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Abstract 26 

Brain atlas is an important tool in the diagnosis and treatment of neurological disorders. 27 

However, due to large variations in the organizational principles of individual brains, many 28 

challenges remain in clinical applications. Brain atlas individualization network (BAI-Net) is 29 

an algorithm that subdivides individual cerebral cortex into segregated areas using brain 30 

morphology and connectomes. BAI-Net integrates topological priors derived from a group atlas, 31 

adjusts the areal probability using the connectivity context derived from diffusion tractography, 32 

and provides reliable and explainable individualized brain parcels across multiple sessions and 33 

scanners. We demonstrate that BAI-Net outperforms the conventional iterative clustering 34 

approach by capturing significantly heritable topographic variations in individualized 35 

cartographies. The topographic variability of BAI-Net cartographies shows strong associations 36 

with individual variability in brain morphology, connectivity fingerprints and cognitive 37 

behaviors. This study provides a new framework for individualized brain cartography and paves 38 

the way of atlas-based precision medicine in clinical practice. 39 

 40 

Keywords: Individualized brain atlas, topography variability, brain morphology, 41 

connectivity fingerprints, heritability analysis, graph neural network 42 
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Introduction 44 

Brain atlas has been an important tool to understand the neural basis of human cognition. 45 

Neuroanatomists have built a variety of macro- and microanatomical atlases to depict cyto-, 46 

myelo- and receptor architectures using a few postmortem human brains 1-7. Recent advances 47 

in noninvasive neuroimaging techniques, such as magnetic resonance imaging (MRI), provide 48 

an opportunity to explore the anatomical and functional organization of the living human brain 49 

and to make subsequent cartographic explorations of the human cerebral cortex in a large 50 

population 8-16. However, the majority of current brain atlases focus on a group representative 51 

mapping of the cerebral cortex, but ignore the variations of individual brains in terms of areal 52 

size, location, spatial arrangement and connectivity patterns due to genetic and environmental 53 

influences 15, 17. The precise mapping of individual-specific topographic organization is a 54 

critical step towards better understanding the structural-functional relationship of the human 55 

brain underlies cognition and behavior 18-20 as well as for personalized localization diagnosis 56 

and treatment of neurological disorders 21, 22. 57 

Traditional individualized cartography of cerebral cortex has relied on the linear and non-linear 58 

registration based on the structural images in the volume space or cortical surfaces 23. Modern 59 

machine learning algorithms provide analytic tools to align cortical areas using multimodal 60 

neuroimaging data, including structural and functional localizers 24, 25, as well as anatomical26 61 

and functional connectomes18-20. As one of the most commonly used approaches to reconstruct 62 

human connectomes, diffusion tractography has offered exclusive tools to map anatomical 63 

connections in the human brain non-invasively27. However, the anatomical accuracy and 64 

biological meaning of diffusion tractography is still controversy nowadays 28, 29, 30, which may 65 

bias the areal delineation on individual brains when directly applying the diffusion tractography 66 

results in individualized cortical cartography 26.  67 

To tackle these issues, we first employed a fiber-tract embedding approach that projects the 68 

whole-brain tractography maps to individual fiber-tract space by using TractSeg 31. The 69 

resulting connectivity fingerprint indicates the probability of the chosen major fiber tracts in 70 
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the individual tractography map. The connectivity fingerprint approach has been widely used 71 

in neuroscience research and demonstrated high consistency not only across subjects but also 72 

between homologous areas cross species32, providing a substantial neural basis to reveal 73 

individual variations in anatomical connectomes. Besides, we applied two additional structural 74 

constraints on the individualized cartography model in order to precisely characterize the 75 

connectivity features from individual anatomical connectomes. The first structural constraint 76 

was the areal location priors derived from the group atlas, which provide a blueprint of the 77 

general organizational principles on individual brains and guide the individual-specific 78 

cartography by using generalized knowledge inferred from a large population rather than 79 

limited measures of a single subject 13, 18-20, 25, 33-36. Using such populational priors, we achieved 80 

robust delineation of cortical areas on individual brains under various scanning conditions, and 81 

at the same time improved the inter-subject alignment of individual topography which has been 82 

a common issue in the individualized cartography model 20, 37. As an important characteristic 83 

of human connectomes, the local continuity constraint suggests that adjacent cortical areas 84 

generally follow a similar neural pathway and connect to adjacent neurons in the target area. In 85 

order to implement such continuity constraint on individual anatomical connectomes, we 86 

employed the convolutional operations on the vertex-level graph constructed from individual 87 

cortical surfaces and trained various graph convolutional kernels to integrate the context 88 

information of connectivity fingerprints at different spatial ranges.  89 

With these in mind, we developed a Brain Atlas Individualization Network (BAI-Net) for 90 

individual-specific cartography constrained by both populational priors of areal locations (e.g. 91 

Human Brainnetome Atlas 14) and the local continuity of individual connectomes. The BAI-92 

Net method consists of three key steps, i.e. construction of individual brain graph, embedding 93 

of individual connectivity fingerprints and areal delineation using the local context of 94 

connectivity fingerprints. Specifically, a large-scale vertex-level graph (32k vertices per 95 

hemisphere) was first constructed from individual cortical surfaces. After that, a graph neural 96 

network (GNN) architecture was implemented to merge the topographical organization of 97 

individual brains with the connectivity context of anatomical fingerprints. Using a gradient 98 
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descent optimization algorithm and trained over a large population, the resulting GNN 99 

representations learned the tradeoff between individual-specific topography and globally 100 

aligned organizational principles. We first investigated the reproducibility and robustness of 101 

