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ABSTRACT

Mammalian cardiovascular tissues are comprised of complex and diverse collections of cells. Recent
advances in single-cell profiling technologies have accelerated our understanding of tissue cellularity
and the molecular networks that orchestrate cardiovascular development, maintain homeostasis, and
are disrupted in pathological states. Despite the rapid development and application of these
technologies, many cardiac single-cell functional genomics datasets remain inaccessible for most
cardiovascular biologists. Access to custom visual representations of the data, including querying
changes in cellular phenotypes and interactions in diverse contexts, remains unavailable in publicly
accessible data portals. Visualizing data is also challenging for scientists without expertise in
processing single-cell genomic data. Here we present CLARA—CardiovascuLAR Atlas—a web
portal facilitating exploration of the cardiovascular cellular landscape. Using mouse and human single-
cell transcriptomic datasets, CLARA enables scientists unfamiliar with single-cell-omic data analysis
approaches to examine gene expression patterns and the cell population dynamics of cardiac cells in a
range of contexts. The web-application also enables investigation of intercellular interactions that form
the cardiac cellular niche. CLARA is designed for ease-of-use and we anticipate that the portal will
aid deeper exploration of cardiovascular cellular landscapes in the context of development,
homeostasis and disease. CLARA is freely available at https://clara.baker.edu.au.
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INTRODUCTION

The heart and other cardiovascular tissues are formed by a diverse array of cell types. In the heart,
these include myocytes—which form the vast majority of the heart’s volume—and non-myocytes,
which outnumber myocytes. The application of single-cell flow cytometry and high throughput
sequencing methodologies have transformed our understanding of cardiovascular tissue cellularity
and, in particular, the heterogeneity of non-myocytes of the heart [1, 2]. Single-cell transcriptomics
enables joint examination of cellular heterogeneity and gene expression patterns, in addition to
revealing shifts in these parameters in context of development or tissue stress. Recently, multiple
single-cell transcriptomic studies have been published—in human and non-human contexts—that have
examined the cellular landscape of the heart [2-6] and aorta [7, 8]. Collectively, these studies have
shown that cell types respond in an orchestrated manner to a range of physiological stressors, and that
the cardiovascular tissues are ecosystems of interdependent cell types. While these studies have
provided new and valuable insights into the community of cells that form these tissues, much of the
data exploration and analyses presented in individually published studies have been focused on specific
or narrowly defined questions confined by the scope of each study. Thus, there is a need for ready
accessibility of these datasets in order to broaden their value for application to disparate research fields.

Motivated by the need for a user-friendly and accessible resource for exploration of cardiac single-cell
genomic datasets, we developed CLARA (CardiovascuLAR Atlas), a web portal for exploring the
cardiac cellular landscape. The CLARA portal provides the capacity to explore gene expression within
individual cell populations and interactions between populations. Specific features include
visualization and retrieval of: (i) expression of any gene of interest, including changes in context of
physiological stress such as fibrosis and myocardial infarction; (ii) top-ranked genes that define cell
populations; (iii) top-ranked genes that change within individual cell populations in the context of
physiological stress; and (iv) inter-cellular ligand-receptor interactions. It is anticipated that CLARA
will provide a customized and user-specific experience that will aid exploration of the cellular
landscapes of tissues of interest to cardiovascular researchers.
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RESULTS

To enable analysis of the cardiovascular cellular landscape, we prepared datasets from six cardiac and
aortic single-cell transcriptomic datasets published in eight independent studies. These include four
mouse heart datasets (Table 1) [2-5], one human heart dataset [6], one mouse aorta [8] and one human
aorta [7]. All datasets allow examination of the uninjured heart or aorta. In addition, the mouse datasets
permit consideration of changes in cellularity and gene expression in a variety of pathological states,
including myocardial infarction [3, 5], angiotensin II (AnglIl)-induced cardiac fibrosis [4], and elastase-
induced aortic aneurism [8]. The mouse datasets were developed using whole intact cells, with one of
them including nuclei of cardiomyocytes [4], while the human datasets were generated from cell nuclei
[6, 7]. We also provide a computationally integrated dataset consisting of four mouse heart datasets
merged together [2-5], which serves as a unified portrait of changes to the heart across a variety of
pathological conditions.

