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ABSTRACT 

Mammalian cardiovascular tissues are comprised of complex and diverse collections of cells. Recent 

advances in single-cell profiling technologies have accelerated our understanding of tissue cellularity 

and the molecular networks that orchestrate cardiovascular development, maintain homeostasis, and 

are disrupted in pathological states. Despite the rapid development and application of these 

technologies, many cardiac single-cell functional genomics datasets remain inaccessible for most 

cardiovascular biologists. Access to custom visual representations of the data, including querying 

changes in cellular phenotypes and interactions in diverse contexts, remains unavailable in publicly 

accessible data portals. Visualizing data is also challenging for scientists without expertise in 

processing single-cell genomic data. Here we present CLARA—CardiovascuLAR Atlas—a web 

portal facilitating exploration of the cardiovascular cellular landscape. Using mouse and human single-

cell transcriptomic datasets, CLARA enables scientists unfamiliar with single-cell-omic data analysis 

approaches to examine gene expression patterns and the cell population dynamics of cardiac cells in a 

range of contexts. The web-application also enables investigation of intercellular interactions that form 

the cardiac cellular niche. CLARA is designed for ease-of-use and we anticipate that the portal will 

aid deeper exploration of cardiovascular cellular landscapes in the context of development, 

homeostasis and disease. CLARA is freely available at https://clara.baker.edu.au. 
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INTRODUCTION 

The heart and other cardiovascular tissues are formed by a diverse array of cell types. In the heart, 

these include myocytes—which form the vast majority of the heart’s volume—and non-myocytes, 

which outnumber myocytes. The application of single-cell flow cytometry and high throughput 

sequencing methodologies have transformed our understanding of cardiovascular tissue cellularity 

and, in particular, the heterogeneity of non-myocytes of the heart [1, 2]. Single-cell transcriptomics 

enables joint examination of cellular heterogeneity and gene expression patterns, in addition to 

revealing shifts in these parameters in context of development or tissue stress. Recently, multiple 

single-cell transcriptomic studies have been published—in human and non-human contexts—that have 

examined the cellular landscape of the heart [2–6] and aorta [7, 8]. Collectively, these studies have 

shown that cell types respond in an orchestrated manner to a range of physiological stressors, and that 

the cardiovascular tissues are ecosystems of interdependent cell types. While these studies have 

provided new and valuable insights into the community of cells that form these tissues, much of the 

data exploration and analyses presented in individually published studies have been focused on specific 

or narrowly defined questions confined by the scope of each study. Thus, there is a need for ready 

accessibility of these datasets in order to broaden their value for application to disparate research fields. 

Motivated by the need for a user-friendly and accessible resource for exploration of cardiac single-cell 

genomic datasets, we developed CLARA (CardiovascuLAR Atlas), a web portal for exploring the 

cardiac cellular landscape. The CLARA portal provides the capacity to explore gene expression within 

individual cell populations and interactions between populations. Specific features include 

visualization and retrieval of: (i) expression of any gene of interest, including changes in context of 

physiological stress such as fibrosis and myocardial infarction; (ii) top-ranked genes that define cell 

populations; (iii) top-ranked genes that change within individual cell populations in the context of 

physiological stress; and (iv) inter-cellular ligand-receptor interactions. It is anticipated that CLARA 

will provide a customized and user-specific experience that will aid exploration of the cellular 

landscapes of tissues of interest to cardiovascular researchers. 
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RESULTS 

To enable analysis of the cardiovascular cellular landscape, we prepared datasets from six cardiac and 

aortic single-cell transcriptomic datasets published in eight independent studies. These include four 

mouse heart datasets (Table 1) [2–5], one human heart dataset [6], one mouse aorta [8] and one human 

aorta [7]. All datasets allow examination of the uninjured heart or aorta. In addition, the mouse datasets 

permit consideration of changes in cellularity and gene expression in a variety of pathological states, 

including myocardial infarction [3, 5], angiotensin II (AngII)-induced cardiac fibrosis [4], and elastase-

induced aortic aneurism [8]. The mouse datasets were developed using whole intact cells, with one of 

them including nuclei of cardiomyocytes [4], while the human datasets were generated from cell nuclei 

[6, 7]. We also provide a computationally integrated dataset consisting of four mouse heart datasets 

merged together [2–5], which serves as a unified portrait of changes to the heart across a variety of 

pathological conditions.  

