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Abstract 
Cancer evolution is driven by natural selection acting upon phenotypic trait variation. However, 

the extent to which phenotypic variation within a tumour is a consequence of intra-tumour 

genetic heterogeneity remains undetermined. Here we show that colorectal cancer cells 

frequently have highly plastic phenotypic traits in vivo in patient tumours. We measured the 

degree to which trait variation reflects genetic ancestry by quantifying the phylogenetic signal of 

gene expression across 297 samples with multi-region paired whole genome and transcriptome 

sequencing collected from 27 primary colorectal cancers. Within-tumour phylogenetic signal for 

genes and pathways was detected only infrequently, suggesting that the majority of intra-tumour 

variation in gene expression programmes was not strongly heritable. Expression quantitative trait 

loci analyses (eQTL) identified a small number of putative mechanisms of genetic control of gene 

expression due to the cis-acting coding, non-coding and structural genetic alteration, but most 

gene expression variation was not explained by our genetic analysis. Leveraging matched 

chromatin-accessibility sequencing data, enhancer mutations with cis regulatory effects on gene 

expression were associated with a change in chromatin accessibility, indicating that non-coding 

variation can have phenotypic consequence through modulation of the 3D architecture of the 

genome. This study maps the evolution of transcriptional variation during cancer evolution, 

highlighting that intra-tumour phenotypic plasticity is pervasive in colorectal malignancies, and 

may play key roles in further tumour evolution, from metastasis to therapy resistance. 
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Introduction 
Genetic intra-tumour heterogeneity (gITH) is an inevitable consequence of tumour evolution 

(Turajlic et al., 2019). Extensive gITH has been extensively documented across human cancer types 

(Black and McGranahan, 2021), and the precise pattern of gITH within an individual cancer is a 

direct consequence of the evolutionary dynamics driving the development of the tumour 

(Williams et al., 2019). Consequently, clones which experience positive, negative or neutral 

selection can be identified through analysis of gITH. However, natural selection in cancer operates 

on the phenotypic characteristics of a cell, for example the ability of a cancer cell to evade 

predation from the immune system (Rosenthal et al., 2019), or to metabolise in oxygen poor 

environments (Robertson-Tessi et al., 2015). Knowledge of the genotype-phenotype map of 

cancer cells is limited, and thus, whilst genomics offers us a window into determining which clones 

are selected, the methodology provides limited information on precisely why those clones are 

selected. 

 

RNA sequencing (RNAseq) enables high throughput profiling of phenotypic characteristics of 

cancer cells by quantitative measurement of the gene expression levels that define the 

transcriptome (Stark et al., 2019). Historically, studies have focused on inter-tumour differences in 

gene expression patterns and have led to the identification of sets of genes with expression that is 

correlated with clinical outcomes; in colorectal cancer (CRC), the focus of this study, consensus 

molecular subtypes (CMS) (Guinney et al., 2015) or cancer cell intrinsic gene expression subtypes 

(CRIS) (Isella et al., 2017) exemplify this approach. Within these subtypes genotype-phenotype 

links have been noted, for instance the CMS1 subtype in CRC is highly enriched in tumours with 

mismatch repair deficiency, whereas KRAS mutations are enriched in CMS3 and the burden of 

somatic copy number alterations (SCNAs) is higher in CMS2&4 (Guinney et al., 2015; Lee et al., 

2020), but the mechanistic relationship between the transcriptome and the genome remains to be 

determined. Furthermore, the growing popularity of multi-region sequencing, including single cell 

sequencing, has highlighted intra-tumour heterogeneity of the transcriptome (tITH) (for example 

in CRC see: (Lee et al., 2020; Roerink et al., 2018)). In CRC, multi-region sequencing studies have 

highlighted tITH of CMS and CRIS subtypes (Alderdice et al., 2018), and single cell sequencing 

shows cancer cells with differing levels of differentiation from a stem cell phenotype coexist within 

individual tumours (Lee et al., 2020).  

 

Potentially tITH could be driven entirely by underlying (epi)genetic variation that evolves during 

tumour growth. However, the observation that local invasion is polyclonal in both CRC (Ryser et 

al., 2020) and in early breast cancer (Casasent et al., 2018), challenge the notion that cancer cell 

phenotype (here the ability to invade) is driven solely by the accrual of genetic mutations. Further, 

observations of rapid transcriptional shifts upon treatment (for example in melanoma (Shaffer et 

al., 2017)) and in CRC variation in subclone proliferation rates through serial re-transplantation 

rates despite largely stable patterns of genetic alterations (Kreso et al., 2013), discount the notion 

that transcriptomic phenotypes are determined solely by clonal replacement. Additionally, it has 

previously been determined that most driver mutations are clonal, meaning that this 

transcriptional variation must often happen in the absence of mutational drivers (Reiter et al., 

2018). Collectively, these studies suggest that phenotypic characteristics are at least partially 

<plastic= 3 they can vary without requiring a new heritable (epi)genetic alteration to drive 

expression changes. 

 

Here we perform multi-region paired transcriptomic and genomic profiling to characterise the 

evolution of phenotypic heterogeneity in colorectal cancers. We make use of the method of 
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phylogenetic signal analysis developed in species evolution to determine the heritability of 

phenotypic traits from these data, and perform integrative analysis to elucidate candidate 

underlying molecular mechanisms controlling genetically-determined phenotypes. 

 

Results 
 

We performed multi-region full-transcript RNA sequencing on 297 samples from 27 colorectal 

cancers (CRCs) (mean 11 samples/tumour, range: 1-38). The spatial sampling protocol and basic 

processing of these data are described in ref{epigenome}. 

