; Carpentier, et al. 2019;
606 Duhamel, et al. 2022). By sequencing and analysing the genomes of three additional
607 *Microbotryum* species, we document three new independent events of mating-type
608 chromosome rearrangements and fusions leading to PR-HD linkage, amounting to a total of
609 eight such independent PR-HD linkage events in our present dataset. Linking mating-type loci
610 is beneficial under selfing (Branco, et al. 2017; Nieuwenhuis, et al. 2013). The high number of
611 independent events of PR-HD linkage through distinct genomic rearrangements shows the
612 power of natural selection to generate repeated convergent phenotypes by independent
613 pathways. In addition, there have been multiple extension events of the region of recombination
614 suppression, at different times and in a stepwise manner in *Microbotryum* species. Here, we
615 document additional previously unidentified evolutionary strata. In total, we analysed 22
616 genomic regions without recombination, each corresponding to an independent event of
617 recombination suppression, providing the statistical power for a formal comparative study of
618 genomic degeneration. Similar comparative analyses have been previously impossible because
619 of the lack of such multiple independent events of recombination suppression across closely
620 related species. The *Microbotryum* genus contains more than a hundred species (Hood, et al.
621 2010; Lutz, et al. 2008), so there are probably many as yet unexploited resources of genomic
622 diversity that will allow deeper exploration of the effects of suppressed recombination in the
623 vicinity of reproductive compatibility loci on genome evolution and in particular on the tempo

624 of degeneration. The *Microbotryum* genus thus constitutes a unique model for understanding
625 major evolutionary processes affecting the genomic structure of sexual eukaryotes.

626 We found that optimal codons were less frequently used in non-recombinating regions compared
627 to autosomes across multiple *Microbotryum* species. We interpreted this as a feature of
628 degeneration due to reduced efficacy of selection in non-recombinating regions, by controlling
629 for possible confounding factors, *i.e.*, lower GC-biased conversion or lower ancestral gene
630 expression in non-recombinating regions. Indeed, because optimal codons in *Microbotryum* are
631 GC-rich, less GC-biased gene conversion in non-recombinating regions compared to autosomes
632 could lower the frequency of optimal codons in such regions. To test for this alternative
633 explanation, we generated a covariate that estimated the strength of GC-biased gene conversion
634 across genes in the genomes. We found similarly lower frequencies of optimal codons in non-
635 recombinating regions regardless of whether GC-biased conversion was high or low across the
636 genomic landscape, and thus even when only selection acted. Thus, we can conclude that lower
637 efficacy of selection contributes to the decrease in the odds of optimal codons in non-
638 recombinating regions in *Microbotryum* mating-type chromosomes. To our knowledge, this study
639 constitutes the first attempt to analyse codon usage by controlling for confounding processes in
640 statistical analyses.

641 We also checked that the differences in codon usage between autosomes and non-recombinating
642 regions were not due to differences in gene expression levels between these regions before the
643 evolution of recombination suppression, as gene expression level affects codon usage (Novoa
644 and Ribas de Pouplana 2012; Zhou, et al. 2016). Indeed, if expression levels were ancestrally lower
645 for genes now located in non-recombinating regions, selection on codon usage would have been
646 weaker than in other autosomal regions, and lower frequencies of optimal codons would have
647 been expected, regardless of the effect of recombination suppression. However, we found no
648 difference in the ancestral expression levels between autosomal genes and those in current non-
649 recombinating regions. Altogether, we thus found robust evidence showing that lower efficacy
650 of selection due to recombination suppression resulted in less optimal codon usage in
651 *Microbotryum* species, as has been suggested in the non-recombinating mating-type chromosome
652 of the fungus *Neurospora tetrasperma* (Whittle, et al. 2011).

653 It has often been assumed that only weak selection would act on codon usage (Li, et al. 2009;
654 Machado, et al. 2020), because synonymous substitutions should not greatly impact
655 phenotypes. Contradicting this view, several studies, focusing at the gene level, have shown

656 substantial impacts of synonymous substitutions on phenotypes (Carlini 2004; Lampson, et al.
657 2013; Machado, et al. 2020), sometimes leading to strong selection on codon usage (Machado,
658 et al. 2020). In *Drosophila* species, codon usage was shown to be quite stable over long time
659 frames with 11/12 species having the same preferred codons except those coding for serine
660 (Vicario, et al. 2007). In the *Microbotryum* genus, optimal codons were the same in *M.*
661 *intermedium* and *M. lychnidis-dioicae*, two species having their last common ancestor at the
662 basis of the studied *Microbotryum* clade, ca. 20 million years ago. The same optimal codons
663 have therefore been maintained for several million years, suggesting strong and consistent
664 selection. The preferred codons in two distantly related plant species, in different families, *S.*
665 *latifolia* and *Arabidopsis thaliana*, are almost identical, despite their long divergence time (Qiu,
666 et al. 2011). *Silene latifolia* shows no decrease in optimal codon frequencies in non-recombining
667 regions of the Y-chromosome (Bartolomé and Charlesworth 2006). In *Drosophila* in contrast, the
668 rate of accumulation of unpreferred synonymous mutations was higher for the neo-Y
669 chromosome than for the neo-X chromosome even for highly expressed genes (Bartolomé and
670 Charlesworth 2006). Codon usage in non-recombining regions therefore requires more studies
671 before we can draw generalities about its evolution.

672 Degeneration of protein-coding sequences in non-recombining regions of sex chromosomes has
673 been much more studied than codon usage and has been consistently found in a variety of
674 organisms, from animals and fungi to plants (e.g., (Bachtrog 2013; Bergero and Charlesworth
675 2011; Chibalina and Filatov 2011; Fontanillas, et al. 2015; Soojin and Charlesworth 2000;
676 Whittle, et al. 2011). Overall trends were inferred from observations that older evolutionary
677 strata, e.g., on sex chromosomes of papaya and supergenes in butterflies (Jay, et al. 2021a; Wu
678 and Moore 2015) had higher non-synonymous substitution rates than younger strata. However,
679 though theoretical models made predictions about the tempo of gene losses, empirical studies
680 on the tempo of sequence degeneration were lacking (Bachtrog 2008), because data from
681 sufficient numbers of independent recombination suppression events to examine the tempo of
682 non-synonymous mutation accumulation did not exist.

683 The existence of multiple independent events of recombination suppression in *Microbotryum*
684 fungi allowed reliable estimations of the tempo of degeneration in protein-coding sequences.
685 The decrease in the frequency of optimal codons was rapid following recombination
686 suppression and reached an asymptote at ca. 3My. The asymptote seemed above the value of
687 the frequency of optimal codons expected at random, which suggests that selection is still
688 acting. The d_N/d_S ratio, a proxy for the degree of relaxed selection, very rapidly (within less

689 than 0.25 MY) reached a constant value, remaining around 0.55. The efficacy of purifying
690 selection thus very rapidly decreased after the onset of recombination suppression and then
691 remained steady at the same intermediate value between strong purifying selection ($d_N/d_S=0$)
692 and neutral evolution ($d_N/d_S=1$). Accordingly, non-synonymous differences (d_N) increased
693 linearly with stratum age, at a rate of 0.015 per MY. One could have expected that the strength
694 of purifying selection would increase with time (*i.e.*, d_N/d_S would decrease with time) if
695 accumulating more non-synonymous changes would have increasing deleterious effects, *i.e.*, if
696 fitness decreased more rapidly than linearly with the number of non-synonymous substitutions.
697 One could have expected in contrast that the strength of purifying selection would decrease
698 with time (*i.e.*, d_N/d_S would increase with time), if some gene copies became completely non-
699 functional. This may be the case, for example, if selection on their function occurs primarily in
700 the diploid (dikaryotic) stage such that deleterious mutation can remain sheltered under the
701 permanent heterozygosity afforded by recombination suppression. We did not observe such
702 non-linear effects here, but they may occur at longer time scales following recombination
703 suppression. In addition to revealing the tempo of degeneration, this is the first study to our
704 knowledge that disentangles the effects of reduced selection efficacy and GC-biased gene
705 conversion on the frequency of optimal codons and that investigates the tempo of degeneration
706 using multiple independent events of recombination suppression.

707 We used synonymous and non-synonymous substitutions to estimate the time of divergence
708 between sequences, as is typically done. We analysed how d_N , d_N/d_S and the odds of optimal
709 codons evolved over time since recombination suppression. These different measures depend
710 on substitution rates, with the influence of both mutation and selection, and it is precisely this
711 effect of selection we aimed to analyse. The codon usage and d_N should be strongly correlated
712 to the total synonymous divergence only in the absence of purifying selection, which is
713 precisely what we are studying. If selection is very efficient, optimal codon frequencies should
714 not change and d_N should remain very low, as is in fact observed on autosomes, in contrast to
715 the non-recombining regions of the mating-type chromosomes. We studied here how rapidly
716 deleterious substitutions accumulate over time since recombination suppression, *i.e.*, the shape
717 of the curve of accumulation of deleterious mutations with time.

718 Understanding the tempo of degeneration is important for our knowledge on genomic evolution,
719 on the origin of genetic diseases, and on the maintenance of regions without recombination. For
720 example, it is important to note that the seven youngest evolutionary strata used in this study of
721 degeneration tempo are still collinear between mating types (Branco, et al. 2017; Branco, et al.

722 2018; Carpentier, et al. 2019) and correspond to low levels of degeneration. In contrast, the
723 evolutionary strata with strong signs of degeneration are also highly rearranged between mating
724 types (Branco, et al. 2017; Branco, et al. 2018; Carpentier, et al. 2019). This implies in particular that
725 the hypothesis postulating that inversions linked to a mating-type locus or a sex-determining
726 region could easily reverse when they accumulate too much load (Lenormand and Roze 2021)
727 likely does not hold, as the region would then have already accumulated further rearrangements,
728 preventing reversion to the original state that would allow recombination. This would in turn
729 support the hypothesis that the extension of recombination suppression could then simply be
730 the result of the selection of recombination cessation for sheltering deleterious alleles (Jay, et
731 al. 2021b).

732

733 **Data access**

734 The dataset(s) supporting the conclusions of this article is(are) available in the [repository
735 name] repository, [unique persistent identifier and hyperlink to dataset(s) in http:// format]-will
736 be added upon manuscript acceptance.

737

738 **Material and methods**

739 **Genome sequencing**

740 We sequenced haploid genomes of opposite mating types for one diploid strain of each of the
741 following species: *M. v. tatarinowii* parasitizing *S. tatarinowii* (#1400, GPS 39°59'45.4"
742 116°11'37.3", Xiangshan, Beijing, collected in September 2015), *M. v. melanantha* parasitizing
743 *S. melanantha* (#1296; 27°01'50.6" 100°10'41.6" First Peak, Lijiang, date collected in July
744 2014), and *M. coronariae* parasitizing *L. flos cuculi* (#1247; GPS 55.7 -4.9, Great Cumbrae
745 Island, UK, collected in 2000). Additionally, we sequenced the a₁ genome of *M. intermedium*
746 parasitizing *Salvia pratensis* (#1389, GPS 44.3353 N 7.13637 E, Cuneo, Italy, collected in July
747 2011). Samples were collected before the publication of laws regarding the Nagoya protocol in
748 the countries of collection. DNA extraction and sequencing based on Pacific Bioscience long-
749 read sequencing was performed as described previously (Branco, et al. 2017; Branco, et al. 2018).
750 Sequencing was carried out at UCSD IGM Genomics Center (San Diego, USA) with the P6 C4
751 chemistry. Coverage was between 24x and 35x for all genomes, except for *M. intermedium* for
752 which it was 199x.