The home page of the portal provides salient details of the datasets utilised and navigation to the data 

explorer (https://clara.baker.edu.au). The Datasets tab contains pertinent information relating to the 

datasets, including experimental groups and numbers, single-cell technology used, and other 

parameters that are important for interpretation and consideration of the data (also see Table 1). This 

tab also directs users to the original journal publications and allows users to download datasets from 

ArrayExpress or NCBI databases if required. As an educational tool, we have included a Cell type 

definitions tab. The glossary provides a brief description of cardiac cell types and key genes used to 

annotate these cell populations in the datasets. The Data Analysis pipeline in the Methods tab provides 

a detailed description of the bioinformatics workflow used to prepare scRNA-seq data within the web 

portal (also see Figure 1). The marker genes used to manually annotate cell populations identified in 

scRNA-seq datasets can be found under the Cell Annotation sub-section. Access to the data browser 

is provided by the Go to portal button in the CLARA home page and the Portal tab. This initiates an 

application that allows interactive data exploration. On the left panel, the dataset and gene to be 

displayed can be selected. The tabs on top of the Data Browser allow examination of: (i) gene 

expression of all cells; (ii) gene expression by condition; (iii) cell type marker genes; (iv) differential 

expression within cell types dependent upon context; (v) ligand-receptor signalling network for a 

selected ligand-receptor pair between cell types. The Gene expression tab allows the distribution of 

gene expression to be visualised for a chosen gene. A gene is selected by typing the gene symbol in 

the gene field, and pressing Submit. For example, entering Csf1r in ‘Mouse - Heart (McLellan et al., 

2020)’ dataset, outputs three plots (Figure 2). The first two plots consist of points representing 

individual cells projected into two dimensions based on local transcriptional similarity using the tSNE 

algorithm; this is a method that provides a high-level visualization of cellular heterogeneity, with 

transcriptionally similar cells being clustered tightly in a two-dimensional space. The first plot (top 

left panel), is a tSNE plot where each cell population and corresponding sub-clusters are labelled and 

coloured. The second plot (top right panel), titled with the entered gene on top, displays a tSNE plot 

with the gene expression level of Csf1r mapped onto cells using a grey-red (low-high) colour gradient. 

The third plot (bottom panel), displays a violin plot – namely, a rotated kernel density plot – showing 

expression of Csf1r across each cell population. Together these three plots show that, in this example, 

Csf1r expression is primarily restricted to macrophages. These plots can be downloaded by pressing 

the Download plot buttons. 

The Gene expression by condition tab enables consideration of genes in context of a physiological 

stress. Here, the dataset and gene of choice is selected as done for the Gene expression tab. The data 

is also presented in a similar manner with tSNE projections for the control and stress condition 

followed by a violin plot (Figure 3). This is useful when examining genes which are up- or down-

regulated following cardiac stress. For example, a query of the gene periostin (Postn)—a gene that is 

widely implicated in cardiac fibrosis— in the ‘Mouse - Heart (McLellan et al., 2020)’ dataset, shows 
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that some Fibroblast-Wif1, pericytes and Schwann cells are enriched for Postn transcripts in control 

(wild type, “WT”) samples. However, in the stressed context (AngII), most cell populations are 

enriched for Postn transcript. Similar patterns are visible for the other mouse datasets where different 

stressors are present, demonstrating the utility of this interface for determining shifts in gene 

expression. 

We have also included a Marker gene expression tab to examine cell type specific gene expression 

patterns. Here a selected cell type is displayed within a tSNE projection and a table summarises 

statistics relating to the top distinct genes for that cell population (Figure 4). The order of which genes 

are displayed can be changed by sorting column headers; however, by default, genes are ordered 

according to average log fold change (avg_logFC) relative to all other cells of the dataset. 

Context dependent gene expression can be explored by selecting the Differential expression tab. This 

allows selection of a cell type and a context of interest. For example, using the 'integrated heart dataset’ 

(Mouse-Heart Integrated 2020) and selecting ‘pericytes 1’ and ‘Healthy-control vs AngII-stressed’ 

displays pericytes 1 within tSNE projections with a table summarising the top differentially expressed 

genes below (Figure 5). The genes within the table are ordered according to p-value (pval) by default 

without consideration of whether the gene is up- or down-regulated. However, the table can be 

reordered to determine top up-regulated genes (Mfap4, Col1a1, and Col3a1) and down-regulated 

genes (Hspa1a, Hspa1b, and Tpi1) by manipulating the log2 fold change (log2FC) column. Specific 

genes of interest within the table can also be queried by entering the gene symbol in the Search field. 

