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ABSTRACT

In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique
using normalized mutual information (MI), that calculates the nonlinear correlation between different brain
regions. We demonstrate our proposed approach using simulated data, then apply it to a dataset previously studied
in (Damaraju et al., 2014). This resting-state fMRI data included 151 schizophrenia patients and 163 age- and
gender-matched healthy controls. We first decomposed these data using group independent component analysis

(ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized
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nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual
cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear
approach. Group analysis identified significant differences in nonlinear dependencies between schizophrenia
patients and healthy controls particularly in visual cortex, with controls showing more nonlinearity in most cases.
Certain domains, including cognitive control, and default mode, appeared much less nonlinear, whereas links
between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall,
these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a
complementary and potentially important tool for studying brain function by exposing relevant variation that is

typically ignored.

Further, we propose a method that captures both linear and nonlinear effects in a “boosted’ approach. This method
increases the sensitivity to group differences in comparison to the standard linear approach, at the cost of being

unable to separate linear and nonlinear effects.

Keywords: Mutual information, functional network connectivity, time courses, nonlinear functional network

connectivity.
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Introduction

Functional connectivity (FC) has been widely used to assess linear dependencies among brain activity (Bastos &
Schoffelen, 2016; Friston, 2011; Sala-Llonch, Bartrés-Faz, & Junqué, 2015; van den Heuvel & Hulshoff Pol,
2010). Allen et al. (Allen et al., 2011) applied an approach that characterized whole-brain functional network
connectivity (FNC, i.e., FC between coherent intrinsic networks) to a large dataset. Most functional connectivity
studies concentrate on linear relationships that have many benefits but also some limitations such as ignoring
nonlinear contributions. One of the most widely used methods for assessing functional connectivity is the
correlation coefficient, which is easy to calculate and interpret for both positive and negative correlation.
However, the correlation coefficient measures only linear dependency. There has been little work studying

explicitly nonlinear relationships in functional connectivity.

In the current study, we were interested in evaluating the degree to which nonlinear relationships exist among
brain regions in a functional connectivity context. To do this we focused on the use of mutual information (MI),
an information theoretic approach that has the advantage of being capable of measuring both linear and nonlinear
dependencies. Early work evaluated MI as a way to capture more general relationships (V. Calhoun, Kim, &
Pearlson, 2003). More recently, alternative metrics for functional connectivity, including MI, have been explored
(Mohanty, Sethares, Nair, & Prabhakaran, 2020; Sundaram et al., 2020; Tedeschi et al., 2005; Tsai et al., 1999;
Wang et al., 2015; Zhang, Muravina, Azencott, Chu, & Paldino, 2018). However, to our knowledge, we are the
first group to assess the explicitly nonlinear relationships among brain networks to evaluate their unique aspects

relative to the linear relationships.

We have developed an approach that explores the nonlinear relationships in functional connectivity after first
removing the linear relationships via regression. This is followed by an estimation of the mutual information
among the residual time courses. In order to assess whether the nonlinear relationships were potentially
meaningful we first focus on whether the resulting FNC matrices exhibit modular relationships, consistent with
functional integration. Secondly, we evaluated whether the nonlinear FNC show group differences in a dataset
consisting of resting fMRI data collected from schizophrenia patients and healthy controls (Damaraju et al.,
2014). To do this, the MI among the functional brain networks in patients and controls were assessed and

compared after removal of the linear dependencies.
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Materials and Methods