753

754 **Assembly of new genomes and assembly improvement for *M. scabiosae* infecting *Knautia*
755 *arvensis***

756 We converted the bax.h5 files from each smart cell into one bam file using bax2bam with the
757 “--subread” option (<https://github.com/PacificBiosciences/bax2bam>), and all bam files from the
758 same sequencing genome into one fastq file using bam2fastx
759 (<https://github.com/PacificBiosciences/bam2fastx>). We generated the assembly using canu
760 (Koren, et al. 2017) with the parameters “genomeSize=30m” and “-pacbio-raw”. We used
761 pbalign (version 0.3.0) with the blasr algorithm (Chaisson and Tesler 2012) to realign the raw
762 reads onto the assembly (indexed with samtools faidx (Li, et al. 2009) and then used the output
763 bam file into quiver (Chin, et al. 2013) to polish the assembly basecalling
764 (<https://github.com/PacificBiosciences/GenomicConsensus>). Default parameters were used
765 when not detailed in the text (see the Table S1 for further assembly statistics).

766 The previous genome assemblies of the a₁ and a₂ genome of *M. scabiosae* were based on five
767 PacBio movies (Branco, et al. 2018). We re-assembled the genome using three additional
768 movies, from the same strain, and generated using the same PacBio technology for a total
769 coverage of 506x for the a₁ genome and 803x for the a₂ genome. The assemblies were
770 substantially improved, as the contig numbers were reduced from 123 and 147 to 26 and 20 for
771 the a₁ and a₂ mating type, respectively (see the Table S2 for further assembly statistics).

772

773 **Gene models, orthologous group reconstruction, transposable elements, centromeres**

774 As for the previously published *Microbotryum* genomes (Badouin, et al. 2015; Branco, et al. 2017;
775 Branco, et al. 2018), the protein-coding gene models were predicted with EuGene (version 4.2a;
776 (Foissac, et al. 2008), trained for *Microbotryum*. Similarities to the fungal subset of the uniprot
777 database (The UniProt 2011) plus the *M. lychnidis-dioicae* Lamole proteome (Badouin, et al. 2015)
778 were integrated into EuGene for the prediction of gene models. We obtained the orthologous
779 groups based on all-vs-all blastp high scoring pairs parsed with orthAgogue -u option (Ekseth,
780 et al. 2014) and clustered with mcl (Dongen 2000) setting to 1.5 the inflation parameter.
781 Transposable elements were obtained from a previous study (Hartmann, et al. 2018).
782 Centromeres were identified as regions with the highest density of the centromeric repeats
783 described in *M. lychnidis-dioicae* (Badouin, et al. 2015). In the most fragmented assemblies (e.g.

784 *M. coronariae*), the centromeres on the mating-type chromosomes could not be localized, but
785 the centromere localization was only used in the *M. lagerheimii* assembly to assess whether
786 chromosome fissions occurred at centromeres.

787

788 **Evolutionary scenarios of the mating-type chromosomes**

789 For the figures S1-S3, we represented genomic data using Circos (Krywinski 2009) with the
790 following tracks: (i) contig, (ii) dS=0 (indicating recombination in these selfing species as
791 selfing leads to homozygosity), (iii) all genes, (iv) transposable elements, centromeric repeats.
792 Both the dS=0 and all gene tracks were filtered for TEs and centromeric repeats, using their
793 merged coordinates with bedtools (Quinlan and Hall 2010). Homozygosity (dS=0) was used to
794 infer recombining regions on mating-type chromosomes following previous studies (Branco, et
795 al. 2017; Branco, et al. 2018). The comparisons of mating-type chromosomes of the species with
796 linked HD and PR loci to the ancestral state with HD and PR loci on different chromosomes
797 (using the *M. intermedium* genome as a proxy for the ancestral state) allowed us to infer the
798 chromosomal rearrangements having linked HD and PR loci, as previously done (Branco, et al.
799 2017; Branco, et al. 2018). Non-recombining regions were identified as genomic regions with
800 non-zero levels of differentiation between mating-type chromosomes as previously done
801 (Branco, et al. 2017; Branco, et al. 2018).

802

803 **RNAseq experiment and expression level quantification.**

804 We generated RNAseq data for *M. intermedium* under two different conditions: i) haploid cells
805 of a single mating type grown on rich medium and then mixed in equal proportions of the two
806 mating types before RNA extraction (“H” condition), and ii) mixtures of cells of the two mating
807 types under mating conditions (“M” condition). Total RNA was isolated from haploid cells
808 using the Qiagen RNeasy Mini Kit. For the rich medium condition, haploid strains (a₁ or a₂)
809 were streaked on Potato Dextrose Agar (PDA) and grown for 48 hours at 22°C. Cells were
810 scraped, ground in liquid nitrogen, and total RNA extracted following the manufacturer’s
811 protocol. For RNAseq analysis, equal amounts of total RNA individually isolated from a₁ and
812 a₂ cultures were pooled. For the mating condition, haploid a₁ and a₂ cultures were first grown
813 separately in yeast extract peptone dextrose broth overnight. Cell density was measured with a
814 spectrophotometer. The concentration of each culture was adjusted to O.D.₆₀₀ 1.0. Equal

815 volumes of the two haploid cultures were mixed and plated on water agar. These plates were
816 incubated for four days at 14°C, after which wet mounts were prepared from each mated plate
817 to verify the presence of conjugation tubes, indicating active mating behaviour. Cells were
818 scraped. Total RNA was isolated from haploid cells using the Qiagen RNeasy Mini Kit. After
819 total RNA isolation, several quality control measures were taken. Concentration and purity
820 were assessed using a NanoDrop 2000 spectrophotometer (Thermo Scientific); 260/280 and
821 260/230 ratios greater than 1.8 were considered satisfactory for RNAseq application.
822 Additionally, cDNA was prepared and used as template for intron-spanning primers in PCR
823 reactions to verify the lack of genomic DNA contamination. Bioanalyzer analysis was
824 completed to detect intact 18S and 23S RNA as a measure of overall RNA quality. After passing
825 all quality control measurements, RNA was sent for RNAseq analysis to CD Genomics
826 (Shirley, New York). Three replicates were sequenced per condition and means across the three
827 replicates were analysed.

828 For *M. lychnidis-dioicae*, we used RNAseq data published previously (Perlin, et al. 2015), using
829 only the expression data from the two conditions that corresponded to those analysed in *M.*
830 *intermedium*, i.e. culture on PDA medium and under mating conditions. List and statistics of
831 the RNAseq experiments used in this study are provided in Table S4. We controlled the quality
832 of the RNAseq experiment data using fastQC (<https://github.com/s-andrews/FastQC>). We
833 trimmed the sequences using trimmomatic (Bolger et al. 2014); parameters:
834 ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3
835 MINLEN:36). We only considered the resulting trimmed paired-end reads for further analysis
836 (Table S3). For each RNAseq dataset, we pseudo-aligned the reads onto the corresponding
837 references and quantified the gene expression levels using Kallisto using the “kallisto quant”
838 command with the “--bias” option (Bray, et al. 2016). For the diploid RNAseq experiment (Table
839 S4), we used the concatenated coding sequence set from a₁ and a₂ haploid genomes as reference.
840 For haploid RNAseq experiment, we considered the haploid coding sequence set from the
841 corresponding mating type. For each RNAseq experiment, we removed all the genes with an
842 expression level above the 95th percentile of the expression level distribution to avoid spurious
843 high expression level.

844 We tested for change in expression level for genes in recombining regions between two
845 distantly-related *Microbotryum* species. We performed Pearson’s correlation tests between *M.*
846 *intermedium* and *M. lychnidis-dioicae* orthologous genes for the two of RNA-seq experimental

847 replicates that were similar between the two species (*i.e.* cells grown on rich media or mated
848 on water agar (Perlin, et al. 2015); Table S8).

849

850 **Identifying optimal codons in *Microbotryum* fungi**

851 We generated a codon usage table for each of the a₁ *M. lychnidis-dioicae*, a₂ *M. lychnidis-*
852 *dioicae*, a₁ *M. intermedium* and a₂ *M. intermedium* haploid genomes (scripts available in the
853 public repository) and filtered the genes that overlapped transposable elements that had been
854 previously identified (Hartmann, et al. 2018). We then performed a within-group correspondence
855 analysis (WCA), following the procedure available at [http://pbil.univ-](http://pbil.univ-lyon1.fr/datasets/charif04/)
856 [lyon1.fr/datasets/charif04/](http://pbil.univ-lyon1.fr/datasets/charif04/) (Charif, et al. 2005) on each codon usage table. Correspondence
857 analysis is a multivariate statistical method that summarizes codon count data by reducing them
858 to a limited number of variables. WCA more specifically dissociates the effects of different
859 amino-acid compositions from the effects directly related to synonymous codon usage (Charif,
860 et al. 2005). This method adjusts the value for each codon by the average value of all the codons
861 encoding for the same amino acid. We only considered the two first principal components
862 which explained between 16.30% and 16.50% of the variance for the first principal component
863 and between 7.75% and 8.51% for the second principal component (Figure S4). The coordinates
864 of the genes projected onto the first (PC1) and second (PC2) axes were significantly correlated
865 with gene expression level (Pearson's correlation tests; Table S5). We considered the first axis
866 to better characterized the gene expression level variation because the correlations between PC1
867 gene coordinates and gene expression level were higher than those calculated between PC2
868 gene coordinates and gene expression level (see correlation's coefficients in Table S5).

869 We performed chi-square tests to compare, per amino acid, the codon counts of the 10% of
870 genes having the lowest PC1 coordinates to the codon counts of the 10% of genes having the
871 highest PC1 coordinates, representing the genes with highest and lowest expression,
872 respectively (Figure S3). When the chi-square test was significant ($p < 0.05$), we considered for
873 each amino acid the optimal codon to be the one with the highest residual from the chi-square
874 test (Table S6). We did not consider the ATG (methionine) and TGG (tryptophan) codons as
875 they have no synonymous codons.

876

877 **Frequency of optimal codons and GC content statistics**

878 For each coding sequence (i.e., exons) with base pair numbers corresponding to multiple of
879 three, we calculated the frequency of optimal codons (FOP), the GC content of the third position
880 (GC_3) of each codon and the GC content of the introns of each gene ($GC_{introns}$). We removed
881 from this gene set any gene overlapping with a transposable element.

882

883 **Non-synonymous and synonymous divergence estimation**

884 For each pair of allele from alternative mating type in each species, we aligned the protein
885 sequences with muscle v3.8.31 (Edgar 2004) and obtained the codon-based CDS alignments
886 with TranslatorX; d_N and d_S values were computed in the yn00 program for each gene in each
887 species (Yang and Nielsen 2000). To estimate d_N/d_S values per stratum, we summed the d_N and
888 d_S values of all genes within each stratum, weighted by gene size, and computed the ratio of
889 these sums.