The home page of the portal provides salient details of the datasets utilised and navigation to the data
explorer (https://clara.baker.edu.au). The Datasets tab contains pertinent information relating to the
datasets, including experimental groups and numbers, single-cell technology used, and other
parameters that are important for interpretation and consideration of the data (also see Table 1). This
tab also directs users to the original journal publications and allows users to download datasets from
ArrayExpress or NCBI databases if required. As an educational tool, we have included a Cell type
definitions tab. The glossary provides a brief description of cardiac cell types and key genes used to
annotate these cell populations in the datasets. The Data Analysis pipeline in the Methods tab provides
a detailed description of the bioinformatics workflow used to prepare scRNA-seq data within the web
portal (also see Figure 1). The marker genes used to manually annotate cell populations identified in
scRNA-seq datasets can be found under the Cell Annotation sub-section. Access to the data browser
is provided by the Go to portal button in the CLARA home page and the Portal tab. This initiates an
application that allows interactive data exploration. On the left panel, the dataset and gene to be
displayed can be selected. The tabs on top of the Data Browser allow examination of: (i) gene
expression of all cells; (ii) gene expression by condition; (iii) cell type marker genes; (iv) differential
expression within cell types dependent upon context; (v) ligand-receptor signalling network for a
selected ligand-receptor pair between cell types. The Gene expression tab allows the distribution of
gene expression to be visualised for a chosen gene. A gene is selected by typing the gene symbol in
the gene field, and pressing Submit. For example, entering Csf1r in ‘Mouse - Heart (McLellan et al.,
2020)’ dataset, outputs three plots (Figure 2). The first two plots consist of points representing
individual cells projected into two dimensions based on local transcriptional similarity using the tSNE
algorithm; this is a method that provides a high-level visualization of cellular heterogeneity, with
transcriptionally similar cells being clustered tightly in a two-dimensional space. The first plot (top
left panel), is a tSNE plot where each cell population and corresponding sub-clusters are labelled and
coloured. The second plot (top right panel), titled with the entered gene on top, displays a tSNE plot
with the gene expression level of CsfIr mapped onto cells using a grey-red (low-high) colour gradient.
The third plot (bottom panel), displays a violin plot — namely, a rotated kernel density plot — showing
expression of Csf1r across each cell population. Together these three plots show that, in this example,
Csflr expression is primarily restricted to macrophages. These plots can be downloaded by pressing
the Download plot buttons.

The Gene expression by condition tab enables consideration of genes in context of a physiological
stress. Here, the dataset and gene of choice is selected as done for the Gene expression tab. The data
is also presented in a similar manner with tSNE projections for the control and stress condition
followed by a violin plot (Figure 3). This is useful when examining genes which are up- or down-
regulated following cardiac stress. For example, a query of the gene periostin (Postn)—a gene that is
widely implicated in cardiac fibrosis— in the ‘Mouse - Heart (McLellan et al., 2020)’ dataset, shows
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that some Fibroblast-Wif1, pericytes and Schwann cells are enriched for Postn transcripts in control
(wild type, “WT”) samples. However, in the stressed context (Angll), most cell populations are
enriched for Postn transcript. Similar patterns are visible for the other mouse datasets where different
stressors are present, demonstrating the utility of this interface for determining shifts in gene
expression.

We have also included a Marker gene expression tab to examine cell type specific gene expression
patterns. Here a selected cell type is displayed within a tSNE projection and a table summarises
statistics relating to the top distinct genes for that cell population (Figure 4). The order of which genes
are displayed can be changed by sorting column headers; however, by default, genes are ordered
according to average log fold change (avg_logFC) relative to all other cells of the dataset.