BAI-Net individualized cartographies under various acquisition conditions including multiple 102 

sessions and different scanners. We further evaluated the interpretability of the topographic 103 

variability revealed by BAI-Net cartographies, e.g. association with individual variability in 104 

brain morphology, connectivity fingerprints and cognitive behaviors as well as its heritability 105 

in the twin population. 106 

  107 
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Results 108 

BAI-Net individual-specific cartography of cerebral cortex 109 

The BAI-Net method (Fig. 1) was evaluated using 969 subjects from the HCP dataset 110 

(including 100 unrelated subjects used for model training) and 74 repeated scans (consisting of 111 

14 subjects) from MASiVar dataset. The detailed information about the datasets used in the 112 

evaluation steps was listed in Supplementary Figure S1. During model training, a vertex-level 113 

brain graph was first constructed from T1-weighted images of individual brains, with each node 114 

indicating a vertex in the cortical surface and the edge indicating whether two vertices shared 115 

in a triangle in the cortical mesh. Then, the anatomical fingerprints, derived from the 116 

probabilistic tractography on the individual diffusion MRIs, were embedded as node/vertex 117 

features in the brain graph. Next, a graph neural network (GNN) was used to integrate the local 118 

context of the connectivity fingerprints and to update with a new representation that combines 119 

the topographic patterns in brain morphology and the context of connectivity fingerprints of the 120 

individual brains. Finally, the areal probability was inferred from the last layer of trained GNN.  121 

Largely retained global topographic pattern and considerable individual differences 122 

The BAI-Net individualized cartographies generally followed a similar topographic pattern 123 

with the group atlas (average Dice score = 0.762±0.025 on the HCP test sets). The detailed 124 

maps of the areal borders and their overlaps with the group atlas were shown in Supplemental 125 

Fig. S2. On one hand, the maximum probability map (MPM) and areal size of individualized 126 

cartographies were highly consistent with the group atlas (Dice=0.88). On the other hand, 127 

considerable individual differences were detected in the areas associated with high-order 128 

cognitive functions, for instance, the inferior frontal gyrus (IFG), inferior parietal lobe (IPL), 129 

middle temporal gyrus (MTL), and anterior cingulate cortex (ACC). Our results indicated that 130 

the BAI-Net individualized cartographies mostly retained the global topographic organization 131 

of cerebral cortex inherited from the group atlas, and uncovered considerable variations in the 132 

topographic arrangement of the association areas by aggregating the context of connectional 133 

architecture on individual brains. 134 
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 135 

Figure 1. Schematic diagram of the Brain Atlas Individualization Network (BAI-Net) with 136 

group priors. a: Construction of individual brain graph. The cortical surfaces were 137 

reconstructed from the T1-weighted image using the Freesurfer and Connectome Workbench 138 

toolboxes. The individual brain graph was built based on the surface vertices, local edges, and 139 

connectivity fingerprints. b: BAI-Net: Model Estimation. Samples from the HCP training 140 

dataset and random-ordered dataset were fed as the inputs into the graph neural network. The 141 

outputs of the graph neural network for each node were areal probabilities. The group labels as 142 

well as the corresponding maximum probability maps of the group atlas were both registered 143 

from the group fs_LR32k surface to the individual surface tessellation. The network was 144 
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optimized with probability-weighted loss function. c: BAI-Net: Model Validation. The regular 145 

step for cerebral cartography of a new subject was to build the individual connection graph 146 

(preprocessing, tracking, embedding, and normalization) and then to map it through trained 147 

network to get the areal probabilities as well as the individual cortical area with max 148 

probabilities.  149 

 150 

Reproducible individual-specific topography 151 

The reproducibility of individual-specific topography was evaluated using the HCP test-retest 152 

datasets, consisting of 44 healthy subjects, who have collected structural, diffusion, and 153 

functional MRI data in two independent sessions. The topography similarities between intra- 154 

(between the test and retest sessions of the same subject) and inter-subject (between different 155 

subjects from the same session) pairs of individualized cartographies was evaluated by Dice 156 

score. As shown in Fig. 2a, the BAI-Net cartography generated highly reproducible individual 157 

topography at the subject level (Dice = 0.901±0.014 for the whole cerebral cortex), while 158 

maintained high variability across subjects (Dice = 0.745±0.025), with significantly lower 159 

topographic similarity between subjects than within subjects (p values < 10-50). Examples of 160 

individualized cartography in the right hemisphere were shown in Fig. 2b (maps of the left 161 

hemisphere shown in Supplementary Fig. S3). Compared to the canonical iterative clustering 162 

(IC) approach, BAI-Net cartography revealed higher gaps between intra- and inter-subject 163 

topographic similarity (0.15 and 0.09 respectively for BAI-Net and IC, see Supplementary Fig. 164 

S4 for detailed information of IC) and consequently uncovered more subject-specific 165 

characteristics in brain topography. For instance, the identity of BAI-Net individualized 166 

cartography was successfully predicted in the HCP test-retest sessions (accuracy=100% when 167 

classifying subjects based on the maximum similarity in topography).  168 

Robust performance across multiple scanners 169 

The generalizability of the BAI-Net method was evaluated by applying the pre-trained HCP 170 

model onto the MASiVar dataset acquired from different scanners and sites. As shown in Fig. 171 
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2c, the BAI-Net cartography yielded much higher variability between subjects than within the 172 

same subject, not only within the same scanner (Dice score=0.860±0.024 and 0.707±0.027, 173 

respectively for intra-subject and inter-subject pairs), but also across different scanners (Dice 174 

score=0.830±0.015 and 0.703±0.025, respectively for intra-subject and inter-subject pairs). The 175 

BAI-Net cartography generated highly consistent cartographies of the same subject across four 176 

different scanners (Fig. 2d). It is worth noting that the reproducibility of individualized 177 

cartography was slightly lower in the multi-scanner dataset (MASiVar) than in HCP at both the 178 

intra- and inter-subject levels, mainly due to different scanning conditions in the two datasets. 179 