890

891 **Absolute dating of recombination suppression events**

892 We estimated the species and genome compartment divergence times under a calibrated Yule
893 model and a HKY substitution model ($\kappa=2$, estimated frequencies) with 10,000,000 or
894 20,000,000 mcmc generations in beast v2.5.0 (Bouckaert, et al. 2019). We used three unlinked
895 site models (one per codon position). Clock model and tree parameters were kept linked. We
896 used the split of *M. lychnidis-dioicae* and *M. silenes-dioicae* as a calibration point, with a
897 normal prior with a mean 0.42 MYA and sigma 0.04 (Gladieux, et al. 2011). Beast input files
898 are available in the public repository. Concatenated alignments were obtained from codon-
899 based alignments produced by macse v2.03 -prog alignSequences (Ranwez, et al. 2018) protocol
900 on fully conserved single copy genes. We reconstructed the species and genome compartment
901 maximum likelihood trees with IQTree v2.0.4 (1000 rapid bootstraps and automatic model
902 selection (Minh, et al. 2020)).

903 For the species divergence we used 3,955 fully conserved single copy autosomal genes
904 (2,732,071 aligned codons). For estimating the dates of recombination suppression, we
905 estimated the divergence time at the genes linked to mating-type loci between alleles associated
906 with a_1 and a_2 mating types in ML trees. We used genes ancestrally located on the long arm of
907 the HD chromosome (corresponding to the white stratum, with 179 genes and 129,122 aligned
908 codons, and the light brown stratum, with 92 genes and 78,627 aligned codons), the region

909 between the HD loci and the centromere (8 genes and 23,115 aligned codons), the region
910 between the HD loci and the short arm telomere (12 genes and 9,165 aligned codons), the short
911 arm of PR chromosome (11 genes and 11,865 aligned codons), the region between the PR loci
912 and the centromere (23 genes and 19,944 aligned codons) and the region extending from the
913 PR locus towards the long arm telomere (shared gene set between the PR associated non-
914 recombining region of *M. silenes-acaulis* and the red, light blue and pink strata, with 14 genes
915 and 9,952 aligned codons).

916

917 **Statistics**

918 We tested, for each of the 26 *Microbotryum* genomes (one genome per mating type for 13
919 species), whether optimal codons were less common in the genes in distinct genomic
920 compartments (PARs and the different evolutionary strata with different ages of recombination
921 suppression) than in autosomal genes. To control for an effect of GC-biased gene conversion
922 on differences in GC level among genome compartments, we used the difference in GC content
923 between coding and intron sequences across genes as a covariate in an ANCOVA that
924 considered the status of codons (optimal versus non-optimal) as the response variable, genomic
925 compartment as classification variable and the difference in GC content between coding and
926 intron sequences across genes as the covariate. The interaction effect tested for difference in
927 slopes of the relationship between codon usage and the covariate among genome compartments.
928 Using the `glm` function in R, we gave as input the frequency of optimal codons weighted by the
929 total number of codons per gene (using the “weight” option in the `glm` function). After
930 performing a logistic regression assuming binomial distribution and a logit link, we noticed that
931 predicted frequencies of optimal codons were all lower than the raw frequency of optimal
932 codons which could indicate overdispersion issues. We therefore performed the logistic
933 regression assuming a quasibinomial distribution, the only difference being in the estimation of
934 the dispersion parameter to correct, among other things, the p-values. The estimated dispersion
935 parameter was high for the logistic regression model of each genome ($\Phi > 2$), so we choose the
936 quasibinomial distribution to interpret the data. Choosing a quasibinomial distribution did not,
937 however, change the log(odds) estimated by the model.

938 To assess how the frequency of optimal codons, the ratio of non-synonymous over synonymous
939 mutations (d_N/d_S) and the number of non-synonymous mutations (d_N) varied over time since
940 recombination suppression in non-recombining regions, we performed regressions using R. We

941 used species as blocks and, for the optimal codon analysis, ancestral gene expression level as a
942 covariate. We compared linear, logarithmic or quadratic regressions based on Akaike
943 information criterion (AIC). For d_N/ds and d_N analyses, we analysed only non-recombining
944 regions, i.e. we did not include autosomes or pseudo-autosomal regions, as nearly no
945 synonymous or non-synonymous mutations were observed in these genomic compartments, the
946 species being highly homozygous. Because the status for a codon as optimal or not is a binomial
947 variable, we performed logistic regressions for this trait using generalized linear models.

948 To visualise the variation in the frequency of optimal codons or d_N/ds for all strata, including
949 those for which we had no solid age estimates because of their small sizes, we plotted the values
950 as boxplots and as a function of ds .

951

952 **Author contribution**

953 Conception and design, TG, MEH, FC; Formal analyses, FC, RCRV, PJ, MD; Interpretation,
954 FC, TG, MEH, RCRV, JAS; Data acquisition, MHP, RMW, FC, TG, RCRV; Original draft,
955 FC, TG; Final draft, FC, TG, MEH, RCRV, JAS, PJ; Revision, FC, TG, RCRV, MEH, MHP,
956 RMW. All authors read and approved the final version.

957 **Competing interests**

958 None of the authors have any competing interests.

959 **Acknowledgements**

960 We thank Hui Tang and Janis Antonovics for help with sample collection. We thank Maxime
961 Dubart and Sylvain Billiard for great help and discussion about statistical analyses. This work
962 was supported by the National Institute of Health (NIH) grant number R15GM119092 to M. E.
963 H., and the Louis D. Foundation award and EvolSexChrom ERC advanced grant number
964 832352 to T. G. We thank Hector Mendoza for help with RNA isolation. We thank Kurt
965 Hasselman, John Bain and Hui Tang who collected the strains (involving a confrontation with
966 a grizzly bear for John Bain). Support for R.M.W. and RNA isolation was additionally from
967 NIH [sub-award #OGMB131493D1] to M.H.P. from [P20GM103436] to [Nigel Cooper, PI]
968 and also NSF/IRES Award (1824851) to M.H.P. The contents of this work are solely the
969 responsibility of the authors and do not represent the official views of the NIH.

970

971 **Cited literature**

972 Bachtrog D. 2005. Sex chromosome evolution: Molecular aspects of Y-chromosome degeneration in
973 *Drosophila*. *Genome Research* 15: 1393-1401. doi: 10.1101/gr.3543605

974 Bachtrog D. 2008. The temporal dynamics of processes underlying Y chromosome degeneration.
975 *Genetics* 179: 1513-1525. doi: 10.1534/genetics.107.084012

976 Bachtrog D. 2013. Y-chromosome evolution : emerging insights into processes of Y-chromosome
977 degeneration. *Nature Reviews Genetics* 14: 113-124. doi: 10.1038/nrg3366

978 Badouin H, Hood ME, Gouzy J, Aguileta G, Siguenza S, Perlin MH, Cuomo CA, Fairhead C, Branca A,
979 Giraud T. 2015. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus
980 *Microbotryum lychnidis-dioicae*. *Genetics* 200: 1275-1284. doi: 10.1534/genetics.115.177709

981 Bartolomé C, Charlesworth B. 2006. Evolution of amino-acid sequences and codon usage on the
982 *Drosophila miranda* neo-sex chromosomes. *Genetics* 174: 2033-2044. doi:
983 10.1534/genetics.106.064113

984 Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T,
985 Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J,
986 Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. 2014.
987 Mammalian y chromosomes retain widely expressed dosage-sensitive regulators. *Nature* 508: 494-
988 499. doi: 10.1038/nature13206

989 Bergero R, Charlesworth D. 2011. Preservation of the Y transcriptome in a 10-Million-year-old plant
990 sex chromosome system. *Current Biology* 21: 1470-1474.

991 Berlin S, Ellegren H. 2006. Fast accumulation of nonsynonymous mutations on the female-specific W
992 chromosome in birds. *J. Mol. Evol.* 62: 66-72.

993 Bernstein H, Byers GS, Michod RE 1981. Evolution of sexual reproduction: importance of DNA repair,
994 complementation, and variation. *Am. Nat.* 117: 537-549.

995 Betancourt AJ, Welch JJ. 2009. Report reduced effectiveness of selection caused by a lack of
996 recombination. *Current Biology* 19: 655-660. doi: 10.1016/j.cub.2009.02.039

997 Bianchi NO. 2009. Y chromosome structural and functional changes in human malignant diseases.
998 *Mutation research* 682: 21-27. doi: 10.1016/j.mrrev.2009.02.001

999 Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G,
1000 Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A,
1001 Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ.
1002 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLOS
1003 Computational Biology* 15: 1-28. doi: 10.1371/journal.pcbi.1006650

1004 Branco S, Badouin H, Rodríguez de la Vega RC, Gouzy J, Carpentier F, Aguileta G, Siguenza S,
1005 Brandenburg J-T, Coelho MA, Hood ME, Giraud T. 2017. Evolutionary strata on young mating-type
1006 chromosomes despite the lack of sexual antagonism. *Proceedings of the National Academy of Sciences*
1007 114: 7067-7072. doi: 10.1073/pnas.1701658114

1008 Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A, Le Prieur S, Coelho MA, de Vienne
1009 DM, Hartmann FE, Begerow D, Hood ME, Giraud T. 2018. Multiple convergent supergene evolution
1010 events in mating-type chromosomes. *Nature Communications* 9: 2000. doi: 10.1038/s41467-018-
1011 04380-9

1012 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification.
1013 *Nature Biotechnology* 34: 525-527. doi: 10.1038/nbt.3519

1014 Brion C, Caradec C, Pflieger D, Friedrich A, Schacherer J. 2020. Pervasive phenotypic impact of a large
1015 non-recombining introgressed region in yeast. *Molecular Biology and Evolution* 37: 2520-2530.

1016 Carlini DB. 2004. Experimental reduction of codon bias in the *Drosophila* alcohol dehydrogenase gene
1017 results in decreased ethanol tolerance of adult flies. *Journal of Evolutionary Biology* 17: 779-785. doi:
1018 10.1111/j.1420-9101.2004.00725.x

1019 Carpentier F, Rodríguez RC, Vega D, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T, Evolution ES,
1020 Paris-saclay U, Ciências DD, Ciências FD, Lisboa UND. 2019. Convergent recombination cessation
1021 between mating-type genes and centromeres in selfing anther-smut fungi. *Genome Research* 29: 944-
1022 953. doi: 10.1101/gr.242578.118.5

1023 Chaisson MJ, Tesler G. 2012. Mapping single molecule sequencing reads using basic local alignment
1024 with successive refinement (BLASR): application and theory. *BMC Bioinformatics* 13: 238.

1025 Charif D, Thioulouse J, Lobry JR, Perrière G. 2005. Online synonymous codon usage analyses with the
1026 ade4 and seqinR packages. *Bioinformatics* 21: 545-547. doi: 10.1093/bioinformatics/bti037

1027 Charlesworth B, Charlesworth D. 2000. The degeneration of Y chromosomes. *Philosophical
Transactions of the Royal Society B-Biological Sciences* 355: 1563-1572. doi: 10.1098/rstb.2000.0717

1029 Charlesworth B, Charlesworth D 1978. A model for the evolution of dioecy and gynodioecy. *The
1030 American Naturalist* 112: 975-997. doi: 10.1017/CBO9781107415324.004

1031 Charlesworth D. 2021. The timing of genetic degeneration of sex chromosomes. *Phil. Trans. R. Soc. B*
1032 376: 20200093.