Context dependent gene expression can be explored by selecting the Differential expression tab. This
allows selection of a cell type and a context of interest. For example, using the 'integrated heart dataset’
(Mouse-Heart Integrated 2020) and selecting ‘pericytes 1° and ‘Healthy-control vs Angll-stressed’
displays pericytes 1 within tSNE projections with a table summarising the top differentially expressed
genes below (Figure 5). The genes within the table are ordered according to p-value (pval) by default
without consideration of whether the gene is up- or down-regulated. However, the table can be
reordered to determine top up-regulated genes (Mfap4, Collal, and Col3al) and down-regulated
genes (Hspala, Hspalb, and Tpil) by manipulating the log2 fold change (10g2FC) column. Specific
genes of interest within the table can also be queried by entering the gene symbol in the Search field.

Finally, putative intercellular communication networks for selected ligand-receptor pairs can be
examined by selecting the Ligand-receptor signalling networks tab. Here we define ligand-receptor
connections based on a dataset of human ligand-receptor pairs [9]. This tab allows selection of a
ligand-receptor pair in a context of interest within a dataset. For example, selecting ligand receptor
pair “‘VEGFA-KDR’ and WT in ‘Mouse - Heart (McLellan et al., 2020)’ dataset displays a chord plot
summarizing the VEGFA-KDR communication network, as inferred from gene expression patterns,
within cardiac cell populations in homeostasis (Figure 6). Arrows represent signalling direction from
ligand to receptor between cardiac cell populations, with arrow thickness and colour intensity
proportional to the strength of the connection. The line colour reflects the cell population producing
transcript coding for the ligand. For example, arrows emerging from cardiomyocytes highlight the
remarkable expression of vascular endothelial growth factor A (VEGFA) in cardiomyocytes which
links with endothelial, endocardial, epicardial and LEC cell populations via the corresponding receptor
kinase domain insert receptor (KDR). This signalling network clearly exhibits the significant
contribution of cardiomyocytes in this micro-environment to maintain endothelial cell growth and
function.
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DISCUSSION

With increasing numbers of studies incorporating single-cell omic datasets, intuitive and highly
accessible tools are urgently needed for data exploration and to aide comprehension of these rich data
resources by the wider research community. We present CLARA as a resource to achieve this and
help further our understanding of the diverse cellular landscapes that form cardiovascular tissues. We
have calibrated the presentation of CLARA to help inform individuals who are both novice and expert
in the fields of cardiovascular single-cell transcriptomics, and are interested in cardiovascular cell
biology in the context of health and disease. A key feature of CLARA enabling this goal is the
incorporation of elements that aim to help users understand the diverse cell types within these datasets
in addition to how the data was generated.

While a number of single-cell data portals are currently available, to our knowledge CLARA is the
first portal focused on cardiovascular cell systems. Notable examples of alternative portals include
Single Cell Portal (https://singlecell.broadinstitute.org) and the Heart Cell Atlas
(https://www.heartcellatlas.org/), affiliated with the Human Cell Atlas consortium. While these portals
are powerful tools, they are limited by presenting few data exploration methods (both Single Cell
Portal and Human Cell Atlas) and lacking perturbations to the tissue (in the case of Heart Cell Atlas).
A distinguishing feature of CLARA is the inclusion of both cardiac and aortic data from humans and
mice from a number of physiological stress contexts. Datasets absent from the CLARA portal were
those where raw data was unavailable at the time of developing CLARA, or where characteristics of
the data precluded them from inclusion (for example, low cell numbers, low cellular heterogeneity,
and/or absence of key experimental details). In addition, we have incorporated different means to
visualize and explore data which incorporates features provided by other portals, such as querying cell-
specific gene transcript levels, as well as novel visualization modalities for viewing intercellular
communication networks. Finally, we sought to include information that may assist those interested in
performing single-cell analyses independently, such as genes used for defining cell populations and
overviews of data analysis pipelines.

