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Abstract

Proteins that interact  within molecular  networks tend to have similar  functions and when
perturbed influence the same organismal traits. Interaction networks can be used to expand
the list of likely trait associated genes from genome-wide association studies (GWAS). Here,
we used improvements in SNP-to-gene mapping to perform network based expansion of trait
associated genes for 1,002 human traits showing that this recovers known disease genes or
drug targets. The similarity of network expansion scores identifies groups of traits likely to
share  a common genetic  basis  as  well  as  the biological  processes underlying  this.  We
identified 73 pleiotropic gene modules linked to multiple traits that are enriched in genes
involved  in  processes  such  as  protein  ubiquitination  and  RNA  processing.  We  show
examples of modules linked to human diseases enriched in genes with pathogenic variants
found in patients or relevant mouse knock-out phenotypes and can be used to map targets
of approved drugs for repurposing opportunities. Finally, we illustrate the use of the network
expansion  scores to study genes at  inflammatory bowel  disease  (IBD)  GWAS loci,  and
implicate IBD-relevant genes with strong functional and genetic support.
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Introduction 

Proteins that interact tend to take part in the same cellular functions and be important for the
same organismal traits (Oti and Brunner 2007; Carter, Hofree, and Ideker 2013). Through a
principle of guilt-by-association, it has been shown that molecular networks can be used to
predict the function or disease relevance of human genes  (Oti et al.  2006; Franke et al.
2006; Vanunu et al. 2010). Based on this, physical or functional interaction networks can
augment genome-wide association studies (GWAS) by using GWAS-linked genes as seeds
in a network to identify additional trait-associated genes  (H. Fang et al. 2019; Lee et al.
2011; Greene et al. 2015; Huang et al. 2018). It is well known that GWAS loci are enriched
in genes encoding for successful drug targets  (Nelson et al. 2015; Mountjoy et al. 2020).
While genes linked to a trait by network expansion are not necessarily within GWAS linked
loci, these are also enriched for successful drug targets even when excluding the genes with
direct genetic support (MacNamara et al. 2020).

This  an  opportune  time  to  revisit  the  application  of  network  approaches  to  GWAS
interpretation,  based  on  recent   large  improvements  in:  the  human  molecular  networks
available; the approaches for SNP to gene mapping; and the extent of human traits/diseases
mapped  by  GWAS.  In  particular,  there  have  been  substantial  improvements  in  the
identification  of  likely  causal  genes  within  GWAS  loci  using  expression  and  protein
quantitative trait loci analysis (Zhu et al. 2016; Sun et al. 2018), as well as machine learning
based integrative approaches (Mountjoy et al. 2020). 

The genetic study of large numbers of diverse human traits also opens the door for the study
of pleiotropy, which occurs when a single genetic change affects multiple traits. Studying
pleiotropy can help in the drug discovery process to either increase the number of potential
indications for a drug or to avoid unwanted side-effects. Yeast studies of pleiotropy, based
on  gene  deletion,  have  revealed  pleiotropic  cellular  processes  that  include  endocytosis,
ubiquitin system, stress response and protein folding, amino acid biosynthesis, and global
transcriptional regulation, among others (Hillenmeyer et al. 2008). Human GWAS data have
been extensively used to quantify pleiotropy at SNP level for different traits (Boyle, Li, and
Pritchard 2017; Watanabe et al. 2019; Hackinger and Zeggini 2017). While this has shed
light into the degree of pleiotropy and the relation between traits this has not often led to the
identification  of  the  biological  processes  and  mechanisms  that  underlie  their  common
genetic basis.

Here we have used recent advances in SNP-to-gene mapping and a comprehensive protein
interaction  network  to augment  GWAS data for  1,002 traits  by  network  expansion.  This
network expansion recovers known disease genes not associated by GWAS, it  identifies
groups of traits under the influence of the same cellular processes and defines a pleiotropy
map of human cell biology. We show examples of gene modules linked to human diseases
enriched for genetic variants found in patients and used to map drug targets for possible
repurposing opportunities. Finally, we illustrate the use of the network expansion scores to
characterize inflammatory bowel  disease (IBD)  genes at  GWAS loci,  and implicate  IBD-
relevant genes with strong functional and genetic support. 

Results

Systematic augmentation of GWAS with network propagation

We aimed to improve the identification of trait-associated genes and processes via network
propagation of GWAS information. Recent studies have shown that a comprehensive protein
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interaction network is critical for network propagation efforts (Huang et al. 2018). Here, we
combined  the IMEx physical  protein  interaction  dataset  (Porras  et  al.  2020) from IntAct
(protein-protein interactions) (Orchard et al. 2014), Reactome (pathways) (Jassal et al. 2020)
and Signor (directed signalling pathways) (Licata et al. 2020). To facilitate the re-use of this
physical interaction data we have made it available via a Neo4j Graph Database that can be
queried to extract different sub-components including subsetting by the source of interaction
(e.g.  Reactome,  Signor)  or  type  of  interaction  (e.g.  directed,  signed)
(ftp://ftp.ebi.ac.uk/pub/databases/intact/various/ot_graphdb/current).  The  physical
interactions were further combined with high confidence functional  associations from the
STRING database  (v11)(Szklarczyk  et  al.  2019) to  a  final  combined  network  containing
571,917 edges connecting 18,410 total proteins (nodes) (Fig 1A).   

The simplest approach to link a SNP reported in a GWAS to a likely causal gene is to select
the closest gene. However, the closest gene may not be the causal gene and the integration
of expression quantitative trait loci (eQTL) and other data has proven to be useful for SNP to
gene mapping (de Lange et al. 2017). Here we mapped GWAS trait associations to genes
using the Locus-to-gene (L2G) score from Open Targets Genetics, a recently developed
machine learning approach that integrates SNP fine-mapping, gene distance, and molecular
QTL information to identify causal genes (Fig 1B)  (Mountjoy et al. 2020). Genes with L2G
scores higher than 0.5 are expected to be causal for the respective trait association in 50%
of cases. 