1033 Chibalina MV, Filatov DA. 2011. Plant y chromosome degeneration is retarded by haploid purifying
1034 selection. *Current Biology* 21: 1475-1479. doi: 10.1016/j.cub.2011.07.045

1035 Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J,
1036 Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-
1037 read SMRT sequencing data. *Nature Methods* 10: 536.

1038 Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. 2017. Fungal Sex: The Basidiomycota. *Microbiology
1039 Spectrum* 5: 1-30. doi: 10.1128/microbiolspec.FUNK-0046-2016

1040 Corcoran P, Anderson JL, Jacobson DJ, Sun Y, Ni P, Lascoux M, Johannesson H. 2016. Introgression
1041 maintains the genetic integrity of the mating-type determining chromosome of the fungus *Neurospora
1042 tetrasperma*. *Genome Research* 26: 486-498. doi: 10.1101/gr.197244.115

1043 Dongen SV. 2000. A cluster algorithm for graphs. *Information Systems [INS]*: 1-40. doi: INS-R0010

1044 Duhamel M, Carpentier F, Begerow D, Hood ME, Rodríguez de la Vega RC, Giraud T. 2022. Onset and
1045 stepwise extensions of recombination suppression are common in mating-type chromosomes of
1046 *Microbotryum* anther-smut fungi. *J Evol Biol BioRxiv* DOI: 10.1101/2021.10.29.466223

1047

1048 Duret L. 2002. Evolution of synonymous codon usage in metazoans. *Current Opinion in Genetics and
1049 Development* 12: 640-649. doi: 10.1016/S0959-437X(02)00353-2

1050 Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes.
1051 *Annual Review of Genomics and Human Genetics* 10: 285-311. doi: 10.1146/annurev-genom-082908-
1052 150001

1053 Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
1054 *Nucleic Acids Research* 32: 1792-1797. doi: 10.1093/nar/gkh340

1055 Ekseth OK, Kuiper M, Mironov V. 2014. OrthAgogue: an agile tool for the rapid prediction of orthology
1056 relations. *Bioinformatics* 30: 734-736. doi: 10.1093/bioinformatics/btt582

1057 Fisher RA. 1930. The genetical theory of natural selection.

1058 Foissac S, Gouzy J, Rombauts S, Mathe C, Amselem J, Sterck L, de Peer VY, Rouze P, Schiex T. 2008. Genome annotation in plants and fungi: EuGene as a model platform. *Current Bioinformatics* 3: 87-97.

1060 Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V, Gouzy J, De Vienne DM, Aguileta G, Poulain J, Wincker P, Chen Z, Toh SS, Cuomo CA, Perlin MH, Gladieux P, Giraud T. 2015. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. *Molecular Biology and Evolution* 32: 928-943. doi: 10.1093/molbev/msu396

1064 Gladieux P, Vercken E, Fontaine MC, Hood ME, Jonot O, Couloux A, Giraud T. 2011. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. *Molecular Biology and Evolution* 28: 459-471. doi: 10.1093/molbev/msq235

1068 Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. 2021. The genomic architecture and evolutionary fates of supergenes. *Genome Biology and Evolution* 13. doi: 10.1093/gbe/evab057

1070 Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne-Oriol M, Silar P, Malagnac F, Grochet P, Giraud T. 2021. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. *New Phytologist* 229: 2470-2491. doi: 10.1111/nph.17039

1074 Hartmann FE, Rodríguez de la Vega RC, Brandenburg J-T, Carpentier F, Giraud T. 2018. Gene presence-absence polymorphism in castrating anther-smut fungi: recent gene gains and phylogeographic structure. *Genome Biology and Evolution* 10: 1298-1314. doi: 10.1093/gbe/evy089

1077 Hartmann FE, Rodríguez de la Vega RC, Gladieux P, Ma W-J, Hood ME, Giraud T. 2020. Higher gene flow in sex-related chromosomes than in autosomes during fungal divergence. *Molecular Biology and Evolution* 37: 668-682. doi: 10.1093/molbev/msz252

1080 Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. *Genetics Research* 8: 269-294. doi: 10.1017/S001667230800949X

1082 Hollister JD, Gaut BS. 2009. Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. *Genome Research* 19: 1419-1428. doi: 10.1101/gr.091678.109

1085 Hood ME, Antonovics J. 2000. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in *Microbotryum violaceum* (= *Ustilago violacea*). *Heredity* 85: 231-241. doi: 10.1046/j.1365-2540.2000.00748.x

1088 Hood ME, Mena-Alí JI, Gibson AK, Oxelman B, Giraud T, Yockteng R, Arroyo MTK, Conti F, Pedersen AB, Gladieux P, Antonovics J. 2010. Distribution of the anther-smut pathogen *n* on species of the Caryophyllaceae. *New Phytologist* 187: 217-229. doi: 10.1111/j.1469-8137.2010.03268.x

1091 Hough J, Hollister JD, Wang W, Barrett SCH, Wright SI. 2014. Genetic degeneration of old and young y chromosomes in the flowering plant *Rumex hastatus*. *Proceedings of the National Academy of Sciences of the United States of America* 111: 7713-7718. doi: 10.1073/pnas.1319227111

1094 Hughes JF, Rozen S. 2012. Genomics and genetics of human and primate Y chromosomes. *Annual Review of Genomics and Human Genetics* 13: 83-108. doi: 10.1146/annurev-genom-090711-163855

1096 Ikemura T. 1981. Correlation between the abundance of *Escherichia coli* transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the *E. coli* translational system. *Journal of Molecular Biology* 151: 389-409. doi: 10.1016/0022-2836(81)90003-6

1100 Jay P, Chouteau M, Whibley A, Bastide H, Parrinello H, Llaurens V, Joron M. 2021a. Mutation load at a
1101 mimicry supergene sheds new light on the evolution of inversion polymorphisms. *Nature Genetics* 53:
1102 288-293. doi: 10.1038/s41588-020-00771-1

1103 Jay P, Tezenas E, Giraud T. 2021b. A deleterious mutation-sheltering theory for the evolution of sex
1104 chromosomes and supergenes. *bioRxiv*: 2021.2005.2017.444504. doi: 10.1101/2021.05.17.444504

1105 Kliman RM, Hey J 1993. Reduced natural selection associated with low recombination in *Drosophila*
1106 *melanogaster*. *Mol. Biol. Evol.* 10: 1239-1258.

1107 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate
1108 long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research* 27: 722-
1109 736.

1110 Kostka D, Hubisz MJ, Siepel A, Pollard KS. 2012. The role of GC-biased gene conversion in shaping the
1111 fastest evolving regions of the human genome. *Molecular Biology and Evolution* 29: 1047-1057. doi:
1112 10.1093/molbev/msr279

1113 Krasovec M, Chester M, Ridout K, Filatov DA. 2018. The mutation rate and the age of the sex
1114 chromosomes in *Silene latifolia*. *Current Biology* 28: 1832-1838.e1834. doi: 10.1016/j.cub.2018.04.069

1115 Krzywinski M. 2009. Circos: an information aesthetic for comparative genomics. *Genome Res* 19: 1639-
1116 1645. doi: 10.1101/gr.092759.109.19

1117 Lahn BT, Page DC 1999. Four evolutionary strata on the human X chromosome. *Science* (New York,
1118 N.Y.) 286: 964-967. doi: 10.1126/science.286.5441.964

1119 Lampson BL, Pershing NLK, Prinz JA, Lacsina JR, Marzluff WF, Nicchitta CV, MacAlpine DM, Counter CM.
1120 2013. Rare codons regulate KRas oncogenesis. *Current Biology* 23: 70-75. doi:
1121 10.1016/j.cub.2012.11.031

1122 Lassalle F, Périan S, Bataillon T, Nesme X. 2015. GC-content evolution in bacterial genomes : the biased
1123 gene conversion hypothesis expands. *PLoS Genet* 11: e1004941. doi: 10.1371/journal.pgen.1004941

1124 Lee Y, Kim C, Park Y, Pyun J-A, Kwack K. 2016. Next generation sequencing identifies abnormal Y
1125 chromosome and candidate causal variants in premature ovarian failure patients. *Genomics* 108: 209-
1126 215. doi: <https://doi.org/10.1016/j.ygeno.2016.10.006>

1127 Lenormand T, Roze D. 2021. Y recombination arrest and degeneration in the absence of sexual
1128 dimorphism. *bioRxiv*: 2021.2005.2018.444606. doi: 10.1101/2021.05.18.444606

1129 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome
1130 Project Data Processing Subgroup, Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
1131 Abecasis G, Durbin R. 2009. The Sequence alignment/map (SAM) format and SAMtools. *Bioinformatics*
1132 25: 2078-2079.

1133 Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ. 2016. Repetitive sequences and epigenetic modification:
1134 inseparable partners play important roles in the evolution of plant sex chromosomes. *Planta* 243:
1135 1083-1095. doi: 10.1007/s00425-016-2485-7

1136 Lutz M, Piatek M, Kemler M, Chlebicki A, Oberwinkler F 2008. Anther smuts of Caryophyllaceae:
1137 molecular analyses reveal further new species. *Mycological research* 112: 1280-1296. doi:
1138 10.1016/j.mycres.2008.04.010

1139 Ma W-J, Carpentier F, Giraud T, Hood M 2020. Differential gene expression between fungal mating
1140 types is associated with sequence degeneration. *Genome Biology and Evolution*. doi:
1141 10.1093/gbe/evaa028

1142 Ma W-J, Veltos P. 2021. The diversity and evolution of sex chromosomes in frogs. *Genes* 12: 483. doi:
1143 10.3390/genes12040483

1144 Machado HE, Lawrie DS, Petrov DA. 2020. Pervasive strong selection at the level of codon usage bias
1145 in *Drosophila melanogaster*. *Genetics: genetics*.302542.302019. doi: 10.1534/genetics.119.302542

1146 Marais G. 2003. Biased gene conversion: implications for genome and sex evolution. *TRENDS in*
1147 *Genetics* 19: 330-338. doi: 10.1016/j.aqpro.2013.07.003

1148 Maynard Smith J, Haigh J 1974. The hitch-hiking effect of a favourable gene. *Genet. Res.* 23: 22-35. doi:
1149 10.1017/S0016672308009579

1150 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020.
1151 IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era.
1152 *Molecular Biology and Evolution* 37: 1530-1534. doi: 10.1093/molbev/msaa015

1153 Mrackova M, Nicolas M, Hobza R, Negruiti I, Monéger F, Widmer A, Vyskot B, Janousek B. 2008.
1154 Independent origin of sex chromosomes in two species of the genus *Silene*. *Genetics* 179: 1129-1133.
1155 doi: 10.1534/genetics.107.085670

1156 Müller HJ. 1932. Some genetic aspects of sex. *The American Naturalist* 66: 118-138.

1157 Nadeau NJ. 2016. Genes controlling mimetic colour pattern variation in butterflies. *Current Opinion in*
1158 *Insect Science* 17: 24-31. doi: 10.1016/j.cois.2016.05.013

1159 Nicolas M, Marais GAB, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Negruiti I,
1160 Charlesworth D, Monéger F. 2004. A gradual process of recombination restriction in the evolutionary
1161 history of the sex chromosomes in dioecious plants. *PLoS Biology* 3: e4.