We further evaluated the inter-subject topography variability (ITV) by using Cohen9s d effect 180 

size. Compared to the IC method, BAI-Net method revealed relatively stable ITV for intra-181 

scanner (Cohen9s d = 4.23) and inter-scanner cases (Cohen9s d =4.35) while the IC approach 182 

was more sensitive to the specific scanner (Cohen9s d = 6.64 and 3.31 respectively for within- 183 

and between-scanner ITV).  184 

Flexible and time-saving regional cartography 185 

The BAI-Net method can be easily adjusted to the cartography of a small region of interest 186 

instead, namely the regional cartography. As shown in Fig. 2e, the subdivision of the ventral 187 

lateral prefrontal cortex (vlPFC) was highly consistent with the whole-cortex cartography 188 

(Dice=0.92 for an exemplar subject, more examples can be found in Supplementary Fig. S5). 189 

Another advantage of the BAI-Net regional cartography is the time-saving mode when applying 190 

to a small region. For instance, the BAI-Net cartography of vlPFC only takes 4 minutes, about 191 

one tenth of the time spending on the whole-cortex model (2.7k vs 32k vertices, respectively in 192 

the seed mask). In contrast, the IC method requires iteratively updating signals of the entire 193 

cerebral cortex at each iteration, which highly limits its applications on small regions and 194 

potentially biases the areal delineation when only local information was available (see 195 

Supplementary Fig S5b for three examples). 196 
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 197 

Figure 2. Reproducibility and specificity of BAI-Net individualized cartographies. a: Inter- 198 

and intra-subject variability of brain cartographys using BAI-Net and iterative clustering (IC) 199 

methods on the HCP test-retest dataset. b: Examples of BAI-Net individualized cartographies 200 

for three random subjects. c: Generalizability of the BAI-Net method on multiple scanners 201 

evaluated on the MASiVar dataset. d: BAI-Net individualized cartography for the same subject 202 

on four different scanners. e: Exemplar regional cartography when applying the BAI-Net 203 
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method on a small region of interest, e.g. vlPFC. High overlaps were achieved between the 204 

regional cartography and whole-cortex cartography. The box represents the first and third 205 

quartiles in the distribution of the Dice scores. 206 

 207 

Interpretability of BAI-Net cartographies 208 

Topography variability associated with individual variability in brain connectomes and 209 

morphology 210 

The effect size of the inter-subject topography variability (ITV) was evaluated by Cohen9s d on 211 

the HCP test-retest dataset, which computes the differences in individualized brain cartography 212 

between subjects after taking in account the intra-subject variability. The BAI-Net 213 

individualized cartographies exhibited large effect of ITV at the whole-brain level (Cohen9 d = 214 

7.07 and 7.19 for the left and right hemispheres, respectively). The pattern of topography 215 

variability generally followed the functional and connectional gradient of the cortical 216 

organization (as shown in Fig. 3a). Specifically, we found small ITV values in the primary 217 

cortices (e.g. the primary motor and sensory cortex) and relatively high ITV values in the 218 

association cortices, especially for cortical areas involved in higher-order cognitive functions, 219 

e.g. the middle frontal gyrus (MFG) and inferior parietal lobule (IPL). These high-order 220 

association areas also exhibited greater functional variability than the other parts of the cerebral 221 

cortex17. Similar organizational patterns were observed in the variability maps of brain 222 

morphology (modulated surface area) and connectomes (connectivity fingerprints), both of 223 

which revealed significant associations with ITV (r = 0.569, p < 0.001 for connectivity 224 

fingerprints in Fig. 3e; r = 0.810, p < 0.001 for modulated surface area in Fig. 3f), and regulated 225 

the topography variability through direct and indirect effects (Fig. 3d). Our results indicated 226 

that BAI-Net cartography captured reliable variations in topographic organization of individual 227 

brains that mainly driven by both brain morphology and human connectome. Such topographic 228 

variability was not noticeable in the conventional registration-based approach that only relies 229 

on the shape and intensity of brain structures. 230 
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 231 

Fig. 3 Topography variability of BAI-Net cartography was associated with and regulated 232 

by brain morphology and connectivity fingerprints. a: The distribution of inter-subject areal 233 

topography variability. b: The distribution of variability in anatomical connectivity fingerprints. 234 

c: The distribution of variability in brain morphology. d: The mediation analysis of ITV and 235 

the variability in brain morphology and connectivity. e, f: The association analysis between 236 

ITV and the variability in brain morphology (r=0.810, p < 0.001) and connectivity (r = 0.569, 237 

p < 0.001). Each dot in the scatter plot represents one cortical area. 238 

Integrating area-specific connectivity fingerprints 239 

We uncovered a long-tail distribution of ITV for BAI-Net cartographies (Figs. 3 and 4), with 240 

the top 10% of topography variability located in the frontoparietal regions (yellow regions in 241 

Fig.4a) while the bottom 10% located in the limbic areas (blue regions in Fig.4a). Different 242 

range of context information was employed in the BAI-Net cartography of these two types of 243 

brain regions. Specifically, for frontoparietal regions, the areal probability of each vertex was 244 

mainly driven by the connectivity context within a local neighborhood and itself (i.e. positive 245 

activations at K<2) while suppressing the contributions of connectivity profiles far away 246 

(negative activations at K>3), as shown in Fig.4b. The limbic areas followed a similar trend 247 

but showed significant differences in the activations at different K-orders (i.e. integration scale 248 

of context). For instance, frontoparietal regions showed higher positive activations within the 249 
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local filed (p-values<0.05 when K<2) and more negative activations at distributed areas (p-250 

value<0.01 when K=5, as shown in Fig.4b). These findings indicated the proposed BAI-Net 251 

cartography integrates the connectivity context from local neighborhoods, adapts the 252 

integration rule according to area-specific characteristics and captures reliable features from 253 

the integrated context of anatomical connectivity profiles. 254 

Individualized cartography used biologically meaningful salient features  255 

Whether the salient features that mostly driven the areal probability in individualized 256 

cartography are biologically meaningful is an important question. We took areas A4hf and 257 