However, a number of limitations of CLARA are worth noting. First, we down-sampled datasets
presented in CLARA to ~10,000 cells for each individual datasets and 16,000 cells collectively for the
integrated analysis. While this greatly enhanced performance of the portal, it may limit cellular
heterogeneity represented in the dataset with potential loss of very small cell populations. Second, the
datasets selected differed in animal strains, sample sizes, and protocols used to extract cells. These
factors bestow challenges for comparing datasets. While we are unable to control these parameters,
here we have attempted to minimize the impact of bioinformatics pipelines by reanalysing all datasets
using a similar workflow and with recent releases of analysis software.

Future iterations of CLARA will have expanded capabilities and a continually updated list of included
datasets. Datasets included will not be restricted to single-cell transcriptomics, and other single-cell
omic data, such as assay for transposase-accessible chromatin with sequencing (ATAC-seq), will be
incorporated. Where appropriate, we will add to existing, or create new, integrated maps of cellulomes
(for instance human heart or mouse aorta) as we have done for the mouse heart in the current edition
of CLARA. Second, we plan to incorporate data from other organ systems—for example the kidney
and liver—which impact cardiovascular tissues. Third, we will incorporate features to examine sex-
specific differences between cell types and conditions, when more studies have considered this
important variable. Finally, we will update our analysis pipelines as improved approaches emerge.
These include, for example, alternative databases such as CellphoneDB [10] for mapping ligand-
receptor pairings and intercellular interactions.

In summary, CLARA enables intuitive exploration of cardiovascular cellular landscapes by
visualisation of single-cell transcriptomic datasets. We anticipate that this portal will help diverse
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groups of individuals to interact with the rich data resources presented in CLARA to learn about
cardiovascular cell populations and genetic systems. We hope to grow upon this first iteration of
CLARA in the future by incorporating additional features and diverse high-dimensional datasets to
further our understanding of cardiovascular cell systems in health and disease.

METHODS

The interactive interface within CLARA (CardiovascuLAR Atlas) is implemented in R statistical
software using the shiny R package [11]. The processed scRNA-seq datasets used in CLARA are stored
as Seurat Objects. These objects were created using the Seurat R package [12], provide a scalable and
memory efficient data format for sScRNA-seq data, and integrate into R environments for visualization.
CLARA contains six sSCRNA-seq datasets that can be easily explored on a graphical web interface for
research and educational purposes. For a detailed description of datasets and analysis pipelines used
in CLARA see Expanded Methods in the Supplementary Materials.
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FIGURE LEGENDS

Figure 1. Bioinformatics workflow summarising the preparation of datasets for the portal. The
raw data files were downloaded from NCBI and Array Express databases in SRA or FastQ formats,
respectively. SRA files downloaded from NCBI were converted into FastQ file format using sratoolkits
v.2.10.9. Subsequent FastQ files were then processed and analysed using Cell Ranger (10x Genomics)
software to extract cell-barcodes, UMI and RNA reads. These RNA sequencing reads were then
aligned into reference genomes to quantify transcript levels in each cell and create feature-barcode
matrices. The downstream analyses scRNA-seq data were carried out in R statistical software using
the Seurat R package. Figures were primarily generated using Seurat and ggplot2 R packages. See
Expanded Methods in the Supplementary Materials for further details.

Figure 2: Visualization of gene expression. (A) tSNE projection of all cardiac cell populations and
corresponding sub-clusters identified in McLellan et al., (2020) dataset. Using Csflr as an example,
the transcript level Csflr gene is visualized in the tSNE plot with heat-map indicating relative gene
expression level (red =high, grey=low) (B) and in Violin plots (C).