1162 Nieuwenhuis BPS, Billiard S, Vuilleumier S, Petit E, Hood ME, Giraud T. 2013. Evolution of uni- and
1163 bifactorial sexual compatibility systems in fungi. *Heredity* 111: 445-455. doi: 10.1038/hdy.2013.67

1164 Novoa EM, Ribas de Pouplana L. 2012. Speeding with control: Codon usage, tRNAs, and ribosomes.
1165 *TRENDS in Genetics* 28: 574-581. doi: 10.1016/j.tig.2012.07.006

1166 Ohno S. 1967. Sex chromosomes and sex-linked genes.

1167 Otto SP, Lenormand T. 2002. Resolving the paradox of sex and recombination. *Nature Reviews*
1168 *Genetics* 3: 252-261. doi: 10.1038/nrg761

1169 Papadopoulos AST, Chester M, Ridout K, Filatov DA. 2015. Rapid Y degeneration and dosage
1170 compensation in plant sex chromosomes. *Proceedings of the National Academy of Sciences* 112:
1171 201508454. doi: 10.1073/pnas.1508454112

1172 Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng
1173 Q, Aguilera G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME,
1174 Schultz DJ, Cuomo CA. 2015. Sex and parasites: Genomic and transcriptomic analysis of *Microbotryum*
1175 *lychnidis-dioicae*, the biotrophic and plant-castrating anther smut fungus. *BMC genomics* 16: 1-24. doi:
1176 10.1186/s12864-015-1660-8

1177 Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GAB. 2012. Evidence for widespread GC-biased
1178 gene conversion in eukaryotes. *Genome Biol. Evol.* 4: 675-682. doi: 10.1093/gbe/evs052

1179 Post LE, Strycharz GD, Nomura M, Lewis H, Dennis PP 1979. Nucleotide sequence of the ribosomal
1180 protein gene cluster adjacent to the gene for RNA polymerase subunit β in *Escherichia coli*. *Proceedings*
1181 *of the National Academy of Sciences of the United States of America* 76: 1697-1701. doi:
1182 10.1073/pnas.76.4.1697

1183 Qiu S, Bergero R, Zeng K, Charlesworth D. 2011. Patterns of codon usage bias in *Silene latifolia*.
1184 *Molecular Biology and Evolution* 28: 771-780. doi: 10.1093/molbev/msq251

1185 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
1186 *Bioinformatics* 26: 841-842. doi: 10.1093/bioinformatics/btq033

1187 Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. 2018. MACSE v2: Toolkit for the Alignment of
1188 Coding Sequences Accounting for Frameshifts and Stop Codons. *Molecular Biology and Evolution* 35:
1189 2582-2584. doi: 10.1093/molbev/msy159

1190 Ross MT et al. 2009. UKPMC Funders Group The DNA sequence of the human X chromosome. *Genome*
1191 434: 325-337. doi: 10.1038/nature03440.The

1192 Saenko VS, Chouteau M, Prunier FP, Blugeon C, Joron M 2019. Unravelling the genes forming the wing
1193 pattern supergene in the polymorphic butterfly *Heliconius numata*. *EvoDevo* 10: 16. doi:
1194 10.1186/s13227-019-0129-2

1195 Schwander T, Libbrecht R, Keller L. 2014. Supergenes and complex phenotypes. *Current Biology*. 24:
1196 R288-R294. doi: 10.1016/j.cub.2014.01.056

1197 Sharp PM, Averof M, Lloyd AT, Matassi G, Peden JF 1995. DNA sequence evolution: the sounds of
1198 silence. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* 349:
1199 241-247. doi: 10.1098/rstb.1995.0108

1200 Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hllier LD, Brown LG, Repplng S, Pyntikova T,
1201 Ali J, Blerl T, Chinwalla A, Delehaunty A, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle
1202 P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock
1203 S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Willson RK, Rozen S,
1204 Page DC. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence
1205 classes. *Nature* 423: 825-837. doi: 10.1038/nature01722

1206 Soojin Y, Charlesworth B. 2000. Contrasting patterns of molecular evolution of the genes on the new
1207 and old sex chromosomes of *Drosophila miranda*. *Molecular Biology and Evolution* 17: 703-717.

1208 Steinemann M, Steinemann S 1992. Degenerating Y chromosome of *Drosophila miranda*: A trap for
1209 retrotransposons (chromosome structure/larval cuticle protein genes). *Genetics* 89: 7591-7595.

1210 Stolle E, Pracana R, Howard P, Paris CI, Brown SJ, Castillo-Carrillo C, Rossiter SJ, Wurm Y. 2019.
1211 Degenerative expansion of a young supergene. *Molecular Biology and Evolution* 36: 553-561. doi:
1212 10.1093/molbev/msy236

1213 Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SGE, Johannesson H. 2012. Large-scale
1214 Introgression shapes the evolution of the mating-type chromosomes of the filamentous Ascomycete
1215 *Neurospora tetrasperma*. *PLOS Genetics* 8: e1002820. doi: 10.1371/journal.pgen.1002820

1216 Suzuki H, Brown CJ, Forney LJ, Top EM. 2008. Comparison of correspondence analysis methods for
1217 synonymous codon usage in bacteria. *DNA Research* 15: 357-365. doi: 10.1093/dnare/dsn028

1218 The UniProt C. 2011. Ongoing and future developments at the universal protein resource. *Nucleic Acids*
1219 *Research* 39: 214-219.

1220 Vicario S, Moriyama EN, Powell JR. 2007. Codon usage in twelve species of *Drosophila*. *BMC*
1221 *Evolutionary Biology* 7: 1-17. doi: 10.1186/1471-2148-7-226

1222 Wang J, Wurm Y, Nipitwattanaphon M, Riba-grognuz O, Huang Y-c, Shoemaker D, Keller L. 2013. A Y-
1223 like social chromosome causes alternative colony organization in fire ants. *Nature* 493: 664. doi:
1224 10.1038/nature11832

1225 Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H. 2014. Evidence for GC-biased gene conversion
1226 as a driver of between-lineage differences in avian base composition. *Genome biology* 15: 549. doi:
1227 10.1186/s13059-014-0549-1

1228 Westergaard M 1958. The mechanism of sex determination in dioecious flowering plants. *Adv. Genet.*
1229 9: 217-281.

1230 Whittle CA, Sun Y, Johannesson H. 2011. Degeneration in codon usage within the region of suppressed
1231 recombination in the mating-type chromosomes of *Neurospora tetrasperma*. *Eukaryotic Cell* 10: 594-
1232 603. doi: 10.1128/EC.00284-10

1233 Wilson MA. 2021. The Y chromosome and its impact on health and disease. *Human Molecular*
1234 *Genetics*: ddab215. doi: 10.1093/hmg/ddab215

1235 Wint R, Salamov A, Grigoriev IV. 2022. Kingdom-wide analysis of fungal transcriptomes and tRNAs
1236 reveals conserved patterns of adaptive evolution. *Mol Biol Evol*.
1237 <https://doi.org/10.1093/molbev/msab372>

1238 Wu M, Moore RC. 2015. The evolutionary tempo of sex chromosome degradation in *Carica papaya*.
1239 *Journal of Molecular Evolution* 80: 265-277. doi: 10.1007/s00239-015-9680-1

1240 Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J. 2005. Transcription
1241 and histone modifications in the recombination-free region spanning a rice centromere. *Plant Cell* 17:
1242 3227-3238. doi: 10.1105/tpc.105.037945

1243 Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic
1244 evolutionary models. *Molecular Biology and Evolution* 17: 32-43. doi:
1245 10.1093/oxfordjournals.molbev.a026236

1246 Zhou Z, Dang Y, Zhou M, Li L, Yu C-h, Fu J, Chen S, Liu Y. 2016. Codon usage is an important determinant
1247 of gene expression levels largely through its effects on transcription. 9.

1248

1249

1250 **Table 1: Optimal codons in *Microbotryum*.**

Amino acid	Optimal codon	Synonymous codons		
Ala	GCC	GCT	GCA	GCG
Arg	CGC	CGT	CGA	CGG AGA AGG
Asn	AAC	AAT		
Asp	GAC	GAT		
Cys	TGC	TGT		
Gln	CAG	CAA		
Glu	GAG	GAA		
Gly	GGC	GGT	GGA	GGG
His	CAC	CAT		
Ile	ATC	ATT	ATA	
Leu	CTC	CTT	CTA CTG TTA TTG	
Lys	AAG	AAA		
Phe	TTC	TTT		
Pro	CCC	CCT	CCA CCG	
Ser	TCG	TCT	TCC TCA AGC AGT	
Thr	ACC	ACT	ACA ACG	
Tyr	TAC	TAT		
Val	GTC	GTT	GTA GTG	
Stop	TAA	TGA	TAG	

1251

1252

1253

1254 **Figure Legends**

1255 **Figure 1:** Timetrees and rearrangement scenarios of recombination suppression events in the
1256 *Microbotryum* genus. A) Densitree plot of 1,000 randomly sampled trees with the best posterior
1257 probabilities based on the concatenation of single-copy autosomal genes (green traces). Tips
1258 are labelled with scientific names of *Microbotryum* fungi and of their hosts. Boxed letters serve
1259 as a guide for species labels in panels D and E. Asterisks indicate the species whose genomes
1260 are reported here for the first time. Photos of diseased flowers by M.E. Hood. A) Rearrangement
1261 scenarios as cartoons and presence of evolutionary strata across the phylogenetic tree (vertical
1262 colored bars). Extant recombining regions in mating-type chromosomes are colored in blue or
1263 purple when corresponding to the ancestral HD or PR chromosome, respectively. Non-
1264 recombining regions are colored according to the linear gradient displayed at the top in millions
1265 of years since the onset of recombination suppression. Pale green chromosomes are autosomes
1266 derived from the fission of the long arm of the ancestral HD chromosome or the short arm of
1267 the ancestral PR chromosome. C) Diagram of ancestral mating-type chromosomes showing
1268 the different regions involved in recombination suppression events. Regions are colored
1269 according to the number of independent suppression of recombination events in which these
1270 have been involved (gradient at the right). Abbreviations: distCEN, distal region to the HD
1271 centromere on the long arm; proxiCEN, proximal region to the HD centromere on the long arm;
1272 CEN:HD, region between the centromere and the HD locus; HD:short, region between the HD
1273 locus and the short arm telomere; short:CEN, short arm of the PR chromosome; CEN:PR,
1274 region between the centromere and the PR locus; proxiPR, region proximal to the PR locus
1275 towards the long arm telomere. D) Density distributions of date estimates for recombination
1276 suppression events. Note that the range between 0 and 0.2 million years ago (MYA) is
1277 expanded. The 22 time points used for studying the tempo of degeneration are numbered on the
1278 plots. E) Densitree plots for the different regions involved in recombination suppression events.
1279 For each region the number of genes indicated in the insets were concatenated to reconstruct
1280 10^7 ultrametric trees, from which 1,000 randomly sampled trees among the 7.5×10^6 with best
1281 posterior probabilities are plotted. Trees are colored according to the named strata in *M. v.*
1282 *paradoxa* (Figure 2X). Shadowed clades show trans-specific polymorphism (i.e. alleles
1283 clustered by mating-type rather than by species). The species *M. v. paradoxa* (g) branches
1284 differently in the short arm of the PR chromosome and the PR:CEN regions than in the species
1285 tree. Note that the tree based on the short arm of the PR chromosome has two alternative
1286 topologies. Large dots on internal nodes correspond to the suppression of recombination events

1287 (colored red for those first described here). Symbols at the tips correspond to the alternate
1288 mating-types and they are colored according to the focal stratum.

