

Phenotypic and genomic signatures of interspecies cooperation and conflict in naturally-occurring isolates of a model plant symbiont

Rebecca T. Batstone^{a,1}, Liana T. Burghardt^b, and Katy D. Heath^{a,c}

^aCarl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801 USA; ^bDepartment of Plant Science, The Pennsylvania State University, 103 Tyson Building, University Park, PA, 16802 USA; ^cDepartment of Plant Biology, University of Illinois at Urbana-Champaign, 286 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801 USA

This manuscript was compiled on June 24, 2022

Given the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally-occurring genetic variation in 191 strains of the model microbial symbiont, *Ensifer meliloti*, paired with each of two host *Medicago truncatula* genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness. We found little evidence for interspecies fitness conflict; loci tended to have concordant effects on both microbe and host fitnesses, even in environments with multiple co-occurring strains. Our results emphasize the importance of quantifying microbial relative fitness for understanding microbiome evolution and thus harnessing microbiomes to improve host fitness. Additionally, we find that mutualistic coevolution between hosts and microbes acts to maintain, rather than erode, genetic diversity, potentially explaining why variation in mutualism traits persists in nature.

conflict | cooperation | GWAS | mutualism | pleiotropy

Recent advances in sequencing and microbiome research have revealed the ubiquity of microbial symbioses, meaning that many important host phenotypes, such as plant yield in agriculture or disease-related traits in humans, are actually **symbiotic extended phenotypes**, their variation being influenced by loci present within interacting microbial symbionts in addition to the host (1–6). When loci influence fitness-related traits of both host and symbiont, which we henceforth refer to as **symbiotic pleiotropy**, they determine the degree to which partners' fitnesses are aligned (i.e., same-sign or concordant effects) or in conflict (i.e., opposite-sign or discordant effects). Identifying the loci underlying symbiotic pleiotropy is therefore critical not only for illuminating the genetic basis of symbiotic extended phenotypes, but also for predicting how hosts and symbionts coevolve in nature.

In symbiotic mutualisms, wherein partners trade fitness benefits (7), whether fitness conflict or alignment drives the evolution of these interactions is hotly debated (8–13). Many models of mutualism rely on the key assumption that cooperation is inherently costly and thus that selection should favour less-cooperative, potentially 'cheating', partners that forgo paying the costs whilst continuing to receive benefits (14–17). At the phenotypic level, cheaters would be seen as symbiont genotypes that gain fitness at the host's expense (i.e., points in the bottom right quadrant of **Fig. 1A**), while fitness conflict would be seen as an overall negative correlation (grey line in **Fig. 1A**). In contrast, cooperators would be seen as symbiont genotypes whose increase in fitness is associated with an increase in host fitness (i.e., points in the top right quadrant of **Fig. 1A**), while fitness

20 alignment would be seen as an overall positive correlation (orange line in **Fig. 1A**). Evidence
21 for fitness conflict within mutualism is mixed: although several studies have identified symbiont
22 genotypes that gain fitness at their host's expense (e.g., 18, 19), recent experimental evolution
23 studies instead found that microbial adaptation to particular host genotypes is associated with an
24 increase, rather than a decrease, in host fitness (20–22). Yet, fitness alignment at the phenotypic
25 level does not necessarily preclude fitness conflict at the genomic level: rather than dichotomous
26 categories of "cooperator" or "cheater", mutualist genomes are best viewed as mosaics of loci (5),
27 some underlying cooperation while others underlie conflict. Whether coevolution resulting from
28 symbiosis leads to more beneficial interactions and greater mutualism stability, or alternatively, more
29 antagonism and less stable interactions, therefore requires examining the relationships between host
30 and symbiont fitness proxies at both the phenotypic and genomic levels.

31 Genome-wide association studies (i.e., GWAS) can be used to reveal the genes, as well as specific
32 segregating mutations (i.e., variants), that underlie variation in symbiotic extended phenotypes
33 in natural populations (20, 23–27). Because they provide an estimate of both the strength and
34 direction of effects of particular alleles on the trait, henceforth referred to as **allelic effect sizes**,
35 GWAS are especially useful for identifying loci underlying symbiotic pleiotropy, and thus, defining
36 the mutational landscape of mutualism evolution in nature. For example, if symbiotic pleiotropy is
37 extensive and its effects on fitness-related traits in the interacting partners tend to be discordant
38 (grey quadrants in **Fig. 1B**), then conflict should underlie the evolution of mutualism, allowing for
39 the possibility of cheating individuals that are competitively superior, as mutualism theory predicts
40 (14–17). In contrast, if pleiotropic effects are overwhelmingly concordant (orange quadrants in **Fig.**
41 **1B**), fitness alignment rather than conflict should be the null hypothesis in mutualism, and models
42 relying on cheating genotypes as the main driver of mutualism evolution may not be suitable.

43 A longstanding mutualism paradox is that host-driven selection for the 'best' symbiont genotype
44 should reduce overall symbiont diversity, yet diverse symbiont populations persist in nature (reviewed
45 by 28, 29). Identifying patterns of selection acting on loci that determine fitness outcomes in natural
46 populations could be key for resolving this paradox. Studies to date examining patterns of molecular
47 variation have found stabilizing or purifying selection acting on candidate genes associated with
48 partner recognition or quality, rather than patterns suggesting rapid turnover of alleles underlying
49 conflict (30–33). In a recent *in silico* GWAS (5), conflict over mutualistic trait optima between

R.T.B., K.D.H., and L.T.B. conceived of the work. R.T.B. led the data analysis and drafted the article with guidance from K.D.H. and L.T.B., who also provided critical revisions and approved the final version for submission.

The authors declare no competing interests.

¹To whom correspondence should be addressed. E-mail: rtbatstone@gmail.com

50 hosts and microbes tended to increase genetic variance due to repeated sweeps, while alignment
51 scenarios resulted in stabilizing selection and decreased genetic variance as trait optima were reached
52 (5). Because GWAS has the power to reveal individual allelic effects, it can be used to identify loci
53 underlying fundamental sources of conflict at the genomic level (e.g., grey quadrants, **Fig. 1B**) even
54 if fitness alignment is realized at the phenotypic-level (e.g., orange line, **Fig. 1A**).

55 Over the past ~25 years, legume-rhizobium symbioses have been developed as models for un-
56 derstanding mutualism evolution (34–37). This interaction is one of the most ecologically and
57 economically important symbioses, contributing upwards of 20 million tonnes of nitrogen (N) to
58 the global N-cycle, and saving billions of dollars that would have otherwise been spent on synthetic
59 N fertilizer production (38). Legumes house rhizobia within specialized root nodules and supply
60 them with photosynthate, while rhizobia within the nodules convert atmospheric N to a plant-usa-
61 ble form, resulting in a beneficial exchange of resources. Key traits of this symbiosis, such as plant
62 biomass and nodule number, are known to be influenced by variants in the genomes of both host
63 and microbes, as well as the epistatic interactions between them (Genotype-by-Genotype or G x
64 G interactions; e.g., 1, 26, 34, 39–42), making this symbiosis an excellent model for understanding
65 mutualistic coevolution.