A45c (for motor and language functions, respectively) as examples to visualize the contribution 258 

of major fiber tracts in the process of individualized cartography. As shown in Fig. 4c, for areal 259 

delineation of A4hf, which was involved in the movement of the hand and face14, we found that 260 

the highly contributed fiber tracts included granterior midbody of corpus callosum (CC_4), 261 

corticospinal tract (CST), thalamo-precentral circuits (T PREC) and prefrontostriatal circuits 262 

(ST PREC). For areal delineation of A45c, which was involved in semantic and language 263 

processing14, 38, the highly contributed fiber tracts consist of the longitudinal fascicle III (SLF 264 

III), thalamo-premotor circuits (T PREM) and corticostriatal circuit (ST PREM), coinciding 265 

with the structural and connectional substrates of language processing 38. Our results indicated 266 

that the BAI-Net cartography captured biologically meaningful and area-specific signatures 267 

coinciding with both connectional and anatomical organization of human brain. 268 
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 269 

Fig. 4 Area-specific contributing factors to the topography variability of BAI-Net 270 

cartography. a: The distribution of the top 10% and bottom 10% ITV cortical areas. b: 271 

Different activated patterns of top 10% and bottom 10% ITV cortical areas measured at 272 

different K orders in BAI-Net. c: Contributions of major fiber tracts for the areal delineation of 273 

A4hf and A45c. Different colors in the boxplot represent different major fiber tracts in the 274 

connectivity fingerprints. Note: *: p<0.05, **: p<0.01, ***: p<0.001. 275 

 276 

Prediction of cognitive behaviors and genetic associations 277 

Individualized global cartographies predicted cognitive behaviors  278 

The topography variability of BAI-Net cartography not only significantly associated with 279 

individual variability in brain morphology and connectivity fingerprints, but also strongly 280 

predicted individual differences in cognitive behaviors. As shown in Fig. 5, we trained a kernel 281 

ridge regression model for each of 58 behavioral measures and obtained 31 predictive 282 

behavioral models that showed significant predictions (p<0.001) using either the BAI-Net or 283 

IC approaches. The results indicated that BAI-Net method achieved higher overall prediction 284 

accuracies on 58 behavioral scores (average r = 0.102 and 0.078 respectively for BAI-Net and 285 

IC, paired t-test p<0.001), as well as better predictions on 31 significantly predicted behavioral 286 

measures (average r = 0.152 and 0.130 respectively for BAI-Net and IC, paired t-test p=0.028). 287 
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 288 

Fig. 5 Prediction accuracy of cognitive behaviors using individualized cartographies. 289 

Using a 10-fold cross validation procedure, we evaluated the perdition accuracy on each of 58 290 

cognitive behaviors using the topography variability from the BAI-Net or IC methods. Among 291 

which, we obtained 31 predictive behavioral models that showed significant predictions 292 

(p<0.001) using either the BAI-Net or IC approaches. a: Prediction accuracy on 31 significantly 293 

predicted cognitive behaviors. b: Average prediction accuracy on 58 behaviors and 31 294 

significantly predicted behaviors. 295 

Topography variability controlled by genetic effects 296 

The topography variability of BAI-Net cartography was significantly heritable in HCP twin 297 

populations. To validate this hypothesis, we first split the whole dataset into four groups, i.e. 298 

Unrelated, Siblings, dizygotic twins (DZ) and monozygotic twins (MZ). We found that BAI-299 

Net cartography showed more similar individualized cartographies in closed-kinship groups 300 

(Fig. 6a), e.g. higher similarity in the MZ than unrelated groups (Dice=0.783 and 0.733, 301 

respectively). The IC approach showed similar patterns between the four groups (e.g. 302 

Dice=0.829 and 0.816, respectively for MZ and unrelated groups) but detected smaller gaps 303 
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between MZ and unrelated groups (gap=0.050 vs 0.013 respectively for BAI-Net and IC). 304 

Moreover, the topography variability of individualized cartographies was significantly impact 305 

by genetic factors, with a higher heritability value in BAI-Net (h2=0.175, p<0.001) than IC 306 

(h2=0.105, p<0.001).  307 

 308 

Fig.6 Genetic effects of the topography variability of individualized cartographies. a: 309 

Topography similarity of individualized cartographies among four different groups (Unrelated, 310 

Sibling, DZ and MZ). b: The heritability of the topography variability of individualized 311 

cartographies. The BAI-Net method showed a higher heritability value (h2=0.175, p<0.001) 312 

than the IC method (h2=0.105, p<0.001).  313 
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Discussion 314 

In the present study, we propose a deep-learning approach for individualized cartography which 315 

aligns the group-level cortical areas onto individual brains by taking into account the variations 316 

in brain morphology and anatomical connectomes. The proposed BAI-Net method generated 317 

highly reproducible, individual-specific cartography across various acquisition conditions, not 318 

only revealing reliable topographic patterns of a single subject across multiple sessions 319 

(Dice=0.901±0.014) but also capturing highly variable organizational principles across 320 

different subjects (Dice=0.745±0.025), yielded a significant heritability in twin population. The 321 

topography variability of BAI-Net individualized cartographies generally followed the 322 

functional and connectional gradient of the cortical organization, strongly associated with 323 

individual variability in brain morphology and connectivity fingerprints, and significantly 324 

predicted individual cognitive behaviors. Our study provides an important tool for better 325 

understanding of individual cognition, behavior, and the pathology of brain diseases and paves 326 

the way of individualized atlas-based precision medicine in clinical practice. 327 

