

The SARS-CoV-2 reproduction number R_0 in cats

2 Jose L. Gonzales^a#, Mart C.M. de Jong^b, Nora M. Gerhards^a, Wim H. M. Van der Poel^{b,c}.

3

⁴ ^aDepartment of Epidemiology, Bioinformatics & animal models, Wageningen Bioveterinary
⁵ Research, Lelystad, The Netherlands.

6 ^b Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The
7 Netherlands.

⁸ ^c Department Virology & Molecular biology, Wageningen Bioveterinary Research, Lelystad,
⁹ The Netherlands.

10

11 Running title: The R_0 of SARS-CoV-2 in cats

12

13 # Address correspondence to Jose L Gonzales, jose.gonzales@wur.nl

14

15 Wordcount:

16 Abstract: 149

17 Main text: 1685

18

20 **ABSTRACT**

21 Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close
22 contact with people, assessing the potential risk cats represent for the transmission and
23 maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission
24 from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of
25 cat-to-cat transmission by reviewing published literature describing transmission either
26 experimentally or under natural conditions in infected households. Data from these studies were
27 collated to quantify the SARS-CoV-2 reproduction number R_0 among cats. The estimated R_0 was
28 significantly higher than 1, hence cats could play a role in the transmission and maintenance of
29 SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-
30 to-cats and cats-to-humans. Further data on household transmission and data on virus levels in
31 both the environment around infected cats and their exhaled air could be a step towards assessing
32 these risks.

33

34 **KEYWORDS** SARS-CoV-2, cats, transmission, reproduction number

35

36

37 A relevant concern in the control of the ongoing Covid-19 pandemic is the risk domestic
38 animals could play in the maintenance and transmission of SARS-CoV-2. Assessing this risk
39 implies quantifying transmission from humans-to-animals, from animals-to-animals and from
40 animals-to-humans. Large epidemics in farmed minks have confirmed this risk for that specific
41 species (1). The role of cats is of particular interest, because they are in close contact with
42 humans and frequently in contact with other cats. Available field (2-9) and experimental data
43 (10-14) indicate that cats are susceptible to infection, occasionally show mild clinical signs and
44 may be able to transmit the infection between cats. Indeed, transmission experiments confirmed
45 this possibility (10-14), however, the lack of a proper statistical assessment of transmission in the
46 reported experiments limits confident extrapolation of the results from the experiment to the
47 population. An important question when assessing the risk of transmission is whether cat-to-cat
48 transmission can be sustained. A key measure to answer this question is the basic reproduction
49 number R_0 , which is the average number of individuals to whom a typical infectious individual
50 will transmit the infection to in a naive population. R_0 is a key parameter in infectious disease
51 epidemiology, it provides an indication of the transmissibility of a pathogen and the risk of
52 epidemic transmission. When $R_0 > 1$, one can expect sustained transmission with high risk of a
53 major outbreak and endemicity to occur, whereas when $R_0 < 1$ the infection is likely to peter out.
54 Other parameters which contribute to quantitatively describe transmission are: 1) the latent
55 period L , which is the time from becoming infected to becoming contagious, 2) the infectious
56 period T , which is the average period of time an individual is contagious and 3) the transmission
57 rate parameter β which is the number of contact infections caused by one typical infectious
58 individual per unit of time. Here, published experiments and observational studies describing
59 infection and transmission of SARS-CoV-2 between cats were reviewed. Data from these studies

60 were collated and analysed to statistically confirm whether cat-to-cat transmission can be
61 sustained and to provide estimates of relevant transmission parameters.

62 A systematic literature search was conducted which identified 115 publications. Upon
63 screening and selection of relevant studies for data collection and analysis, five experimental
64 studies and 8 observational studies were included for analysis. A detailed description of the
65 systematic review process is provided as supplemental material (Text S1).

66 In Tables 1 and 2 the experimental and household studies included for analyses are
67 summarised. Of the experimental studies, four (10-12) assessed direct-contact transmission and
68 one (13) indirect (droplet) transmission. These studies used different study designs with respect
69 to age and the number of inoculated (donor) and contact cats included within an experimental
70 group. All experiments used inoculation doses $\geq 10^5$ PFU (Gaudreault et al (12) used 10^6
71 TCID₅₀) and the predominant inoculation route was intra-nasal inoculation. Following
72 inoculation, infection and transmission were monitored by longitudinally detecting and
73 measuring virus shedding in nasal, faecal or oropharyngeal samples collected from inoculated
74 and contact- or droplet-infected cats. The laboratory methods used to monitor infection were
75 either virus isolation (VI) (10, 11) or RT-PCR (12, 13). From the observational studies, data
76 from 12 households housing infected people and at least one infected cat were included for
77 analysis. Eight of these households (4-9) had either two or three cats and four households (15,
78 16) had only one cat (Tables 2, S3, S4). The infection process of owners and cats was
79 longitudinally followed in most of these households.

