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ABSTRACT 

 

In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique 

using normalized mutual information (MI), that calculates the nonlinear correlation between different brain 

regions. We demonstrate our proposed approach using simulated data, then apply it to a dataset previously studied 

in (Damaraju et al., 2014). This resting-state fMRI data included 151 schizophrenia patients and 163 age- and 

gender-matched healthy controls. We first decomposed these data using group independent component analysis 

(ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized 
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nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual 

cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear 

approach. Group analysis identified significant differences in nonlinear dependencies between schizophrenia 

patients and healthy controls particularly in visual cortex, with controls showing more nonlinearity in most cases. 

Certain domains, including cognitive control, and default mode, appeared much less nonlinear, whereas links 

between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, 

these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a 

complementary and potentially important tool for studying brain function by exposing relevant variation that is 

typically ignored. 

Further, we propose a method that captures both linear and nonlinear effects in a 8boosted9 approach. This method 

increases the sensitivity to group differences in comparison to the standard linear approach, at the cost of being 

unable to separate linear and nonlinear effects. 

Keywords: Mutual information, functional network connectivity, time courses, nonlinear functional network 

connectivity. 
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 Introduction 

 

Functional connectivity (FC) has been widely used to assess linear dependencies among brain activity (Bastos & 

Schoffelen, 2016; Friston, 2011; Sala-Llonch, Bartrés-Faz, & Junqué, 2015; van den Heuvel & Hulshoff Pol, 

2010). Allen et al. (Allen et al., 2011) applied an approach that characterized whole-brain functional network 

connectivity (FNC, i.e., FC between coherent intrinsic networks) to a large dataset. Most functional connectivity 

studies concentrate on linear relationships that have many benefits but also some limitations such as ignoring 

nonlinear contributions. One of the most widely used methods for assessing functional connectivity is the 

correlation coefficient, which is easy to calculate and interpret for both positive and negative correlation. 

However, the correlation coefficient measures only linear dependency. There has been little work studying 

explicitly nonlinear relationships in functional connectivity. 

In the current study, we were interested in evaluating the degree to which nonlinear relationships exist among 

brain regions in a functional connectivity context. To do this we focused on the use of mutual information (MI), 

an information theoretic approach that has the advantage of being capable of measuring both linear and nonlinear 

dependencies. Early work evaluated MI as a way to capture more general relationships (V. Calhoun, Kim, & 

Pearlson, 2003). More recently, alternative metrics for functional connectivity, including MI, have been explored 

(Mohanty, Sethares, Nair, & Prabhakaran, 2020; Sundaram et al., 2020; Tedeschi et al., 2005; Tsai et al., 1999; 

Wang et al., 2015; Zhang, Muravina, Azencott, Chu, & Paldino, 2018). However, to our knowledge, we are the 

first group to assess the explicitly nonlinear relationships among brain networks to evaluate their unique aspects 

relative to the linear relationships. 

 We have developed an approach that explores the nonlinear relationships in functional connectivity after first 

removing the linear relationships via regression. This is followed by an estimation of the mutual information 

among the residual time courses. In order to assess whether the nonlinear relationships were potentially 

meaningful we first focus on whether the resulting FNC matrices exhibit modular relationships, consistent with 

functional integration. Secondly, we evaluated whether the nonlinear FNC show group differences in a dataset 

consisting of resting fMRI data collected from schizophrenia patients and healthy controls (Damaraju et al., 

2014). To do this, the MI among the functional brain networks in patients and controls were assessed and 

compared after removal of the linear dependencies. 
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Materials and Methods 

 

2.1. Participants and Preprocessing 

 

In this work, we use the fBIRN dataset which has been analyzed previously in (Damaraju et al.). The final curated 

dataset consisted of 163 healthy participants (mean age 36.9, 117 males; 46 females) and 151 age- and gender-

matched patients with schizophrenia (mean age 37.8; 114 males, 37 females). Eyes-closed resting state fMRI data 

were collected at 7 sites across the United State (Keator et al., 2016). Informed consent was obtained from all 

subjects prior to scanning in accordance with the Internal Review Boards of corresponding institutions. With a TR 

of 2s on 3T scanners, 162 volumes of echo-planar imaging blood oxygenation level-dependent (BOLD) fMRI 

data were captured. Imaging data of one site was captured on General Electric Discovery MR750 scanner and the 

rest of the six sites were collected on Siemens Tim Trio System. Resting-state fMRI scans were acquired using a 

standard gradient-echo echo-planar imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrices), TR = 2 s, TE = 

30 ms, FA = 770, 162 volumes, 32 sequential ascending axial slices of 4 mm thickness and 1 mm skip. 