2.1. Participants and Preprocessing

In this work, we use the fBIRN dataset which has been analyzed previously in (Damaraju et al.). The final curated
dataset consisted of 163 healthy participants (mean age 36.9, 117 males; 46 females) and 151 age- and gender-
matched patients with schizophrenia (mean age 37.8; 114 males, 37 females). Eyes-closed resting state fMRI data
were collected at 7 sites across the United State (Keator et al., 2016). Informed consent was obtained from all
subjects prior to scanning in accordance with the Internal Review Boards of corresponding institutions. With a TR
of 2s on 3T scanners, 162 volumes of echo-planar imaging blood oxygenation level-dependent (BOLD) fMRI
data were captured. Imaging data of one site was captured on General Electric Discovery MR750 scanner and the
rest of the six sites were collected on Siemens Tim Trio System. Resting-state fMRI scans were acquired using a
standard gradient-echo echo-planar imaging paradigm: FOV of 220 x 220 mm (64 x 64 matrices), TR =2s, TE =

30 ms, FA =770, 162 volumes, 32 sequential ascending axial slices of 4 mm thickness and 1 mm skip.

Data preprocessed by using several toolboxes such as AFNI, SPM, GIFT. Rigid body motion correction using the
INRIAlign (Freire & Mangin, 2001) toolbox in SPM to correct head motion was applied. To remove the outliers,
the AFNI3s 3dDespike algorithm was performed. Then fMRI data were resampled to 3 mm? isotropic voxels.

Then data were smoothed to 6 mm full width at half maximum (FWHM) using AFNI3s BlurToFWHM algorithm
and each voxel time course was variance normalized. During the curation process, subjects with larger movement

were excluded from the analysis to mitigate motion effects. For more details please see (Damaraju et al.).

2.2. Postprocessing

The GIFT (http://trendscenter.org/software/gift) implementation of Group-level Spatial ICA was used to estimate
100 functional networks as ICA components. A subject-specific data reduction step was first used to reduce 162
time point data into 100 directions of maximal variability using principal component analysis. Next, the infomax

approach (Bell & Sejnowski, 1995) was used to estimate one hundred maximally independent components from
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the group PCA reduced matrix. For stability of estimation, the ICA algorithm was repeated multiple times and the
most central run was selected as representative (Du, Ma, Fu, Calhoun, & Adali, 2014). Finally aggregated spatial
maps were estimated as the modes of component clusters. Subject specific spatial maps (SMs) and time courses
(TCs) were obtained using the spatiotemporal regression back reconstruction approach (V. D. Calhoun, Adali,

Pearlson, & Pekar, 2001; Erhardt et al., 2011) implemented in the GIFT software.

To label the components, regions of peak activation clusters for each specific spatial map were obtained. After
ICA processing, to acquire regions of peak activation clusters, one sample t-test maps are taken for each SM
across all subjects and then thresholded; also mean power spectra of the corresponding TCs were computed. The
set of components as intrinsic connectivity networks (ICNs) is identified if their peak activation clusters fell
within gray matter and showed less overlap with known vascular, susceptibility, ventricular, and edge regions
corresponding to head motion. This resulted in 47 ICNs out of the 100 independent components. Running over 20
times ICASSO, the cluster stability/quality index for all except one ICNs was very high. After TCs were
detrended and orthogonalized by considering estimated subject motion parameters, spikes were detected by
AFNI3s 3dDespike algorithm and replaced by values of third order spline fit. For more detail see (Allen et al.,

2012; Damaraju et al., 2014). The fBIRN dataset obtained after processing resulted in a matrix of 159 time points

X 47 components X 314 subjects including 163 Control and 151 SZ subjects.

2.3. A Mutual Information Approach

While linear correlation is the most widely used measure to describe dependence, it can underestimate or
completely miss nonlinear dependencies. An example to illustrate this shortfall is Anscombe’s Quartet
(Anscombe, 1973) where four plots of various, non-random data points (linear dependence, quadratic
dependence, straight line with outliers, and vertical line with outliers) are shown that have wildly different
structure of dependence but the same correlation coefficient. To measure the explicitly nonlinear correlation
between two TCs, the approach applied in this research is to remove the linear correlation and calculate the

residual dependence.