 

Heterogeneity of gene and pathway expression in CRCs 

We explored the heterogeneity of gene expression within and between CRCs. We selected genes 

that were frequently expressed in cancer cells by filtering for genes that were moderately-to-

highly expressed (>=10 TPM) in at least 5% of tumour samples, and which did not show a 

significant negative correlation with sample purity (Methods). We clustered the filtered set of 

11,401 genes using both the mean and variance of gene expression within each tumour (Figure 

1A) and cut the dendrogram into four groups: group 1 had high average expression and relatively 

low variance in gene expression (<highly expressed, moderate heterogeneity=), groups 2 and 3 had 

progressively lower average gene expression and high variance in gene expression, while group 4 

genes had low average gene expression and low variability between samples from the same 

tumour (Figure 1B&C). Meta-pathway analysis showed significant enrichment for pathways 

involved in cell growth and death in group 1, cancer-related genes in group 2 and pathways 

related to replication and repair in group 3. Group 4 was not significantly enriched for any class of 

pathways, and due to generally low expression and marked heterogeneity, was excluded from 

further analyses. 
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Figure 1. Clustering of genes based on mean tumour expression and intra-tumour heterogeneity of 

expression. (A) Heatmaps showing clustering of genes by expression level across tumours and 

expression variation within tumours. Hierarchical clustering revealed four distinct groups, named 

Group 1-4. Note units are scaled by column in each heatmap (B) Summary of mean expression level 

per Group. (C) Summary of intra-tumour heterogeneity of expression per Group, measured by 

standard deviation. (D) Meta-KEGG pathway analysis revealing which pathway categories are 

most over-represented in each Group (after removing <Infectious disease: bacterial= and 

<Neurodegenerative Disease= - most significant in Group 1). 

 

We then repeated the clustering analysis using hallmark pathways (Liberzon et al., 2015) (Figure 

2A) rather than individual genes cut the dendrogram into four groups of pathway enrichment. 

Group 1 contained pathways that were homogeneously enriched across all cancers, group 2 

contained pathways with high average enrichment but high heterogeneity compared to group 1, 

and group 3 contained with lower average enrichment and heterogeneity compared to group 1. 

Group 4 contained only two pathways showed highly variable enrichment within each individual 

cancer (Figure 2B). Hallmark pathways were grouped into <classes= according to their biological 

mechanism (<oncogenic=, <immune=, <stromal=, etc) (Jiménez-Sánchez et al., 2020). 

Homogeneously enriched pathways showed moderate but not significant enrichment for cellular 

stress. Heterogeneously enriched pathways were not significantly enriched for any particular class 

of pathway (Figure 2D). Group 4 contained two pathways, epithelial-mesenchymal transition 

(EMT) and angiogenesis, and was enriched for <stromal= acting pathways. 
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Figure 2. Filtering and clustering of pathways based on mean tumour enrichment and intra-tumour 

heterogeneity of enrichment. (A) Heatmaps showing clustering of pathways by enrichment level 

across tumours and enrichment variation within tumours. Hierarchical clustering revealed four 

distinct groups, named Group 1-4. Note units are scaled by column in both heatmaps (B) Summary 

of mean enrichment level per Class. (C) Summary of intra-tumour heterogeneity of enrichment per 

Class, measured by standard deviation. (D) Fisher9s exact test results comparing Groups to 

pathway classes. 

 

 

Together, these analyses indicated that gene expression programs that define cancer cell biology 

and/or interaction with the surrounding immune microenvironment were not uniformly expressed 

across CRCs, despite the presumed importance of these phenotypes to cancer evolution. 

 

Consensus molecular subtypes (CMS) and cancer cell intrinsic gene expression subtypes (CRIS) are 

systems to classify CRCs by gene expression patterns. We investigated the possibility of intra-

tumour heterogeneity of these classifiers. 17 tumours had at least 5 tumour samples, and were 

amenable to these analyses. For CMS, only 2/17 tumours were homogeneously classified (both 

CMS3), 8 tumours contained samples assigned to two different classes, 3 tumours contained 

samples assigned to three classes while 4 tumours had samples assigned to all four CMS classes 

(Figure S1A). For CRIS only a single tumour was homogeneously classified (CRIS-A in C551), 3 

tumours were assigned to 2 different CRIS classes, 10 were assigned to 3 classes and 3 assigned to 

4 classes (Figure S1B). Overall, CRIS classification exhibited higher intra-tumour expression 

heterogeneity than CMS.  

 

We assessed the consistency of assignment between CMS and CRIS: CMS3 classification correlated 

with CRISA classification, and CMS2 and CRISC classifications were also correlated, though many of 

these correlations were weak (Figure S1C). The genes used for both CMS and CRIS classification 

were found to be depleted in Group 1&2 genes (groups from Figure 1) and enriched in Group 4 

genes (Figure S1D). Together these analyses indicate that both CRIS and CMS classifiers are 

sensitive to confounding by intra-tumour heterogeneity; inferring molecular subtype from a single 

biopsy risk incorrect classification of the tumour as a whole. Potentially gene expression classifiers 

robust to intra-tumour heterogeneity could be constructed by limiting included genes to those 

found only in Group 1 genes (those with high expression and low intra-tumour heterogeneity) 

analogous to the approach in (Biswas et al., 2019). 