Data preprocessed by using several toolboxes such as AFNI, SPM, GIFT. Rigid body motion correction using the 

INRIAlign (Freire & Mangin, 2001) toolbox in SPM to correct head motion was applied. To remove the outliers, 

the AFNI3s 3dDespike algorithm was performed. Then fMRI data were resampled to 3 mm3 isotropic voxels. 

Then data were smoothed to 6 mm full width at half maximum (FWHM) using AFNI3s BlurToFWHM algorithm 

and each voxel time course was variance normalized. During the curation process, subjects with larger movement 

were excluded from the analysis to mitigate motion effects. For more details please see (Damaraju et al.). 

 

 

2.2. Postprocessing  

 

The GIFT (http://trendscenter.org/software/gift) implementation of Group-level Spatial ICA was used to estimate 

100 functional networks as ICA components. A subject-specific data reduction step was first used to reduce 162 

time point data into 100 directions of maximal variability using principal component analysis. Next, the infomax 

approach (Bell & Sejnowski, 1995) was used to estimate one hundred maximally independent components from 
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the group PCA reduced matrix. For stability of estimation, the ICA algorithm was repeated multiple times and the 

most central run was selected as representative (Du, Ma, Fu, Calhoun, & Adalı, 2014). Finally aggregated spatial 

maps were estimated as the modes of component clusters. Subject specific spatial maps (SMs) and time courses 

(TCs) were obtained using the spatiotemporal regression back reconstruction approach (V. D. Calhoun, Adali, 

Pearlson, & Pekar, 2001; Erhardt et al., 2011) implemented in the GIFT software. 

To label the components, regions of peak activation clusters for each specific spatial map were obtained. After 

ICA processing, to acquire regions of peak activation clusters, one sample t-test maps are taken for each SM 

across all subjects and then thresholded; also mean power spectra of the corresponding TCs were computed. The 

set of components as intrinsic connectivity networks (ICNs) is identified if their peak activation clusters fell 

within gray matter and showed less overlap with known vascular, susceptibility, ventricular, and edge regions 

corresponding to head motion. This resulted in 47 ICNs out of the 100 independent components. Running over 20 

times ICASSO, the cluster stability/quality index for all except one ICNs was very high. After TCs were 

detrended and orthogonalized by considering estimated subject motion parameters, spikes were detected by 

AFNI3s 3dDespike algorithm and replaced by values of third order spline fit. For more detail see (Allen et al., 

2012; Damaraju et al., 2014). The fBIRN dataset obtained after processing resulted in a matrix of 159 time points × 47 components × 314 subjects including 163 Control and 151 SZ subjects. 

 

2.3. A Mutual Information Approach 

 

While linear correlation is the most widely used measure to describe dependence, it can underestimate or 

completely miss nonlinear dependencies. An example to illustrate this shortfall is Anscombe9s Quartet 

(Anscombe, 1973) where four plots of various, non-random data points (linear dependence, quadratic 

dependence, straight line with outliers, and vertical line with outliers) are shown that have wildly different 

structure of dependence but the same correlation coefficient. To measure the explicitly nonlinear correlation 

between two TCs, the approach applied in this research is to remove the linear correlation and calculate the 

residual dependence. 

The Pearson product moment correlation coefficient, ρ, of time courses ý and þ is  
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ρ =  Cov (ý, þ )SýSþ , 
where ÿý and ÿþ are respectively the sample standard deviations of ý and þ, and Cov (ý, þ ) is the covariance 

between ý and þ. The correlation coefficient mainly measures the linear dependence between two distributions. 