For each GWAS, we used genes with L2G > 0.5 as seed genes for the interaction network.
Of 7,660 GWAS genes linked to at least one trait, 7248 correspond to proteins present in the
interaction network.  We then used the Personalized Page Rank (PPR) algorithm to score all
other protein coding genes represented in  the interaction network.  Genes connected via
short paths to GWAS genes receive higher network propagation scores (Fig 1C). Genes in
the  top  25%  of  network  propagation  scores  were  used  to  identify  gene  modules  (see
Methods), from which we selected those significantly enriched for high network propagation
scores (BH adjusted p-value<0.05 with Kolmogorov–Smirnov test) and with at least 2 GWAS
linked genes (see Methods). We applied this approach to 1,002 traits (see list in STable 1)
with GWAS in the Open Targets Genetics portal that had at least 2 genes mapped to the
interactome. These GWAS were spread across 21 therapeutic areas, and differed in the
number of GWAS-linked genes (median 6, range 2-763) (Fig 1D). 

In order to measure the capacity of the network expansion to recover trait associated genes,
we defined a “gold standard” set of genes known to be associated with human diseases
(from diseases.jensenlab.org) or which are known drug targets for specific human diseases
(from ChEMBL, see Methods). For the disease associated genes, we further stratified these
based on confidence levels (see Methods). To avoid circularity in benchmarking the network
expansion approach, we excluded gold standard genes that overlapped with GWAS-linked
genes  for  the  respective  diseases.  The  network  propagation  score  predicted  disease-
associated genes for both gold standard gene sets with an average area under the receiver
operating  curve  (ROC)  greater  than  0.7  for  the  most  stringent  definition  of  disease-
associated genes as well as known drug targets (Fig 1E). For comparison we also seeded
the network with genes linked to a trait by proximity to the associated SNP (GWAS catalog).
Overall, performance was modestly better when using SNP to gene mappings that integrate
across diverse data than when using only gene proximity to the lead SNP (Fig 1E). This is
consistent with the observation that SNP to gene distance is one the strongest predictors of
causal genes (Stacey et al. 2019). The observed capacity to identify known disease genes
or drug targets was significantly  higher  than observed with random permutation of  gene
names in the network or in the gold standard gene sets (Fig 1E, node and TP permutations).
This suggests the observed performance is not strongly biased by the placement of the gold
standard genes within the network.
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Overall we obtained network propagation scores for 1,002 traits and gene modules for 906
traits (STable 1). In the next sections we illustrate the usefulness of these for the study of
genetics of human traits and diseases.  

Figure 1 -  Implementation and benchmarking of  network based augmentation of  GWAS A)
Edge and node counts of the combined interactome and its components B) Graphic representation of
some Locus-to-gene score (L2G) components: SNP to gene distance, data from QTLs, and variant
effect predictions. C) Graphical representation of the network-based approach: network propagation
of the initial input, clustering using a random walker to find gene communities, and scoring of modules
using the distribution of page rank score D) Number of starting genes linked to traits, grouped in
therapeutic areas.  E) Benchmarking of the method, using as a starting signal all genes from the
GWAS catalog (red boxplots) and the genes from the Open Targets genetics portal with L2G score
bigger  than  0.5.  The  Area  under  the  ROC curves  (AUCs)  are  calculated  using  as  positive  hits
DISEASE database, with increasing cut-off values for its gene to trait score (see methods), as well as
clinical trials data from CHEMBL (clinical phase II or higher). We also re-calculated the AUCs and
determined Z-scores after node randomization of the network keeping the same degree as well as
true positives.

Network  propagation  identifies  human  traits  influenced  by  the  same  biological
processes

Identifying groups of traits that are likely to have a common genetic and biological basis is of
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value because drugs used to treat one disease may be relevant for other related diseases.
Genetic  sharing  between  human  traits  is  often  determined  from  genome-wide  genetic
correlation of summary statistics from GWAS; however, this approach does not identify how
the shared genetics corresponds to shared biological processes. In addition many GWAS do
not report the full  summary statistics needed for  such comparisons. In contrast,  network
propagation scores can be calculated from results available for all GWAS and be used to
identify  traits  influenced  by  the  same  biological  processes.  To  benchmark  trait-trait
associations  derived  from  network  propagation,  we  used  annotations  for  human  traits
captured  in  the  Experimental  Factor  Ontology  (EFO).  For  example,  pairs  of  related
neurological traits will tend to share a higher than average number of annotation terms in
EFO. Using these annotations we defined 796 pairs of traits that are functionally related and
therefore likely to have a common genetic and biological basis (see Methods). Using this
benchmark we can show that the similarity in the network propagation scores can identify
functionally related pairs of traits (SFig 1).  

To  explore  trait-trait  relationships  based  on  the  similarity  of  their  perturbed  biological
processes, we used the pairwise distance of network propagation scores to build a tree by
hierarchical clustering (Fig 2A), and defined 54 sub-groups of traits. The traits tend to group
according to functional similarity with 34 out of 54 having an EFO term annotated to over
50% of the traits in the group (Fig 2A). We illustrate in  Fig 2B examples of traits that are
grouped  together  according  to  the  network  propagation  scores.  These  include  known
relationships  between  immune  associated  traits  such  as  cellulitis  or  psoriasis  and
immunoglobulin  measurements (IgG);  the  relationship  between skin  neoplasms and skin
pigmentation or  eye colour;  or  the clustering of  cardiovascular  diseases (acute coronary
symptoms) with lipoproteins measurements and cholesterol. The latter group links together
plasminogen levels in plasma with aortic stenosis and peripheral vascular system conditions.