 

Evolutionary dynamics of gene and pathway expression heterogeneity   

We sought to understand the evolutionary dynamics of the observed heterogeneous patterns of 

gene expression. Paired whole genome sequencing data (either deep sequencing [dWGS] or 

shallow sequencing [sWGS] data that enabled genotyping) was available for 157/279 samples with 

matching RNAseq data. We constructed phylogenetic trees that depicted the shared genetic 

ancestry of the set of samples from each tumour (method described in associated paper 

EPIGENOME) and excluded tumours with fewer than 6 paired DNA-RNA samples (leaving 114 

samples from 8 tumours, median 11 samples per tumour, range 6-31).  The terminal nodes of the 

trees were the extant samples 3 i.e. the tumour subclones that we had phenotypically 

characterised with RNAseq data - and so we overlaid the measured gene expression profiles onto 

the phylogenetic trees (Figure 3C&D and Figure S2). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.451272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.451272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Phylogenetic signal is a statistical method from evolutionary biology that measures the degree to 

which the phenotypic (dis)similarity between species is explained by genetic ancestry, and is 

quantified by the Pagel9s lambda statistic (Freckleton et al., 2002; Pagel, 1999) (Figure 3A&B). We 

assessed the phylogenetic signal of gene expression heterogeneity in each of our CRCs with 

sufficient paired RNA-seq-WGS data. Pagel9s lambda was computed for 8368 genes from groups 1-

3 (as defined in Figure 1). We identified significant phylogenetic signal by comparing to the null 

hypothesis of no phylogenetic signal (gene expression unrelated to genetic ancestry) using a 

likelihood ratio test (see explanatory Figure 3A&B). Figure 3C&D show the expression of 

significantly phylogenetic genes mapped onto phylogenetic trees for two individual tumours (see 

Figure S2 for all tumours used).   

 

A median of 166 genes had phylogenetic signal (p<0.05) within each tumour (range 67-2335), and 

the number of genes with phylogenetic signal did not significantly correlate with the number of 

samples per tumour (p=0.25, Figure S3). Group 1 genes (highly expressed, moderate 

heterogeneity) were enriched for phylogenetic signal, whereas group 3 genes (moderately 

expressed, moderate heterogeneity) were significantly depleted for phylogenetic signal (Figure 

3G). 

 

We searched for genes that recurrently showed phylogenetic signal across tumours. 52 genes 

were found to be phylogenetic in at least three tumours (Figure 3E). The KEGG pathway 8PPAR 

signalling9 (peroxisome proliferator-activated receptor signalling) that is involved in prostaglandin 

and fatty acid metabolism (Michalik et al., 2004) was statistically over-represented in this gene set 

(FDR=0.0075; Figure 3F; stringDB analysis). Links between PPAR metabolism and CRC have been 

previously reported (Currie et al., 2013; Fuchs et al., 2005).  
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Figure 3. Measuring of phylogenetic signal of gene expression with Pagel9s lambda (A) Example 

tree with branch lengths and expression of two example genes shown. GeneA9s expression was 

randomly generated for each sample, while GeneB9s expression is from a simulation of Brownian 

Motion (BM) along the tree, meaning expression will be more similar for closely related samples. 

Expression for both genes is scaled between 0 and 9. (B) Log-likelihood values are calculated for all 

values of lambda between 0 and 1, where a lambda of 1 means the structure of the tree itself 

explains the gene expression while a lambda of 0 means that the tree has to lose all of its structure 

to explain the evolution of the gene expression under BM. The lambda estimate is the lambda with 

the maximum log-likelihood and a likelihood ratio test against lambda=0 then tests for the 

significance of phylogenetic signal. (C) and (D) Phylogenetic trees and heatmaps of genes with 

significantly high phylogenetic signal for tumours C552 and C554 respectively. (E) Genes with 

recurrent phylogenetic signal across tumours, genes shown were found to have significantly high  

phylogenetic signal in at least three tumours (F) Enrichment of KEGG 8PPAR signaling pathway9 for 

recurrently phylogenetic genes. (G) Results of chi-squared test showing whether gene groups were 

enriched for phylogenetic genes. 
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Figure 4. Phylogenetic signal of pathways. (A) and (B) Example phylogenetic trees and pathway 

enrichment heatmaps for tumours C554 and C559 respectively. Pathways are ordered by 

decreasing phylogenetic signal. (C) Heatmap showing recurrence of phylogenetic signal of 

pathways across tumours. Pathways are ordered by decreasing recurrence. (D) Results of fisher 

tests investigating whether pathways that are recurrently phylogenetic (in at least 2 tumours) are 

enriched for a particular group or class. 

 

We then assessed phylogenetic signal at the level of gene expression pathways. Figure 4A&B 

depicts phylogenetic signal for gene expression pathways for tumours C554 and C559 (see Figure 
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S5 for all eight tumours analysed). Two pathways were recurrently phylogenetic in at least 3 

tumours: fatty acid metabolism, related to PPAR signalling which was identified in the gene-level 

analysis, and 8MYC_TARGETS_V29 that contains genes regulated by MYC signalling (Figure 4B). 23 

pathways were significantly phylogenetic in at least 2 tumours, and no recurrently phylogenetic 

pathways were consistently associated with the pathway expression-heterogeneity subgroups 

identified in Figure 2 (Figure 4C). Thus, with the exception of MYC signalling and PPAR fatty acid 

metabolism, the gene and hallmark pathway expression levels only infrequently showed strongly 

heritable subclonal variation during CRC evolution.  