The Pearson product moment correlation coefficient, p, of time courses x and y is
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_ Cov(x,y)
where S, and S, are respectively the sample standard deviations of x and y, and Cov (x,y ) is the covariance
between x and y. The correlation coefficient mainly measures the linear dependence between two distributions.
However nonlinear dependence is not displayed in the value of the correlation coefficient. Recent statistical
approaches have been proposed to measure the correlation without underestimating the nonlinear dependency.
One of these methods, normalized mutual information (MI), measures both linear and nonlinear dependencies.

The value of MI is determined by the formula

I(x,y) = HX) + H(y) — Hx,y).
Where H(x) and, H(y) are marginal entropies and H(X, y) is the joint entropy.

The goal is to calculate only the nonlinear component of dependence. The approach we use for this is to measure
the mutual information of the data after removal of the linear component of dependence. For given time courses x
and y, fitting a linear model ¥y = ax + [ gives the linear correlation between x and y. Next, we cancel the
linear effect by calculating z = y — Y. The nonlinear dependency of x and z is the same as x and y. Next, we

can use I(x, z) to evaluate the nonlinear dependency of x and y.

2.4. Simulated Experiment

We applied the proposed method to simulated data to illustrate their use. In this experiment, we started with a
vector say x of size 1000 X 1 where its components are from a random uniform distribution on [0 1]. Next, we
formed three vectors y;, y,, and y3, such that each one has a particular relationship with x. Three different types
of relationships are as follows: Case I, vector y; has a purely linear relationship with x. Case II, we defined y, to
have a quadratic relationship and no linear correlation with x. That is x and y, have only a nonlinear correlation.
Case I1I, vector y; has a combination of linear and nonlinear correlation with x. We also added zero-mean

Gaussian noise to yq,y,, and y; (Fig. 1).
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Fig. 1: Three simulation cases for linear and nonlinear correlation between two vectors. Vector x has its components randomly derived
from a uniform distribution on [0 1]. From left to right we have Case I, Case II and Case III such that in Case I, y; = 2x + e (linear
relationship between x and y;). In Case II, we have y, = 5(x — 0.5)? + e (nonlinear relationship between x and y,) and for Case III, y; =
5(x — 0.5)? + 2x + e (combination of linear and nonlinear relationships between x and y3). Noise e is a Gaussian distribution with a
mean of zero.

We measured the relationship of (x, y;), (x,y,) and (x, y3) using both Pearson correlation and mutual
information approaches. Pearson correlation takes value from -1 to 1. Briefly, -1 refers to a perfectly linear
negative correlation and 1 shows a perfectly linear positive correlation. The mutual information we use in this
work is normalized, taking a range of [0,1]. If the MI=0 this indicates no dependency and as two distributions
increase their dependency, the mutual information value increases to a maximum of 1. Prior to computing
correlation and MI, we implemented the procedure explained earlier to remove the linear correlation from y;, y-,

and y;. Next, we calculated the Pearson correlation and mutual information for each pair as it shown in Table 1.

2.5. Quantifying Nonlinear Connectivity in fMRI Data

For each subject there are 47 ICA time courses of length 159. For each pair of time courses x and y we compute
the traditional FNC, i.e., the linear correlation between all pairs x and y. We then compute the study mean FNC

matrix by averaging over all 314 subjects included in this analysis.

We then fit a linear model to estimate the linear correlation between x and y. After this we remove the linear
effect to study the remaining dependencies by updating y as: y = y — ¥. Finally, we calculate the nonlinear

residual dependencies among functional network components in fMRI data via MI. This produces a matrix of 47
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by 47 for each subject in which, the value in (x, y) entry shows the nonlinear dependencies calculated by MI
method for x and y. Then the average over all 314 subjects is calculated. In order to examine whether these
differences are significant, we compute a one-sample T-test comparing each MI value against the cell with the

minimum MI average value in the matrix.