80 For the statistical analysis of the transmission experiments, temporal data on infection of
81 inoculated and contact- or droplet-infected cats was collected. Within each experimental group,
82 an inoculated cat was classed as infectious when it was reported as shedding virus, regardless of

83 the viral load and of the detection method (virus isolation or RT-PCR). Contact cats were
84 considered susceptible for the period of days before the first day they were shown to shed virus
85 (one day latent period (Table 3)). The prepared datasets (Tables S1, S2) were used to estimate L
86 ($days$), T ($days$), β (day^{-1}) and R_0 . The first two parameters were estimated using parametric
87 survival regression models, β was estimated by using a SEIR model fitted by using a generalised
88 linear regression model and R_0 was estimated either as the product of $T * \beta$ or by using the final
89 size method (FSM). The latter only requires information of the total number of infections in a
90 group/household at the end of the infection process, when there is either no more infectious or no
91 more susceptible hosts present (17, 18). For analysis of the household data (Table 2),
92 transmission was analysed using the FSM, and the length of shedding was estimated using
93 parametric survival models. To simplify the analysis of transmission, it was assumed that the
94 source of infection of secondary infected cats was the first infected cat (infected by the owner) in
95 the household and the contribution of infected owners to the infection of secondary infected cats
96 was not included in the analysis. A detailed explanation of the statistical analysis is provided as
97 Supplemental material (Text S2).

98 For all experiments, L was estimated to be about one day, with no significant differences
99 observed between inoculated and contact infected cats (Table 3). The type of test has a clear
100 influence in the estimation of T , with estimates done using RT-PCR data leading to an
101 overestimation of T and consequently R_0 when compared with the FSM estimates. Using VI data
102 from contact-infected cats (assumed to closely reflect a “natural” infection) to estimate T and the
103 corresponding R_0 led to similar estimates to those done using the FSM (Table 2). The
104 experimental design had a large influence in the estimation of β ; with the design used in two of
105 the studies (11, 12) leading to an overestimation of this parameter and large standard errors.

106 Although a small sample size was used, the pair-transmission design used by Shi et al (13),
107 Halfmann et al (10) and Bao et al. (14) allowed the estimation of β and R_0 with good certainty.
108 The former experiment assessed droplet-transmission whilst the latter two experiments assessed
109 direct transmission and allowed confirmation that R_0 is significantly higher than 1 ($p < 0.05$).
110 When combining these two experiments, the estimated R_0 ($T * \beta$) for cats was 3.9 (95%
111 confidence intervals: 2.2 – 6.8) or 3.3 (FSM) (1.1 – 11.8). These estimates were similar to the
112 estimates done at household level, with the estimated R_0 (FSM) being 3.8 (1.2 – 42.2) (Table 3).
113 Similarly, the estimates of T and virus shedding levels from household data were similar to those
114 estimates from the experiments (Table 3). Noting the assumptions made for the analysis of
115 household data, the results indicate that pair-transmission experiments appear to provide a
116 reliable approximation of the expected transmission dynamics of SARS-CoV-2 between cats at
117 household level. Compared to direct transmission, droplet transmission was slower $\beta = 0.14$
118 ($0.02 – 0.44$) day^{-1} and may happen to a lower extend $R_0 = 1.0$ ($0.2 – 4.7$) than direct
119 transmission (Table 3).

120 This study shows the importance of quantitatively assessing transmission when performing
121 transmission experiments and the relevance of a proper experimental design to obtain reliable
122 estimates of different parameters that describe the transmission process. Pair-transmission
123 experiments are a suitable design to assess transmission. By using both data from the studies that
124 used this type of experimental design (10, 14) and data from studies which followed infected
125 households, we statistically confirmed that sustained transmission of SARS-CoV-2 among cats
126 can be expected ($R_0 > 1$). To put this into perspective, scenarios in which contacts between stray
127 and household cats take place (3) could lead to persistence of the virus in the cat population.