 

We assessed the power of our analysis to detect phylogenetic signals given the size and structure 

of our dataset (a post hoc power calculation). To do this we performed simulations of gene 

expression evolution across the phylogenetic trees observed in our cohort CRCs, where gene 

expression was Poisson distributed across nodes and was increased by a factor of 5-100% in a 

randomly chosen clade of the tree. We had 90% power to detect heritable changes in gene 

expression bigger than 85%, which occurred sufficiently early, in 87.5% (7/8) of the tumours in our 

cohort (Figure S4). We note that only one tumour (C559) had phylogenetic signals that were 

significant after multiple testing correction; our power analysis indicated that our power to detect 

associations was greatest for this tumour (90% power to detect appropriately-timed heritable 

changes in gene expression >20%). Thus, power analysis indicated that our dataset was sufficient 

to enable detection of subclonal, large-effect and heritable changes in gene expression, and these 

events were rare within our cohort of CRCs. 

 

Together, the gene and pathway level assessments of the evolution of transcriptional 

heterogeneity show only few occurrences of substantial subclonal changes in transcription 

activity. In other words, transcriptional activity tends to be somewhat 8uniform9 across CRCs. 

Natural selection acts upon phenotypic variation, and so commonplace phenotypic uniformity is 

consistent with prior reports that analysed genetic data and found only infrequent evidence of 

stringent subclonal selection in CRCs (Sottoriva et al., 2015; Sun et al., 2017; Williams et al., 2018). 

 

Genetic determinants of gene expression heterogeneity 

Genes that recurrently showed phylogenetic signal across multiple patients in our dataset were 

rare, but 4006/8368 (47.9%) of genes showed some evidence of heritable changes in gene 

expression in a single cancer. Somatic mutations altering gene expression are a potential 

mechanistic explanation of phylogenetic signal. We used a regression framework (see Methods), 

analogous to expression quantitative trait loci (eQTL) used in human population genetics(Nica and 

Dermitzakis, 2013), to detect significant cis-associations between inter- and intra-tumour somatic 

genetic heterogeneity (see Methods) and gene expression. 

 

5,927 genes had cis- somatic genetic variation (a genic or non-genic (promoter or enhancer) 

somatic SNV) in at least two samples across our cohort (out of 167 samples collected from 19 

tumours where there were at least two samples with matched RNAseq and dWGS). The 

association between the expression of each of these genes and the somatic genetic alterations 

was examined using multivariate linear regression on z-score normalised expression values, 

revealing 1,402 genes (FDR<0.01) with significant associations (Figure 5), which we termed <eQTL 

gnenes=. 

 

Of these 1,402 eQTL genes, SCNAs contributed to expression changes of 1163/1402 (83.0%) genes 

(Figure 5C; Table S1), but the magnitude of the effect on expression tended to be small (median 
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effect size 0.30 standard deviation in expression change per allele copy). A positive correlation 

between copy number and expression was observed for 1082 genes, but interestingly a negative 

correlation was observed for 81 genes. Amongst the associations, genetic deletions were enriched 

at genes where genetic copy number was positively associated with expression (i.e. genes where 

genetic deletions cause a decrease in gene expression or genetic gains increase expression; 

p=5.9e-05; Figure S6A), whereas genes with negative associations with copy number (i.e. genic 

deletions associated with an increase in gene expression, or genetic gains decreases in expression) 

were enriched for loci with copy number 3 (p=6.7e-06; Figure S6C, unbalanced gain) but not 4 

(p=0.033; Figure S6D, commonly balanced gain). Consequently, we speculate that this is due to 

dominant-negative activity of the amplified allele. 
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Figure 5. eQTL analysis. (A) The number of genes with significant models for each data type. (B) 

The distribution of regression coefficients (effect sizes) for each data type. (C) and (D) Volcano plots 

highlighting selected genes that were significant for CNA and Mut eQTLs respectively. (E) In 

comparison to non-synonymous SNVs (NS), enhancer (Enh) mutations tended to have large effect 

sizes and a higher proportion of positive effect sizes. (F) eQTL associated genes were enriched for 

Group 1 and 2 genes and depleted in Group 3 genes in comparison to non-eQTL associated genes. 

(G) The proportion of eQTL associated genes that were subclonal was higher than the same 

proportion for non-eQTL associated genes. (H) Visualisation of Fisher9s exact tests showing that 
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gene-mutation combinations were more likely to be eQTLs if they were associated with recurrent 

phylogenetic genes (genes found to be phylogenetic in at least 3 tumours) for subclonal mutations 

and that this remains true, but not significant, when considering all mutations, but not for clonal 

mutations. 

 

Somatic SNVs, either coding or non-coding variants, were associated with gene expression 

variation in 508 genes (Figure 5D; Table S1), and typically the magnitude of the association was 

much greater than for CNAs (mean effect size 1.92 vs 0.30 standard deviations for SNV vs single 

copy number change, Figure 5B). For coding somatic mutations, approximately equal numbers of 

associations that were associated with an increase versus decrease in expression were observed 

(33 coding SNVs increase expression versus 27 decreasing expression; p=0.4). Non-coding 

enhancer somatic mutations were associated with the largest changes in gene expression 

observed in our cohort, and were more likely to increase expression (486 increase vs 258 

decrease; Figure 5E, p=6.3e-17). The expression of 175 genes was significantly associated with both 

CNAs and SNVs, indicating how the combination of somatic mutation and copy number alterations 

together determine the gene expression phenotype of cancer cells. We also found that the 

proportions of genes assigned to the expression groups identified in Figure 1 were significantly 

different between non-eQTL associated genes and eQTL associated genes (Figure 5F; chi-squared 

test, p-value=1.76e-36). Specifically, eQTL associated genes were enriched for Group 1&2 genes, 

while they were depleted for Group 3 genes. This is most likely due to the fact that we had the 

most power to detect mutation-expression associations in genes with relatively high expression, 

and Group 1&2 genes had higher mean expression than Group 3 genes (see Figure 1B). 