We obtained drug indications from the ChEMBL database for the diseases in each cluster
(Fig 2A). This allows us to find clusters where drugs may be considered for repurposing as
well as groups of traits where drug development is most needed. 18 clusters representing 64
traits  contain  no  associated  drug  and  represent  less  well  explored  areas  of  drug
development. These trait clusters, genes and corresponding drugs are available in STable 1.
In addition, as we show in the next section, we can use the network propagation to identify
the biological processes whose perturbation underlie the trait-trai similarities.  
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Figure 2 - Trait-trait genetic and functional similarities determined from network expansion of
GWAS data. A) Tree showing the Manhattan distance between all traits, using the full PPR score.
Hierarchical clustering was performed using h=1 cut off, leading to 54 clusters, coloured depending
on the predominant EFO ancestry term. In the right panel, barplot showing the 54 clusters with the
frequencies  for  the  predominant  EFO  ancestry  terms  and  a  heatmap  showing  the  counts  for
ChEMBL targets and drugs. B) Examples of traits grouped together using the Manhattan distance,
extracted from the tree in panel A.

Pleiotropy of gene modules across human traits 

We  can  study  the  pleiotropy  of  human  cell  biology  by  identifying  which  of  the  above
described gene modules tend to be associated with many human traits. This allows us to
understand  how  perturbations  in  specific  aspects  of  cell  biology  may  have  broad
consequences  across multiple  traits.  In  total  we found 2021 associations  between gene
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modules and traits, from which 886 (43.8%) are gene modules linked to a single trait and the
remaining can be collapsed to 73 gene modules linked to 2 or more traits (Fig 3A, STable 2,
see Methods). The modules associated with more than one trait did not have a significantly
larger number of genes compared to those linked to single traits (p-value= 0.72, kolmogorov
Smirnov test). 

The six most pleiotropic gene modules were linked to between 56 and 110 traits in our study,
and were enriched (GOBP enrichment with fisher test, BH adjusted p-value <0.05) for genes
involved  in  protein  ubiquitination,  extracellular  matrix  organization,  RNA  processing  and
GPCR signalling (Fig 3B). These observations are in line with gene deletion studies in yeast
that have identified some of the same cellular processes as highly pleiotropic (Hillenmeyer et
al. 2008). Targeting pleiotropic processes with drugs could have broad applications but may
also raise important safety concerns. To study this we obtained human genetic-interaction
data (see Methods)  and we observed that  genes within  the 73 gene modules  linked to
multiple  traits  have  a  small  but  significant  increase  in  the  average  number  of  genetic
interactions (enrichment of genetic interactions, Fisher test p-value = 4.155x10-10).

The traits linked with the 73 pleiotropic gene modules (shared between 2 or more traits) tend
to have a higher number of significant initial GWAS seed genes (SFig 1). This difference is
even more pronounced for the six most pleiotropic gene modules (SFig 1). Therefore, traits
with a larger number of linked loci are more likely to be associated with pleiotropic gene
modules.  The  73  pleiotropic  gene  modules  tend  to  be  grouped  according  to  coherent
biological  themes  such  as  immune  diseases,  body  measurements,  and  bone  related
conditions (Fig 3A). For each of these groups we then highlighted the gene modules that are
over-represented in each group of traits (Fig 3A, Methods, fisher test, BH adjusted p-value <
0.05).  To facilitate the study of  cell  biology  and drug repurposing opportunities we have
annotated (Fig 3A, and STable 2) the genes found in overlapping modules for each of the
clusters with data from:  ChEMBL (targets of drugs in at least phase III clinical trials), ClinVar
(genes linked to clinical variants) and mouse knock-out phenotypes (phenotypic relevance
and possible biological link). We explore a few examples of these modules in the following
sections.

Examples of shared molecular mechanisms and drug repurposing opportunities

We identified two groups of traits (bone and fasciitis related traits) which are predicted to
have a common determining gene module (Fig 3C and STable 3). This module is enriched
in Wnt signalling genes, which have been previously linked to bone homeostasis (Baron and
Kneissel 2013) and to different types of fasciitis as well as Dupuytren’s contracture (Balaji,
Kaveri,  and Bayry 2011).  We collected from ClinVar  genes harbouring likely  pathogenic
variants found in patients (see Methods), hereafter referred to as ClinVar variants. This gene
module is enriched in genes harbouring ClinVar variants from patients with tooth agenesis
and  bone  related  diseases  (osteoporosis  and  osteopenia).  Several  genes  with  ClinVar
variants  associated  with  these  diseases,  such  as  LRP6,  SOST,  WNT1,  WNT10A and
WNT10B, are not linked to bone diseases via GWAS. Genetic manipulation of several genes
within this module causes changes in bone density in mouse models (Wang et al. 2014). In
addition, this module contains the target (SOST) of Romosozumab, a drug proven effective
to treat osteoporosis. The ClinVar variants, mouse genetic models and the Romosozumab
drug serve as an independent validation of the importance of this gene module for these
traits. It also provides a proof of principle example of how this approach may be used to
study the cell biology underlying a group of related traits and to identify relevant drug targets.