Finally, putative intercellular communication networks for selected ligand-receptor pairs can be 

examined by selecting the Ligand-receptor signalling networks tab. Here we define ligand-receptor 

connections based on a dataset of human ligand-receptor pairs [9].  This tab allows selection of a 

ligand-receptor pair in a context of interest within a dataset. For example, selecting ligand receptor 

pair ‘VEGFA-KDR’ and WT in ‘Mouse - Heart (McLellan et al., 2020)’ dataset displays a chord plot 

summarizing the VEGFA-KDR communication network, as inferred from gene expression patterns, 

within cardiac cell populations in homeostasis (Figure 6). Arrows represent signalling direction from 

ligand to receptor between cardiac cell populations, with arrow thickness and colour intensity 

proportional to the strength of the connection. The line colour reflects the cell population producing 

transcript coding for the ligand. For example, arrows emerging from cardiomyocytes highlight the 

remarkable expression of vascular endothelial growth factor A (VEGFA) in cardiomyocytes which 

links with endothelial, endocardial, epicardial and LEC cell populations via the corresponding receptor 

kinase domain insert receptor (KDR). This signalling network clearly exhibits the significant 

contribution of cardiomyocytes in this micro-environment to maintain endothelial cell growth and 

function. 
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DISCUSSION 

With increasing numbers of studies incorporating single-cell omic datasets, intuitive and highly 

accessible tools are urgently needed for data exploration and to aide comprehension of these rich data 

resources by the wider research community.  We present CLARA as a resource to achieve this and 

help further our understanding of the diverse cellular landscapes that form cardiovascular tissues. We 

have calibrated the presentation of CLARA to help inform individuals who are both novice and expert 

in the fields of cardiovascular single-cell transcriptomics, and are interested in cardiovascular cell 

biology in the context of health and disease. A key feature of CLARA enabling this goal is the 

incorporation of elements that aim to help users understand the diverse cell types within these datasets 

in addition to how the data was generated. 

While a number of single-cell data portals are currently available, to our knowledge CLARA is the 

first portal focused on cardiovascular cell systems. Notable examples of alternative portals include 

Single Cell Portal (https://singlecell.broadinstitute.org) and the Heart Cell Atlas 

(https://www.heartcellatlas.org/), affiliated with the Human Cell Atlas consortium. While these portals 

are powerful tools, they are limited by presenting few data exploration methods (both Single Cell 

Portal and Human Cell Atlas) and lacking perturbations to the tissue (in the case of Heart Cell Atlas). 

A distinguishing feature of CLARA is the inclusion of both cardiac and aortic data from humans and 

mice from a number of physiological stress contexts. Datasets absent from the CLARA portal were 

those where raw data was unavailable at the time of developing CLARA, or where characteristics of 

the data precluded them from inclusion (for example, low cell numbers, low cellular heterogeneity, 

and/or absence of key experimental details). In addition, we have incorporated different means to 

visualize and explore data which incorporates features provided by other portals, such as querying cell-

specific gene transcript levels, as well as novel visualization modalities for viewing intercellular 

communication networks. Finally, we sought to include information that may assist those interested in 

performing single-cell analyses independently, such as genes used for defining cell populations and 

overviews of data analysis pipelines. 

However, a number of limitations of CLARA are worth noting. First, we down-sampled datasets 

presented in CLARA to ~10,000 cells for each individual datasets and 16,000 cells collectively for the 

integrated analysis. While this greatly enhanced performance of the portal, it may limit cellular 

heterogeneity represented in the dataset with potential loss of very small cell populations. Second, the 

datasets selected differed in animal strains, sample sizes, and protocols used to extract cells. These 

factors bestow challenges for comparing datasets. While we are unable to control these parameters, 

here we have attempted to minimize the impact of bioinformatics pipelines by reanalysing all datasets 

using a similar workflow and with recent releases of analysis software. 