 

Leveraging our multi-region sequencing data, we assessed the clonality of mutations that were 

associated with differential gene expression. Subclonal mutations were slightly but significantly 

more likely to be associated with cis gene expression changes than clonal mutations (Figure 5E; 

X2=34.4, p=4.5e-09, Figure 5G), indicating that <trans= effects due to the (epi)genetic state of a 

cancer cell commonly determine whether or not a somatic mutation will cause changes in gene 

expression. Furthermore, we calculated how often somatic mutations explained the observed 

phylogenetic signal (i.e. from Figure 3). Subclonal mutations that associated with changes in cis 

gene expression were enriched for phylogenetic signal (OR=5.7, p=0.02; Figure 5G), and this 

enrichment was absent when examining all mutations (OR=1.1, p=0.81) or clonal mutations 

(OR=0.51, p=0.6), see Figure 5H. Thus, collectively our data show that subclonal mutations within 

cancers are associated with frequent and heritable changes in cis gene expression. 

 

We used data from N=394 metastatic colorectal cancers from the Hartwig cohort {31645765} 

where there was paired dWGS and RNA-seq data available to validate the cis effects of somatic 

mutations on gene expression. 115/508 <cis-acting mutations= identified in our dataset were 

present in the Hartwig dataset in more than 1 sample, and the correlation between mutation and 

gene expression observed in our cohort was detected in Hartwig samples for 9 of these 115 

mutations (Figure S7A-I). For 93/ 106 mutations that did not validate, post hoc power assessment 

indicated insufficient power (too few cancers with the mutation) in the Hartwig cohort. For the 

remaining 13 mutations, we had observed the cis effect on gene expression only when the 

mutation acted sub-clonally within a tumour for 2/13 mutations. For the remaining 11/13 

mutations, we assume that failure to validate expression effects in Hartwig is due to unexplained 

<trans= effects (Figure S7J). 
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We tested if subclonal eQTL mutations were associated with subclonal expansions by assessing 

the sizes of clades on phylogenetic trees that carried the eQTL variants. Population genetic theory 

predicts that clade sizes for neutral variants are inversely proportional to clade age, which can be 

proxy-measured by the number of mutations accumulated since the most recent common 

ancestor (MRCA) of the clade (method is described in accompanying manuscript INFERENCE). 

Examination of the relationship between clone size against the time to MRCA revealed that the 

clades with subclonal eQTL mutations were broadly consistent with clade sizes expected from 

neutral mutations (Figure S8). This demonstrated that, in cases where gene expression is 

genetically determined, these expression changes were not likely to be experiencing strong clonal 

selection, and so were likely effectively-neutral. 

 

Non-coding somatic mutations are associated with changed chromatin accessibility and 

differential gene expression. 

We sought to identify the mechanism of how non-coding enhancer somatic mutations cause 

changes in cis gene expression. We leveraged paired chromatin accessibility sequencing (ATACseq) 

data (n=247 with matched mutation and ATACseq data, n=108 with matched mutation, RNA and 

ATACseq data) to explore changes in chromatin architecture associated with enhancer somatic 

mutations (Figure 6 & Figure S9). 
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Figure 6. Combining eQTLs ATAC-seq and phylogenetic data. (A) Pie chart showing the proportion 

of subclonal enhancer eQTLs that displayed significant changes in chromatin accessibility via ATAC-

seq (B) An example of an eQTL with supporting ATAC-seq data - ELF2 in tumour C548. (C) An 

example of an eQTL with limited supporting ATAC-seq data - CD9 in tumour C548. (D) An example 

of a phylogenetic eQTL with limited supporting ATAC-seq data - MAN1B1 in tumour C552. 

 

 

22/89 enhancer mutations were associated with altered chromatin accessibility within cancerous 

tissue (Figure 6A). Somatic enhancer mutations associated with increased gene expression were 

typically associated with more open chromatin and vice versa (Figure 6B-D and Figure S9). We 

note that many enhancer mutations had no discernible effect on the ATACseq signal, highlighting 
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that biological consequences of enhancer mutations can occur through a variety of mechanisms 

not necessarily affecting over accessibility of the DNA. 

 

Striking examples of putatively mutation-induced changes in chromatin architecture included 

somatic mutations in the enhancers of the transcription factor ELF2 (an effector of MYC signalling 

(Schmidt et al., 2019)), CD9 (a tetraspanin member whose increased expression weakly correlates 

survival in CRCs (Kim et al., 2016) and MAN1B1 (a mannosidase implicated in protein folding (Sun 

et al., 2020)). All three were associated with increased expression and visibly increased chromatin 

accessibility (Figure 6B-D), and MAN1B1 was also determined to have significant phylogenetic 

signal. The mutation in MAN1B1 is also noticeably displaced from the main affected peak of 

ATACseq signal, suggesting that broadly altered chromatin accessibility of the locus rather than a 

binary switch between <open= and <closed= states. We note that some enhancer mutations were 

found to decrease both expression and chromatin accessibility (see Figure S9A&B). 