66 A quantitative comparison of single-strain and multi-strain proxies of rhizobium fitness, as well as
67 their correlations with plant fitness, is needed to reveal interspecies conflict. Seed number, or close
68 correlates such as aboveground (shoot) biomass and leaf chlorophyll A content, are well-established
69 proxies for reproductive fitness in annual plants (23, 43, 44) (**Fig. 1C**). In contrast, estimating
70 rhizobium fitness has been an empirical and conceptual challenge (8–10, 45, 46). Early attempts to
71 estimate rhizobium fitness relied on single-strain experiments, whereby plants were inoculated with a
72 single rhizobium strain, and fitness proxies including nodule number and nodule size were measured
73 (**Fig. 1D**). Both measures reflect rhizobium fitness because a rhizobium that establishes a nodule
74 in symbiosis can gain a fitness benefit on the order of $10^5 - 10^7$ (47), larger nodules release more
75 rhizobia (43, 46, 48), and intuitively, strains that produce more nodules will release more rhizobia
76 (1, 37, 48). While rhizobium fitness proxies measured in single-strain experiments can be directly
77 correlated with host benefit (e.g., shoot biomass), these measures have been criticized for producing
78 spurious positive correlations due to stronger fitness feedbacks between host plants and rhizobia
79 (9). In contrast, multi-strain experiments decouple individual strain fitness from host growth and
80 better reflect rhizobia fitness in natural and agricultural soils where many strains coexist. Recent
81 advances merging population genomics and metagenomics have enabled measuring **rhizobium**
82 **relative fitness**, i.e., a strain's ability to compete for nodulation opportunities and extract host
83 resources once in nodules when other strains are present (25, 49). Multi-strain experiments that have

84 estimated rhizobium relative fitness have so far hinted at a surprising lack of correlation between
85 single-strain and multi-strain measures of rhizobium fitness (25), motivating our comprehensive
86 analysis here.

87 Here we combine two datasets: first, GWAS that test for the association between rhizobium
88 variants and both plant and rhizobium fitness proxies measured in single-strain experiments (Fig.
89 1C), whereby 191 strains of *Ensifer meliloti* collected from natural populations were inoculated
90 individually onto one of two genotypes of the host plant *Medicago truncatula*. Second, a GWAS based
91 on a new dataset that measured rhizobium relative fitness in a multi-strain experiment (Fig. 1D),
92 whereby 89 of the 191 *E. meliloti* strains were inoculated together onto the same two host genotypes.
93 We combine these datasets to first ask: What are the relationships among rhizobium fitness proxies
94 measured in both single-strain (nodule number, nodule size) and multi-strain (rhizobium relative
95 fitness) experiments? Are these proxies genetically distinct and thus likely to evolve independently,
96 or are they linked through pleiotropy, and thus, evolve together? We use this information to next
97 address the potential for genomic conflict in this symbiosis, asking: Do variants tend to have aligned
98 or conflicting effects on host and symbiont fitnesses? Finally, we ask whether there is any evidence
99 that historical selection has differentially shaped loci underlying fitness alignment versus conflict, as
100 we might predict under different models of mutualism evolution.

101 Materials and Methods

102 **Study system.** Full details are provided in Riley et al. (50) and **SI Methods**. *Ensifer* (formerly
103 *Sinorhizobium*) *meliloti* is an Alphaproteobacteria that forms symbiosis with various *Medicago* spp.,
104 fixing atmospheric N in return for plant photosynthate. All 191 strains used here were collected
105 from the native range of the host *Medicago truncatula*, spanning Spain to France (as detailed in 50).
106 *E. meliloti* has a multipartite genome, including a large (~3.7 Mbp) chromosome and two symbiosis
107 plasmids (pSymA and pSymB, ~1.4 Mbp and ~1.7 Mbp, respectively); pSymA contains many of
108 the canonical genes for nodulation and N-fixation (51, 52). We used two lines of *M. truncatula* DZA
109 315.16 (hereafter DZA) and A17 in separate single-strain experiments and a multi-strain experiment
110 detailed below.

111 **Single-strain experiments.** Full details are provided in Batstone et al. (42), and **SI Methods**.
112 Briefly, we conducted two separate experiments in Sept and Nov 2018, one for each *M. truncatula* line,
113 DZA and A17, respectively. At least three replicate seeds of each plant line were planted individually
114 into pots (most treatments having four to five plant replicates) and were singly inoculated with one
115 of 191 strains of *E. meliloti* described above. Within each experiment, we measured proxies for both

116 plant fitness (shoot biomass, leaf chlorophyll A content) and rhizobium fitness (nodule number, per
117 nodule weight; **Fig. 1C,D**).

118 **Multi-strain experiment.** We grew A17 and DZA hosts with a multi-strain inoculum composed of 89
119 of the 191 strains used in the single-strain experiments (described in more detail in **SI Methods**).
120 Using the "select-and-resequence" approach (25), this experiment allowed us to generate new data
121 on **rhizobium relative fitness**, which represents a strain's ability to both compete for nodulation
122 opportunities and extract host resources once in nodules when 88 other strains were present (**Fig.**
123 **1D**). This fitness proxy was obtained by sequencing pooled nodule samples from each plant at the
124 end of the experiment and estimating each strain's frequency using a haplotype reconstruction
125 method (53). We then obtained each strain's relative fitness by calculating the fold change in the
126 frequency of a strain at the end of the experiment relative to its mean frequency at the beginning
127 (see **SI Methods**). Because we wanted our rhizobium relative fitness metric to represent which
128 strains will be present in the soil in subsequent generations, our method focuses on measuring
129 strain frequencies of undifferentiated rhizobia in nodule pools; while differentiated bacteroids are
130 responsible for fixing N, they are reproductively sterile, and thus, do not contribute to the next
131 generation. Although the plant and microbe growth conditions used here differed slightly from those
132 used in the single-strain experiments (due to these experiments being conducted in separate places
133 and times), previous work has shown that strain frequencies are stable in response to environmental
134 variation within an experiment, between experiments, and across host generations (49, 54). Thus,
135 environmental variation due to differences in growth conditions is unlikely to significantly influence
136 how strains behave across experiments.

137 **Phenotypic analyses.** As described in Batstone et al. (42), we calculated the estimated marginal
138 means for each fitness proxy in each experiment (i.e., nodule number, nodule size, rhizobium relative
139 fitness, shoot biomass, leaf chlorophyll A content), correcting for the effect of rack, using the emmeans
140 package (v1.4.1, 55) in the R environment (56). We then conducted linear pairwise regressions (lm
141 option in base R) for each fitness proxy against the other within each plant line.

142 **DNA isolation, whole-genome sequencing, and variant calling.** Detailed methods are provided in
143 Riley et al. (50), and **SI Methods**. We obtained DNA from each of the 191 rhizobium isolates,
144 sequenced their full genomes including the chromosome and two symbiosis plasmids, used a common
145 reference-based assembly pipeline to align sequences and call single nucleotide polymorphisms
146 (SNPs), and filtered the resulting SNPs based on sequence quality, depth, minor allele frequency,
147 and missingness, resulting in a total of 36,526 filtered SNPs.

148 **Genome-wide association tests.** Detailed methods are provided in **SI Methods**. We conducted
149 linear mixed models (LMMs) implemented in GEMMA (v0.98.1, [57](#)) to quantify **allelic effect sizes**
150 that represent both the strength and direction of the association between variants and fitness proxies
151 after correcting for rhizobium population structure. We ran ten separate association analyses in
152 GEMMA, one for each of the four fitness proxies measured in single-strain experiments (**Fig. 1C**),
153 plus rhizobium relative fitness measured in the multi-strain experiment, and for both host plant
154 lines (DZA, A17; five proxies x two hosts = ten runs).

155 **Genomic analyses.** We first identified pleiotropic variants as those that were significantly associated
156 with more than one trait on the same host line, significance determined using a permutation method
157 (described in more detail in the **SI Methods**). Variants that were significantly associated with two
158 or more rhizobium fitness proxies were categorized as underlying **rhizobium fitness pleiotropy**,
159 whereas variants associated with at least one rhizobium AND plant fitness proxy were categorized
160 as underlying **symbiotic pleiotropy**. We further categorized whether pleiotropic variants had
161 discordant (opposite-sign; +,- or -,+) or concordant (same-sign; ++ or -,-) effects on pairwise fitness
162 proxy combinations (**Fig. 1B**). Finally, to test whether selection acted on genes containing variants
163 associated with rhizobium fitness and symbiotic pleiotropy, we used the R package PopGenome
164 (v2.7.5, [58](#)) to compute several commonly used test statistics that can detect signatures of historical
165 selection and/or departures of neutrality, namely, nucleotide diversity (i.e., π), Tajima's D, as well
166 as Fu and Li's F and D ([59, 60](#)). Additional details appear in **SI Methods**.