One of the big challenges in diffusion tractography is that massive short-distance fibers usually 328 

dominate long-distance fibers in the tractograms30, 39, which can easily bias the areal delineation 329 

on individual brains based on diffusion tractography maps. To overcome this issue, we used a 330 

fiber-tract embedding approach to project high-dimensional diffusion tractography maps (50k+ 331 

voxels) to a low-dimensional fiber-tract space (72 fiber bundles). This embedding technique 332 

highly reduced the computational complexity in GNN. In addition, the fiber-tract embedding 333 

focused more on the long-distance anatomical connections, largely suppressed the error 334 

accumulation effects on long-distance fibers in individual anatomical connectomes, improved 335 

the alignment of connectivity fingerprints across subjects32, 40, and boosted the reproducibility 336 

of individual-specific areal delineation (Fig.2). The majority of existing individualized 337 

cartography methods aimed for a high local homogeneity of brain signals or connectivity 338 

profiles within individualized brain parcels 18 26. This might not be an appropriate goal for the 339 

anatomical connectomes derived from diffusion tractography due to the distance effects. In 340 
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contrast, the proposed BAI-Net method yields smaller areal homogeneity of anatomical 341 

connectivity in the tractography than the IC method (Supplementary Results SR1), but revealed 342 

higher variations in individual topography along with better heritability than IC(Fig.6).  343 

Another challenge in the mapping of individual anatomical connectomes is the reliability and 344 

reproducibility of probabilistic tractography results 28. To solve this issue, we used a rich set of 345 

graph convolutions to integrate the local context of anatomical connectivity fingerprints. The 346 

local contiguity was specified by a large-scale vertex-level graph (32k vertices per hemisphere) 347 

with each node indicating a cortical vertex and each edge indicating whether two nodes shared 348 

in a triangle in individual cortical surfaces. The usage of such brain graph implicitly applied a 349 

smoothing effect on the cortical surface such that adjacent vertices on the graph had similar 350 

connectivity fingerprints and graph representations. Besides, in contrast to previous 351 

individualized parcellation approaches which only used the connectivity information of the 352 

target vertex (e.g. the IC method 26), our model also took into account the local context of 353 

connectivity fingerprints within a specified neighborhood. The contributions at different spatial 354 

neighborhoods (K-orders) were dependent on the nature the brain parcels and varied a lot across 355 

different brain regions (Fig.4). Together, the deep graph convolutional architecture combined 356 

the vertex graph and connectivity context in the model and ensured the balance between 357 

individual-specific topography and populational aligned organizational principles. The BAI-358 

Net model generated highly reproducible and robust individualized cartographies, not only 359 

aligning with the global topographic pattern specified in a group atlas but also revealing 360 

considerable differences in individual topography that strongly associated with the anatomical 361 

gradients in both brain morphology (r=0.810) and anatomical connectivity (r=0.569) (Fig.3). 362 

Lastly, the usage of group-prior constraints further enhanced the inter-subject alignment in 363 

individualized cartographies and might ensure the significant predictions of individual 364 

cognitive behaviors (Fig.5) as well as its consistency on repeated sessions and in the twin 365 

populations.  366 

Individualized brain cartography has played a more and more important part in neuroscience 367 

research and clinical studies. Accumulating evidences suggested considerable and meaningful 368 
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variations in individual topography at the levels of brain areas and networks.  18-20, 26, 33, 41. 369 

Despite various imaging features used in individualized cartography methods so far, we still 370 

observed high consistency in terms of the variability in individual topography (ITV) by using 371 

either anatomical or functional connectomes. First, the anatomical ITV revealed by BAI-Net 372 

exhibited small values in the primary cortices (e.g. the primary motor and sensory cortex) and 373 

relatively high ITV values in the association cortices, especially for cortical areas involved in 374 

higher-order cognitive functions including MFG and IPL, coinciding with the functional ITV 375 

maps despite of using different group atlases 20.More importantly, the anatomical ITV showed 376 

similar predictability on individual cognitive behaviors (r=0.102 for 58 cognitive behaviors) as 377 

compared to the functional ITV (r=0.111 for 58 cognitive behaviors) 20, and even achieved 378 

higher prediction accuracies on some behavioral measures (e.g. grip strength and fluid 379 

intelligence shown in Fig.6). Besides, the anatomical ITV exhibited much higher 380 

reproducibility (Dice=0.90) as compared to the functional ITV (Dice=0.81 for 400 cortical 381 

areas 20, Dice=0.78 for 17 networks19) 382 

The reproducibility of individualized cartography is an essential requirement in clinic practices, 383 

long with the robustness, interpretability and time-consumption. The BAI-Net method achieved 384 

high specificity (Dice=0.703), high robustness (Dice=0.83) across various acquisition 385 

conditions on different scanners. Then area-specific activated rules in spatial activations 386 

interpretates the areal identification process of BAI-Net method. Meaningful and salient 387 

connectivity fingerprints was captured and contributed more in areal identification. For 388 

example, the SLF III, T PREM, ST PREM elements of the connectivity fingerprints contributed 389 

more in A45c area, which coincides with the structural and connectional substrates of language 390 

processing14, 38. More importantly, with a preprocessed individual cortex surface, the time 391 

consumption of the BAI-Net method to inference the cerebral cartography of a new subject was 392 

around 2~3h on the Centos 6 Linux system from raw diffusion images. But it will cost less time 393 

in the regional cartography of BAI-Net method according to the size of the region, which might 394 

partially solve the time problem of probabilistic tracking when regional areas are needed. As 395 
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mentioned above, the BAI-Net satisfies these necessities for the clinic applications. 396 