Next, we compare the dependencies between the schizophrenia patients and controls. Within each group, the
linear effect is canceled, and the average MI is calculated over all subjects. We first evaluate whether there is
modular structure in the FNC matrix. Using T-test for two samples, the differences of nonlinear correlation are
calculated. Also, for false discovery rate (FDR) correction, all p-values were adjusted by the Benjamini-Hochberg

correction method and threshold at a corrected p<0.05.

2.6. Boosted Approach

While we emphasize the unique information contained in the nonlinearities, future studies may wish to leverage
both linear and nonlinear information together. To do this, we propose a method that include the information from
both linear and nonlinear dependencies. This boosted approach is a combination of Pearson correlation and
modified mutual information for quantifying nonlinear dependencies as described in 2.3. A Mutual Information

Approach. We define the boosted method as

Pearson correlation + sign(Pearson correlation) X Mutual information.

With this technique, we use the nonlinear information to boost the linear effects in the direction of the Pearson
correlation. Thus, both linear and nonlinear correlation is considered and, the direction (which is not well defined
in the nonlinear case) of the linear effect is protected. The approach we propose allows for multiple uses. One can
focus on the nonlinear effects only, which as we show in this paper, may be interesting in and of themselves.
Secondly, one can focus on capturing both linear and nonlinear effects in a ‘boosted’ approach. This appears to
increase sensitivity to group differences beyond the standard linear approach, though it does not allow for

separately of linear and nonlinear effects.
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We assessed the linear correlation (Pearson correlation), nonlinear dependencies (modified mutual information

2.3. A Mutual Information Approach) and both linear and nonlinear dependencies (Boosted) in schizophrenia

patients and healthy controls components. Then separately for each method, T-test for two samples was applied

and p-values were adjusted by the Benjamini-Hochberg correction method and threshold at a corrected p<0.05.

2.7. Joint Distributions

To further visualize the identified nonlinear relationships, we selected the five component pairs that have the most

significant p-values in the T-test for group differences in the nonlinear dependence for HC-SZ. Then we

constructed the difference in the joint distributions for each pair of time courses, comparing patients and controls.

Results

3.1. Simulated Experiment

Three types of correlations: linear

, nonlinear and combination of linear and nonlinear, are examined. The Pearson correlation and mutual

information before and after removing linear dependency for each case are measured and reported in the Table 1.

Table 1. Simulation of three cases, including Case I: linear correlation, Case II: Nonlinear correlation and, Case III: Linear and nonlinear
correlation between two vectors. The contribution of two vectors in each case measured by Pearson correlation (Corr) and Mutual
Information (MI). In this table Corri and MIi show the correlation between the original data and Corr2 and Mz show the correlation after
removing the linear relationship. Range of Pearson correlation is [-1, 1] and mutual information is normalized [0,1]. As expected, the
correlation is effectively zero after removal of linear effects. Results show that correlation completely misses the residual nonlinear
dependencies, and that the MI approach is able to effectively capture the nonlinear relationships when they exist.

Corri(x, ...) Corra(x, ...) MIi(x, ...) M (x, ...)
Casel: y; =2x+e 0.9847 1.64x10°" (i.e., 0) 0.3809 0.0161
Casell: y, =5(x—0.5)%* +e -0.0271 -3.91x10"7 (i.e., 0) 0.2585 0.2582
Caselll: y; =5(x—0.5)2+2x +e 0.8276 -1.61x10°° (i.e., 0) 0.3139 0.2630
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The range of Pearson correlation is -1 to +1 and the range of mutual information for independent distributions is
0, and perfect dependency is 1. In Case I, where the two distributions have only a linear correlation, the Pearson
correlation before removing the linear effect is close to one and after removing, both Pearson and mutual
information are close to zero. In Case II, where the two distributions have a quadratic relationship, the Pearson
correlation shows a low but non-zero correlation while the mutual information calculation shows a considerable
correlation between the two distributions. After removing the linear effects, Person correlation is effectively zero
while the mutual information is approximately the same before and after removing the linear effect. In Case III,
where there are both linear and nonlinear correlation between two distributions, the Pearson correlation is
significant before removing the linear effect and vanishes after canceling the linear correlation, while the mutual
information only slightly decreased after removing linear correlation. This provides a straightforward
demonstration of the fact that Pearson correlation is not able to capture purely nonlinear dependencies, while
mutual information considers both linear and nonlinear dependencies. Similarly, if we remove the liner effect, the
correlation will go to zero whereas the mutual information will capture the true residual nonlinear dependencies

between two distributions.