128 By combining field and experimental observations we could partly validate the suitability of
129 pair-transmission experiments to study transmission and the validity of the estimated parameters.
130 Whilst field observations would be ideal, it is practically impossible to obtain detailed temporal
131 data to have a thorough understanding of the transmission dynamics. Given this limitation, in
132 order to analyse the household data we had to make assumptions which influence our estimates.
133 The main assumption being that secondary infected cats were infected by the first infected cat in
134 the household, ignoring the possibility of these cats becoming infected by contact with the
135 infected owner. As a result the R_0 estimates could be overestimated. As for T and shedding
136 levels, observations were left censored, since first diagnosis of the cats was around five to seven
137 days after clinical onset of the infected owner (Table S4) and not all cats were followed daily,
138 which may affect the accuracy of these estimates. Nevertheless, they were similar to the
139 experimental estimates. The combination of experimental and field data in this study improved
140 the characterization of transmission between cats and increased the certainty in the estimated
141 parameters.

142 Interestingly, levels of virus shedding in household infected cats, were as high as those
143 observed experimentally (Table 3), with reported shedding levels as high as $10^{8.5}$ RNA
144 copies/swab sample or RT-PCR CT values as low as 21 (Table S4). Considering both that
145 infected cats shed high levels of virus, and that droplet transmission is possible, the risk for cat-
146 to-human transmission of SARS-CoV-2 may not be low. There is a need to further investigate
147 this risk. Experimental assessment of, for example, the probability of transmission via a
148 contaminated environment around an infected cat and measurements of virus concentrations in
149 infected cats' exhaled air would provide further information to quantify the risk for cat-to-human
150 transmission. This data combined with more detailed transmission and environmental

151 contamination data (5, 16) from infected household cats could aid to further quantify the
152 combined risks of human-to-cat and cat-to-human transmission. Thorough understanding of
153 transmission of SARS-CoV-2 at the human-animal interplay is important to obtain a better
154 insight into the population dynamics of this virus.

155

156 **Acknowledgments**

157 This work was supported by funding from the European Union's Horizon 2020 Research and
158 Innovation programme under grant agreement No 773830: One Health European Joint
159 Programme, projects MATRIX and COVRIN. We thank Michel Counotte for his help with the
160 literature search.

161 No potential conflict of interest was reported by the author(s)

162

163 **References**

- 164 1. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der
165 Honing RW, Gerhards N, Tolksma P, Bouwstra R, Sikkema RS, Tacken MG, de Rooij
166 MM, Weesendorp E, Engelsma MY, Bruschke CJ, Smit LA, Koopmans M, van der Poel
167 WH, Stegeman A. 2020. SARS-CoV-2 infection in farmed minks, the Netherlands, April
168 and May 2020. Euro Surveill 25.
- 169 2. Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, Smith SL, Anderson
170 ER, Prince T, Patterson GT, Lorusso E, Lucente MS, Lanave G, Lauzi S, Bonfanti U,
171 Stranieri A, Martella V, Solari Basano F, Barrs VR, Radford AD, Agrimi U, Hughes GL,
172 Paltrinieri S, Decaro N. 2020. Evidence of exposure to SARS-CoV-2 in cats and dogs
173 from households in Italy. Nat Commun 11:6231.

174 3. Zhang Q, Zhang H, Gao J, Huang K, Yang Y, Hui X, He X, Li C, Gong W, Zhang Y,
175 Zhao Y, Peng C, Gao X, Chen H, Zou Z, Shi Z-L, Jin M. 2020. A serological survey of
176 SARS-CoV-2 in cat in Wuhan. Emerging Microbes & Infections 9:2013-2019.

177 4. Chaintoutis SC, Siarkou VI, Mylonakis ME, Kazakos GM, Skeva PN, Bampali M,
178 Dimitriou M, Dovrolis N, Polizopoulou ZS, Karakasiliotis I, Dovas CI. 2021. Limited
179 cross-species transmission and absence of mutations associated with SARS-CoV-2
180 adaptation in cats: A case study of infection in a small household setting. Transbound
181 Emerg Dis doi:10.1111/tbed.14132.

182 5. Klaus J, Meli ML, Willi B, Nadeau S, Beisel C, Stadler T, Eth Sars-Co VST, Egberink H,
183 Zhao S, Lutz H, Riond B, Rösinger N, Stalder H, Renzullo S, Hofmann-Lehmann R.
184 2021. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with
185 Respiratory Signs in Switzerland. Viruses 13.