167 **Data availability.** Strains and plant lines are available upon request. All raw data and analysis
168 code are available on [GitHub](#) (see “Genetics_conflict_cooperation” folder). The Supplementary
169 Information doc contains additional methods, results, figures and tables, as well as descriptions of
170 datasets that have been uploaded along with this manuscript, and can be additionally accessed from
171 [bioRxiv](#) and [GitHub](#). Once raw sequence reads and assemblies are archived and made accessible on
172 NCBI, accession numbers will be added to this manuscript.

173 **Results**

174 **Relationships among rhizobium fitness proxies.** In single-strain experiments, when we regressed
175 strain means for nodule number and nodule weight, we found significant negative correlations for
176 both hosts (**Fig. 2A**, left), indicating that strains creating larger nodules tended to form fewer total
177 nodules on both host genotypes. At the genomic-level, most variants had discordant effects (**Fig.**
178 **2A**, right), similarly indicating a trade-off whereby variants that were positively associated with
179 nodule weight tended to be negatively associated with nodule number, or vice-versa.

180 Comparing single- and multi-strain experiments, when we regressed strain means for rhizobium
181 relative fitness and nodule number, we found a weak but significant negative relationship for host
182 line DZA only (**Fig. 2B**, left), indicating that strains that were more common in the multi-strain
183 experiment formed fewer nodules in the single-strain experiment. At the genomic-level on DZA,
184 most variants had discordant effects (**Fig. 2B**, right), again indicating a trade-off between nodule
185 number and rhizobium relative fitness. For host line A17, most pleiotropic variants (20/28) had
186 discordant effects (**Fig. 2B**, right), despite no relationship between these fitness proxies at the
187 phenotypic level (**Fig. 2B**, left).

188 We found a significant, positive relationship between strain means for rhizobium relative fitness
189 and nodule weight, again for DZA only (**Fig. 2C**, left). This result indicates that strains that
190 were more commonly found in nodules in the multi-strain experiment formed larger nodules in
191 the single-strain experiment. At the genomic-level, all pleiotropic variants were concordant (i.e.,
192 appearing in the top right or bottom left quadrants of **Fig. 2C**, right). For A17, while we found a
193 lack of significant phenotypic correlation between nodule weight and rhizobium relative fitness (**Fig.**
194 **2C**, left), at the genomic level, all pleiotropic variants had discordant effects on these fitness proxies
195 (**Fig. 2C**, right), indicating a trade-off at this scale.

196 These results overall support trade-offs at the phenotypic level, plus underlying discordant
197 pleiotropy at the genomic level, suggesting that strains for which plants form numerous small nodules
198 in single-strain experiments are less able to proliferate within and compete for nodules in multi-strain
199 experiments. We additionally found host-dependent relationships among rhizobium fitness proxies,
200 especially at the genomic level when regressing rhizobium relative fitness and nodule weight (**Fig.**
201 **2C**, right). However, we found fewer total pleiotropic variants associated with this relationship
202 compared to the other two fitness proxy combinations (**SI Fig. S2A**, right), suggesting that nodule
203 weight and rhizobium relative fitness are largely governed by different molecular mechanisms, and
204 thus, likely to evolve independently.

205 **Relationships between plant and rhizobium fitness proxies.** We found no correlation, in either
206 host, between strain means for nodule number and shoot biomass (**Fig. 3A** left), or nodule number
207 and leaf chlorophyll A content on A17 (**SI Fig. S3A**, left). However we found a significantly negative
208 correlation between nodule number and chlorophyll A for DZA (**SI Fig. 3A**, left). Assuming
209 chlorophyll A is related to the N-fixation efficiency of each strain (61–63), this result suggests that
210 strains forming more numerous (and smaller) nodules tended to fix less N. At the genomic level,
211 most variants had concordant effects for nodule number and shoot biomass on DZA, whereas the
212 opposite was true for the same proxy pair on A17 (**Fig. 3A**, right). Most variants had discordant

213 effects on nodule number and chlorophyll A on both hosts (**SI Fig. S3A**, right).

214 Strain means for nodule weight and shoot biomass were significantly positively correlated for both
215 hosts (**Fig. 3B**, left). Nodule weight and chlorophyll A were significantly positively correlated
216 on DZA, but uncorrelated on A17 (**SI Fig. S3B**, left). At the genomic level for both hosts, all
217 pleiotropic variants had concordant effects for nodule weight and shoot biomass (**Fig. 3B**, right), as
218 well as nodule weight and chlorophyll A (**SI Fig. S3B**, right).

219 Finally, rhizobium relative fitness and shoot biomass were significantly positively correlated for
220 DZA but not for A17 (**Fig. 3C**, left), whereas rhizobium relative fitness and leaf chlorophyll A
221 content were significantly positively correlated on both hosts (**SI Fig. S3C**, left). At the genomic
222 level, most pleiotropic variants had concordant effects on rhizobium relative fitness and shoot biomass
223 for both hosts (**Fig. 3C**, right), and this pattern was even stronger between rhizobium relative
224 fitness and chlorophyll A on DZA with all but one pleiotropic variant having concordant effects
225 (**SI Fig. S3C** right). Variant effects were mixed on A17 for rhizobium relative fitness and leaf
226 chlorophyll A content (**SI Fig. S3C**, right).

227 Overall, we found mostly concordant relationships between rhizobium and plant fitnesses at
228 both the phenotypic and genomic levels, suggesting a strong signal of fitness alignment in natural
229 rhizobium populations. However, we note a lack of pleiotropic variants underlying the relationship
230 between leaf chlorophyll A content and both rhizobium fitness proxies measured in single-strain
231 experiments (i.e., nodule number and nodule weight; **SI Fig. S2C**, left & middle), suggesting these
232 proxies are governed by different molecular mechanisms, and thus, should evolve independently.

233 **Selection acts differently on genes associated with alignment versus conflict.** Using multiple
234 diversity and neutrality metrics, we found that rhizobium genes associated with fitness alignment
235 exhibit higher nucleotide diversity and stronger signatures of balancing selection compared to any
236 other gene category analyzed. For three of the four test statistics, genes associated with concordant
237 symbiotic pleiotropy (i.e., solid orange lines in **Fig. 4**) had significantly elevated values relative
238 to the "null" (i.e., distributions in **Fig. 4**, all genes containing significant variants identified by
239 GWAS). We did not see any significant deviations from the null for genes associated with discordant
240 symbiotic pleiotropy (i.e., dotted grey lines in **Fig. 4**), or for genes associated with both concordant
241 and discordant rhizobium fitness pleiotropy (**SI Table S1**, **SI Fig. S4**, **SI Dataset S1**).

242 **Loci associated with symbiotic pleiotropy are host-dependent.** Comparing the identities and
243 putative functions of variants associated with symbiotic pleiotropy on both host lines revealed little
244 overlap – concordant variants giving rise to both high host and symbiont fitness (i.e., associated
245 with fitness alignment) largely differed between the two host genotypes. Specifically, we identified a

total of 168 variants associated with symbiotic pleiotropy, corresponding to 128 coding-genes (see **SI Dataset S2** for variant-level and **SI Table S2 & Dataset S3** for gene-level summaries). 60 and 93 of these variants were uniquely associated with fitness proxies measured on plant lines A17 and DZA, respectively, while only 15 variants were shared between hosts. We highlight some of the noteworthy genes identified in our analysis for each pleiotropic category in **SI Results**.