3.2. On fMRI Data

We measured the nonlinear dependencies among 47 component time courses estimated from the resting fMRI
data. The results are shown in Fig. 2. Panel A is the average FNC over 314 subjects of 47 components. The
average of nonlinear dependencies of 47 components is calculated via our proposed MI method for each of the
314 subjects. The result of applying T-test for one sample to show the difference of the average value from
minimum average is presented in Fig. 2. B. The FDR threshold (p < 0.05) shows that most of the differences
relative to the minimum mean for all entries in this matrix are significant. This shows us the degree to which MI
differences are significantly different across the FNC matrix and demonstrates modular nonlinear dependencies
between visual (VIS) and somatomotor (SM) components with other components. Interestingly, despite high
linear correlation between subcortical (SC) and auditory (AUD), a low rate of nonlinear dependency is observed

among them.
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Next the variation in nonlinear dependencies between healthy controls and schizophrenia patients are evaluated
using our MI method and compared using a two-sample T-test. In Fig. 3, panel A, the lower triangle shows
—log10(p) x sign(T) before threshold multiply by the initial p-value before FDR. The upper triangle is the
same as lower one, but p-values are threshold such that entries shown in a different color represent significant
differences in nonlinear dependency between groups. We observe a significant difference in nonlinear
dependencies between visual (VIS) components to other components such as auditory (AUD), visual (VIS),
somatomotor (SM), cognitive control (CC), and default-mode (DM) in schizophrenia (SZ) patients relative to
healthy controls (HC). We also visualized differences in the joint density among the most nonlinear networks and
identified several interesting patterns that would be completely missed in a typical linear analysis. Panel B, the
connectogram shows components with significant difference in their nonlinear dependencies between healthy
control and schizophrenia patients such that two components are connected with a line if the difference in their

nonlinear dependencies between HC and SZ is significant (with yellow for HC>SZ and blue for SZ>HC).

0.0232
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0.0228

0.0226

0.0224

0.0222
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10.0218

0.0216

0.0214

Fig. 2. A) Mean (linear) functional network connectivity (FNC) over 314 subjects. B) Mean mutual information (MI) after removing the
linear correlation over 314 subjects. Note that both linear and nonlinear effects are modularized, but in different ways suggesting they are
providing complementary information.
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Fig. 3 A) Upper triangle: The group difference (HC-SZ) in MI after removing the linear correlation. The p-values are adjusted by FDR and
threshold (p < 0.05). Values are plotted as -log10(p-value) x sign(t-statistics). Lower triangle: Identical to the upper tringle except that p-
values are not threshold, also the values are multiplied by the initial p-value before FDR. B) Connectogram that show components with
significant nonlinear correlation in HC- SZ are connected. In all but one case, results show significantly more nonlinearity in the controls,
mostly linked to the visual domain.

3.3. Boosted Approach

Dependencies among components in healthy controls and schizophrenia patients are assessed with three methods:
1. Pearson correlation, in which the emphasis is on only linear correlation, 2. Mutual information as described in
2.3. A Mutual Information Approach, is quantifying only nonlinear dependencies, and 3. the boosted approach

explained in 2.6. Boosted Approachis boosting the linear correlation by capturing nonlinear dependencies.