However nonlinear dependence is not displayed in the value of the correlation coefficient. Recent statistical 

approaches have been proposed to measure the correlation without underestimating the nonlinear dependency. 

One of these methods, normalized mutual information (MI), measures both linear and nonlinear dependencies. 

The value of MI is determined by the formula 

I(x, y) = H(x) +  H(y ) 2  H(x, y). 
Where H(x) and, H(y) are marginal entropies and H(x, y) is the joint entropy. 

The goal is to calculate only the nonlinear component of dependence. The approach we use for this is to measure 

the mutual information of the data after removal of the linear component of dependence. For given time courses ý 

and þ, fitting a linear model þ̅  =  ÿý +  Ā  gives the linear correlation between ý and þ. Next, we cancel the 

linear effect by calculating ÿ =  þ 2 þ̅. The nonlinear dependency of ý and ÿ is the same as ý and þ. Next, we 

can use I(ý, ÿ) to evaluate the nonlinear dependency of ý and þ. 

2.4. Simulated Experiment  

 

We applied the proposed method to simulated data to illustrate their use. In this experiment, we started with a 

vector say ý of size 1000 × 1 where its components are from a random uniform distribution on [0 1]. Next, we 

formed three vectors þ1, þ2, and þ3, such that each one has a particular relationship with ý. Three different types 

of relationships are as follows: Case I, vector þ1 has a purely linear relationship with ý. Case II, we defined þ2 to 

have a quadratic relationship and no linear correlation with ý. That is ý and þ2 have only a nonlinear correlation. 

Case III, vector þ3 has a combination of linear and nonlinear correlation with ý. We also added zero-mean 

Gaussian noise to þ1, þ2, and þ3 (Fig. 1).  
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Fig. 1: Three simulation cases for linear and nonlinear correlation between two vectors. Vector ý has its components randomly derived 

from a uniform distribution on [0 1]. From left to right we have Case I, Case II and Case III such that in Case I,  þ1 = 2ý + � (linear 

relationship between ý and þ1). In Case II, we have þ2 = 5(ý 2 0.5)2 + � (nonlinear relationship between ý and þ2) and for Case III, þ3 =5(ý 2 0.5)2 + 2ý + � (combination of linear and nonlinear relationships between ý and  þ3). Noise � is a Gaussian distribution with a 

mean of zero. 

 

We measured the relationship of (ý, þ1), (ý, þ2) and (ý, þ3) using both Pearson correlation and mutual 

information approaches. Pearson correlation takes value from -1 to 1. Briefly, -1 refers to a perfectly linear 

negative correlation and 1 shows a perfectly linear positive correlation. The mutual information we use in this 

work is normalized, taking a range of [0,1]. If the MI=0 this indicates no dependency and as two distributions 

increase their dependency, the mutual information value increases to a maximum of 1. Prior to computing 

correlation and MI, we implemented the procedure explained earlier to remove the linear correlation from þ1, þ2, 
and þ3. Next, we calculated the Pearson correlation and mutual information for each pair as it shown in Table 1. 

 

2.5. Quantifying Nonlinear Connectivity in fMRI Data  

 

For each subject there are 47 ICA time courses of length 159. For each pair of time courses ý and þ we compute 

the traditional FNC, i.e., the linear correlation between all pairs ý and þ. We then compute the study mean FNC 

matrix by averaging over all 314 subjects included in this analysis. 

We then fit a linear model to estimate the linear correlation between ý and þ. After this we remove the linear 

effect to study the remaining dependencies by updating þ as: þ =  þ 2  þ̅. Finally, we calculate the nonlinear 

residual dependencies among functional network components in fMRI data via MI. This produces a matrix of 47 
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by 47 for each subject in which, the value in (ý, þ) entry shows the nonlinear dependencies calculated by MI 

method for ý and þ. Then the average over all 314 subjects is calculated. In order to examine whether these 

differences are significant, we compute a one-sample T-test comparing each MI value against the cell with the 

minimum MI average value in the matrix.  