Discussion

Leveraging genomics to quantify the genetic architecture underlying symbiotic extended phenotypes gives us the power to address long-standing issues in mutualism evolution with genome-scale resolution. Our results overall suggest that: 1) fitness alignment between hosts and rhizobia is common at both the phenotypic and genomic levels, with genes associated with alignment showing elevated nucleotide diversity and signatures of balancing selection; and 2) the lack of a relationship or even trade-offs between rhizobium nodule number and rhizobium relative fitness mean that measures of rhizobium fitness in multi-strain experiments should be prioritized when we want to predict rhizobium evolution. We discuss these main points in turn below.

Alignment of host and symbiont fitnesses. In one-to-many symbioses, such as a single legume associating with a diverse population of rhizobia, less-beneficial symbionts are predicted to achieve higher relative fitness compared to more beneficial counterparts (14–16). While we find evidence for less beneficial rhizobia (i.e., points closer to zero along the y-axes of panels in **Fig. 3**), we find little evidence for "cheating" rhizobia genotypes or loci associated with an increase fitness at the host's expense (i.e., a lack of points in the bottom-right quadrants of panels in **Fig. 3**). Instead, we found strong fitness alignment even in environments where multiple strains occupy the same plant.

Fitness alignment is ultimately governed by the degree to which mutualistic trait optima are shared among partners (5), as well as the degree of fitness feedbacks that enforce alignment between partners (11, 14–17). For example, legume host plants have autoregulation of nodulation to limit the formation of costly nodules once sufficient N levels are achieved (64). No such constraint exists for rhizobia; every nodule formed is expected to lead to greater potential fitness benefits. Thus, a mismatch between the optimum nodule number for a plant versus rhizobium could generate conflict (5, 65). Indeed, the strongest evidence for conflict in our and other studies (e.g., 1, 44, 48) comes from regressing plant fitness proxies on nodule number, suggesting conflict over a host's total investment in nodulation.

In addition to controlling the total number of nodules formed, legumes can also allocate more carbon to nodules that fix more nitrogen (35, 66, 67), which acts to couple rhizobium quality and

278 fitness even when multiple strains are present. Such fitness coupling mechanisms can be disrupted
279 by mismatches between legume and rhizobium genotypes, allowing strains that fix little to no N
280 to proliferate within nodules (19, 68, 69). Our observations of abundant alignment between host
281 fitness proxies, nodule size, and rhizobium relative fitness suggest that such mismatches may be rare
282 in nature, although in our study, neither host line was collected from the same sites as the rhizobia
283 strains, and thus, are unlikely to naturally co-occur. Overall, our results suggest that trait optima
284 can be shared even in one-to-many interactions, and that fitness feedbacks operating to align host
285 and symbiont fitness are present even in diverse communities irrespective of coevolutionary history.

286 **Genomic resolution of conflict and alignment in symbiosis.** Rather than to identify causal loci
287 underlying symbiotic pleiotropy, the goal of our study was to examine broader patterns of fitness
288 alignment or conflict across the genomes of numerous naturally occurring rhizobium strains. We
289 found abundant concordant pleiotropic variants associated with both host and symbiont fitnesses,
290 alongside evidence that selection has acted to maintain genetic variation within rhizobium genomes
291 through time and/or space. A lack of discordant pleiotropic variants, like we have found, may have
292 resulted from physiological constraints that make such variants impossible (i.e., alleles associated with
293 larger nodules and small host biomass are rare or non-existent), or because of correlational selection
294 that removes discordant variants from the population altogether (70, 71). In addition to direction,
295 the extent of symbiotic pleiotropy (i.e., the number of pleiotropic variants) can inform whether
296 traits are likely to evolve together or independently. Fitness proxy pairs with abundant pleiotropy
297 (e.g., nodule size vs. shoot biomass) suggest a highly polygenic basis governed by many small-effect
298 pleiotropic variants; other proxies with little pleiotropy (e.g., nodule number vs. chlorophyll) are
299 largely governed by different sets of genetic mechanisms, and are thus likely to evolve independently.

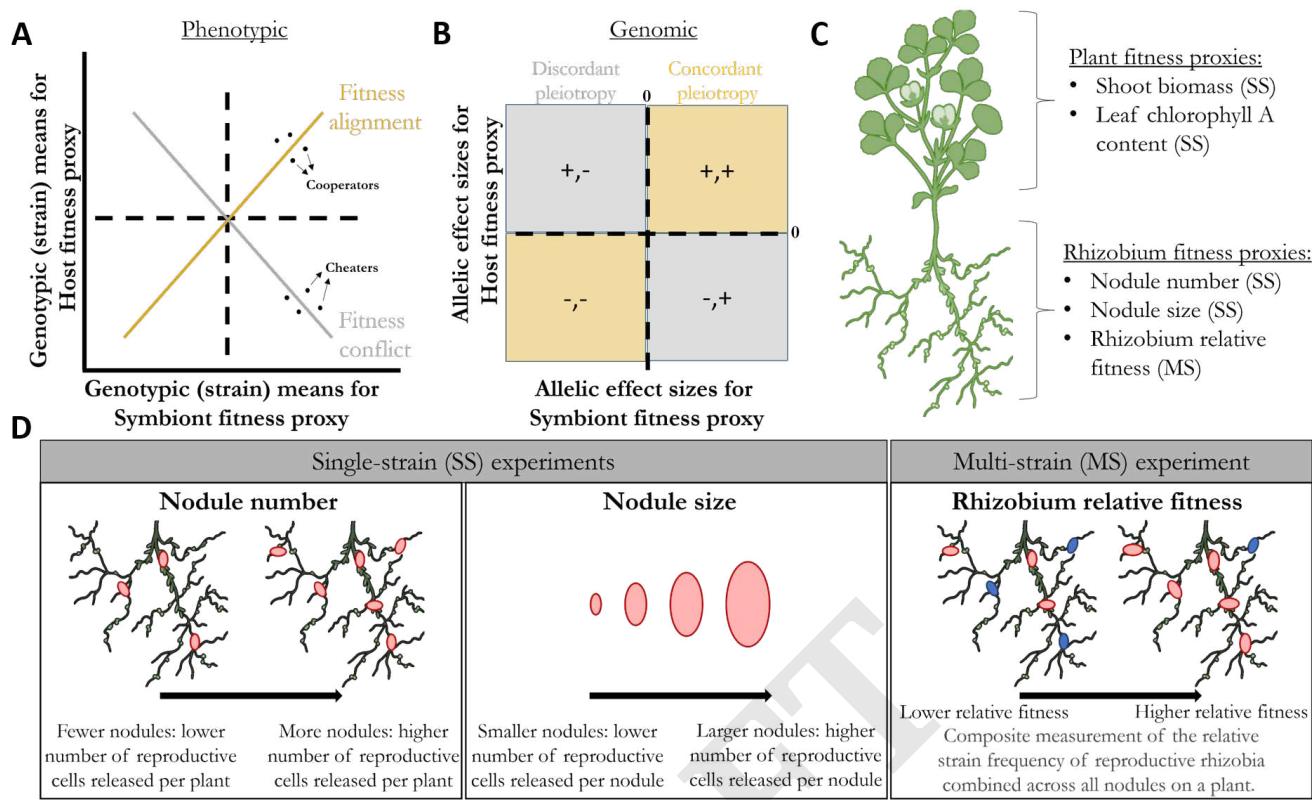
300 One of our more critical findings, that the loci associated with both high host and symbiont fitness
301 benefits (i.e., fitness alignment) largely differed across host genotypes, provides one solution to the
302 mutualism paradox: if host genotypes act as distinct selective environments for rhizobia, meaning
303 that the "best" symbiont genotype differs among host genotypes, then symbiont diversity could be
304 maintained in the face of host selection. Host-dependent loci underlying fitness alignment were
305 also found in experimentally evolved rhizobia isolates (20) and host-mediated balancing selection
306 was previously proposed as a mechanism maintaining rhizobial diversity in native populations of
307 *Bradyrhizobium* (72). Our results provide a solution to the mutualism paradox: symbiont diversity
308 can be maintained via balancing selection acting on host-dependent rhizobium loci underlying fitness
309 alignment.