A second example (Fig 3D  and STable 3)  demonstrates the potential  of multi-trait  gene
module  associations  for  drug repurposing.  We identified  a group of  ten  respiratory (e.g.
asthma)  and  cutaneous  (e.g.  eczema)  immune-related  diseases  that  share  three  gene
modules - a highly pleiotropic module related to regulation of transcription and proteasome,
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and two more specific modules related to pattern recognition receptor signalling and cytokine
production  with  JAK-STAT  involvement.  Genes  in  these  modules  had  a  significant
enrichment  (fisher  test,  p-value <0.05)  in  genes  having  likely  pathogenic  variants  from
patients  with  asthma.  The two most  specific  gene  modules  were  grouped  together  and
shown in Fig 3D highlighting several genes with known pathogenic variants not associated
with  these  diseases  via  GWAS (e.g.  IRAK3,  TNF,  ALOX5,  TBX21).  IRAK3,  encoding  a
protein  pseudo-kinase,  is  an  example  of  a  druggable  gene  not  identified  by  GWAS for
asthma, but with protein missense variants linked to this disease  (Balaci et al. 2007) and
mice model studies implicating the regulation of IRAK3 in IL-33 induced airway inflammation
(Nechama et al. 2018). While no drug for IRAK3 is used in the clinic, this analysis suggests it
may serve as a relevant drug target for asthma and other related diseases. 

We identified a total of 41 targets of 126 drugs targeting the genes in the module from Fig
3D.  To identify  drugs that  could  have repurposing potential,  we excluded drugs already
targeting therapeutic areas that include the 10 diseases linked to this gene module. This

resulted in 18 drugs  (STable 3) targeting 5 genes including:  14 drugs targeting  PTGS2,
used to treat primarily rheumatic disease and osteoarthritis; interferon alfacon1 or alfa-2B
(targeting  IFNAR1 and  IFNAR2),  designed  to  counteract  viral  infections;  galiximab  and
antibody for CD80 (phase III trials for lymphoma); and the antibody RA-18C3 targeting IL1A
for colorectal cancer. These drugs may be relevant to repurpose for respiratory or cutaneous
autoimmune-related diseases.  As  a  relevant  example,  RA-18C3 has shown benefit  in  a
small phase II trial for hidradenitis suppurativa (acne inversa) (Gottlieb et al. 2020).
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Figure 3 - Multi-trait gene module associations for studies of shared biological processes and
drug repurposing opportunities. A) heatmap showing the overlap between gene modules across
traits. The traits were clustered by hierarchical clustering (see Methods) and subgroups defined by a
cut-off  of 0.6 average correlation coefficient. A module was considered the same across different
traits when most genes are in common (Jaccard index > 0.7). Significant trait-module relations are
marked in yellow or pink with yellow marking modules overrepresented in one of the sub-groups of
traits (fisher test, adjusted p-value<0.05), and pink otherwise. The heatmap in the right panel  shows
the number of genes in modules from each sub-group of traits which are drug targets (phases III or
higher, ChEMBL database), linked with clinical variants (ClinVar database), or with mouse knock-out
phenotypes (IMPC database). B) Barplot showing the number of traits linked with the top six most
pleiotropic gene modules. The Gene Ontology Biological process (GOBP) description is based on the
results of a GOBP enrichment test (see Methods). C) Simplified heatmap of the clusters in figure A
concerning  bone  related  and  fasciitis  traits.  The  represented  network  includes  genes  from  the
modules indicated in blue letters and the represented interactions have been filtered for visualization
(see Methods). Blue nodes - relevant mouse KO phenotypes; Green nodes - diseases with clinical
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variants enriched in this gene module; red nodes - drugs in clinical trials. Genes linked to blue, green
or yellow nodes have the linked mouse phenotypes, clinical variants in the linked disease or are
targets of the linked drug. Genes that are targets of drugs in clinical trials have yellow nodes. GWAS
linked genes (L2G score >0.5) have borders coloured in an orange to red gradient (count of GWAS
linked traits). D) Simplified heatmap of one the clusters in figure A concerning allergic reactions (the
same node and edge color code as in C applies). In this case two modules were merged for building
the interaction network in the right panel.

Gene module analysis of genetically related immune-mediated diseases

Immune system related traits are well represented in our analysis, falling into three different
groups: one containing systemic and organ-specific diseases, one cluster of immune cell
measurements and a third more heterogeneous cluster (Fig 3A,  STable 2). In  Fig 4A we
represent  the  first  of  these that  can be  further  subdivided  into:  a  sub-group linking  the
inflammatory  bowel  diseases  (IBD),  Multiple  Sclerosis  (MS)  and  Systemic  Lupus
Erythematosus (SLE); and subgroup linking celiac disease (CeD), Vitiligo and others. We
find six gene modules that are specifically enriched with at least one of these two groups of
traits,  including  gene  modules  related  with  GPCR  signalling,  neutrophil  activation  and
interferon signalling. Genes present in these modules show higher relative expression (Fig
4A, right) in key immune tissues.

To visualize the relationships between the traits and the 6 gene modules, we graphically
linked  the gene modules  when there was a significant  gene level  overlap (Fig 4B,  see
Methods).  Genes from these six modules showed enrichments for  ClinVar  variants from
patients with immune diseases and relevant mouse gene KO phenotypes, further validating
our approach. To represent the gene networks most relevant for these diseases we selected
genes from modules linked with at least three immune-mediated diseases corresponding to
those  enriched  in  Type  I  INF  signalling,  PLC  activating  GPCR  signalling,  Neutrophil
activation  (integrins)  and  PKA activity.  For  representation (Fig 4C)  we kept  a subset  of
interactions of high confidence (see Methods) and highlighted genes with relevant ClinVar
variants (green),  mouse phenotypes (purple)  and drug targets (yellow).  We find multiple
genes with ClinVar variants from patients with primary immune deficiencies (e.g. IRF9, IRF7,
STAT1,  STAT2) that are not GWAS linked genes but are in the network vicinity of those,
providing further evidence of the importance of this gene module for these diseases. 