1289

1290 **Figure 2: Allelic divergence analysis between mating-type chromosomes for the newly**
1291 **sequenced species and evolution of the mating-type chromosomes in *Microbotryum v.***
1292 ***paradoxa*.** For each species (A, *Microbotryum v. tatarinowii*; B, *M. v. melanantha*; C, *M.*
1293 *coronariae*; D, *M. intermedium* and; E, *Microbotryum v. paradoxa*), we show the
1294 synonymous divergence calculated between alternative mating types and plotted along the *M.*
1295 *intermedium* mating-type chromosome gene order. Zero d_s values between mating-type
1296 chromosomes indicate recombination in these selfing species and the level of d_s between
1297 mating-type chromosomes increases with time since recombination suppression. Different
1298 evolutionary strata, i.e., different steps extending recombination suppression, are indicated by
1299 different colours. Divergence between the a₁ and a₂ pheromone receptor (PR) alleles was too
1300 extensive for d_s to be calculated (depicted as “Un” for unalignable). The different strata were
1301 delimited based on their presence in the various species across the phylogenetic tree (Figures
1302 1A and 1B) and their level of trans-specific polymorphism (Figure 1E). B. Scenario of the
1303 mating-type chromosome evolution in *Microbotryum v. paradoxa*.

1304

1305 **Figure 3: Analysis of the frequency of optimal codons in the a₁ genome of *Microbotryum***
1306 ***silenes-dioicae*.** A) Distribution of the frequency of optimal codons across genomic
1307 compartments. Boxplot grey shade refers to the genomic compartment. For each genomic
1308 compartment, the red square indicates the mean value of the predicted frequency of optimal
1309 codons, obtained from the logistic regression explaining the frequency of optimal codons by
1310 the genomic compartment, by the difference in GC content between coding (GC^{exon}) and
1311 intronic (GC^{intron}) sequences and their interaction. The sample size (N) is labelled on top of the
1312 corresponding boxplot, as well as the significance level of the difference between a given
1313 genomic compartment and the autosomes in red (NS: non-significant; ***: $p < 0.001$) from the
1314 logistic regression. B) Frequency of optimal codons predicted by the logistic regression plotted
1315 against the difference in GC content between coding and intronic sequences. From the statistical
1316 analysis, significant differences in slope between a genomic compartment and the autosomes
1317 are indicated by solid line and filled dots, while non-significant interactions are indicated by
1318 dotted line and open dots. Similar analyses for all species studied here are presented in Figures
1319 S6 and S7 in the supplementary materials.

1320

1321 **Figure 4: Tempo of degeneration in *Microbotryum* fungi.** A) Frequency of optimal codons
1322 $N^{\text{optimal}} / (N^{\text{optimal}} + N^{\text{non-optimal}})$ as a function of time since recombination suppression (in million
1323 years). Note that the statistical analyses were performed on the the odds of optimal codons
1324 ($N^{\text{optimal}} / N^{\text{non-optimal}}$) and not the frequency as plotted here. B) Non-synonymous over synonymous
1325 divergence (d_N/d_S) between alleles on the two mating-type chromosomes, as a proxy of the
1326 strength of purifying selection, as a function of time since recombination suppression (in million
1327 years). C) Accumulation of non-synonymous changes accumulation (d_N) between alleles on the
1328 two mating-type chromosomes as a function of time since recombination suppression (in
1329 million years). In all panels, the dots represent the data. Predictions from the models are show
1330 as red lines and the 95% confidence intervals of the prediction as grey areas.

1331

1332 **Figure 5: Degeneration in *Microbotryum* fungi, with values for all genomic compartments
1333 and species.** Boxplots of frequencies of optimal codons (A) and non-synonymous differences
1334 (d_N) between alleles of alternative mating-type chromosomes (B) in all species and all genomic
1335 compartments. The X axis legend correspond to the one in Figure 1C.

1336

1337 **Additional files:**

1338 1-All supplementary Tables as a single xls file (different Tables as sheets)
1339 2-All supplementary Figures as a single PDF file

1340

1341 **Supplemental Figure legends**

1342 **Figure S1: Synteny between mating-type chromosomes of alternative mating types for the
1343 *Microbotryum* species A) *M. lychnis flos-cuculi*, B) *M. v. melanantha* and C) *M. v.
1344 tatarinowii*.** For each species, we show synteny plots between a_1 and a_2 mating-type
1345 chromosomes (top left), synteny plots between a_1 mating-type chromosome and a_1 mating-type
1346 chromosome of *M. intermedium* (middle panel) and synteny plots between the a_2 mating-type
1347 chromosome of the focal species and the a_2 mating-type chromosome of *M. intermedium* (right
1348 panel). On the synteny plots on the left, the five tracks represent, from the inner most to the
1349 outermost: i) centromeric repeats as red lines, ii) genes as grey lines, iii) transposable elements

1350 as green lines, iv) genes with zero synonymous substitutions between mating types as black
1351 lines, v) contigs coloured according to species or for *M. intermedium* in blue for the HD
1352 chromosome, purple for the PR chromosome, grey for the autosomes, with yellow regions
1353 indicating centromere-specific repeats, and with the axis indicating megabases. The purple
1354 circle indicates the PR locus and the blue circle the HD locus. Fine blue and orange lines link
1355 regions with collinearity extending over 2 kb, the latter corresponding to inversions. Areas
1356 without links correspond to highly rearranged regions. On the synteny plots at right, only the
1357 tracks i to iii are represented. The small contigs within the non-recombining region in some
1358 species could not be oriented, but this does not affect our inferences of chromosomal
1359 rearrangements or degeneration measures.

1360 **Figure S2: Synteny and allelic divergence analysis between mating-type chromosomes of**
1361 **alternative mating types for the species *Microbotryum intermedium*.** We show synteny plots
1362 between a₁ and a₂ PR mating-type chromosome (left top panel), synteny plots between a₁ and
1363 a₂ HD mating-type chromosomes (right top panel), and the synonymous divergence calculated
1364 between alternative mating types and plotted along the *M. intermedium* PR and HD mating-
1365 type chromosome gene order (bottom left and right panel, resp.). Zero d_S between mating-type
1366 chromosomes indicate recombination in these selfing species and the level of d_S between
1367 mating-type chromosomes increases with time since recombination suppression. Different
1368 evolutionary strata, i.e., different steps extending recombination suppression, are indicated by
1369 different colours. Divergence between the a₁ and a₂ pheromone receptor (PR) genes was too
1370 extensive, and d_S could not be calculated (depicted as “Un” for unalignable). On the synteny
1371 plots, the five tracks represent, from the inner most to the outermost: i) centromeric repeats as
1372 brown lines, ii) genes as black lines, iii) transposable elements as green lines, iv) genes with
1373 zero synonymous substitutions between mating types as black lines, v) contigs coloured in blue
1374 for the HD chromosome and purple for the PR chromosome, with the axis indicating
1375 megabases. The purple circle indicates the PR locus and the blue circle the HD locus. Fine blue
1376 and orange lines link regions with collinearity extending over 2 kb, the latter corresponding to
1377 inversions.

1378 **Figure S3: Synteny and allelic divergence analysis between mating-type chromosomes of**
1379 **alternative mating types for the species *M. scabiosae* (A) and *Microbotryum v. caroliniana***
1380 **(B).** For each species, we show synteny plots between a₁ and a₂ mating-type chromosomes (top
1381 panel), synteny plots between a₁ HD and PR mating-type chromosomes of *M. intermedium* and
1382 a₁ or a₂ mating-type chromosomes of the focal species (right and left middle panels,

1383 respectively), and the synonymous divergence calculated between alternative mating types and
1384 plotted along the *M. intermedium* mating-type chromosome gene order (bottom panel). Zero ds
1385 between mating-type chromosomes indicate recombination in these selfing species and the level
1386 of ds between mating-type chromosomes increases with time since recombination suppression.
1387 On the top left figure in B), the light blue evolutionary stratum is indicated by a light blue box
1388 on the outer track. On the synteny plots at left, the five tracks represent, from the inner most to
1389 the outermost: i) centromeric repeats as brown lines, ii) genes as black lines, iii) transposable
1390 elements as green lines, iv) genes with zero synonymous substitutions between mating types as
1391 black lines, v) contigs colored according to species or for *M. intermedium* in blue for the HD
1392 chromosome, purple for the PR chromosome, grey for the autosomes, with yellow regions
1393 indicating centromere-specific repeats, and with the axis indicating megabases. The purple
1394 circle indicates the PR locus and the blue circle the HD locus. Fine blue and orange lines link
1395 regions with collinearity extending over 2 kb, the latter corresponding to inversions. Areas
1396 without links correspond to highly rearranged regions. On the synteny plots at right, only the
1397 tracks i to iii are represented.

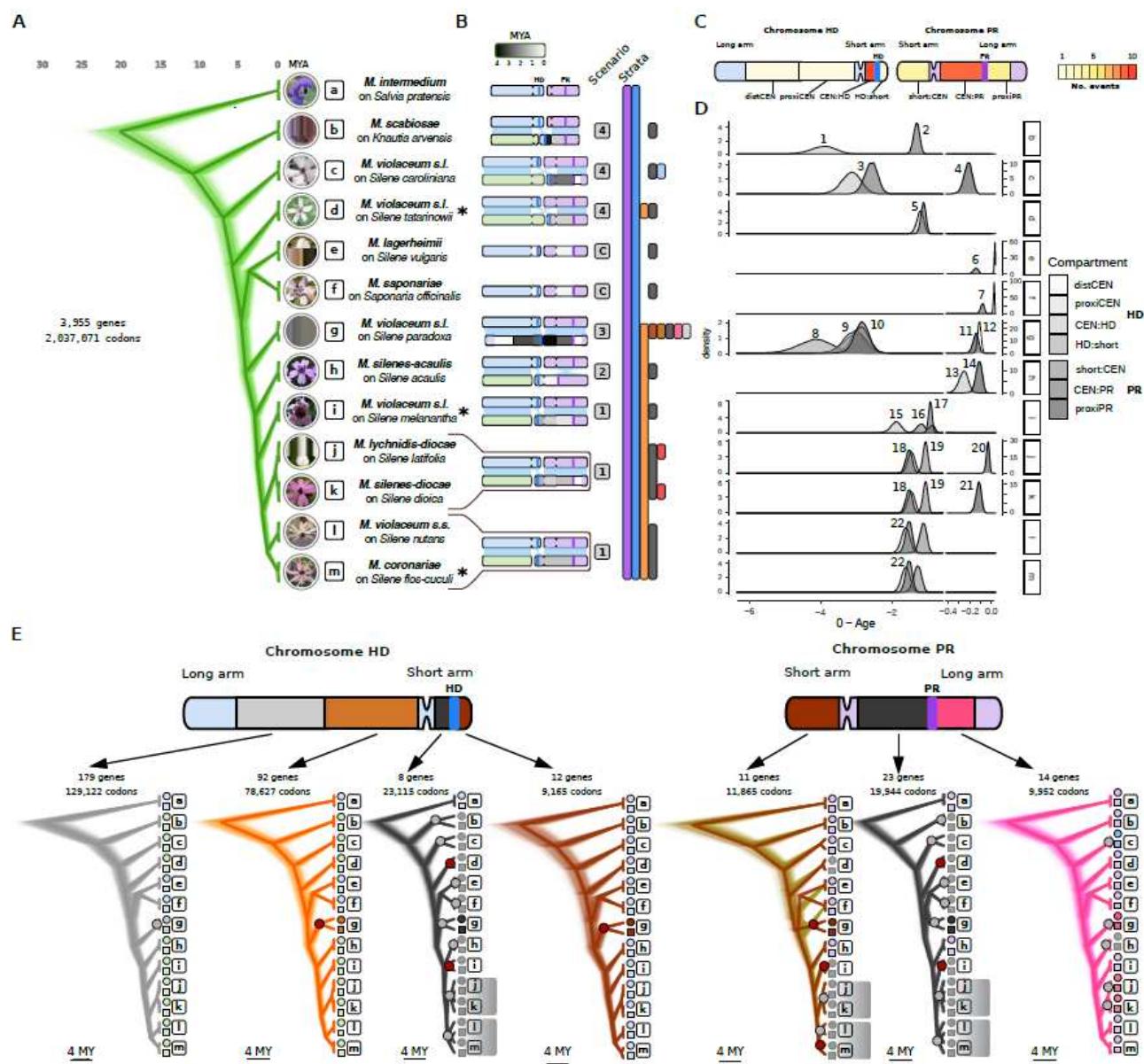
1398 **Figure S4:** Within-correspondence analysis plots. A) WCA plots for the a₁ and a₂ genomes of
1399 *Microbotryum intermedium* (resp. left and right top panel) and a₁ and a₂ genomes of *M.*
1400 *lychnidis-dioicae* (resp. left and right bottom panel). B) Percentage of variance explained for
1401 each correspondence analysis axis for the a₁ and a₂ genomes of *M. intermedium* (resp. left and
1402 right top panel) and a₁ and a₂ genomes of *M. lychnidis-dioicae* (resp. left and right bottom
1403 panel).