310 We nonetheless found several instances of fitness conflict at the genomic level despite alignment at

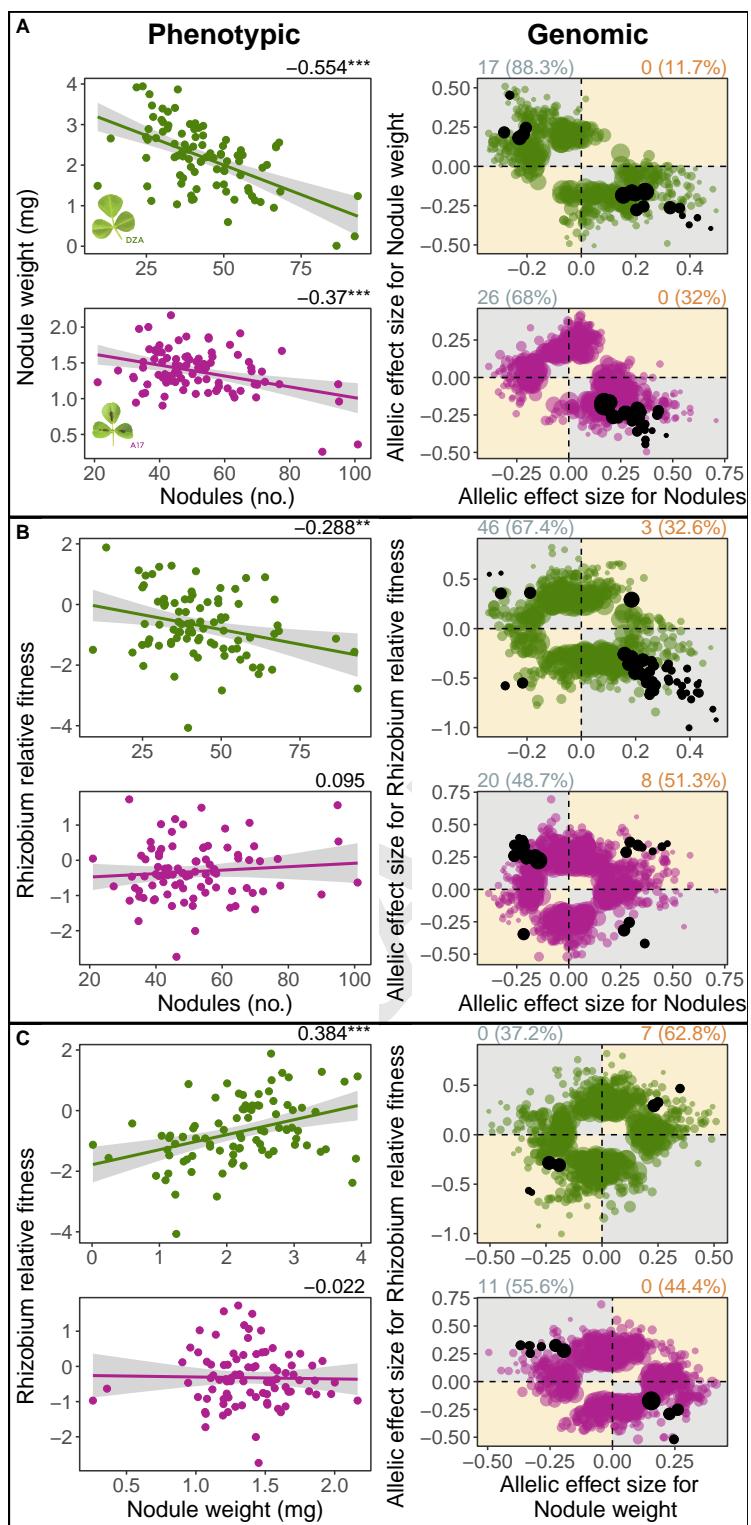
311 the phenotypic level (e.g., shoot biomass vs rhizobium relative fitness on DZA). Linkage disequilibrium
312 (LD) could lead to discordant alleles being “packaged” into multilocus genotypes that show fitness
313 alignment. Such LD results from multiple, non-mutually exclusive factors including epistatic
314 interactions among individual variants that render discordant variants effectively neutral, and/or
315 past selection favouring allelic combinations that increase both host and symbiont fitness (and
316 disfavours discordant combinations; [73](#), [74](#)).

317 Overall, these findings highlight the polygenic nature of symbiotic extended phenotype variation
318 in nature — where the collective action of individual mutations, their additive and nonadditive
319 effects ([42](#)), and a history of selection shapes the trait variation currently present in natural
320 populations ([75](#), [76](#)). However, because of the limitations inherent within GWAS, including linkage
321 disequilibrium that makes it difficult to pinpoint causal variants as well as false positive and negative
322 associations, we acknowledge that the function of any specific locus identified here needs to be further
323 validated in follow up experiments. Additionally, we only focus on allelic substitutions rather than
324 presence/absence variation generated via gene gain and loss, the latter of which previous studies
325 have found to be associated with exploitative traits in rhizobia (e.g., [68](#)).

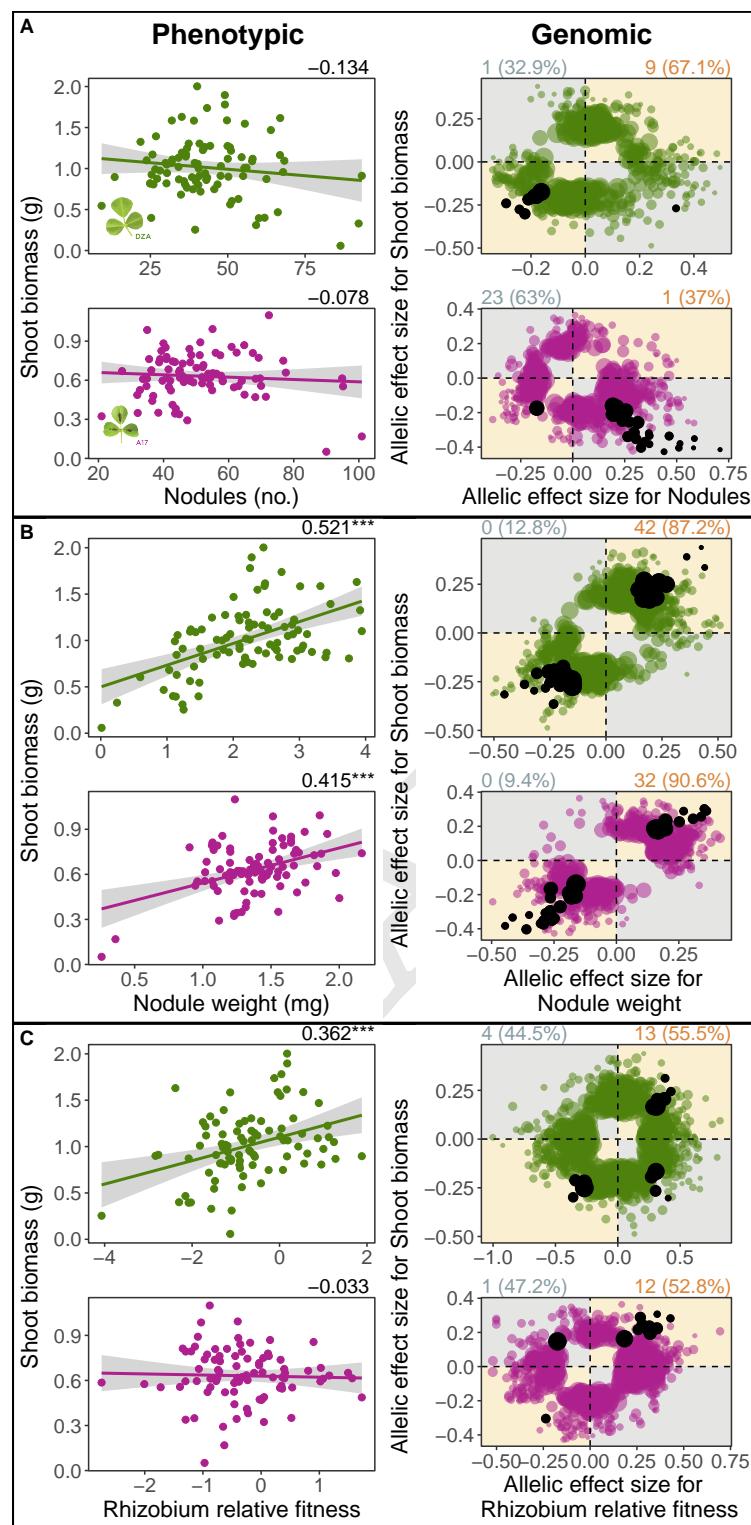
326 **Trade-offs among rhizobium fitness proxies and the rhizobium competition problem.** Under-
327 standing how microbial symbioses, which are ubiquitous and important in nature, evolve (or coevolve)
328 requires accurate estimates of symbiont fitness in ecologically realistic settings. Given our evidence at
329 both the phenotypic and genomic levels for trade-offs among rhizobium fitness proxies, and because
330 diverse strains of rhizobia co-occur in nature, relative fitness proxies should be used whenever possible
331 ([25](#)). Nevertheless these proxies are not replacements for those measured in single-strain experiments
332 because they cannot be used to assign individual genetic means for whole-plant measures of host
333 benefit (plant biomass and seed number) to individual strains (e.g., [1](#), [26](#), [39](#), [42](#)), necessitating that
334 host benefit and rhizobium fitness be measured on separate individuals.