 

 

 

Discussion 
Heterogeneity in gene expression is common between and within colorectal cancers. Leveraging 

the fact that clone ancestry is encoded by somatic mutations in the genome, here we determined 

that only a small proportion of the observed transcriptomic variation shows evidence of recurrent 

heritability through tumour evolution (<1% of expressed genes and <5% of hallmark pathways), 

with a maximum of 28% of genes showing heritable expression in any individual tumour. This 

points towards phenotypic plasticity 3 the ability of a cancer cell to change phenotype without 

underlying heritable (epi)genetic change 3 to be a common phenomena in CRC. We previously 

hypothesised that the observation of infrequent stringent selection for subclones within CRCs was 

consistent with the notion that phenotypic plasticity was established within cancer cells at the 

outset of cancer growth (Sottoriva et al., 2015). Here our explicit analysis of transcriptomic 

variation confirms this hypothesis. 

 

Nevertheless, we find that somatic mutations do, infrequently, cause detectable and heritable 

changes in gene expression. Of 29,949 associations between somatic mutations and gene 

expression examined here, only 796 were associated with significant changes in cis gene 

expression and so can be thought of as <functional= mutations. Moreover, subclonal functional 

mutations were rare: in any individual tumour, we detected a median of 1 (max 34) putatively 

functional subclonal mutations and so the vast majority of genes had expression that was not 

controlled by new somatic mutations which had arisen during tumour evolution. 

 

We note that phenotypic changes do not necessarily correlate with changes in fitness 3 the newly 

induced expression of a particular gene may have no relevance to the ability of that cell to survive 

or grow in its current microenvironment, and indeed across species most genetic <tinkering= is 

near-neutral or even deleterious (Eyre-Walker and Keightley, 2007). In cancers, genetic analysis 

predicts the vast majority of SNVs to be neutral (Martincorena et al., 2017).  Indeed, our related 

analysis shows that tumour subclones which have, or have previously had, increased fitness show 

at most only slight transcriptomic differences within the extant tumour (reference associated 

INFERENCE manuscript). Thus, at least some of the observed tITH is simply <noise= produced by 

the stochastic accumulation of mutations during tumour growth, and care should be taken not to 

conflate transcriptional variation with evidence of important variation in tumour cell biology. 
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Our study shows the evolutionary origins of gene expression heterogeneity in cancer can be 

mechanistically studied by combining genomics with transcriptomics through the lens of 

evolutionary biology. 

 

 

 

Methods 
 

Sample preparation and sequencing 

 

The method of sample collection and processing is described in an accompany manuscript (ref 

associated PROTOCOL manuscript). Sequencing and basic bioinformatic processing of DNA-

sequencing and ATAC-seq data are described in a second accompanying manuscript (ref 

associated EPIGENOME manuscript). 

 

Processing of RNA-seq 

 

After initial quality control with FastQC (Andrews, 2021) and default adaptor trimming with 

Skewer (Jiang et al., 2014), paired-end reads were aligned to GRCh38 reference genome and 

version 28 of the Gencode GTF annotation using the STAR 2-pass method (Dobin et al., 2013). 

Read groups were added with Picard v.2.5.0 {http://broadinstitute.github.io/picard}. Per gene 

read counts were produced with htseq-count that is incorporated into the STAR pipeline (Anders 

et al., 2015). 

  

 

Sample filtering 

Raw gene counts were first filtered for reads uniquely assigned to non-ribosomal protein-coding 

genes located on canonical chromosomes (chr1-22, X and Y).  

 

If samples had less than 5M of these 8usable9 reads they were re-sequenced to improve coverage. 

Where possible, the same library preparation pool was sent again for sequencing. These `top-ups' 

proved to be true technical replicates, since the resulting gene expression of the re-sequenced 

samples clustered very closely to their original samples on both a sample-sample heatmap and a 

principal component analysis (PCA). It was therefore determined that the fastqs of these samples 

could simply be merged at the start of the pipeline. In cases where resequencing was required but 

insufficient library remained, a new library was prepared and the sequencing run that produced 

the highest read was used in subsequent analysis. For 8 samples, the sequencing of the second 

library contained too few reads to enable downstream analysis. 6/8 samples showed per gene 

read counts that were very similar between libraries 1 and 2 (Spearman's rank correlation 

between replicates was significantly higher than the mean; Wilcoxon one-way rank test; 

FDR<0.01) and so reads were combined across libraries, the other 2/8 samples were discarded. 

 

Samples were also discarded if matched DNA-sequencing revealed a tumour purity of less than 

0.05. 
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Gene expression normalisation and filtering 

The number of non-ribosomal protein coding genes on the 23 canonical chromosome pairs used 

for quality control was 19,671. Raw read counts uniquely assigned to these genes were converted 

into both transcripts per million (TPM) and variance-stabilising transformed (vst) counts via 

DESeq2 (Love et al., 2014). 

 

A list of expressed genes (n=11,667) was determined by filtering out genes for which less than 5% 

of tumour samples had at least 10TPM. In order to concentrate on tumour epithelial cell gene 

expression, genes were further filtered out if they negatively correlated with purity as estimated 

from matched DNA sequencing data (see associated manuscript EPIGENOME for methodology of 

purity estimation). Specifically, for the 157 tumour samples that had matched DNA-sequencing 

and therefore accurate purity estimates, a linear mixed effects model of Exp (vst) ~ Purity + 

(1|Patient) was compared via a chi-squared test to Exp ~ (1|Patient). Genes which had a negative 

coefficient for Purity in the first model and an FDR adjusted p-value less than 0.05, suggesting that 

Purity significantly affected the expression, were filtered out. This led to a filtered list of 11,401 

expressed genes. 