186 6. Neira V, Brito B, Agüero B, Berrios F, Valdés V, Gutierrez A, Ariyama N, Espinoza P,
187 Retamal P, Holmes EC, Gonzalez-Reiche AS, Khan Z, Guchte AV, Dutta J, Miorin L,
188 Kehrer T, Galarce N, Almonacid LI, Levican J, Bakel HV, García-Sastre A, Medina RA.
189 2020. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected
190 cats compared to their human owners. Emerg Microbes Infect
191 doi:10.1080/22221751.2020.1863132:1-22.

192 7. Hamer SA, Pauvolid-Correa A, Zecca IB, Davila E, Auckland LD, Roundy CM, Tang W,
193 Torchetti MK, Killian ML, Jenkins-Moore M, Mozingo K, Akpalu Y, Ghai RR, Spengler
194 JR, Barton Behravesh C, Fischer R, Hamer GL. 2020. Natural SARS-CoV-2 infections,
195 including virus isolation, among serially tested cats and dogs in households with

196 confirmed human COVID-19 cases in Texas, USA. BioRxiv
197 doi:10.1101/2020.12.08.416339.

198 8. Goryoka GW, Cossaboom CM, Gharpure R, Dawson P, Tansey C, Rossow J, Mrotz V,
199 Rooney J, Torchetti M, Loiacono CM, Killian ML, Jenkins-Moore M, Lim A, Poulsen K,
200 Christensen D, Sweet E, Peterson D, Sangster AL, Young EL, Oakeson KF, Taylor D,
201 Price A, Kiphibane T, Klos R, Konkle D, Bhattacharyya S, Dasu T, Chu VT, Lewis NM,
202 Queen K, Zhang J, Uehara A, Dietrich EA, Tong S, Kirking HL, Doty JR, Murrell LS,
203 Spengler JR, Straily A, Wallace R, Barton Behravesh C. 2021. One Health Investigation
204 of SARS-CoV-2 Infection and Seropositivity among Pets in Households with Confirmed
205 Human COVID-19 Cases - Utah and Wisconsin, 2020. BioRxiv
206 doi:10.1101/2021.04.11.439379.

207 9. Segalés J, Puig M, Rodon J, Avila-Nieto C, Carrillo J, Cantero G, Terrón MT, Cruz S,
208 Parera M, Noguera-Julian M, Izquierdo-Useros N, Guallar V, Vidal E, Valencia A,
209 Blanco I, Blanco J, Clotet B, Vergara-Alert J. 2020. Detection of SARS-CoV-2 in a cat
210 owned by a COVID-19-affected patient in Spain. Proceedings of the National Academy
211 of Sciences 117:24790-24793.

212 10. Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, Kinoshita N, Hattori SI,
213 Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Kawaoka Y. 2020. Transmission of
214 SARS-CoV-2 in Domestic Cats. N Engl J Med 383:592-594.

215 11. Bosco-Lauth AM, Hartwig AE, Porter SM, Gordy PW, Nehring M, Byas AD,
216 VandeWoude S, Ragan IK, Maison RM, Bowen RA. 2020. Experimental infection of
217 domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to
218 reexposure in cats. Proc Natl Acad Sci U S A 117:26382-26388.

219 12. Gaudreault NN, Trujillo JD, Carossino M, Meekins DA, Morozov I, Madden DW, Indran
220 SV, Bold D, Balaraman V, Kwon T, Artiaga BL, Cool K, García-Sastre A, Ma W,
221 Wilson WC, Henningson J, Balasuriya UBR, Richt JA. 2020. SARS-CoV-2 infection,
222 disease and transmission in domestic cats. *Emerg Microbes Infect* 9:2322-2332.

223 13. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao
224 Y, Liu P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z.
225 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-
226 coronavirus 2. *Science* 368:1016-1020.

227 14. Bao L, Song Z, Xue J, Gao H, Liu J, Wang J, Guo Q, Zhao B, Qu Y, Qi F, Gong S, Liu
228 M, Qi L, Li D, Han Y, Zhao W, Deng S, Liu Y, Xiang Z, Yang B, Deng W, Yu H, Cong
229 Z, Wei Q, Xu J, Gao GF, Qin C. 2021. Susceptibility and Attenuated Transmissibility of
230 SARS-CoV-2 in Domestic Cats. *J Infect Dis* doi:10.1093/infdis/jiab104.