335 Together our results suggest that the genetic architectures associated with rhizobium fitness
336 proxies, and their relationships, are host-dependent, and thus that their evolutionary trajectories are
337 influenced not only by variation in the rhizobium’s genome, but also by variation in host traits. For
338 example, host genotypes could differ in their ability to exert sanctions or partner choice, quantitative
339 traits known to vary in host populations ([44](#), [77](#)). At the genomic-level, distinct variants underlying
340 rhizobium fitness pleiotropy on each host genotype suggests that the genetic mechanisms (i.e.,
341 genes, pathways, metabolic processes) governing the relationship between fitness proxies are largely
342 non-overlapping when rhizobia interact with different hosts. Such host genotype-dependent shifts
343 in the rhizobium genetic architecture of these symbiotic extended phenotypes are supported by

344 transcriptomics studies of G x G interactions (25, 40) and GWAS revealing distinct sets of candidate
345 genes in different host backgrounds (26, 42). Similar genetic variation exists in hosts (78) and
346 undoubtedly interacts with the variants we identify here, thus, should be accounted for if we want
347 to uncover the multi-genomic basis of symbiotic extended phenotypes.


348 **ACKNOWLEDGMENTS.** For their insightful feedback on the manuscript, we thank two anonymous
349 reviewers and an associate editor. For greenhouse help, we thank Alex Riley, Hanna Lindgren, Cassandra
350 Allsup, Laura Goralka, Mannix Burns, Brendan Epstein, and Amy-Marshall Colon, as well as the greenhouse
351 staff, particularly Debbie Black. For feedback on the results and analyses, we thank Peter Tiffin, Brendan
352 Epstein, and Robert Williamson. We acknowledge funding from the National Science Foundation (K.D.
353 Heath: IOS-1645875 and NPGI-1401864; L.T. Burghardt: IOS-1724993 and IOS-1856744), a Carl R. Woese
354 Institute for Genomic Biology postdoctoral fellowship to R.T. Batstone, and strain sequencing by Joint
355 Genome Institute (CSP-1223795). This work was additionally supported by the USDA National Institute
356 of Food and Agriculture Federal Appropriations under Project PEN04760 and Accession no. 1025611.