 

 

Gene expression clustering 

For each tumour with at least 5 tumour samples (n=17 tumours), mean expression and standard 

deviation of expression was calculated for every filtered expressed gene (n=11,401) using 

DESeq29s vst normalised counts. Euclidean distance matrices of mean expression and standard 

deviation of expression were calculated based on non-MSI tumours. Distance matrices were 

combined with 8fuse9 from the 8analogue9 R package https://cran.r-project.org/package=analogue 

with equal (50:50) weighting and complete linkage hierarchical clustering was performed. 4 gene 

groups were determined using cutree(k=4). For plotting of Figure 1A tumours were clustered with 

the same approach as above and both mean expression and standard deviation of expression 

matrices were scaled by columns. 

 

Conversion to entrez gene IDs and gene symbols was carried out using biomaRt {ref}, using 

Ensembl version 90. Where IDs were missing, newer Ensembl versions and manual curation was 

used, the full list of gene information is available (Table S2).  

 

For the KEGG meta-pathway analysis, pathways and pathway categories were downloaded from 

https://www.kegg.jp/kegg-bin/show_brite?hsa00001_drug.keg. The enrichment of KEGG 

pathways for each gene group was determined with enrichKEGG from clusterProfiler (Yu et al., 

2012), and pathways enriched at FDR<0.1 were inputted into 8enricher9 to determine pathway 

category enrichment (FDR<0.1). Pathway categories "Neurodegenerative disease" and "Infectious 

disease: bacterial" were removed due to irrelevance to colorectal cancer cell biology. 

 

 

 

 

Pathway enrichment clustering 

Hallmark pathways were download from MSigDB (Liberzon et al., 2015) and un-related pathways 

(SPERMATOGENSIS, MYOGENESIS and PANCREAS_BETA_CELLS) were removed from analysis while 

the COMPLEMENT pathway was renamed to COMPLEMENT_INNATE_IMMUNE_SYSTEM. 

Additional INTESTINAL_STEM_CELL {21419747} and WNT_SIGNALING { http://www.gsea-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.18.451272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.451272
http://creativecommons.org/licenses/by-nc-nd/4.0/


msigdb.org/gsea/msigdb/geneset_page.jsp?geneSetName=WNT_SIGNALING} pathways were 

added. 

 

For each multi-region tumour (n=17), the TPM expression of protein-coding genes converted to 

entrez gene IDs (n=18,950) was used as input for single sample gene set enrichment analysis using 

the GSVA R package (Hänzelmann et al., 2013). The mean and standard deviation of enrichment 

was then recorded for each tumour. KRAS_SIGNALING_DN had average enrichment below zero so 

was removed from downstream analysis, leading to a final list of 48 pathways. 

 

Analogous to the genic analysis, mean and standard deviation of pathway enrichment were jointly 

used to determine 4 groups of pathways while tumours were clustered and matrices normalised 

by column as before. Fisher9s exact tests were subsequently performed to determine if pathway 

classes (Jiménez-Sánchez et al., 2020) were significantly enriched/depleted in particular pathway 

groups. 

 

CMS and CRIS classifications were determined using the CMScaller R package (Eide et al., 2017). As 

recommended, raw gene counts were used as input with `RNAseq=TRUE', meaning these counts 

underwent log2-transformation and quantile normalisation. CMS and CRIS were predicted using 

the templates provided in the CMScaller package and samples were assigned to the subtype with 

the shortest distance. 

 

 

Phylogenetic signal analysis 

Phylogenetic trees were determined as described in methods of {inference paper} with shallow 

WGS (sWGS) samples genotyped onto deep WGS (dWGS) trees. Tumours with fewer than 6 paired 

DNA-RNA samples were excluded from this analysis leaving 114 samples from 8 tumours (median 

11 samples per tumour, range 6-31). 

 

Added sWGS samples, however, had zero branch lengths as mutations unique to a sample could 

not be called with sWGS methodology. To account for these <missing= unique variants, we 

inferred the likely number of unique variants from the matched dWGS samples. For each sWGS 

sample from a particular tumour region, a new tip branch length (<leaf length=) was drawn from a 

Poisson distribution based on the mean number of unique mutations observed in each dWGS 

sample from the same spatial tumour region. DNA samples that did not have matched RNA-seq 

samples were then removed from the trees (with drop.tip from ape R package (Paradis and 

Schliep, 2019). This was process was repeated 100 times for each tumour, leading to a forest of 

100 phylogenetic trees with slightly varying branch lengths for each sWGS sample. 

 

In the genic phylogenetic signal analysis, Pagel9s lambda was calculated for Group 1-3 genes 

(n=8,368) using phylosig from the phytools R package (Revell, 2012). This returns the maximum 

likelihood Pagel9s lambda estimate and a p-value for the likelihood ratio test with the null 

hypothesis of lambda=0. This analysis was performed for all 100 trees and the median lambda and 

p-value determined for each tumour, with a median p-value<0.05 indicating significant 

phylogenetic signal for that gene. Genes with recurrent phylogenetic signal were defined as those 

with significant phylogenetic signal in at least 3 tumours. The STRINGdb R package (Szklarczyk et 

al., 2021) was used to determine pathway enrichment of these recurrent phylogenetic genes and 

<string-db.org= used for plotting PPAR signalling genes. 
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In the pathway phylogenetic signal analysis, pathway enrichment values were used as input for 

8phylosig9 for the 48 pathways. Significance was then determined as above. Recurrent 

phylogenetic pathways were defined as pathways with significant phylogenetic signal in at least 2 

tumours and Fisher9s exact tests were used to determine enrichment/depletion in pathway groups 

and classes. 