Next, we compare the dependencies between the schizophrenia patients and controls. Within each group, the 

linear effect is canceled, and the average MI is calculated over all subjects. We first evaluate whether there is 

modular structure in the FNC matrix. Using T-test for two samples, the differences of nonlinear correlation are 

calculated. Also, for false discovery rate (FDR) correction, all p-values were adjusted by the Benjamini-Hochberg 

correction method and threshold at a corrected p<0.05. 

 

2.6. Boosted Approach 

 

While we emphasize the unique information contained in the nonlinearities, future studies may wish to leverage 

both linear and nonlinear information together. To do this, we propose a method that include the information from 

both linear and nonlinear dependencies. This boosted approach is a combination of Pearson correlation and 

modified mutual information for quantifying nonlinear dependencies as described in 2.3. A Mutual Information 

Approach. We define the boosted method as  

Pearson correlation + sign(Pearson correlation) × Mutual information. 
With this technique, we use the nonlinear information to boost the linear effects in the direction of the Pearson 

correlation. Thus, both linear and nonlinear correlation is considered and, the direction (which is not well defined 

in the nonlinear case) of the linear effect is protected. The approach we propose allows for multiple uses. One can 

focus on the nonlinear effects only, which as we show in this paper, may be interesting in and of themselves. 

Secondly, one can focus on capturing both linear and nonlinear effects in a 8boosted9 approach. This appears to 

increase sensitivity to group differences beyond the standard linear approach, though it does not allow for 

separately of linear and nonlinear effects. 
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 We assessed the linear correlation (Pearson correlation), nonlinear dependencies (modified mutual information 

2.3. A Mutual Information Approach) and both linear and nonlinear dependencies (Boosted) in schizophrenia 

patients and healthy controls components. Then separately for each method, T-test for two samples was applied 

and p-values were adjusted by the Benjamini-Hochberg correction method and threshold at a corrected p<0.05. 

 

2.7. Joint Distributions 

 

To further visualize the identified nonlinear relationships, we selected the five component pairs that have the most 

significant p-values in the T-test for group differences in the nonlinear dependence for HC-SZ. Then we 

constructed the difference in the joint distributions for each pair of time courses, comparing patients and controls. 

 

Results 

 

3.1. Simulated Experiment 

 

Three types of correlations: linear 

, nonlinear and combination of linear and nonlinear, are examined. The Pearson correlation and mutual 

information before and after removing linear dependency for each case are measured and reported in the Table 1. 

Table 1. Simulation of three cases, including Case I: linear correlation, Case II: Nonlinear correlation and, Case III: Linear and nonlinear 

correlation between two vectors. The contribution of two vectors in each case measured by Pearson correlation (Corr) and Mutual 

Information (MI). In this table Corr1 and MI1 show the correlation between the original data and Corr2 and MI2 show the correlation after 

removing the linear relationship. Range of Pearson correlation is [-1, 1] and mutual information is normalized [0,1]. As expected, the 

correlation is effectively zero after removal of linear effects. Results show that correlation completely misses the residual nonlinear 

dependencies, and that the MI approach is able to effectively capture the nonlinear relationships when they exist. 

 Corr1(ý, & ) Corr2(ý, & ) MI1(ý, & ) MI2(ý, & ) Case I ∶  þ1 = 2ý + � 0.9847 1.64x10-15 (i.e., 0) 0.3809 0.0161 Case II ∶  þ2 = 5(ý 2 0.5)2 + � -0.0271 -3.91x10-17 (i.e., 0) 0.2585 0.2582 Case III ∶  þ3 = 5(ý 2 0.5)2 + 2ý + � 0.8276 -1.61x10-15 (i.e., 0) 0.3139 0.2630 
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 The range of Pearson correlation is -1 to +1 and the range of mutual information for independent distributions is 