Next, in each method, T-test is applied to compare the differences between two groups. Adjusted p-value by FDR
is threshold (p<0.05). The number of pairs with significant differences for Pearson correlation method is 530, in

mutual information method is 17 and in Boosted method is 537.
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3.4. Joint Distributions

We were also interested in visualizing the relationship among the timecourse pairs which exhibited nonlinear
differences between patients and controls. Fig. 4 demonstrates the differences between healthy controls and
schizophrenia patients for the five pairs showing the largest group differences. Values increases from left to right
and up to down. Panel A shows the difference of joint distribution of the 26™ and 6™ components. The 26"
component belongs to cognitive control (CC) 6™ component is in the auditory (AUD) domain. Panel B is the joint
distribution difference of the 44" and 13" components. The 44" component is in default-mode (DM) and 13
component is in visual (VIS) domain. Panel C represent the joint distribution difference of 7" and 16
components. The 7% component is in auditory (AUD) and 16" component is in visual (VIS) domain. Panel D
illustrates the difference of joint distribution of 14™ and 7 components. Panel E exhibits the joint distribution of
14™ and 17" components. Both 14™ and 17" components belong to visual (VIS) domain. Panels B, D, and E share

some similarities, including a negative relationship between the two components.
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Fig. 4. Difference between the HC and SZ joint distributions for the five pairs showing the largest group differences in the nonlinear
dependencies of pairs (26, 6), (44, 13), (7, 16), (14, 7), (14, 17). Values in each distribution increases from left to right and up to down. The
26th component belongs to cognitive control (CC). The 6th and 7th components are in auditory (AUD). The 44" component is in default-
mode (DM). All 13, 14%, 16™ and 17" components are in visual (VIS) domain. We observe some interesting differences in the joint
distributions with patients generally showing differentially higher activity in one network and lower activity in the paired network.

In Fig. 4. A, we can observe controls spend more time in low level of an auditory component #6 relative to SZ
regardless of the values of the 26" components. From B, healthy controls are considerably more active in both the
default model network (#44) and a visual component (#13) than in SZ. In panel C, we notice healthy controls
show less activity in both an auditory (#7) and visual (#16) components compare to SZ. From D and E, it can be
interpreted those healthy controls show a higher level of activation in visual (#14) components relative to a more

posterior visual (#17) and an auditory (#7) component than do the patients.

For these 5 pairs, nonlinear FNC shows the hyper-connectivity compared to SZ i.e., shows the nonlinear part of
two distributions has more dependency in HC. However, the plot of group differences in the joint distribution can
illustrate how two pairs that show high dependency in HC, can be differently distributed in SZ. For example, in
Fig. 4, we can observe how differently these pairs in SZ and HC are distributed. Panel B, D, and E, healthy
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control time course have higher levels of activation (red color is dragged to the lower corner and blue to the top
left) while in panels A and C, health controls have lower activation level (red is dragged to the upper left and blue

to the lower right).

Discussion

In this preliminary work we highlight the benefit of studying nonlinearities in functional connectivity. Previous
functional connectivity studies are based on correlation coefficient that assess the linear correlation only, and as a
result they miss the nonlinear contributions. We establish an approach to assess the explicitly nonlinear
dependencies between distinct regions of the brain by first removing the linear dependencies. We first
demonstrated our approach works as expected on simulated data (Fig. 1). Following the nonlinear dependencies
among 47 timecourses on 314 subjects are assessed (Fig. 2). A similar approach was applied to estimate how
differently in average distinct regions of a schizophrenia patient’s brain contributes nonlinearly to the context of
functional connectivity (Fig. 3). Also, the joint distribution of five pairs with the largest group differences in the

nonlinear dependencies in HC-SZ is studied (Fig. 4).