Figure 3: Visualization of gene expression in different contexts. (A) tSNE projections for the
control (WT) and stressed (Angll) conditions visualizing the expression of Postn (periostin) gene in
MclLellan et al., (2020) dataset (red =high, grey=low) followed by (B) violin plots (green=control,
red=stressed).

Figure 4: Marker genes for distinct cell populations. (A) drop-down menu for selecting a cell
population within a dataset. (B) tSNE plot highlighting cells corresponding to selected ‘Fibro-Thbs4’
cell population in McLellan et al., (2020) dataset, used as an example here. (C) Table summarizing
top distinct genes expressed in ‘Fibro-Thbs4’ cell population. Note: by default, genes are ordered
according to average log fold change (avg_logFC) relative to all other cells in the dataset.

Figure 5. Differential gene expression between groups. (A) drop-down menu for selecting a cell
population within the dataset. (B) Radio buttons for choosing conditions to compare by differential
expression testing. (C) tSNE projections using the Mouse-Heart Integrated 2020 dataset and ‘pericytes
I’ as an example. tSNE projections highlight ‘pericytes 1’ in Healthy-control and AnglI-stressed
groups. (D) table summarising list of top differentially expressed genes between Healthy-control and
Angll-stressed groups in ‘pericytes 1’ population. Note: by default, genes are ordered according to p
value (pval) without consideration to whether genes are up- or down-regulated.

Figure 6. Visualization of Intercellular communication networks. (A) drop-down menu for
selecting ligand-receptor pairs. (B) List of conditions within the selected dataset. (C) Chord plot
summarising the putative signalling network for selected ligand-receptor pair. Here, we show Vegfa-
Kdr pair in homeostasis McLellan et al., (2020) dataset. Arrows represent potential connections
between cell populations, with arrow thickness and colour intensity proportional to the strength of the
connection. The line colour reflects the cell population producing transcript coding for the ligand.

Table 1. Summary of datasets used in CLARA.
Table S1: Summary table of processing parameters for each dataset.

Table S2: The number of cells visualized per dataset in CLARA.
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Figure 1. Bioinformatics workflow summarising the preparation of datasets for the portal. The
raw data files were downloaded from NCBI and Array Express databases in SRA or FastQ formats,
respectively. SRA files downloaded from NCBI were converted into FastQ file format using sratoolkits
v.2.10.9. Subsequent FastQ files were then processed and analysed using Cell Ranger (10x
Genomics) software to extract cell-barcodes, UMI and RNA reads. These RNA sequencing reads
were then aligned into reference genomes to quantify transcript levels in each cell and create
feature-barcode matrices. The downstream analyses scRNA-seq data were carried out in R statistical
software using the Seurat R package. Figures were primarily generated using Seurat and ggplot2 R
packages. See Expanded Methods in the Supplementary Materials for further details.
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Figure 2: Visualization of gene expression. (A) tSNE projection of all cardiac cell populations and
corresponding sub-clusters identified in McLellan et al., (2020) dataset. Using Csf1r as an example, the
transcript level Csf1r gene is visualized in the tSNE plot with heat-map indicating relative gene expression
level (red =high, grey=Ilow) (B) and in Violin plots (C).
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Figure 3: Visualization of gene expression in different contexts. (A) tSNE projections for the control (WT) and
stressed (Angll) conditions visualizing the expression of Postn (periostin) gene in McLellan et al., (2020) dataset
(red =high, grey=low) followed by (B) violin plots (green=control, red=stressed).
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Figure 4: Marker genes for distinct cell populations. (A) drop-down menu for selecting a cell
population within a dataset. (B) tSNE plot highlighting cells corresponding to selected ‘Fibro-Thbs4’ cell
population in McLellan et al., (2020) dataset, used as an example here. (C) Table summarizing top
distinct genes expressed in ‘Fibro-Thbs4’ cell population. Note: by default, genes are ordered according
to average log fold change (avg_logFC) relative to all other cells in the dataset.
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Figure 5. Differential gene expression between groups. (A) drop-down menu for selecting a cell population
within the dataset. (B) Radio buttons for choosing conditions to compare by differential expression testing. (C)
tSNE projections using the Mouse-Heart Integrated 2020 dataset and ‘pericytes 1’ as an example. tSNE
projections highlight ‘pericytes 1’ in Healthy-control and Angll-stressed groups. (D) table summarising list of top
differentially expressed genes between Healthy-control and Angll-stressed groups in ‘pericytes 1’ population.
Note: by default, genes are ordered according to p value (pval) without consideration to whether genes are up- or
down-regulated.
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Figure 6. Visualization of Intercellular communication networks. (A) drop-down menu for selecting
ligand-receptor pairs. (B) List of conditions within the selected dataset. (C) Chord plot summarising the
putative signalling network for selected ligand-receptor pair. Here, we show Vegfa-Kdr pair in homeostasis
McLellan et al., (2020) dataset. Arrows represent potential connections between cell populations, with
arrow thickness and colour intensity proportional to the strength of the connection. The line colour reflects
the cell population producing transcript coding for the ligand.
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Table 1. Summary of datasets used in CLARA.