1. KD Heath, Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. *Evolution* **64**, 1446–1458 (2010).
2. ML Friesen, et al., Microbially mediated plant functional traits. *Annu. Rev. Ecol. Evol. Syst.* **42**, 23–46 (2011).
3. AL Gould, et al., Microbiome interactions shape host fitness. *Proc. Natl. Acad. Sci.* **115**, E11951–E11960 (2018).
4. J Lynch, E Hsiao, Microbiomes as sources of emergent host phenotypes. *Science* **365**, 1405–1409 (2019).
5. AM O'Brien, CN Jack, ML Friesen, ME Frederickson, Whose trait is it anyways? Coevolution of joint phenotypes and genetic architecture in mutualisms. *Proc. Royal Soc. B* **288**, 20202483 (2021).
6. RT Batstone, Genomes within genomes: nested symbiosis and its implications for plant evolution (*New Phytologist*. <https://doi.org/10.1111/nph.17847>) (2021).
7. JL Bronstein, *Mutualism*. (Oxford University Press, USA), (2015).
8. ML Friesen, Widespread fitness alignment in the legume–rhizobium symbiosis. *New Phytol.* **194**, 1096–1111 (2012).
9. ET Kiers, WC Ratcliff, RF Denison, Single-strain inoculation may create spurious correlations between legume fitness and rhizobial fitness. *New Phytol.* **198**, 4–6 (2013).
10. ML Friesen, KD Heath, One hundred years of solitude: integrating single-strain inoculations with community perspectives in the legume–rhizobium symbiosis. *New Phytol.* **198**, 7–9 (2013).
11. ME Frederickson, Rethinking mutualism stability: cheaters and the evolution of sanctions. *The Q. Rev. Biol.* **88**, 269–295 (2013).
12. EI Jones, et al., Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. *Ecol. Lett.* **18**, 1270–1284 (2015).
13. ME Frederickson, Mutualisms are not on the verge of breakdown. *Trends Ecol. & Evol.* **32**, 727–734 (2017).
14. JJ Bull, W Rice, Distinguishing mechanisms for the evolution of co-operation. *J. Theor. Biol.* **149**, 63–74 (1991).
15. S West, ET Kiers, I Pen, R Denison, Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? *J. Evol. Biol.* **15**, 830–837 (2002).
16. SA West, ET Kiers, EL Simms, RF Denison, Sanctions and mutualism stability: why do rhizobia fix nitrogen? *Proc. Royal Soc. B* **269**, 685–694 (2002).
17. KR Foster, H Kokko, Cheating can stabilize cooperation in mutualisms. *Proc. Royal Soc. B* **273**, 2233–2239 (2006).
18. J Sachs, M Ehinger, E Simms, Origins of cheating and loss of symbiosis in wild *Bradyrhizobium*. *J. Evol. Biol.* **23**, 1075–1089 (2010).
19. MB Crook, et al., Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. *Mol. Plant-Microbe Interactions* **25**, 1026–1033 (2012).
20. RT Batstone, AM O'Brien, TL Harrison, ME Frederickson, Experimental evolution makes microbes more cooperative with their local host genotype. *Science* **370**, 476–478 (2020).
21. KW Quides, et al., Experimental evolution can enhance benefits of rhizobia to novel legume hosts. *Proc. Royal Soc. B* **288**, 20210812 (2021).
22. E Li, et al., Rapid evolution of bacterial mutualism in the plant rhizosphere. *Nat. Commun.* **12**, 1–13 (2021).
23. ML Friesen, et al., The ecological genomic basis of salinity adaptation in tunisian *Medicago truncatula*. *BMC Genomics* **15**, 1160 (2014).
24. CR Klinger, JA Lau, KD Heath, Ecological genomics of mutualism decline in nitrogen-fixing bacteria. *Proc. Royal Soc. B* **283**, 20152563 (2016).
25. LT Burghardt, et al., Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. *Proc. Natl. Acad. Sci.* **115**, 2425–2430 (2018).
26. B Epstein, et al., Genome-wide association analyses in the model rhizobium *Ensifer meliloti*. *MSphere* **3** (2018).
27. SS Porter, J Faber-Hammond, AP Montoya, ML Friesen, C Sackos, Dynamic genomic architecture of mutualistic cooperation in a wild population of *Mesorhizobium*. *The ISME J.* **13**, 301–315 (2019).
28. KD Heath, JR Stinchcombe, Explaining mutualism variation: a new evolutionary paradox? *Evolution* **68**, 309–317 (2014).
29. KS Stoy, AK Gibson, NM Gerardo, LT Morran, A need to consider the evolutionary genetics of host–symbiont mutualisms. *J. Evol. Biol.* **33**, 1656–1668 (2020).
30. JA Kimbrel, et al., Mutualistic co-evolution of typeIII effector genes in *Sinorhizobium fredii* and *Bradyrhizobium japonicum*. *PLoS Pathog.* **9**, e1003204 (2013).
31. MA Grillo, S De Mita, PV Burke, KL Solórzano-Lowell, KD Heath, Intrapopulation genomics in a model mutualist: Population structure and candidate symbiosis genes under selection in *Medicago truncatula*. *Evolution* **70**, 2704–2717 (2016).
32. JB Yoder, Understanding the coevolutionary dynamics of mutualism with population genomics. *Am. J. Bot.* **103**, 1742–1752 (2016).
33. B Epstein, P Tiffin, Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. *Proc. Royal Soc. B* **288**, 20201804 (2021).
34. MA Parker, Plant fitness variation caused by different mutualist genotypes. *Ecology* **76**, 1525–1535 (1995).
35. ET Kiers, RA Rousseau, SA West, RF Denison, Host sanctions and the legume–rhizobium mutualism. *Nature* **425**, 78–81 (2003).
36. EL Simms, et al., An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. *Proc. Royal Soc. B* **273**, 77–81 (2006).
37. KD Heath, P Tiffin, Stabilizing mechanisms in a legume–rhizobium mutualism. *Evolution* **63**, 652–662 (2009).
38. CH Foyer, et al., Neglecting legumes has compromised human health and sustainable food production. *Nat. Plants* **2**, 1–10 (2016).
39. J Burdon, P Thrall, Spatial and temporal patterns in coevolving plant and pathogen associations. *The Am. Nat.* **153**, S15–S33 (1999).
40. KD Heath, PV Burke, JR Stinchcombe, Coevolutionary genetic variation in the legume–rhizobium transcriptome. *Mol. Ecol.* **21**, 4735–4747 (2012).
41. LT Burghardt, et al., Transcriptomic basis of genome by genome variation in a legume–rhizobia mutualism. *Mol. Ecol.* **26**, 6122–6135 (2017).
42. R Batstone, et al., The complex genetics of symbiotic extended phenotypes across multiple environments in a model mutualism (bioRxiv: <https://www.biorxiv.org/content/10.1101/2021.08.03.454976>) (2021).
43. KD Heath, P Tiffin, Context dependence in the coevolution of plant and rhizobial mutualists. *Proc. Royal Soc. B* **274**, 1905–1912 (2007).
44. AK Simonsen, JR Stinchcombe, Standing genetic variation in host preference for mutualist microbial symbionts. *Proc. Royal Soc. B* **281**, 20142036 (2014).
45. RF Denison, Legume sanctions and the evolution of symbiotic cooperation by rhizobia. *The Am. Nat.* **156**, 567–576 (2000).
46. WC Ratcliff, K Underbakke, RF Denison, Measuring the fitness of symbiotic rhizobia. *Symbiosis* **55**, 85–90 (2011).
47. RF Denison, ET Kiers, Life histories of symbiotic rhizobia and mycorrhizal fungi. *Curr. Biol.* **21**, R775–R785 (2011).
48. SS Porter, EL Simms, Selection for cheating across disparate environments in the legume–rhizobium mutualism. *Ecol. Lett.* **17**, 1121–1129 (2014).
49. LT Burghardt, B Epstein, P Tiffin, Legacy of prior host and soil selection on rhizobial fitness in planta. *Evolution* **73**, 2013–2023 (2019).
50. A Riley, M Grillo, B Epstein, P Tiffin, K Heath, Partners in space: Discordant population structure between legume hosts and rhizobium symbionts in their native range (bioRxiv: <https://www.biorxiv.org/content/10.1101/2021.06.30.449460>) (2021).
51. TM Finan, et al., The complete sequence of the 1,683-kb psymb megaplasmid from the n2-fixing endosymbiont *Sinorhizobium meliloti*. *Proc. Natl. Acad. Sci.* **98**, 9889–9894 (2001).
52. F Galibert, et al., The composite genome of the legume symbiont *Sinorhizobium meliloti*. *Science* **293**, 668–672 (2001).
53. D Kessner, TL Turner, J Novembre, Maximum likelihood estimation of frequencies of known haplotypes from pooled sequence data. *Mol. Biol. Evol.* **30**, 1145–1158 (2013).


54. LT Burghardt, B Epstein, M Hoge, D Trujillo, P Tiffin, Environment dependence of rhizobial relative fitness in the legume-rhizobia symbiosis (bioRxiv. <https://www.biorxiv.org/content/10.1101/2020.11.20.392183v1>) (2020).
55. SR Searle, FM Speed, GA Milliken, Population marginal means in the linear model: an alternative to least squares means. *The Am. Stat.* **34**, 216–221 (1980).
56. RC Team, R foundation for statistical computing. *R: a language environment for statistical computing*. (2016).
57. X Zhou, M Stephens, Efficient multivariate linear mixed model algorithms for genome-wide association studies. *Nat. Methods* **11**, 407–409 (2014).
58. B Pfeifer, U Wittelsbürger, SE Ramos-Onsins, MJ Lercher, Popgenome: an efficient swiss army knife for population genomic analyses in r. *Mol. Biol. Evol.* **31**, 1929–1936 (2014).
59. F Tajima, Statistical method for testing the neutral mutation hypothesis by dna polymorphism. *Genetics* **123**, 585–595 (1989).
60. YX Fu, WH Li, Statistical tests of neutrality of mutations. *Genetics* **133**, 693–709 (1993).
61. D Bullock, D Anderson, Evaluation of the minolta spad-502 chlorophyll meter for nitrogen management in corn. *J. Plant Nutr.* **21**, 741–755 (1998).
62. JM Swiader, A Moore, Spad-chlorophyll response to nitrogen fertilization and evaluation of nitrogen status in dryland and irrigated pumpkins. *J. Plant Nutr.* **25**, 1089–1100 (2002).
63. DJ Weese, KD Heath, BT Dentinger, JA Lau, Long-term nitrogen addition causes the evolution of less-cooperative mutualists. *Evolution* **69**, 631–642 (2015).
64. DE Reid, BJ Ferguson, S Hayashi, YH Lin, PM Gresshoff, Molecular mechanisms controlling legume autoregulation of nodulation. *Annals Bot.* **108**, 789–795 (2011).
65. JL Sachs, KW Quide, CE Wendlandt, Legumes versus rhizobia: a model for ongoing conflict in symbiosis. *New Phytol.* **219**, 1199–1206 (2018).
66. JU Regus, et al., Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. *Am. J. Bot.* **104**, 1299–1312 (2017).
67. A Westhoek, et al., Conditional sanctioning in a legume–rhizobium mutualism. *Proc. Natl. Acad. Sci.* **118** (2021).
68. PA Price, et al., Rhizobial peptidase hrp cleaves host-encoded signaling peptides and mediates symbiotic compatibility. *Proc. Natl. Acad. Sci.* **112**, 15244–15249 (2015).
69. CE Wendlandt, et al., Negotiating mutualism: A locus for exploitation by rhizobia has a broad effect size distribution and context-dependent effects on legume hosts. *J. Evol. Biol.* (2022).
70. F Guillaume, MC Whillock, Effects of migration on the genetic covariance matrix. *Evolution* **61**, 2398–2409 (2007).
71. JB Salz, FC Hessel, MW Kelly, Trait correlations in the genomics era. *Trends Ecol. & Evol.* **32**, 279–290 (2017).
72. MA Parker, Legumes select symbiosis island sequence variants in *Bradyrhizobium*. *Mol. Ecol.* **21**, 1769–1778 (2012).
73. B Sinervo, E Svensson, Correlational selection and the evolution of genomic architecture. *Heredity* **89**, 329–338 (2002).
74. AG Jones, SJ Arnold, R Bürger, Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. *Evolution* **57**, 1747–1760 (2003).
75. JK Conner, DL Hartl, , et al., *A Primer of Ecological Genetics*. (Sinauer Associates Incorporated), (2004).
76. M Lynch, B Walsh, *Genetics and Analysis of Quantitative Traits*. (Sinauer, Sunderland, MA) Vol. 1, (1998).
77. RT Batstone, EM Dutton, D Wang, M Yang, ME Frederickson, The evolution of symbiont preference traits in the model legume *Medicago truncatula*. *New Phytol.* **213**, 1850–1861 (2017).
78. J Stanton-Geddes, et al., Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in *Medicago truncatula*. *PLoS One* **8**, e65688 (2013).