The BAI-Net method provides a generalized framework for individuated cartography with the 397 

assistance of graph neural networks. The presented method is not limited to a certain group 398 

atlas, a similar implementation of BAI-Net using Glasser9s atlas 13 was shown in 399 

Supplementary Fig. S10. In clinical applications, a faster, reliable, individual-specific mapping 400 

of the cerebral cortex is the critical step towards for personalized precision medicine, which 401 

enables the personalized localization of neuroimaging biomarkers, the investigation of 402 

individualized structural-functional relations, and potentially assist the development of new 403 

technologies in practical treatments, e. g. locating the target areas for transcranial magnetic 404 

stimulation (TMS) and deep brain stimulation (DBS) therapies, and reducing functional 405 

impairment in neurosurgery.  406 

  407 
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Materials and Methods  408 

Datasets and preprocessing 409 

Dataset 1: Human Connectome Project (HCP) 410 

We acquired healthy young adults from the HCP S1200 release, consisting of T1 weighted 411 

(T1w) data, resting-state functional MRI (rs-fMRI), as well as diffusion MRI (dMRI) data for 412 

each subject. Specifically, the BAI-Net method was trained and evaluated on the first dataset, 413 

consisting of 969 subjects (Age: 21-35, Female: 519) acquired from the Human Connectome 414 

Project S1200 release (after removing subjects with large head motions). The test-retest 415 

reliability of the model was then evaluated on the second dataset, consisting of 44 subjects 416 

acquired from the HCP test-retest datasets. The preprocessed datasets were used in the current 417 

study using the HCP minimal preprocessing pipeline 42-44. The individual cortical surfaces were 418 

first reconstructed from T1-weighted MRI data and then projected onto the standard surface 419 

template (fs_LR_32k) with 32k vertices per hemisphere by using the MSMAll registration 420 

approach 23. Diffusion MRI data had been mainly preprocessed by motion correction, eddy 421 

current distortion correction, and echo-planar images (EPI) susceptibility-induced field 422 

distortion correction. The preprocessing of the functional MRI data mainly included motion 423 

correction, EPI susceptibility-induced distortion correction, linear trend removal, and 424 

independent component analysis (ICA)-based artifact removal. Further preprocessing details 425 

can be found in the HCP preprocessing pipeline (https://github.com/Washington-426 

University/HCPpipelines ) 45, 46. In heritability analysis, all HCP subjects were divided into for 427 

four groups, 1) Unrelated (468119 pairs): no shared parent IDs; 2) Siblings (297 pairs): sharing 428 

one parent ID and but not twins. 3) DZ (60 pairs): dizygotic twins according to the genetic 429 

records. 4) MZ (119 pairs): monozygotic twins according to the genetic records. 430 

Dataset 2: MASiVar dataset 431 

Additional dataset was used acquired from the Multisite, Multiscanner, and Multisubject 432 

Acquisitions for Studying Variability (MASiVar) dataset 47, consisting of 74 scans (removed 8 433 
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scans due to incomplete brain tissues in diffusion images) and 14 healthy adults (8 males and 6 434 

females, age 27-47). This dataset was used to evaluate the stability of individualized 435 

cartography on multiple sessions, sites, and scanners. Specifically, dMRI data was acquired 436 

from 3 cohorts using four different scanners (two 3T Philips Achieva scanners at two different 437 

sites, one 3T General Electric Discovery MR750 scanner, and one 3T Siemens Skyra scanner) 438 

with at least one T1-weighted image for each subject at each session. Of the three cohorts, 439 

different scanning sequences were used in diffusion imaging, including different b-values (b = 440 

1000 to 3000 s/mm2) and diffusion directions (about 40~96 directions for each b value), 441 

different spatial resolutions ranging from 2.5 mm isotropic or 2.1 mm by 2.1 mm by 2.2 mm 442 

(sagittal, coronal, and axial), and so on. These diffusion images were preprocessed using the 443 

PreQual pipeline 48 with the default settings, including intensity normalization and distortion 444 

correction, as well as the Marchenko-Pastur technique49-51. More information on PreQual can 445 

be found at https://github.com/MASILab/PreQual.  446 

Pipeline of BAI-Net individualized cartography 447 

The Brain Atlas Individualization Network (BAI-Net) pipeline included three key steps: 448 

construction of individual cortical graph, embedding of individual connectivity fingerprints and 449 

node classification using the connectivity context. 450 

Step1: Construction of individual cortical graph 451 

The graph structure of individual brains was derived from the cortical mesh data of each subject. 452 

For each hemisphere of each subject, we constructed a spatial brain graph, with nodes indicating 453 

each cortical vertex (consisting of around 30k vertices/nodes after excluding confounding 454 

vertices in the medial wall), and edges indicating whether two vertices shared in a triangle of 455 

the cortical surface, weighted by the inverse of the geometric distance between them. The brain 456 

graph was sparsely connected and highly localized in space, with each vertex connecting with 457 

2-6 nearest vertices on average. The brain graph architecture provided a reference structure for 458 

each vertex to search for its spatial connectivity context.  459 
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Step2: Embedding of individual connectivity fingerprints as node features in the graph 460 

After constructing the graph, the connectivity fingerprint of each vertex was calculated as 461 

follows: 1) A surface-based probabilistic tractography algorithm was applied to track 5000 462 

streamlines from each vertex on the cortical surface throughout the whole brain, including both 463 

cortical and subcortical regions 52-55. The resulting whole-brain tractography map �ÿ���Ā ∈464 ℝ��×�ĀĀ( �� is the number of surface vertices and �ĀĀ  is the numbers of brain voxels of subject 465 Ā), was first threshold at 2 and then down-sampled to a 3mm-resolution space 56. 2) A binary 466 

mask was created for each of 72 fiber bundles (names of fiber bundles listed in Supplementary 467 