Publication year

Accession
number

Single-cell
technology

Organism
Tissue

Biological sex
(age)

Groups

Skelly et al
2018

ArrayExpress:
E-MTAB-6173

10x Genomics

Mus musculus

Heart

Female/male
(10 weeks)

WT (n=4)

Farbehi et al Forte et al Mclellan et al Tucker et al
2019 2020 2020 2020

ArrayExpress: ArrayExpress: ArrayExpress: dbGab:

E-MTAB-7376 E-MTAB-7895 E-MTAB-8810 phs001539.v1.p1

10x Genomics

Mus musculus

Heart

Male
(8-12 weeks)

Total interstitial
population (TIP)
Sham day 7 (n=4)
Ml day 3 (n=4)

MI day 7 (n=4)

10x Genomics

Mus musculus

Heart

Male
(10-12 weeks)

Ml day 3: (n=1)
M day 7: (n=1)
Sham day 7: (n=2)

10x Genomics

Mus musculus

Heart

Female/male
(10 weeks)

WT: none
treatment + saline
treated

Angll: Angiotensin
Il stressed

(n=4M and 4F per
group)

10x Genomics

Homo sapiens
Heart

Male
(Avg. age: 50.7
years)

Female
(Avg. age: 52.5
years)

LA: left atrium (3F,
3M)

LV: left ventricle
(3F, 3M)

RA: right atrium
(4F, 2M)

RV: right ventricle
(3F, 3M)

Zhao et al
2020

NCBI:
GSE152583

10x Genomics

Mus musculus

Aorta

Male
(10 weeks old)

Sham:
Heat-inactive
Elastase 14 days
(n=3)

Elastase-7 days
(n=3)
Elastase-14 days
(n=3)

Li et al
2020

NCBI:
GSE155468

10x Genomics

Homo sapiens
Aorta

Male — 5
(Avg. age: 61.4
years)

Female
(Avg. age: 70
years)

Control:
Non-aneurysmal
disease control
(n=3)

ATAA:

Ascending thoracic
aortic aneurysm
(n=8)

Integrated dataset
This paper

Mus musculus

Heart

Female/male
(8-12 weeks)

Healthy/Control :
Control (McLellan et al., 2020)
WT (Skelly et al., 2018)
Sham d7 (Farbehi et al., 2019)
Sham d7 (Forte et al., 2020)

Angll-Stressed:
Angll (McLellan., 2020)

Mi-day3:
Ml-day 3 (Forte et al., 2020)
Ml-day 3 (Farbehi et al., 2019)

Mi-day7:
Ml-day 7 (Forte et al., 2020)
MI-day 7 (Farbehi et al., 2019)
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