To pinpoint drugs with repurposing potential, we excluded drugs targeting diseases in the

same therapeutic areas shared by the immune mediated group of diseases, identifying  49
drugs  with  20  targets.  These  include  ulimorelin,  an  agonist  of  the  ghrelin  hormone
secretagogue receptor GHSR used to treat gastrointestinal obstruction. Ghrelin hormone
signalling has been studied in the context of age-related chronic inflammation (C. Fang
et al. 2018), psoriasis  (Qu et al. 2019) and IBD (reviewed in  (Eissa and Ghia 2015))
indicating a potential repurposing opportunity. The 49 drugs with repurposing potential
are listed in STable 3 with information on target genes and clinical trials. 
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Figure 4 -  Gene module analysis of  autoimmune diseases. A) Heatmap showing the overlap
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between gene modules across traits.  The GOBP description is based on the results of  a GOBP
enrichment test (see material and methods). The heatmap in the right panel shows the gene set
enrichment analysis done in the expression data from different tissues extracted from Human Protein
Atlas for the gene modules in blue letters (see Methods). After BH adjustment for multiple testing, the
p-value of the test was log transformed and given a positive value if the median distribution for the
foreground is higher than the background and negative for the opposite. B) Shared modules as a
network, nodes are gene modules associated with different immune related traits coloured in blue or
red for the two trait  sub-groups, edges represent high overlap at gene-level  (Jaccard index>0.7).
Gene modules linked to different traits are contained in black circles. Gene modules are linked with
the yellow nodes “ChEMBL-drugs” when they contain targets for drugs in clinical trials (phases III and
IV, ChEMBL); linked with green nodes when they are enriched in genes with clinical variants for a
given  disease;  and  linked  to  purple  nodes  when  they  are  enriched  for  the  corresponding  KO
phenotypes  (fisher test, adjusted p-value<0.05). C) Network corresponding to genes found in gene
modules enriched for Type I INF signalling, PLC activating GPCR signalling, Neutrophil  activation
(integrins) and PKA activity. Edge filtering, node and edge colours are the same as in figure 3 C-D.

Prioritization of IBD GWAS candidate genes using a network-based approach

Although the gene modules we have described can highlight  biological pathways shared
between  genetically-related  traits,  identifying  causal  genes  at  individual  GWAS  loci  is
important for prioritising therapeutic targets. Existing methods such as GRAIL (Raychaudhuri
et al. 2009), DEPICT (Pers et al. 2015), and MAGMA (de Leeuw et al. 2015) prioritise genes
based on annotated or inferred biological  pathways.  However,  they do not  fully  use the
available  genome-wide  protein  interaction  networks,  which  can  provide  finer-grained
resolution than gene sets grouped by gene ontology terms.

Here  we use  network  propagation  to  prioritise  genes  at  IBD GWAS loci,  similar  to  the
approach developed in our previous work on Alzheimer’s disease  (Schwartzentruber et al.
2021). We used two alternative methods of defining seed genes for the network: first, we
manually curated 37 genes with high confidence of being causally related to either Crohn’s
disease or ulcerative colitis (Supplementary Table 4); second, we used the Open Targets
L2G score to automatically select 110 genes with L2G > 0.5 at established IBD loci (Liu et al.
2015; de Lange et al. 2017) (see Methods; STable 4). To obtain network propagation scores
unbiased by node degree, we compared each gene’s score to 1000 runs using the same
number  of  randomly  selected  input  genes,  giving  a  Pagerank  percentile  value  (see
Methods).  We  obtained  unbiased  network  propagation  values  for  each  seed  gene  by
excluding each seed gene one at a time (see Methods). 

We found that  our curated seed genes had far higher network scores than other genes
within 200 kb (p = 7.4x10-6, one-tailed Wilcoxon rank sum test), indicating that the majority of
them have close interactions with other seed genes (Fig 5A).  The same was true when
considering seed genes exclusively in the L2G gene set (Fig 5B; p-value=3x10-10, one-tailed
Wilcoxon rank sum test), indicating that many of these are also strong IBD candidate genes.
Finally, we examined the enrichment of low SNP p-values within 10 kb of genes having high
network scores. This revealed a progressive enrichment of low  p-values near genes with
higher network scores (Fig 5C), which held for the large number of genes linked to SNPs not
reaching the typical genome-wide significance threshold of 5x10-8 for locus discovery.
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Figure 5 - An IBD-specific network is enriched for likely causal genes. A) Curated IBD seed
genes tend to have higher network propagation score (i.e. pagerank percentile) than other genes
within 200 kb at the same loci. B) Genes selected by high Open Targets L2G score also tend to have
high pagerank percentile, highlighting network evidence as complementary to typical locus features.
C) Genome-wide, genes with low p-value SNPs within 10 kb are enriched for having high pagerank
percentile.

Genes with the strongest network support included TYK2 and ICAM1, both targets of drugs
used for IBD (Tofacitinib and Natalizumab, respectively). Other curated IBD-causal genes
with  strong  network  support  included  NOD2 and  IL23R,  which  have  missense  variants
implicating them as modulators of IBD (Hugot et al. 2001; Ogura et al. 2001; Duerr et al.
2006), and the drug target  ITGA4 (Vedolizumab).  A small  number of curated genes had
lower  network  support.  For  example,  PPIF encodes  cyclophilin  D,  which  regulates
mitochondrial  membrane  potential.  Recent  CRISPRi-FlowFISH  experiments  showed  an
effect of the enhancer harboring IBD-associated variants specifically in stimulated immune
cell types, providing a strong link with IBD pathogenesis. The lack of network support for
PPIF could  indicate  that  this  gene  affects  IBD via  pathways  distinct  from the biological
functions most well covered by the curated gene set. Another curated IBD gene, BACH2, is
associated with lymphoid cell  counts and multiple autoimmune diseases  (Vuckovic et  al.
2020). BACH2 receives a low score in the curated seed gene network, but a very high score
in  the L2G seed gene network,  due to its  interaction  with  candidate  genes  FOSL2 and
PRDM1. Overall there is moderate correlation between gene scores for the two sets of seed
genes (spearman rho = 0.54), suggesting that it is useful to look within networks based on
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highly selected seed genes as well as network scores based on a broader set of candidate
genes.