Future iterations of CLARA will have expanded capabilities and a continually updated list of included 

datasets. Datasets included will not be restricted to single-cell transcriptomics, and other single-cell 

omic data, such as assay for transposase-accessible chromatin with sequencing (ATAC-seq), will be 

incorporated. Where appropriate, we will add to existing, or create new, integrated maps of cellulomes 

(for instance human heart or mouse aorta) as we have done for the mouse heart in the current edition 

of CLARA. Second, we plan to incorporate data from other organ systems—for example the kidney 

and liver—which impact cardiovascular tissues. Third, we will incorporate features to examine sex-

specific differences between cell types and conditions, when more studies have considered this 

important variable. Finally, we will update our analysis pipelines as improved approaches emerge. 

These include, for example, alternative databases such as CellphoneDB [10] for mapping ligand-

receptor pairings and intercellular interactions.  

In summary, CLARA enables intuitive exploration of cardiovascular cellular landscapes by 

visualisation of single-cell transcriptomic datasets. We anticipate that this portal will help diverse 
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groups of individuals to interact with the rich data resources presented in CLARA to learn about 

cardiovascular cell populations and genetic systems. We hope to grow upon this first iteration of 

CLARA in the future by incorporating additional features and diverse high-dimensional datasets to 

further our understanding of cardiovascular cell systems in health and disease. 

 

METHODS 

The interactive interface within CLARA (CardiovascuLAR Atlas) is implemented in R statistical 

software using the shiny R package [11]. The processed scRNA-seq datasets used in CLARA are stored 

as Seurat Objects.  These objects were created using the Seurat R package [12], provide a scalable and 

memory efficient data format for scRNA-seq data, and integrate into R environments for visualization. 

CLARA contains six scRNA-seq datasets that can be easily explored on a graphical web interface for 

research and educational purposes. For a detailed description of datasets and analysis pipelines used 

in CLARA see Expanded Methods in the Supplementary Materials.  

 

FUNDING SOURCES 

This work is supported by National Health and Medical Research Council (Australia) Ideas Grant 

(GNT1188503) to ARP.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.452862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452862
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dona et al., 2021. CLARA portal 

8 

 

REFERENCES 

[1]  Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting cardiac cellular composition. Circ Res 2016; 

118: 400–409. 

[2]  Skelly DA, Squiers GT, McLellan MA, et al. Single-Cell Transcriptional Profiling Reveals 

Cellular Diversity and Intercommunication in the Mouse Heart. Cell Rep 2018; 22: 600–610. 

[3]  Farbehi N, Patrick R, Dorison A, et al. Single-cell expression profiling reveals dynamic flux 

of cardiac stromal, vascular and immune cells in health and injury. Elife; 8. Epub ahead of 

print 26 March 2019. DOI: 10.7554/eLife.43882. 

[4]  McLellan MA, Skelly DA, Dona MSI, et al. High-Resolution Transcriptomic Profiling of the 

Heart During Chronic Stress Reveals Cellular Drivers of Cardiac Fibrosis and Hypertrophy. 

Circulation 2020; 142: CIRCULATIONAHA.119.045115. 

[5]  Forte E, Skelly DA, Chen M, et al. Dynamic Interstitial Cell Response during Myocardial 

Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep 2020; 30: 

3149-3163.e6. 

[6]  Tucker NR, Chaffin M, Fleming SJ, et al. Transcriptional and Cellular Diversity of the Human 

Heart. Circulation 2020; 142: 2020.01.06.896076. 

[7]  Li Y, Ren P, Dawson A, et al. Single-Cell Transcriptome Analysis Reveals Dynamic Cell 

Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human 

Aortic Tissue. Circulation 2020; 1374–1388. 

[8]  Zhao G, Lu H, Chang Z, et al. Single-cell RNA sequencing reveals the cellular heterogeneity 

of aneurysmal infrarenal abdominal aorta. Cardiovasc Res. Epub ahead of print 17 July 2020. 

DOI: 10.1093/cvr/cvaa214. 

[9]  Ramilowski JA, Goldberg T, Harshbarger J, et al. A draft network of ligand–receptor-

mediated multicellular signalling in human. Nat Commun 2015; 6: 7866. 

[10]  Efremova M, Vento-Tormo M, Teichmann SA, et al. CellPhoneDB: inferring cell–cell 

communication from combined expression of multi-subunit ligand–receptor complexes. Nat 

Protoc 2020 154 2020; 15: 1484–1506. 

[11]  Chang W, Cheng J, Allaire J, et al. shiny: Web Application Framework for R, https://cran.r-

project.org/package=shiny (2021, accessed 16 July 2021). 