231 15. Barrs VR, Peiris M, Tam KWS, Law PYT, Brackman CJ, To EMW, Yu VYT, Chu
232 DKW, Perera R, Sit THC. 2020. SARS-CoV-2 in Quarantined Domestic Cats from
233 COVID-19 Households or Close Contacts, Hong Kong, China. *Emerging Infect Dis* 26.

234 16. Bessière P, Fusade-Boyer M, Walch M, Lèbre L, Brun J, Croville G, Boullier S,
235 Cadiergues MC, Guérin JL. 2021. Household Cases Suggest That Cats Belonging to
236 Owners with COVID-19 Have a Limited Role in Virus Transmission. *Viruses* 13.

237 17. Ball F. 1986. A unified approach to the distribution of total size and total area under the
238 trajectory of infectives in epidemic models. *Advances in Applied Probability* 18:289-310.

239 18. Velthuis AGJ, Bouma A, Katsma WEA, Nodelijk G, De Jong MCM. 2007. Design and
240 analysis of small-scale transmission experiments with animals. *Epidemiology and
241 Infection* 135:202-217.

242

243 **Supplemental material**

244 **Text S1.** Literature search and selection of manuscripts

245 **Text S2.** Data analysis methods for the estimation of transmission parameters

246 **Table S1.** Collated data for the quantification of the transmission rate β (day $^{-1}$). Data for each
247 pair of cats (inoculated + contact) was collated daily from day one post inoculation to the day the
248 contact cat was assumed infected (one day before shedding virus).

249 **Table S2.** Collated data for the estimation of the infectious and latent periods.

250 **Table S3.** Collated data from infected households with more than one cat. These data were used
251 for the estimation of the reproductive number R_0 using the final size method.

252 **Table S4.** Collated data from observational studies describing the longitudinal follow up of
253 infection in infected cats from infected households. These data were used to estimate the
254 duration of observed shedding in naturally infected cats.

255 **Table S5.** Estimated Weibull parameters (Shape and Scale) describing the length of the
256 infectious period T .

257 Table 1. Summary of the experimental procedures showing the study design, the age of the cats, the inoculation route and dose, the
 258 type of samples taken and the diagnostic method used to quantify virus levels in time.

Study	Type of transmission	Design I x S ^a	Cat's age (months)	Inoculation Route	Dose (\log_{10})	Units ^b	Sample (route) ^c	Diagnostic test
Halfmann et al.(10)	Direct contact	1 x 1	3.5 to 4.2	Nasal,Tracheal, Oral,Ocular	5.7	PFU	Respiratory	VI ^d
Bosco-Lauth et al.(11)	Direct contact	2 x 2	60 - 96	Nasal	5.4	PFU	Respiratory/rectal	VI
Gaudreault et al. (12)	Direct contact	3 x 1	4.5 - 5	Nasal, Oral	6	TCID ₅₀	Respiratory	RT-PCR
Bao et al.(14)	Direct contact	1 x 1	8 - 18	Nasal	6	TCID ₅₀	Respiratory/rectal	RT-PCR
Shi et al. juveniles.(13)	Indirect-droplet	1 x 1	2.3 to 3.3	Nasal	5	PFU	Respiratory	RT-PCR
Shi et al. subadults.(13)	Indirect-droplet	1 x 1	6 to 9	Nasal	5	PFU	Rectal	RT-PCR

259 ^a I = number of inoculated cats and S = number of susceptible contacts per group at the start of the experiment.

260 ^b PFU = Plaque-forming units, TCID₅₀ = Fifty-percent tissue culture infective dose

261 ^c Type of samples considered as respiratory were: nasal swabs, oropharyngeal swabs, nasal washes. Rectal samples were: rectal swabs
 262 or faeces.

263 ^d VI = Virus Isolation

264

265 Table 2. Summary description of the households studies included for estimation of the shedding (infectious) period and the
 266 Reproductive Number R_0 .

Studies	No. of households	Total No. of cats per household	Number of households with > 1 cat infected ^a	Sample (Route) ^b	Diagnostic test	Data used for estimation of
Chaintoutis et al. (4), Hamer et al.(7), Neira et al.(6)	3	3	1	Respiratory/rectal	PCR, Serology	R_0 , Shedding
Hamer et al.(7), Klaus et al.(5), Segales et al.(9), Neira et al.(6) Goryoka et al.(8)	5	2	3	Respiratory/rectal	PCR, Serology	R_0 , Shedding
Barris et al.(15), Bessiere et al.(16)	4	1		Respiratory/rectal	PCR, Serology	Shedding

267 ^a For a cat to be considered infected it had to be seropositive the last time the cats in the household were sampled.