Table S1) by using a pretrained deep-learning model named TractSeg 31. The resulting fiber-468 

tract mask was also down-sampled to 3mm resolution. 3) An embedding of the whole-brain 469 

tractography map was created for the projection from the volume space (50k+ voxels) to the 470 

fiber-tract space (72 fiber bundles). After that, the connectivity fingerprint 2�ℝ��×� (�� ≈30k 471 

and � =72) was generated as follows: 472 

 2(��,ā) = ∑ �ÿ���Ā�ĀĀ� (�, �) ∗ �ÿ��āĀ(�, ā)∑ �ÿ��āĀ�ĀĀ� (�, ā)  (1) 

 2(��,ā) = ��,ā∑ ��,ā�ā  (2) 

where each element ��,ā  in 2  indicates the probability of any fiber-tract ā  existing in the 473 

tractography map of vertex �. These connectivity fingerprints are biologically meaningful and 474 

have been used to locate similar functional areas across different species32. 475 

Step3: Node classification using the connectivity context  476 

Most of current cortical parcellation strategies predicted the area/parcel assignment solely 477 

based on the connectivity information of the target vertex while neglecting the context 478 

information of the connectivity profiles 57. The connectivity context starts to show potentials in 479 

the field of brain cartography. Cohen and his colleagues proposed to detect local changes in 480 

functional connectivity maps through an edge detection algorithm on the cortical surface 58, 481 

which only used the local context from the first-order neighborhood (directly connected 482 
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vertices). Graph neural networks provide a more generalized approach for integrating the 483 

context information at each node. One type of graph convolution of ā  using Chebyshev 484 

polynomials is defined as:  485 

 

0

* ( )
K

k k

k

g x T L x 
=

=  (3) 

where �̃ is a normalized version of the graph Laplacian and is equal to 2�/ÿÿÿ� − �, with ÿ 486 

being the largest eigenvalue. �� is the parameter to be learned for each order of the Chebyshev 487 

polynomial Tk, (��(ā) = 2��−1(ā) − ��−2(ā), �0(ā) = 1, �1(ā) = ā). By using a truncated 488 

expansion of the Chebyshev polynomial (as shown in Eq.1), the ChebNet graph convolution is 489 

naturally K-localized in the graph 59. Specifically, when K=1, the graph convolution only 490 

considers the context information from the direct neighbors at each node. When K>1, the graph 491 

convolution also takes into account the information from a larger scale neighborhood, including 492 

nodes that can be reached within K steps of random walk on the graph. All this information is 493 

then integrated using the graph convolution. A stacked two-layer GNN architecture was used 494 

to enlarge the receptive fields of information integration. The GNN model took individual brain 495 

graphs as inputs, integrated the context information of brain connectivity at each vertex, and 496 

generated new representations (shown in Fig. 1b). 497 

Optimization of BAI-Net method 498 

The constructed individual brain graphs were used to train a GNN model constrained by group 499 

priors (Fig. 1b). Specifically, an example of the group prior was extracted from 210 areas on 500 

the cortical surface of the Human Brainnetome Atlas, defined based on a group of 40 healthy 501 

subjects. The group atlas was first mapped onto the standard surface template (fs_LR_32k) 502 

using the MSMAll approach 23 60. A one-hot encoding of the areal label was created for each 503 

vertex (in total of C+1 dimensions, where C is the number of parcels in the group atlas), and 504 

then used to modify the loss function for the GNN. Specifically, the GNN model takes an 505 

individual brain graph � = (�,1, 2) as inputs, where � is the set of vertices (around 30k per 506 

hemisphere) in the cortical surface, 1 is the set of edges, showing whether two vertices share a 507 
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common triangle in the surface, and  2�ℝ��×�  is the set of feature vectors indicating the 508 

connectivity fingerprints �� defined on each vertex, ��  is the number of vertices , � is the 509 

number of fiber tracts (here ��  around 30k and � =72). Using the validation dataset, optimal 510 

parameters for the two-layer GNN model is chosen. The learned graph representations extracted 511 

from the last layer were then projected to a (C+1)-dimensional probability vector at each vertex 512 

using the SoftMax function. The K-L divergence was used to calculated the difference between 513 

the group prior Ă�,� (one-hot encoding) and the predicted areal probability ��,� at each vertex  514 ÿ�  for each region  � . The weight of uncertainty  Ā�   at each vertex was inferred from the 515 

populational probability map of the group atlas. Thus, the final loss function was defined as 516 

follows: 517 

 

, ,

1 0

log( )
N K

i i k i k

i k

Loss w y p
= =

=   (4) 

The benefits of using the above loss function include: 1) high contributions of the vertices near 518 

the center of regions help to obtain a high level of inter-subject alignment for the global 519 

topographic organization. 2) small contributions of the vertices at the borders of regions help 520 

retain the inter-subject variability to some degree and allow the mismatching of label 521 

assignments in the local architecture.  522 

The hyperparameters of the model was determined in the validation set. A 5th-order graph 523 

convolution was used in GNN with M=32 convolutional kernels in the first GNN layer and 524 

C+1=106 kernels in the second GNN layer. We used Adam as the optimizer with an initial 525 

learning rate of 0.01 (decreased to 0.0001 after the 5th epoch). An additional L2 regularization 526 

of 0.0005 on weights was used to control model overfitting and noise in the imaging data. The 527 

network was trained on 100 unrelated subjects for 50 epochs with the batch size set to 1 528 