There are a number of possible causes of nonlinear dependencies including: 1) Nonlinear hemodynamic effects.
Studies on the relationship between neuronal activity, oxygen metabolism, and hemodynamic responses have
shown the link between neuronal activity and hemodynamic response magnitude exhibits both linear and
nonlinear effects in task data (cite fMRI nonlinear task study). Other results suggest a strongly nonlinear
relationship between electrophysiological measures of neuronal activity and the hemodynamic response (Devor et
al., 2003; Sheth et al., 2004), 2) Differences in blood flow, blood oxygenation, and blood volume both within
subjects and between groups. Experiments indicates that acquires vascular space occupancy (VASO), arterial spin
labeling (ASL) perfusion and BOLD signals respond nonlinearly to stimulus duration (Gu, Stein, & Yang, 2005)
3) Subject motion. Even minor head posture changes may result in considerable spatially complex field changes

in the brain (Liu, de Zwart, van Gelderen, Murphy-Boesch, & Duyn, 2018). While we cannot completely exclude
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motion, we carefully curated the data to focus on low motion subjects and in addition there were no significant

motion differences between the groups(Damaraju et al., 2014).

The different modularized patterns evident in linear and nonlinearly modularity suggests a complementarity of the
nonlinear and linear relationships. It may be important to capitalize on these differences in future studies. Our
results suggest interesting variation among networks. For example, as shown in Fig. 2. B, significant nonlinear
dependencies are observed between visual (VIS), somatomotor (SM) domains and within cognitive control (CC)
and default-mode (DM) domains. The auditory (AUD) network shows strong differences in linear dependencies
(A), but not much nonlinear, whereas both visual and sensorimotor show strong within domain nonlinear
dependencies (B). Also, relatively low rate of nonlinear dependencies is observed between subcortical (SC) and

auditory (AUD) with other components.

We also found significant differences in the nonlinear relationships among the patients and controls. Nonlinear
FNC pairwise comparison between SZ and HC are shown in Fig. 3. Part A. In most cases the controls are
showing higher nonlinear dependencies relative to patients, mostly linked to the visual domain. There is a
significant difference in nonlinear correlation within visual (VIS) components as well as between VIS
components and to other components such as auditory (AUD), somatomotor (SM), cognitive control (CC), and
default-mode (DM) in SZ patient and HC. We observe that most of the patient/control differences involve visual
and auditory components. This is intriguing given existing evidence suggesting some schizophrenia symptoms
may be linked to the visual system (Gong et al., 2020; Johnston, Stojanov, Devir, & Schall, 2005; Onitsuka et al.,
2007). Having said that, visual symptoms such as visual hallucinations are rather uncommon in SZ, and rarer than
auditory and tactile abnormalities (van de Ven, Rotarska Jagiela, Oertel-Knochel, & Linden, 2017). In addition,
some studies suggest inborn blindness may be shielding against the development of schizophrenia, characterized
by inevitably noisy perceptual input that causes false inferences. These finding argue that when individuals cannot
see from birth, they depend more on the other senses. Thus, the resulting model of the world is more resistant to
false interpretations (Landgraf & Osterheider, 2013; Leivada & Boeckx, 2014; Morgan et al., 2018; Pollak &

Corlett, 2019; Riscalla, 1980).
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There is still much work to be done. Future work should focus on carefully evaluating the possible sources of the
nonlinear relationships. Quantitative fMRI studies could be used to isolate nonlinearities in blood oxygenation,
volume, and flow. In addition, high field layer specific fMRI studies could be used to evaluate nonlinearities in
input vs output layers. The contribution of various physiological variables (e.g., respiration, CO», heart rate, and

motion) could also be evaluated in future work.

In sum, our results provide evidence suggesting there are meaningful and significant nonlinear dependencies
among fMRI time courses. We have showed evidence suggesting there are meaningful (modularized and group
different) super-linear effects in FNC which primarily implicates the visual cortex as disrupted in schizophrenia.
We present two approaches, a focus on the explicitly linear effects or a boosted approach which captures both
linear and nonlinear effects within one metric. Future work should further study information contained in the
nonlinear relationships, and could be studies with faster acquisitions, linked to multimodal imaging such as

concurrent EEG data, and replicate the results we show in this work.
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