268 ^b Type of samples considered as respiratory were: nasal swabs, oropharyngeal swabs or oral swabs. Rectal samples were: rectal swabs
 269 or faeces.

270

271

272

273

274 Table 3. Quantified parameters for direct contact and droplet transmission of SARS-CoV-2 between cats using data from transmission
 275 experiments or observational studies describing infection and transmission at household level.^a

Study	No. groups /households (No. without transmission)	Peak shedding (\log_{10} x/ml) ^b	Latent period L (days) ^c	Infectious period T (days) ^c	Transmission rate B (day ⁻¹)	R_0 mean (95% CI)	$T \times \beta$	Final Size
<i>Direct transmission</i>								
Halfmann et al.(10)	3 (0)	4.0 \pm 0.5 PFU ^d 3.5 \pm 0.6 PFU ^e		4.6 (3.0 - 5.7) ^d 5.4 (3.6 - 6.8) ^e	0.64 (0.16 - 1.66)	2.9 (1.0 - 7.6)		> 1.2
Bosco-Lauth et al.(11)	1 (0)	4.0 \pm 0.6 PFU ^d 4.1 \pm 1.4 PFU ^e		6.8 (4.5 - 8.4) ^d 4.7 (3.0 - 5.8) ^e	2.77 (0.45 - 8.93)	15.2 (4.4 - 50.9)		
Gaudreault et al.(12)	2 (0)	9.0 RNA ^d		6.6 (3.8 - 8.7) ^d	1.46 (0.23 - 5.04)	9.6 (2.7 - 33.1)		
Bao et al. (14)	8 (4)	3.4 \pm 0.5 RNA ^d 4.9 \pm 0.6 RNA ^e		10.0 (6.5 - 12.4) ^d 11.6 (7.5 - 14.4) ^e	0.69 (0.21 - 1.65)	6.8 (2.8 - 16.3)	2.0 (0.5 - 7.7)	
Combined ^f			1.1 (0.5 - 2.2) ^d 0.8 (0.3 - 1.9) ^e	4.6 (3.0 - 5.7) ^d	0.88 (0.45 - 1.52)	3.9 (2.2 - 6.8) ^f	3.3 (1.1 - 11.8) ^g	
<i>Droplet transmission</i>								
Shi et al.juveniles(13)	3 (2)	7.0 \pm 0.3 RNA ^e		8.1 (4.6 - 10.6) ^e	0.10 (0.01 - 0.46)	0.8 (0.2 - 4.4)	1.0 (0.1 - 7.6)	
Shi et al.subadults(13)	3 (2)	4.9 \pm 0.4 RNA ^e		5.7 (3.3 - 7.5) ^e	0.22 (0.01 - 0.99)	1.2 (0.2 - 6.7)	1.0 (0.1 - 7.6)	
Combined			0.8 (0.3 - 1.9) ^e		0.14 (0.02 - 0.44)	1.1 (0.3 - 3.6) ^h	1.0 (0.2 - 4.7)	
<i>Household transmission</i>								
Households (4-6, 8, 9)	8 (2)	6.1 \pm 1.6 RNA 28.0 \pm 4.9 CT		6.6 (1.8 - 13.6)			3.8 (1.2 - 42.2)	

276 ^a Where relevant, empty cells represent analysis not done. Data was not suitable/sufficient to perform the corresponding analysis.

277 ^b x values are plaque-forming units (PFU), RNA copy numbers. CT = Real time PCR (RT-PCR) cycle threshold. SD = standard deviation

279 ^c L was estimated fitting an exponential distribution. T was estimated fitting a Weibull distribution using either virus isolation data or
280 PCR data (see column peak shedding) (Text S2). CI = Confidence Intervals.

281 ^d These are estimates for the contact-infected cats.

282 ^e These are estimates for the inoculated-infected cats.

283 ^f Estimates done combining data from the different studies or groups when a combined analysis was possible. For estimation of R_0 the
284 estimated T from the contact infected cats from Halfmann et al.(10) was used. This was because contact infected cats were assumed to
285 resemble “natural” infection better than inoculated cats and that virus isolation is a better indicator of infectiousness than RT-PCR.

286 ^g This estimate was done combining the data from Halfmann et al.(10) and Bao et al.(14).

287 ^h Estimated using the estimated T from the juvenile group. This estimate was based on nasal shedding.