Across IBD loci without curated effector genes, our network scores provide further evidence
to 42 candidates as being more highly functionally connected than remaining genes at the
locus (STable 4, Methods). For each of the 42 genes we counted the number of traits with
L2G score greater than 0.5 (STable 4) noting that 21 are linked to 10 or more traits and 12
to more than 20 different traits. While many of these were already strong IBD candidate
genes that didn’t meet our top confidence threshold, some have only recently found strong
support. A clear example is the RIPK2 locus. Although OSGIN2 is nearest to IBD lead SNP
rs7015630 (38 kb distal), it has no apparent functional links with IBD (network score 43%). In
contrast, RIPK2 (108 kb distal, network score 99%) encodes for a mediator of inflammatory
signalling via the interaction with the bacterial sensor NOD2 (Canning et al. 2015). Network
information can also provide a comparison point for other evidence sources. At the  DLD-
SLC26A3 locus, there is moderate evidence of genetic colocalization between IBD and an
eQTL for DLD in various tissues (Open Targets genetics portal). However, DLD has no clear
functional links with IBD and receives a low network score (14%). In contrast, SLC26A3 is a
chloride anion transporter highly expressed in the human colon, with a high network score
(98.4% in the L2G seed gene network), and its expression has been recently associated with
clinical outcomes in ulcerative colitis (Camarillo et al. 2020). IBD candidate genes that have
high network scores but  have not  been well  characterized in  the context  of  IBD include
PTPRC (a phosphatase required for  T-cell  activation)  and  BTBD8.  BTBD8 is  not  a well
studied gene (3 publications in Pubmed), but it is functionally connected to autophagy by the
network analysis (via WIPI2 and ATG16L1). 

These  results  provide  further  evidence  to  candidate  genes  for  IBD  studies  and  drug
development and illustrate the potential of integrating the network propagation scores as part
of fine-mapping and gene prioritization efforts across other traits. 

Discussion

We identified  gene modules  associated  with  906 human traits,  taking advantage of  the
increase  in  coverage  of  human  interactome mapping  and  novel  tools  for  SNP  to  gene
mapping  (Mountjoy  et  al.  2020).  As seen in  other  studies  (Huang et  al.  2018),  network
expansion is capable of retrieving previously known disease genes and drug targets that are
not identified by GWAS. Network expansion can lead to the indication of genes that are not
in GWAS loci but that may regulate or modulate the same biological processes. Importantly,
even when excluding genes with direct genetic support, such interacting genes are enriched
for successful drug targets (MacNamara et al. 2020). Genes identified by network expansion
will  not  have information on direction  of  effect  and additional  work and interpretation  is
needed to gain insights into the direction of impact of modulating such genes. 

Improvements in SNP to gene mapping provided a small but measurable improvement in the
results of the network expansion when compared to using the closest gene to the identified
SNP.  While there are several  algorithms to perform network propagation,  recent  studies
have shown that  they tend to perform similarly  (Choobdar  et  al.  2019) and instead the
network used has a stronger impact on performance (Huang et al. 2018). For this reason,
improvements  in  mapping  coverage  and  computational  or  experimental  approaches  to
derive tissue or cell type specific networks (Greene et al. 2015) could have a large impact on
future effectiveness of network expansion. 

We showed examples of disease-linked gene modules that were also enriched in genes
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carrying clinical variants for the same or related diseases. In many cases, the genes with
clinical variants did not overlap with the GWAS linked genes, which is likely due to lower
frequency of  clinical  variants.  Testing for  burden of  loss-of-function (LoF)  variants within
selected gene-sets is an approach used to study the impact of low frequency variants (Epi4K
consortium and Epilepsy Phenome/Genome Project 2017; Povysil et al. 2019). We suggest
that the gene modules identified here could be ideally suited for testing the burden of LoF in
population scale genome sequencing efforts. 

The gene modules identified here relate specific aspects of cell biology with different human
traits. The analysis of mouse phenotypes and ClinVar variants provided additional evidence
for some of the identified relationships. Additional work, in particular with appropriate models
(e.g.  organoids,  mouse  models)  will  be  needed  to  follow  up  on  some  of  the  derived
associations. The most pleiotropic gene modules reflect aspects of cell biology that have
been defined as highly pleiotropic in gene deletion studies of yeast (Hillenmeyer et al. 2008).
Interestingly, the traits that are linked with highly pleiotropic gene modules tend to have a
larger number of starting GWAS seed genes. This suggests that the larger the number of
loci linked to a trait the higher the chances that this trait will be genetically linked to a small
number  of  highly  pleiotropic  biological  processes.  While  it  has  been suggested that  the
heritability of complex traits is broadly spread along the genome  (Boyle, Li, and Pritchard
2017), our analysis indicates that, across a large number of traits, this heritability overlaps in
a non random fashion. 

Gene modules linked with different traits could  provide opportunities for drug repurposing or
cross-disease drug development. However, pleiotropic effects of perturbing the related cell
biological  processes could  raise  safety  concerns.  Despite  this,  we did  not  find  a  strong
correlation between the number of traits associated with a gene module and quantitative
metrics  relating  to  drug  safety.  Beyond identifying  gene modules,  our  GWAS-based
network approach can also be used to prioritise disease genes at individual loci by
their role within speci昀椀c biological processes, as we showed for IBD.