 

To determine the power for each tumour used in the phylogenetic signal analysis, gene expression 

was simulated and lambda p-values estimated. Gene expression was Poisson distributed across 

nodes and was increased by a factor of 5-100% across every clade of the tree. This was performed 

over the forest of 100 trees with differing branch lengths and this process was then repeated 1000 

times. The power to detect significant phylogenetic signal for a particular expression % change at a 

particular clade was therefore inferred by the percentage of simulations which had a median (i.e. 

over the 100 branch length variant trees) p-value <0.05.  

 

Genetic determinants of gene expression heterogeneity 

Tumours with at least two tumour samples were included in this analysis (153 tumour samples 

from 19 tumours, median 4 samples per tumour) and only loci mutated in at least two samples 

and connected to an expressed genes (gene Groups 1-3 from Figure 1) were analysed (22,961 

mutated loci connected to 5,927 expressed genes 3 29,949 unique gene-mutation combinations). 

 

The following data was used as input for the linear model: 

• Exp: A gene x sample matrix of the variance stabilised normalised gene expression of 

Group 1-3 genes converted into a z-score by minusing the mean expression of all samples 

and dividing by the standard deviation of all samples. 

• CNA: A gene x sample matrix of the total copy number of the gene locus. If multiple copy 

number states were detected for the same gene, the segment which overlapped the most 

with the gene's locus was selected. 

• Mut: A binary mutation x sample matrix where mutations (SNVs and indels) were either 

within the enhancer region of the gene or a non-synonymous mutation within the coding 

region of the gene itself. Enhancer links to genes were defined using `double-elite' 

annotations from GeneHancer tracks (Fishilevich et al., 2017). Some enhancer regions 

overlapped with the gene coding region and non-synonymous mutations in these regions 

were annotated as both enhancer and non-synonymous. 

• Purity: The purity of each sample as determined from dWGS or sWGS. 

 

In addition, 14 matched normal samples were added and these were assigned WT for all 

mutations, 2 for total copy number and 0 for purity. For each gene-mutation combination the 

following linear model was implemented: 

 

���	~	��� + ��� + ������ + ������ 

Where 8Tumour9 indicated whether the sample was a normal or tumour sample. 

 

A gene-mutation combination was said to be explained if the FDR adjusted p-value of the F-

statistic for overall significance was less that 0.01. A gene-mutation combination was significantly 

affected by a variable (i.e. Mut/CNA/Purity/Tumour) if the FDR-adjusted p-value for the coefficient 

of that variable was <0.05. 
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For the analysis of clonality (Fig 5G), a gene was considered to be associated with an 8eQTL9 if at 

least one mutation combination for that gene was significant for Mut while a gene was considered 

8subclonal9 if at least one mutation associated with that gene was not found in all matched DNA-

RNA samples for at least one tumour. For combining eQTLs with the phylogenetic analysis and 

clonality (Fig 5H), a gene mutation combination was considered an 8eQTL9 if it was significant for 

Mut, considered 8subclonal9 if it was not found in all matched DNA-RNA samples for at least one 

tumour and considered 8phylogenetic9 if the associated gene had significant phylogenetic signal in 

at least three tumours. 

 

To look for recurrence of eQTL mutations in the Hartwig cohort, mutation loci were first converted 

to hg19 using liftOver from the rtracklayer R package (Lawrence et al., 2009) and the 

<hg38Tohg19.over.chain= from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver . 

2/22959 loci could not be converted and were therefore discarded for this analysis. The converted 

loci were searched for in the CRC Hartwig cohort using the <purple.somatic.vcf.gz= files. For the 

Hartwig gene expression, the 8adjTPM9 values were used and converted into a z-score while 

tumour purity was extracted from the metadata. For each locus that had at least one mutated 

DNA-RNA Hartwig sample the linear models of Exp~Mut+Purity and Exp~Purity were compared via 

a likelihood ratio test. An eQTL was said to validate in Hartwig if the p-value of the test was <0.05 

and the coefficient of the 8Mut9 variable was the same sign as the coefficient in the original eQTL 

analysis (i.e. the mutation increased expression in EPICC and Hartwig or vice versa). 

 

A post hoc power analysis was carried out using the pwr.t2n.test from the pwr R package. For each 

eQTL, the absolute mutation effect size was used as the input effect size with power set to 0.99 

and n2 set to 8the number of DNA-RNA Hartwig CRC samples (n=394) minus the number of 

Hartwig samples with the mutation9. The tool then returned the number of samples needed to see 

the effect and this number was multiplied by 1.15 given the non-parametric nature of the data. 

Note that if the absolute input effect size was greater than 3.04, this was set to 3.04 since higher 

values returned an NA result. 

 

Combining with ATAC-seq 

 

Enhancer eQTLs that were subclonal in at least one tumour according to matched DNA-RNA data 

were investigated with matched ATAC-seq data (processing of ATAC-seq data detailed in methods 

of epigenome paper). For each mutation in each tumour, samples with the mutation were plotted 

as a separate track to wild-type samples for the enhancer region and mutation locus indicated. A t-

test was performed and log-fold change calculated based on the mean normalised read counts for 

mutant and wild-type samples. An eQTL was said to be associated with a change in ATAC if the p-

value for the test was less than 0.05. 
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