[12]  Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. 

Cell 2021; 184: 3573-3587.e29. 

[13]  Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell 

2019; 177: 1888-1902.e21. 

[14]  Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing 

transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. 

Genome Biol 2015; 16: 278. 

[15]  Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential 

expression analysis. Nat Methods 2018; 15: 255–261. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.452862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452862
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dona et al., 2021. CLARA portal 

9 

 

FIGURE LEGENDS 

Figure 1. Bioinformatics workflow summarising the preparation of datasets for the portal. The 

raw data files were downloaded from NCBI and Array Express databases in SRA or FastQ formats, 

respectively. SRA files downloaded from NCBI were converted into FastQ file format using sratoolkits 

v.2.10.9. Subsequent FastQ files were then processed and analysed using Cell Ranger (10x Genomics) 

software to extract cell-barcodes, UMI and RNA reads. These RNA sequencing reads were then 

aligned into reference genomes to quantify transcript levels in each cell and create feature-barcode 

matrices. The downstream analyses scRNA-seq data were carried out in R statistical software using 

the Seurat R package. Figures were primarily generated using Seurat and ggplot2 R packages.  See 

Expanded Methods in the Supplementary Materials for further details. 

Figure 2: Visualization of gene expression. (A) tSNE projection of all cardiac cell populations and 

corresponding sub-clusters identified in McLellan et al., (2020) dataset. Using Csf1r as an example, 

the transcript level Csf1r gene is visualized in the tSNE plot with heat-map indicating relative gene 

expression level (red =high, grey=low) (B) and in Violin plots (C). 

Figure 3: Visualization of gene expression in different contexts. (A) tSNE projections for the 

control (WT) and stressed (AngII) conditions visualizing the expression of Postn (periostin) gene in 

McLellan et al., (2020) dataset (red =high, grey=low) followed by (B) violin plots (green=control, 

red=stressed).   

Figure 4: Marker genes for distinct cell populations. (A) drop-down menu for selecting a cell 

population within a dataset. (B) tSNE plot highlighting cells corresponding to selected ‘Fibro-Thbs4’ 

cell population in McLellan et al., (2020) dataset, used as an example here.  (C) Table summarizing 

top distinct genes expressed in ‘Fibro-Thbs4’ cell population. Note: by default, genes are ordered 

according to average log fold change (avg_logFC) relative to all other cells in the dataset. 

Figure 5. Differential gene expression between groups. (A) drop-down menu for selecting a cell 

population within the dataset. (B) Radio buttons for choosing conditions to compare by differential 

expression testing. (C) tSNE projections using the Mouse-Heart Integrated 2020 dataset and ‘pericytes 

1’ as an example. tSNE projections highlight ‘pericytes 1’ in Healthy-control and AngII-stressed 

groups. (D) table summarising list of top differentially expressed genes between Healthy-control and 

AngII-stressed groups in ‘pericytes 1’ population. Note: by default, genes are ordered according to p 

value (pval) without consideration to whether genes are up- or down-regulated. 

Figure 6. Visualization of Intercellular communication networks. (A) drop-down menu for 

selecting ligand-receptor pairs. (B) List of conditions within the selected dataset. (C) Chord plot 

summarising the putative signalling network for selected ligand-receptor pair. Here, we show Vegfa-

Kdr pair in homeostasis McLellan et al., (2020) dataset. Arrows represent potential connections 

between cell populations, with arrow thickness and colour intensity proportional to the strength of the 

connection. The line colour reflects the cell population producing transcript coding for the ligand. 

Table 1. Summary of datasets used in CLARA. 

Table S1: Summary table of processing parameters for each dataset. 