In summary, network expansion of GWAS is a powerful tool for the identification of genes

and cellular processes linked to human traits, and the application to multi-trait analysis can

reveal pleiotropy among human biological pathways, as well as highlight new opportunities

for drug development and repurposing.  

Methods

Human interactome, GWAS traits and linked genes analyzed

We created a comprehensive human interactome, merging an interactome developed for the
Open Targets (www.opentargets.org) project (version from November 2019), with STRING
v11.0.  The  Open  Targets  Interactome network  was  constructed  during  this  project  and
contains  human  data  only,  including  physical  interaction  data  from  IntAct,  causality
associations from SIGNOR and binarized pathway reaction relationships from Reactome.
More  details  about  the  network  construction  can  be  found  here:  https://platform-
docs.opentargets.org/target/molecular-interactions.  STRING  functional  interactions  were
only human and selected to have a STRING edge score >=0.75. All identifiers were mapped
to Ensembl gene identifiers  and after removing duplicated edges and self-loops the final
network used contains 18,410 nodes and 571,917 edges.  

Network propagation of GWAS linked genes

From  a  total  number  of  1221  traits,  we  selected  1,002  mapped  to  EFO  terms
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(www.ebi.ac.uk/efo/)  included  in  the Open Targets  genetic  portal,  with  at  least  2  genes
mapped to our interactome with a Locus to Gene score (L2G) of at least 0.5 (defined as
seed nodes).  The network-based approach was run individually  for  each trait,  with each
protein having a weight corresponding to the L2G score (between 0.5 and 1.0). The input
was diffused through the interactome using the Personalized Page Rank algorithm (PPR)
included in the R package igraph (v.1.2.4.2).  To generate the modules,  we selected the
nodes with a PPR ranking score bigger than the third quartile (Q3, 75%) and performed
walktrap clustering (igraph v.1.2.4.2). When the number of nodes in one module was bigger
than 300, we repeated the clustering inside this community, until all resulting clusters were
smaller than 300 genes. To define gene modules as significantly associated with a trait, we
used a Kolmogorov Smirnov test to determine whether ranks (based on PPR) of genes in a
module were greater than the background ranks of all the nodes considered for the walktrap
clustering. We only tested modules with at least 10 genes and where at least 2 of them were
seed genes (i.e. L2G>0.5), and we corrected the resulting p-values for multiple testing using
BH adjustment. Based on this we identified a total of  2021 associations between a gene
module and a trait. 

Benchmarking the capacity  to predict  disease associated genes from the network
expansion

To benchmark both the predictive power of the ranking score resulting from the PPR and the
genetic portal data when compared to GWAS catalog (https://www.ebi.ac.uk/gwas/, based
on gene proximity), we computed ROC curves using as true positives the genes linked to
diseases from the Jensen lab DISEASE database (diseases.jensenlab.org). This database
provides a score measuring this  association,  the benchmark was done using 4 different
score threshold (DIS0: all  genes, DIS1: score>25%, DIS2: score>50%, DIS3: score>75%
and DIS4: maximum value for the score). We calculated the ROC curves and the AUCs
(area under the ROC curve) for traits with at least 10 True Positives. Also, we randomized
both the nodes in the network (keeping the degree distribution) as well as the true positives
1,000 times each, then we calculated the AUCs and the subsequent Z Scores. As an extra
benchmark  we  used  the  clinical  trial  data  contained  in  ChEMBL,  considering  as  true
positives drug targets tested for a certain disease at clinical phases II or higher.

Trait-trait relationships defined by the similarity of the network propagation

We calculated the Manhattan distance between the 1002 traits using the full PPR ranking
score, followed by hierarchical  clustering,  resulting in 54 clusters (height  distance=1). To
further characterize them, we selected the ones having at least 5 traits, we obtained their
EFO ancestry and calculated their frequency per cluster. The highest frequency per cluster
is used to define 9 groups colour coded in Fig 2A. To complement the description of clusters
belonging to the most general group “measurement” and “material property”, we extracted
EFO  ancestry  terms  with  manually  assigned  terms  from  the  EFO  ancestry  with  lower
frequency and listed in Fig 2A. ChEMBL database was used to calculate the counts of both
drugs and drug targets for each of the trait clusters, using the information for drugs in clinical
trials, phases III and IV. To further illustrate the validity of this approach,  we selected 3 trait
clusters (Fig 2B) as examples of valid trait to trait relations.

Multi-trait gene module analysis

The significant modules identified for each trait (described above) were compared across

traits  by  measuring  the  overlap  in  genes  using  the  Jaccard  index.  Gene modules  with

Jaccard index >= 0.70 were considered to be in common across two traits. From the 2021

pairs  of  gene  modules  to  trait  associations,  886  are  unique  to  a  single  trait  and  the

remainder can be collapsed to 73 gene modules that are enriched in network propagation
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signals for 2 or more traits. To identify which sub-groups of related traits we clustered the

traits linked to the 73 multi-trait modules based on the Manhattan distance of their full PPR

ranking  score  (as  above)  using  hierarchical  clustering.  Sub-groups  were  defined  with  a

height cut-off of 0.7 and we identified gene modules that were more specific to each sub-

group of traits using a fisher test and BH multiple testing correction. We kept trait sub-groups

with at least 3 traits and significant presence of at least one group of overlapping modules. 

Gene module annotations and enrichment analysis

The gene KD mouse phenotypes were extracted from the International Mouse Phenotyping

Consortium (IMPC)  and  the clinical  variants  from the database  ClinVar  (NCBI).  For  the

enrichment of genes from clinical variants, the diseases were grouped into larger categories.