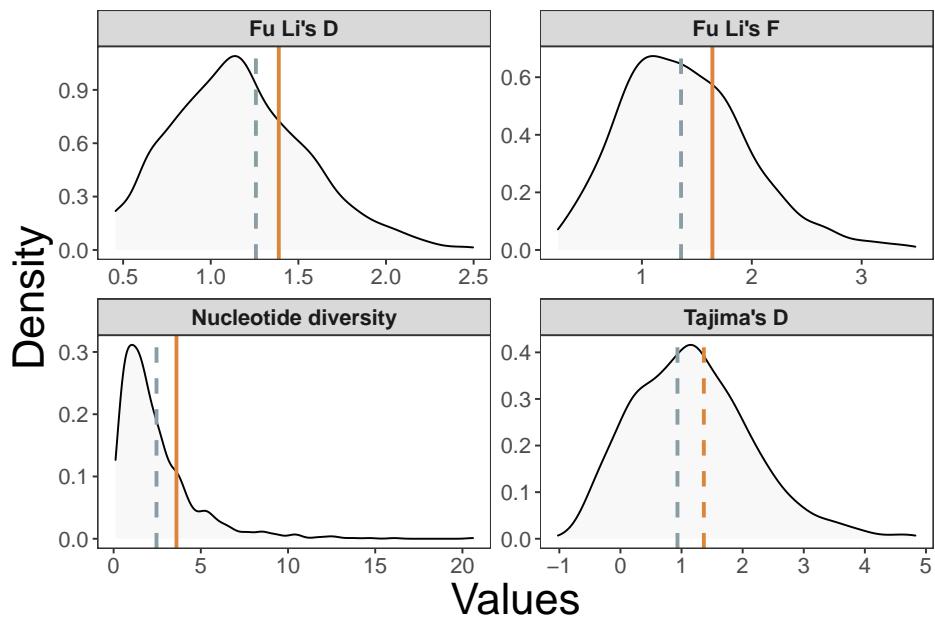

Fig. 1. Interpreting patterns of fitness alignment and conflict at both the phenotypic and genomic levels. **A)** Phenotypic-level correlations of genotypic (strain) means for rhizobium fitness proxies (e.g., nodule number, nodule size, rhizobium relative fitness) or plant fitness proxies (shoot biomass or leaf chlorophyll A content) on the x- and y-axes, respectively. The positive (orange) or negative (grey) correlations represent fitness alignment or conflict, respectively. **B)** Genomic-level correlations of allelic effect sizes determined in GWAS for rhizobium fitness proxies or plant fitness proxies on the x- and y-axes, respectively. Points appearing in orange or grey quadrants represent pleiotropic variants with concordant (same-sign) or discordant (opposite sign) effects, respectively, on both host and symbiont. **C)** Plant and rhizobium fitness proxies measured, parentheses indicating the experiment type for which proxies were measured (SS = single-strain; MS = multi-strain). **D)** Rhizobium fitness proxies corresponding to the pink rhizobium strain. In single-strain experiments, nodule number indicates the number of reproductive cells released per plant, while nodule size indicates the number of reproductive cells released per nodule. In the multi-strain experiment, rhizobium relative fitness is a composite metric that combines competition among strains for nodule occupancy and for host resources once in nodules. Nodules pink versus blue in colour are used here to illustrate two different rhizobium strains competing, however, a total of 89 strains were inoculated together onto plants in the multi-strain experiment.

Fig. 2. Trade-offs among rhizobia (*Ensifer meliloti*) fitness proxies prevail at both the phenotypic (left panels) and genomic-levels (right panels). **Phenotypic:** Genetic correlations between pairwise fitness proxies measured on plant lines DZA (green, top rows) or A17 (pink, bottom rows), based on 89 *Ensifer meliloti* strains. Dots represent estimated marginal strain means for nodule number and nodule weight, both being measured in single-strain experiments, or medians for rhizobium relative fitness measured in multi-strain experiments. Numbers at top right of each correlation represent Pearson correlation coefficients, while asterisks represent significance: * = $p < 0.05$; ** = $p < 0.01$; *** = $p < 0.001$. **Genomic:** Dots represent allelic effect sizes (i.e., beta scores calculated in GEMMA), those falling along the diagonal (orange quadrants) or off-diagonal (grey quadrants) represent variants with concordant or discordant effects, respectively. Coloured dots represent variants that were significantly associated with one of the two fitness proxies, while black dots represent pleiotropic variants, i.e., significantly associated with both fitness proxies. Numbers outside of and percentages within parentheses at the top left and right of each plot represent the pleiotropic variant counts and the proportion of total significant variants, respectively, that are discordant (left, in grey) or concordant (right, in orange).

Fig. 3. Fitness alignment between rhizobia (*Ensifer meliloti*) and host (*Medicago truncatula*) prevails at both the phenotypic (left panels) and genomic (right panels) levels. Phenotypic: Genetic correlations between pairwise fitness proxies measured on plant lines DZA (green, top rows) or A17 (pink, bottom rows), based on 89 *Ensifer meliloti* strains. Dots represent estimated marginal strain means for shoot biomass, nodule number, and nodule weight, all being measured in single-strain experiments, or medians for rhizobium relative fitness measured in multi-strain experiments. Numbers at top right of each correlation represent Pearson correlation coefficients, while asterisks represent significance: * = $P < 0.05$; ** = $P < 0.01$; *** = $P < 0.001$. **Genomic:** Dots represent allelic effect sizes (i.e., beta scores calculated in GEMMA), those falling along the diagonal (orange quadrants) or off-diagonal (grey quadrants) represent variants with concordant or discordant effects, respectively. Coloured dots represent variants that were significantly associated with one of the two fitness proxies, while black dots represent pleiotropic variants, i.e., significantly associated with both fitness proxies. Numbers outside of and percentages within parentheses at the top left and right of each plot represent the pleiotropic variant counts and the proportion of total significant variants, respectively, that are discordant (left, in grey) or concordant (right, in orange).

Fig. 4. Neutrality statistics show elevated values for genes associated with fitness alignment. Vertical lines represent the average values calculated for four separate statistics, grey for discordant and orange for concordant genes. Distributions represent the same statistics calculated for all genes containing significant variants based on GWAS. Dashed and solid lines represent non-significant ($p > 0.1$) and significant ($p < 0.1$) differences, respectively, between each focal gene category and all significant genes (i.e., distributions).