Table S2: The number of cells visualized per dataset in CLARA. 
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Figure 1. Bioinformatics workflow summarising the preparation of datasets for the portal. The 
raw data files were downloaded from NCBI and Array Express databases in SRA or FastQ formats, 
respectively. SRA files downloaded from NCBI were converted into FastQ file format using sratoolkits 
v.2.10.9. Subsequent FastQ files were then processed and analysed using Cell Ranger (10x 
Genomics) software to extract cell-barcodes, UMI and RNA reads. These RNA sequencing reads 
were then aligned into reference genomes to quantify transcript levels in each cell and create 
feature-barcode matrices. The downstream analyses scRNA-seq data were carried out in R statistical 
software using the Seurat R package. Figures were primarily generated using Seurat and ggplot2 R 
packages.  See Expanded Methods in the Supplementary Materials for further details.
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Figure 2: Visualization of gene expression. (A) tSNE projection of all cardiac cell populations and 
corresponding sub-clusters identified in McLellan et al., (2020) dataset. Using Csf1r as an example, the 
transcript level Csf1r gene is visualized in the tSNE plot with heat-map indicating relative gene expression 
level (red =high, grey=low) (B) and in Violin plots (C).
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Figure 3: Visualization of gene expression in different contexts. (A) tSNE projections for the control (WT) and 
stressed (AngII) conditions visualizing the expression of Postn (periostin) gene in McLellan et al., (2020) dataset 
(red =high, grey=low) followed by (B) violin plots (green=control, red=stressed).  
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Clusters :

Show 10 entries Search:

Showing 1 to 10 of 50 entries Previous 1 2 3 4 5 Next

Top marker genes for Fibro-Thbs4

gene cluster adjusted_p_value avg_logFC pct_expressing_this_cluster pct_expressing_other

1 Thbs4 Fibro-Thbs4 0 3.133 0.929 0.047

2 Postn Fibro-Thbs4 0 2.736 0.991 0.299

3 Cilp Fibro-Thbs4 0 2.720 0.998 0.197

4 Cthrc1 Fibro-Thbs4 0 2.460 0.841 0.036

5 Comp Fibro-Thbs4 0 2.418 0.899 0.110

6 Fmod Fibro-Thbs4 0 2.362 0.938 0.058

7 Fibin Fibro-Thbs4 0 2.075 0.984 0.300

8 Angptl7 Fibro-Thbs4 0 1.930 0.651 0.076

9 Ddah1 Fibro-Thbs4 0 1.745 0.807 0.049

10 Cilp2 Fibro-Thbs4 0 1.675 0.699 0.009

Fibro-Thbs4

A B

C

Figure 4: Marker genes for distinct cell populations. (A) drop-down menu for selecting a cell 
population within a dataset. (B) tSNE plot highlighting cells corresponding to selected ‘Fibro-Thbs4’ cell 
population in McLellan et al., (2020) dataset, used as an example here.  (C) Table summarizing top 
distinct genes expressed in ‘Fibro-Thbs4’ cell population. Note: by default, genes are ordered according 
to average log fold change (avg_logFC) relative to all other cells in the dataset.
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Clusters : DE analysis between :

Healthy-control vs AngII-stressed

Healthy-control vs MI-day3

Healthy-control vs MI-day7

AngII-stressed vs MI-day3

AngII-stressed vs MI-day7

MI-day3 vs MI-day7

Show 10 entries Search:

Showing 1 to 10 of 500 entries Previous 1 2 3 4 5 … 50 Next

Top differentially expresses genes in Perictyes 1

gene cluster pval avg_expression_Healthy.control pct_nonzero_Healthy.control avg_expression_AngII.stressed pct_nonzero_AngII.stressed log2FC UR_in_AngII.stressed DR_in_AngII.stressed