1404 **Figure S5: Data distribution across genomic compartments in *Microbotryum*.** A)
1405 Distribution of the frequency of optimal codons. B) Distribution of the difference in GC content
1406 between coding sequences and introns. C) Distribution of the expression level of *M.*
1407 *intermedium* orthologous genes. The gene expression level distribution was truncated at the 90th
1408 percentile for visualisation purpose and was not represented for the genomes a₁ and a₂ *M.*
1409 *intermedium*. Boxplot colours refer to the genomic compartment.

1410 **Figure S6: Analysis of the frequency of optimal codons in all *Microbotryum* genomes using**
1411 **the genomic compartments considered in the main text.** A) Distribution of the frequency of
1412 optimal codons across genomic compartments. B) Distribution of the predicted frequency of
1413 optimal codons predicted by the logistic regression. In A) and B), boxplot colours refer to the
1414 genomic compartment. For each genomic compartment, the red dot indicates the mean

1415 frequency of optimal codons, the sample size (N) is labelled on top of the corresponding
1416 boxplot, as well as the significance level of the difference between a given genomic
1417 compartment and the autosomes (NS: non-significant; “.”: $p < 0.1$; *: $p < 0.05$; **: p -value <
1418 0.01; ***: $p < 0.001$). C) Frequency of optimal codons predicted by the logistic regression along
1419 the difference of GC content between coding and intronic sequences. Significant differences in
1420 slope between a genomic compartment and the autosomes are indicated by a solid line and a
1421 filled dot, while non-significant differences in slope are indicated by a dotted line and an open
1422 dot.

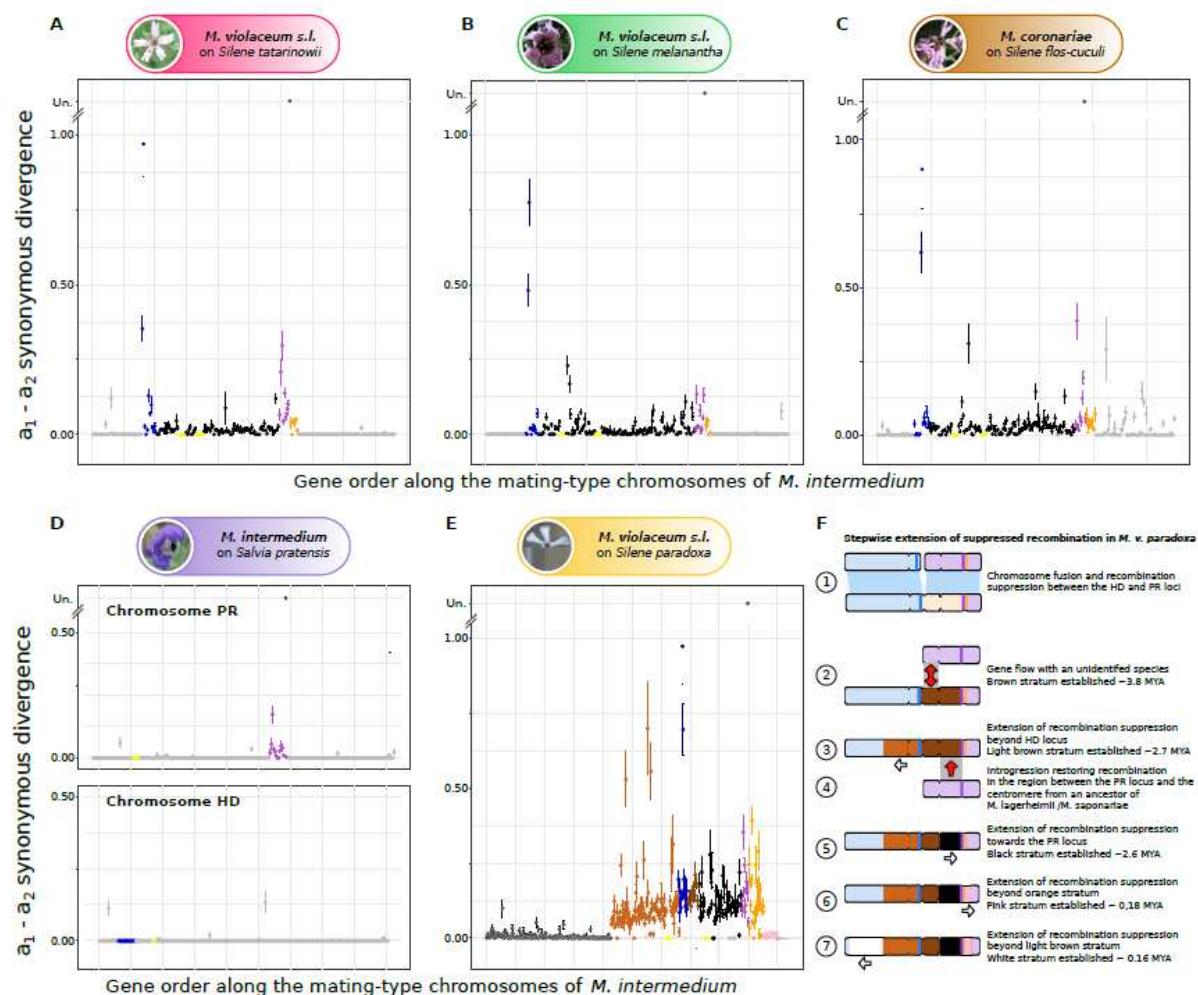
1423 **Figure S7: Analysis of the frequency of optimal codons in all *Microbotryum* genomes using**
1424 **all the genomic compartments.** A) Distribution of the frequency of optimal codons across
1425 genomic compartments. B) Distribution of the predicted frequency of optimal codons predicted
1426 by the logistic regression. In A) and B), boxplot colours refer to the genomic compartment. For
1427 each genomic compartment, the red dot indicates the mean frequency of optimal codons, the
1428 sample size (N) is labelled on top of the corresponding boxplot, as well as the significance level
1429 of the difference between a given genomic compartment and the autosomes (NS: non-
1430 significant; “.”: p -value < 0.1; *: p -value < 0.05; **: p -value < 0.01; ***: p -value < 0.001). C)
1431 Frequency of optimal codons predicted by the logistic regression as a function of the difference
1432 of GC content between coding and intronic sequences. Significant differences in slope between
1433 a genomic compartment and the autosomes are indicated by a solid line and a filled dot, while
1434 non-significant differences in slope are indicated by a dotted line and an open dot.


1435 **Figure S8: Tempo of degeneration for all genomic compartments and species, as a**
1436 **function of synonymous divergence (ds) between mating-type chromosomes in the focal**
1437 **genomic compartments.** Degeneration is plotted in terms of (A) frequencies of optimal
1438 codons, (B) non-synonymous differences over synonymous ratio (d_N/d_S) between alleles of
1439 alternative mating-type chromosomes, (C) non-synonymous differences (d_N) between alleles of
1440 alternative mating-type chromosomes.

1441 **Figure S9: Frequency of optimal codons for all genes in all *Microbotryum* genomes as a**
1442 **function of the expression level in *M. intermedium* as a proxy for the ancestral expression**
1443 **level.** The color indicates the age of the recombination suppression event of the genomic
1444 compartment in which the focal gene resides. The *M. intermedium* expression level used is from
1445 the H condition (haploid cells of a single mating type on rich medium) in A and from the M
1446 condition (mixtures of cells of the two mating types under mating conditions) in B.