0, and perfect dependency is 1. In Case I, where the two distributions have only a linear correlation, the Pearson 

correlation before removing the linear effect is close to one and after removing, both Pearson and mutual 

information are close to zero. In Case II, where the two distributions have a quadratic relationship, the Pearson 

correlation shows a low but non-zero correlation while the mutual information calculation shows a considerable 

correlation between the two distributions. After removing the linear effects, Person correlation is effectively zero 

while the mutual information is approximately the same before and after removing the linear effect. In Case III, 

where there are both linear and nonlinear correlation between two distributions, the Pearson correlation is 

significant before removing the linear effect and vanishes after canceling the linear correlation, while the mutual 

information only slightly decreased after removing linear correlation. This provides a straightforward 

demonstration of the fact that Pearson correlation is not able to capture purely nonlinear dependencies, while 

mutual information considers both linear and nonlinear dependencies. Similarly, if we remove the liner effect, the 

correlation will go to zero whereas the mutual information will capture the true residual nonlinear dependencies 

between two distributions. 

 

3.2. On fMRI Data 

 

We measured the nonlinear dependencies among 47 component time courses estimated from the resting fMRI 

data. The results are shown in Fig. 2. Panel A is the average FNC over 314 subjects of 47 components. The 

average of nonlinear dependencies of 47 components is calculated via our proposed MI method for each of the 

314 subjects. The result of applying T-test for one sample to show the difference of the average value from 

minimum average is presented in Fig. 2. B. The FDR threshold (p < 0.05) shows that most of the differences 

relative to the minimum mean for all entries in this matrix are significant. This shows us the degree to which MI 

differences are significantly different across the FNC matrix and demonstrates modular nonlinear dependencies 

between visual (VIS) and somatomotor (SM) components with other components. Interestingly, despite high 

linear correlation between subcortical (SC) and auditory (AUD), a low rate of nonlinear dependency is observed 

among them.  
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Next the variation in nonlinear dependencies between healthy controls and schizophrenia patients are evaluated 

using our MI method and compared using a two-sample T-test. In Fig. 3, panel A, the lower triangle shows 2�Ā�10(ā)  ×  ���ÿ(Ā) before threshold multiply by the initial p-value before FDR. The upper triangle is the 

same as lower one, but p-values are threshold such that entries shown in a different color represent significant 

differences in nonlinear dependency between groups. We observe a significant difference in nonlinear 

dependencies between visual (VIS) components to other components such as auditory (AUD), visual (VIS), 

somatomotor (SM), cognitive control (CC), and default-mode (DM) in schizophrenia (SZ) patients relative to 

healthy controls (HC). We also visualized differences in the joint density among the most nonlinear networks and 

identified several interesting patterns that would be completely missed in a typical linear analysis. Panel B, the 

connectogram shows components with significant difference in their nonlinear dependencies between healthy 

control and schizophrenia patients such that two components are connected with a line if the difference in their 

nonlinear dependencies between HC and SZ is significant (with yellow for HC>SZ and blue for SZ>HC).  

 

Fig. 2. A) Mean (linear) functional network connectivity (FNC) over 314 subjects. B) Mean mutual information (MI) after removing the 

linear correlation over 314 subjects. Note that both linear and nonlinear effects are modularized, but in different ways suggesting they are 

providing complementary information. 
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Fig. 3 A) Upper triangle: The group difference (HC-SZ) in MI after removing the linear correlation. The p-values are adjusted by FDR and 

threshold (p < 0.05). Values are plotted as -log10(p-value) × sign(t-statistics). Lower triangle:  Identical to the upper tringle except that p-

values are not threshold, also the values are multiplied by the initial p-value before FDR. B) Connectogram that show components with 

significant nonlinear correlation in HC- SZ are connected. In all but one case, results show significantly more nonlinearity in the controls, 

mostly linked to the visual domain.  

 

 

 

3.3. Boosted Approach 

 

Dependencies among components in healthy controls and schizophrenia patients are assessed with three methods: 

1. Pearson correlation, in which the emphasis is on only linear correlation, 2. Mutual information as described in 

2.3. A Mutual Information Approach, is quantifying only nonlinear dependencies, and 3. the boosted approach 

explained in 2.6. Boosted Approachis boosting the linear correlation by capturing nonlinear dependencies. 