177 Kcnj8
Perictyes

1

3.67511672017173e-

22
37.781 0.917 24.213 0.846 -0.621 0 1

1 Mfap4
Perictyes

1

2.42675942562947e-

20
0.651 0.093 2.403 0.308 1.043 1 0

178 Cox4i2
Perictyes

1

3.33238110722007e-

19
20.716 0.837 12.928 0.701 -0.641 0 1

179 Ubb
Perictyes

1

1.01034195333262e-

17
39.377 0.919 28.848 0.843 -0.436 0 1

2 Col3a1
Perictyes

1

4.04320511041439e-

17
4.821 0.504 9.265 0.706 0.819 1 0

180 Gng11
Perictyes

1

6.61441156792162e-

16
21.182 0.862 14.588 0.709 -0.509 0 1

3 Sparc
Perictyes

1

3.34351308195421e-

15
26.919 0.923 40.071 0.959 0.557 1 0

4 Hspa5
Perictyes

1

2.95797934843065e-

14
7.576 0.626 13.323 0.762 0.740 1 0

181 Ppia
Perictyes

1

1.37112002976955e-

13
19.513 0.859 14.033 0.776 -0.448 0 1

182 Ndufa4l2
Perictyes

1

7.3970648511204e-

13
29.613 0.922 23.371 0.884 -0.329 0 1

Perictyes 1

A B

C

D

Figure 5. Differential gene expression between groups. (A) drop-down menu for selecting a cell population 
within the dataset. (B) Radio buttons for choosing conditions to compare by differential expression testing. (C) 
tSNE projections using the Mouse-Heart Integrated 2020 dataset and ‘pericytes 1’ as an example. tSNE 
projections highlight ‘pericytes 1’ in Healthy-control and AngII-stressed groups. (D) table summarising list of top 
differentially expressed genes between Healthy-control and AngII-stressed groups in ‘pericytes 1’ population. 
Note: by default, genes are ordered according to p value (pval) without consideration to whether genes are up- or 
down-regulated.
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Conditions :

WT

AngII

A B

C

Ligand-Receptor pair :

Vegfa-Kdr

Figure 6. Visualization of Intercellular communication networks. (A) drop-down menu for selecting 
ligand-receptor pairs. (B) List of conditions within the selected dataset. (C) Chord plot summarising the 
putative signalling network for selected ligand-receptor pair. Here, we show Vegfa-Kdr pair in homeostasis 
McLellan et al., (2020) dataset. Arrows represent potential connections between cell populations, with 
arrow thickness and colour intensity proportional to the strength of the connection. The line colour reflects 
the cell population producing transcript coding for the ligand.
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Table 1. Summary of datasets used in CLARA. 

 

 

  Skelly et al Farbehi et al Forte et al Mclellan et al Tucker et al Zhao et al Li et al Integrated dataset 

Publication year 2018 2019 2020 2020 2020 2020 2020 This paper 

Accession 
number 

ArrayExpress: 
E-MTAB-6173 

ArrayExpress: 
E-MTAB-7376 

ArrayExpress: 
E-MTAB-7895 

ArrayExpress: 
E-MTAB-8810 

dbGab: 
phs001539.v1.p1 

NCBI: 
GSE152583 

NCBI: 
GSE155468 

 

Single-cell 
technology 

10x Genomics 10x Genomics 10x Genomics 10x Genomics 10x Genomics 10x Genomics 10x Genomics  

Organism Mus musculus Mus musculus Mus musculus Mus musculus Homo sapiens Mus musculus Homo sapiens Mus musculus 

Tissue Heart Heart Heart Heart Heart Aorta Aorta Heart 

Biological sex 
(age) 

Female/male  
(10 weeks) 

Male 
(8-12 weeks) 

Male 
(10-12 weeks) 

Female/male  
 (10 weeks) 

Male  
(Avg. age: 50.7 

years) 
 

Female  
(Avg. age: 52.5 

years) 

Male  
(10 weeks old) 

Male – 5  
(Avg. age: 61.4 

years) 
 

Female  
(Avg. age: 70 

years) 

Female/male  
(8-12 weeks) 

Groups 

WT (n=4) Total interstitial 
population (TIP) 
Sham day 7 (n=4) 
MI day 3 (n=4) 
MI day 7 (n=4) 
 

MI day 3: (n=1) 
MI day 7: (n=1) 
Sham day 7: (n=2) 

WT: none 
treatment + saline 
treated 
 
AngII: Angiotensin 
II stressed 
 
(n=4M and 4F per 
group) 

LA: left atrium (3F, 
3M) 
LV: left ventricle 
(3F, 3M) 
RA: right atrium 
(4F, 2M) 
RV: right ventricle 
(3F, 3M) 
 
 

Sham:  
Heat-inactive 
Elastase 14 days 
(n=3) 
 
Elastase-7 days 
(n=3) 
Elastase-14 days 
(n=3) 

Control:  
Non-aneurysmal 
disease control 
(n=3) 
 
ATAA:  
Ascending thoracic 
aortic aneurysm 
(n=8) 

Healthy/Control : 
Control (McLellan et al., 2020) 
WT (Skelly et al., 2018) 
Sham d7 (Farbehi et al., 2019) 
Sham d7 (Forte et al., 2020) 

 
AngII-Stressed: 

AngII (McLellan., 2020) 
 

MI-day3: 
MI-day 3 (Forte et al., 2020) 
MI-day 3 (Farbehi et al., 2019) 

 
MI-day7: 

MI-day 7 (Forte et al., 2020) 
MI-day 7 (Farbehi et al., 2019) 
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