1447

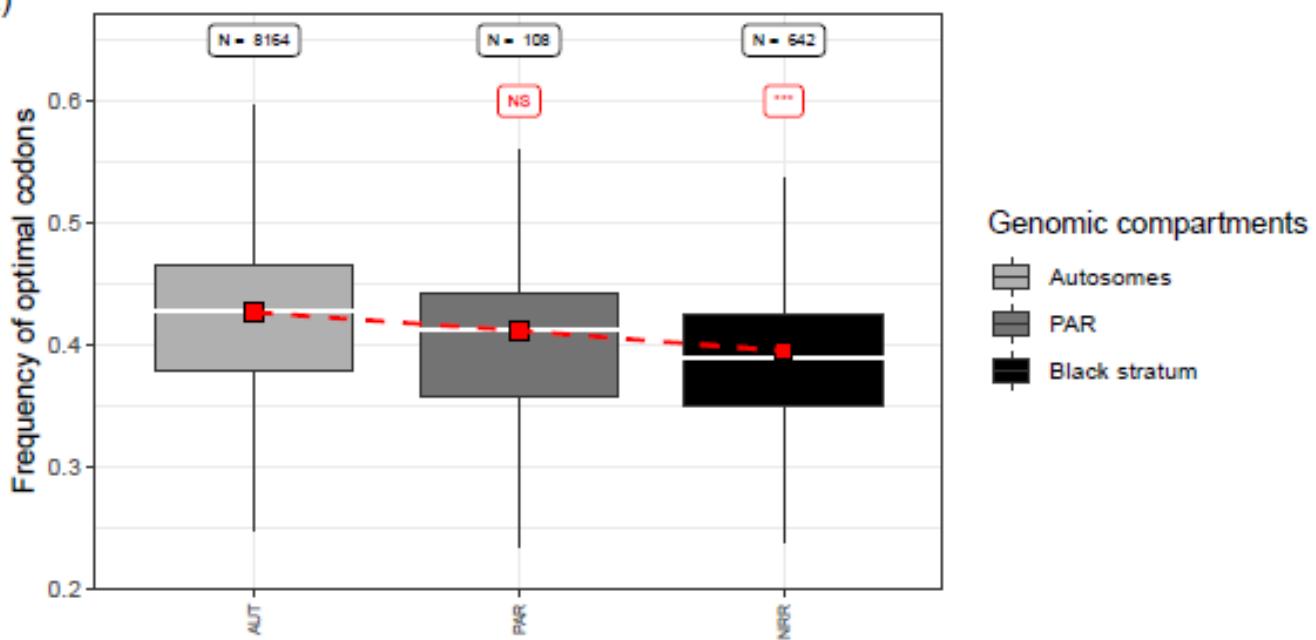
1448 Figure 1


1449

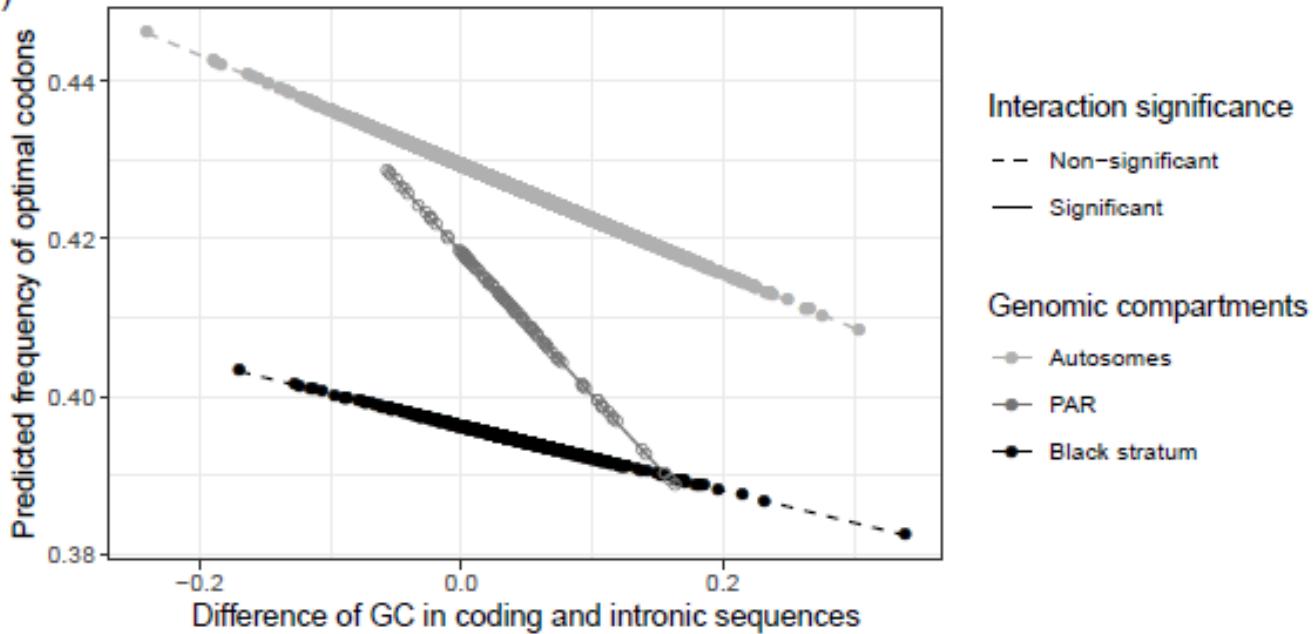
1450

1451 Figure 2

1452



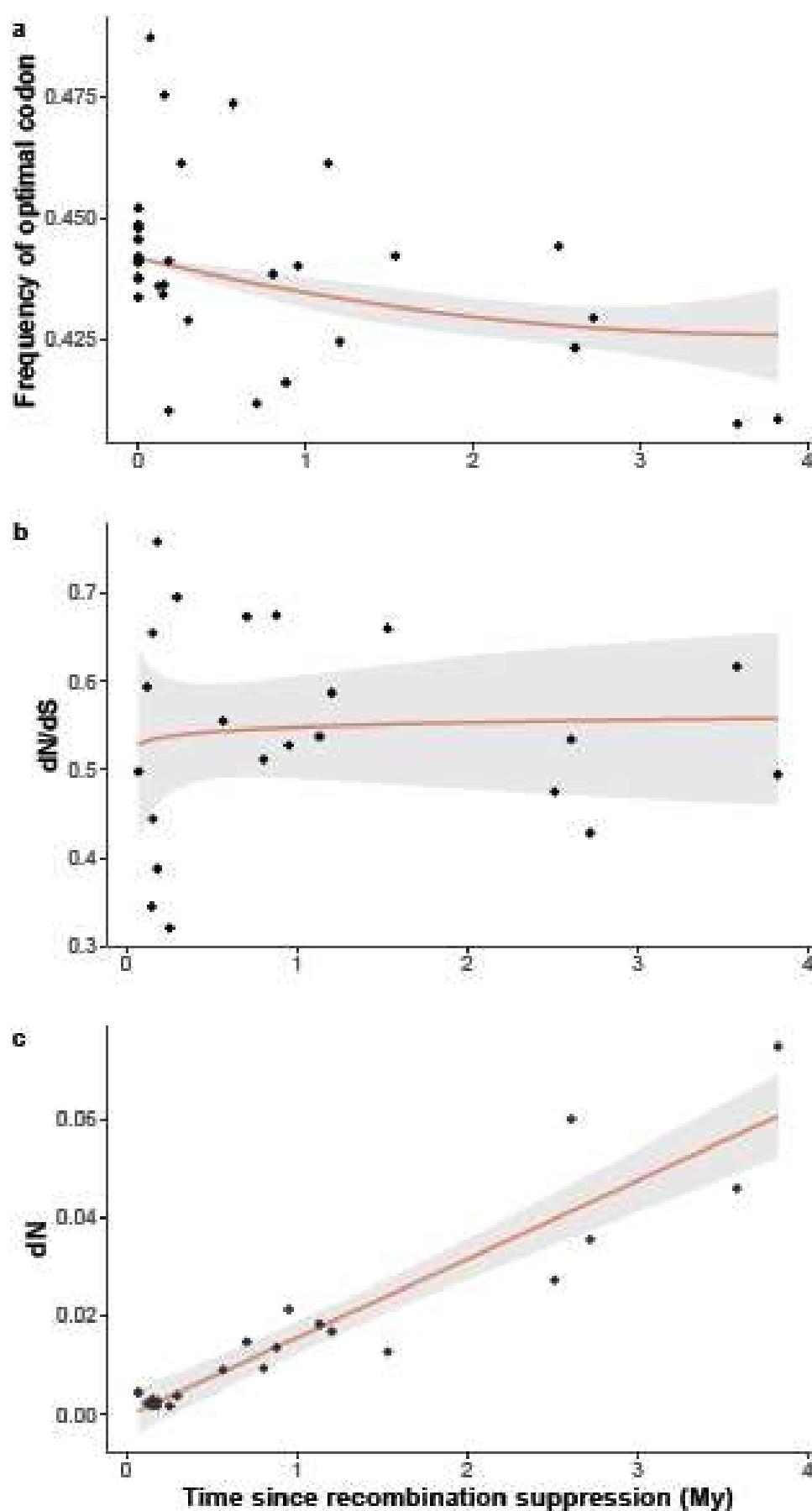
1453


1454 Figure 3

1455

A)

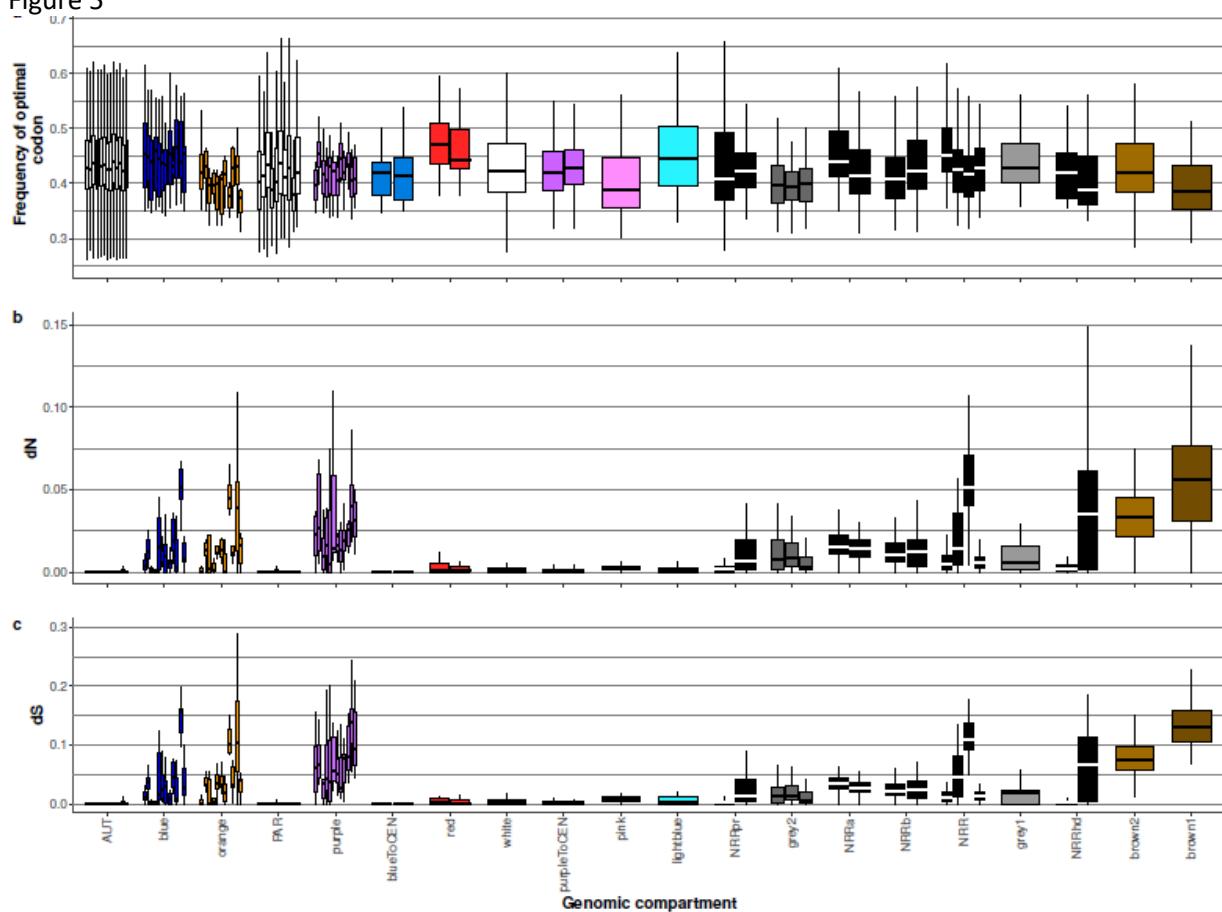
B)


1456

1457

1458

1459 Figure 4


1460

1461

1462

1463 Figure 5

1464

1465

1466