Next, in each method, T-test is applied to compare the differences between two groups. Adjusted p-value by FDR 

is threshold (p<0.05). The number of pairs with significant differences for Pearson correlation method is 530, in 

mutual information method is 17 and in Boosted method is 537.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2021. ; https://doi.org/10.1101/2021.07.20.452982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.452982
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

 

3.4. Joint Distributions  

 

We were also interested in visualizing the relationship among the timecourse pairs which exhibited nonlinear 

differences between patients and controls. Fig. 4 demonstrates the differences between healthy controls and 

schizophrenia patients for the five pairs showing the largest group differences. Values increases from left to right 

and up to down. Panel A shows the difference of joint distribution of the 26th and 6th components. The 26th 

component belongs to cognitive control (CC) 6th component is in the auditory (AUD) domain. Panel B is the joint 

distribution difference of the 44th and 13th components. The 44th component is in default-mode (DM) and 13th 

component is in visual (VIS) domain. Panel C represent the joint distribution difference of 7th and 16th 

components. The 7th component is in auditory (AUD) and 16th component is in visual (VIS) domain. Panel D 

illustrates the difference of joint distribution of 14th and 7th components. Panel E exhibits the joint distribution of 

14th and 17th components. Both 14th and 17th components belong to visual (VIS) domain. Panels B, D, and E share 

some similarities, including a negative relationship between the two components. 
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Fig. 4. Difference between the HC and SZ joint distributions for the five pairs showing the largest group differences in the nonlinear 

dependencies of pairs (26, 6), (44, 13), (7, 16), (14, 7), (14, 17). Values in each distribution increases from left to right and up to down. The 

26th component belongs to cognitive control (CC). The 6th and 7th components are in auditory (AUD). The 44 th component is in default-

mode (DM). All 13th, 14th, 16th, and 17th components are in visual (VIS) domain. We observe some interesting differences in the joint 

distributions with patients generally showing differentially higher activity in one network and lower activity in the paired network.  

 

In Fig. 4. A, we can observe controls spend more time in low level of an auditory component #6 relative to SZ 

regardless of the values of the 26th components. From B, healthy controls are considerably more active in both the 

default model network (#44) and a visual component (#13) than in SZ. In panel C, we notice healthy controls 

show less activity in both an auditory (#7) and visual (#16) components compare to SZ. From D and E, it can be 

interpreted those healthy controls show a higher level of activation in visual (#14) components relative to a more 

posterior visual (#17) and an auditory (#7) component than do the patients.  

For these 5 pairs, nonlinear FNC shows the hyper-connectivity compared to SZ i.e., shows the nonlinear part of 

two distributions has more dependency in HC. However, the plot of group differences in the joint distribution can 

illustrate how two pairs that show high dependency in HC, can be differently distributed in SZ. For example, in 

Fig. 4, we can observe how differently these pairs in SZ and HC are distributed. Panel B, D, and E, healthy 
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control time course have higher levels of activation (red color is dragged to the lower corner and blue to the top 

left) while in panels A and C, health controls have lower activation level (red is dragged to the upper left and blue 

to the lower right). 

 

Discussion 

 

In this preliminary work we highlight the benefit of studying nonlinearities in functional connectivity. Previous 

functional connectivity studies are based on correlation coefficient that assess the linear correlation only, and as a 

result they miss the nonlinear contributions. We establish an approach to assess the explicitly nonlinear 

dependencies between distinct regions of the brain by first removing the linear dependencies. We first 

demonstrated our approach works as expected on simulated data (Fig. 1). Following the nonlinear dependencies 

among 47 timecourses on 314 subjects are assessed (Fig. 2). A similar approach was applied to estimate how 

differently in average distinct regions of a schizophrenia patient9s brain contributes nonlinearly to the context of 

functional connectivity (Fig. 3). Also, the joint distribution of five pairs with the largest group differences in the 

nonlinear dependencies in HC-SZ is studied (Fig. 4). 

 

There are a number of possible causes of nonlinear dependencies including: 1) Nonlinear hemodynamic effects. 