For the enrichment of genes from clinical variants referred to in Fig 3C-D and Fig 4 B-C, we

downloaded the data from ClinVar (NCBI), filtered out all benign associations and grouped

the  phenotypes  larger  higher  categories  as  follows:  tooth  agenesis  (tooth  agenesis,

Selective tooth agenesis 4, 7 and 8),  bone related diseases (sclerosteosis 1, osteoarthritis,

osteopetrosis, osteoporosis, osteogenesis imperfecta and osteopenia), asthma (asthma and

nasal  polyps,  susceptibility  to  asthma  and  asthma  related  traits,  diminish  response  to

leukotriene treatment in asthma, asthma and aspirine intolerance), autoimmune condition

(Familial  cold autoinflammatory syndromes),  immunodeficiency (immunodeficiency due to

defect in mapbp-interacting protein, hepatic venoocclusive disease with immunodeficiency,

immunodeficiency-centromeric  instability-facial  anomalies  syndrome  1,  immunodeficiency

31a, 31C, 32a, 32b, 38, 39, 44 and 45, immunodeficiency X-Linked, with magnesium defect,

Epstein-Barr  virus  infection,  and  neoplasia,  combined  immunodeficiency,  severe  T-cell

immunodeficiency,  and  immunodeficiency  65  with  susceptibility  to  viral  infections),

lymphocyte  syndrome (Bare lymphocyte  syndrome types  1  and  2),  arthritis  (rheumatoid

arthritis  and  juvenile  arthritis),  Kabuki  syndrome  (Kabuki  syndrome  1  and  2),

thrombocytopenia  (thrombocytopenia,  dyserythropoietic  anaemia  with  thrombocytopenia,

GATA-1-related  thrombocytopenia  with  dyserythropoiesis,  X-linked  thrombocytopenia

without dyserythropoietic anaemia, thrombocytopenia with platelet dysfunction, hemolysis,

and  imbalanced  globin  synthesis,  radioulnar  synostosis  with  amegakaryocytic

thrombocytopenia  2  and  macrothrombocytopenia),  anaemia  (anaemia,  dyserythropoietic

anaemia with thrombocytopenia, aplastic anaemia, CD59-mediated haemolytic anaemia with

or without immune-mediated polyneuropathy and Diamond-Blackfan anaemia) and aicardi-

Goutieres syndrome (Aicardi-Goutieres syndrome 4, 6 and 7).

IBD network analyses for fine-mapping

To  identify  robust  IBD-associated  loci,  we  extracted  loci  defined  in  the  Open  Targets

Genetics portal (genetics.opentargets.org) for two IBD GWAS (de Lange et al. 2017; Liu et

al. 2015). Since each GWAS may identify different lead variants, we merged together loci

defined by lead variants within 200 kb of each other. We extracted the locus2gene (L2G)

score reported for all genes at each locus, and for merged loci took the average L2G score

for  each gene across the loci.  We curated 37 high-confidence IBD genes based on the

presence of fine-mapped deleterious coding variants, genes whose protein products are the

targets of  approved IBD drugs,  and literature.  We defined additional  seed gene sets by

selecting  the  top  gene  at  each  locus  which  had  a  L2G  score  >  0.5.  We  ran  network

propagation as described in the main text. However, to get unbiased scores for seed genes

themselves, we left each seed gene out of the input in turn, and ran network propagation to
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obtain a score based on the remaining N-1 seed genes. To compute the PPR percentile for

seed genes, we used the PPR percentile from the single network propagation run where that

seed gene was excluded from the input.  For all  other genes,  we used the median PPR

percentile across the N seed gene runs. Plots in Fig 5 are based on PPR percentiles from

the curated seed gene network.  To assess enrichment  of  low  p-value SNPs near  high-

network genes (Fig 5C), we first determined for each gene the minimum  p-value among

SNPs within 10 kb of the gene’s footprint based on IBD GWAS summary statistics from de

Lange et al. (2017). We used Fisher’s exact test to determine the odds ratio for genes with

high network score (in each defined bin) to have a low minimum SNP  p-value, relative to

genes with low network scores (PPR percentile < 50).

PPR percentiles discussed in the text are the average PPR percentiles for each gene across

the curated and L2G>0.5 networks. We identified IBD candidate genes that stand out based

on their network score (STable 4) by filtering all locus genes to those which had average

PPR percentile > 90 and L2G > 0.1, and where no other gene at the same locus had PPR

percentile > 80 and L2G > 0.1. 

Supplementary figures

Supplementary figure 1 - .  Disease-disease distance benchmark.  A) Areas under the ROC curve
(AUCs)  for  three different  disease-disease distance metrics:  Manhattan,  Euclidean and Canberra
distances. They were calculated using the full PPR ranking scores after the network expansion for all
disease-disease pairs, we considered as true positives the 796 disease-disease pairs with common
ancestry (Jaccard score of ancestry terms from EFO annotation bigger or equal to 0.7). To calculate
the ROC curves, we sampled 1000 pairs from the negative space for 1000 iterations, the resulting
AUCs were plotted in the boxplots. B) Example of one of the ROC curves for Manhattan distance
(AUC= 0.73) C) Violin plot showing the Manhattan distance distribution for all disease-disease pairs
with shared ancestry (jaccard index >=0.70) considered as true positive and for all pairs considered
as negative space. The Wilcoxon rank sum test was calculated to measure the difference between
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both distributions.

Supplementary  figure 2 - . Boxplot showing the number of starting GWAS hits per trait (GWAS
count) for all traits, for traits with shared modules and for traits that have highly pleiotropic modules
(top 6, description based on GOBP annotation). In the left panel, barplot showing the total number of
traits for each selection. 
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