Studies on the relationship between neuronal activity, oxygen metabolism, and hemodynamic responses have 

shown the link between neuronal activity and hemodynamic response magnitude exhibits both linear and 

nonlinear effects in task data (cite fMRI nonlinear task study). Other results suggest a strongly nonlinear 

relationship between electrophysiological measures of neuronal activity and the hemodynamic response (Devor et 

al., 2003; Sheth et al., 2004), 2) Differences in blood flow, blood oxygenation, and blood volume both within 

subjects and between groups. Experiments indicates that acquires vascular space occupancy (VASO), arterial spin 

labeling (ASL) perfusion and BOLD signals respond nonlinearly to stimulus duration (Gu, Stein, & Yang, 2005) 

3) Subject motion. Even minor head posture changes may result in considerable spatially complex field changes 

in the brain (Liu, de Zwart, van Gelderen, Murphy-Boesch, & Duyn, 2018). While we cannot completely exclude 
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motion, we carefully curated the data to focus on low motion subjects and in addition there were no significant 

motion differences between the groups(Damaraju et al., 2014). 

 

The different modularized patterns evident in linear and nonlinearly modularity suggests a complementarity of the 

nonlinear and linear relationships. It may be important to capitalize on these differences in future studies. Our 

results suggest interesting variation among networks. For example, as shown in Fig. 2. B, significant nonlinear 

dependencies are observed between visual (VIS), somatomotor (SM) domains and within cognitive control (CC) 

and default-mode (DM) domains. The auditory (AUD) network shows strong differences in linear dependencies 

(A), but not much nonlinear, whereas both visual and sensorimotor show strong within domain nonlinear 

dependencies (B). Also, relatively low rate of nonlinear dependencies is observed between subcortical (SC) and 

auditory (AUD) with other components.  

We also found significant differences in the nonlinear relationships among the patients and controls. Nonlinear 

FNC pairwise comparison between SZ and HC are shown in Fig. 3. Part A. In most cases the controls are 

showing higher nonlinear dependencies relative to patients, mostly linked to the visual domain. There is a 

significant difference in nonlinear correlation within visual (VIS) components as well as between VIS 

components and to other components such as auditory (AUD), somatomotor (SM), cognitive control (CC), and 

default-mode (DM) in SZ patient and HC. We observe that most of the patient/control differences involve visual 

and auditory components. This is intriguing given existing evidence suggesting some schizophrenia symptoms 

may be linked to the visual system (Gong et al., 2020; Johnston, Stojanov, Devir, & Schall, 2005; Onitsuka et al., 

2007). Having said that, visual symptoms such as visual hallucinations are rather uncommon in SZ, and rarer than 

auditory and tactile abnormalities (van de Ven, Rotarska Jagiela, Oertel-Knöchel, & Linden, 2017). In addition, 

some studies suggest inborn blindness may be shielding against the development of schizophrenia, characterized 

by inevitably noisy perceptual input that causes false inferences. These finding argue that when individuals cannot 

see from birth, they depend more on the other senses. Thus, the resulting model of the world is more resistant to 

false interpretations (Landgraf & Osterheider, 2013; Leivada & Boeckx, 2014; Morgan et al., 2018; Pollak & 

Corlett, 2019; Riscalla, 1980). 
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There is still much work to be done. Future work should focus on carefully evaluating the possible sources of the 

nonlinear relationships. Quantitative fMRI studies could be used to isolate nonlinearities in blood oxygenation, 

volume, and flow. In addition, high field layer specific fMRI studies could be used to evaluate nonlinearities in 

input vs output layers. The contribution of various physiological variables (e.g., respiration, CO2, heart rate, and 

motion) could also be evaluated in future work. 

 

In sum, our results provide evidence suggesting there are meaningful and significant nonlinear dependencies 

among fMRI time courses. We have showed evidence suggesting there are meaningful (modularized and group 

different) super-linear effects in FNC which primarily implicates the visual cortex as disrupted in schizophrenia. 

We present two approaches, a focus on the explicitly linear effects or a boosted approach which captures both 

linear and nonlinear effects within one metric. Future work should further study information contained in the 

nonlinear relationships, and could be studies with faster acquisitions, linked to multimodal imaging such as 

concurrent EEG data, and replicate the results we show in this work.  
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