(processing one subject at a time on the 12G GeForce GTX 1080K) using traditional dataset 529 

and random-order dataset respectively and evaluated on the validation set of 20 subjects at the 530 

end of each training epoch. The best model over 50 training epochs, that is, the one that 531 

achieved the lowest loss on the validation set, was saved and further evaluated on the 532 

independent test set. During the model evaluation (Fig. 1c), an individual brain graph was first 533 
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constructed from the test subject, using surface construction, diffusion tractography, and fiber-534 

tract embedding. Then, the GNN model took the brain graph constructed from the target subject 535 

as input, predicted the areal probability vector at each vertex and labelled graph nodes with the 536 

highest probability.  537 

Group-registered map and iterative clustering  538 

We included two approaches as the baseline approaches in this study. First, the group-registered 539 

map was generated by mapping the original group atlas from the MNI volume space to high-540 

resolution surface template (164k), and down-sampling to the fs_LR_32k surface template, and 541 

then projecting onto individual surfaces.   542 

The second approach was to iteratively assign each vertex to different brain parcels and update 543 

the connectivity information of each area until model convergence. This iterative clustering 544 

approach was originally proposed for fMRI-based individualized brain cartography, we adapted 545 

it onto diffusion tractography based individual cartography (detail descriptions can be seen in 546 

Supplementary Methods). 547 

Robustness, specificity and inter-subject variability 548 

The robustness and specificity of individual cartographies were evaluated by the areal overlaps 549 

(Dice coefficient) between intra-subject and inter-subject pairs, using HCP test-retest dataset 550 

as well as multi-scanner MASiVar dataset. In the calculation of areal overlaps, the surface 551 

cartography for each subject was first converted into binary ROIs (C cortical areas in each 552 

hemisphere, one for each area), and were concatenated into a single vector. The Dice coefficient 553 

was calculated with the equation (2*A∩B)/(A + B) between two vectors 13 for any area overlap 554 

(topography similarity) mentioned in this article. All cortical surfaces were created using the 555 

Connectome workbench toolbox. 556 

Inter-subject variability of a property was estimated by the effect size, Cohen's d, which 557 

revealed the real inter-subject variations after removing the intra-subject variations. Thus, inter-558 

subject variability (the effect size) was defined as:  559 
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Where Ā �Āā�ÿ  and ��Āā�ÿ  represented the mean and standard deviation of the variabilities 560 

between each pair of subjects, while Ā�Āāÿÿ and ��Āāÿÿ  represented those in the variabilities 561 

between different scans for the same subject.  562 

Different measures were used to calculate inter-subject variabilities, including areal topography 563 

(areal overlaps), areal morphology (modulated surface area), and areal connectivity 564 

(connectivity fingerprint). Modulated surface area was calculated by the averaged vertex area 565 

within a cortical region (8surface-vertex-areas9 command in Connectome Workbench toolbox). 566 

The variability in brain connectivity. The variability in areal topography was measured by 1 3 567 

Dice (topography similarity of two individual cortical areas). The variability in brain 568 

morphology was measured by the absolute difference of two modulated surface area. The 569 

variability in brain connectivity was calculated by 1 3 r (Pearson correlation of two area-570 

averaged fingerprints). Additional correlation analysis was performed between the inter-subject 571 

variability of areal topography, morphology and connectivity.  572 

Model activations in the BAI-Net model 573 

The model activations in the 1st GNN layer of BAI-Net were analyzed and interpreted in two 574 

aspects: activations at different spatial ranges and contributions of each connectivity fingerprint. 575 

The order of the Chebyshev polynomials (K-order) can be regarded as the distance from each 576 

cortical vertex to the related connectivity context, ranging from K = 0 (the vertex itself) to K = 577 

5 (connected to the vertex through five steps on the graph).The activations at different K-orders 578 

were averaged across all the graph filters with positive activations indicating supporting the 579 

identification of the target area and negative activations indicating suppressing the 580 

contributions of connectivity fingerprints to the target area. For the delineation of each area, the 581 

contributions of each major fiber tract was estimated in two steps: 1) selecting all the positively 582 

activated graph filters from the model; 2) calculating the averaged activation of each fiber tract 583 

in the selected graph filters. The activations of the major fiber tracts were regarded as the 584 
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contributions of connectivity fingerprints.  585 

Prediction of individual cognitive behaviors 586 

The topography variability of individual cartographies could reflect the individual 587 

idiosyncrasies20. Here, we adopted the kernel ridge regression with L2-norm regularization to 588 

predict the individual cognitive behaviors. We used the Dice coefficient as the kernel function 589 �( ∙ ) and regularization parameter α=1 in the prediction model: 590 

 

0

( , )
trainN

s s i i s

i

C k p p w D W
=

= =  (6) 

where �Ā�ℝ�āÿÿ��  indicates the topographic similarity (measured by Dice score) between the 591 

selected cartography �Ā  with the training cartographies ��, � = 1, … , �āÿÿ�Ā ; sC  indicate the 592 

predicted behavioral scores for subject s; � indicates the regression parameters on training 593 

subjects. The objective function was defined as follows: 594 

2 2

2 2
min C

w
DW W− +  (7) 

We trained a prediction model for each behavioral score and evaluated the model using a 10-595 

fold cross-validation procedure. The prediction accuracy on the test fold was evaluated by the 596 

Pearson correlation between all predicted and actual behavioral scores. The averaged accuracy 597 

on the 10 folds was reported as the final performance. 598 

The heritability of individual-specific topography 599 

The topography of individual functional networks can be explained proportionally by the 600 

genetic variation among individual in a population 61. The genetic effect of the topography 601 

should also be revealed in the region-level cerebral cartography. So, we calculated the 602 

heritability of individual-specific topography according to the scripts in 603 

https://github.com/kevmanderson/h2_multi/blob/master/h2_multi/h2_multi.m. A multivariate 604 

linear mixed effects model was built as follows: 605 

Y XB G E= + +  (8) 

where Y was the multi-dimension phenotype, X was the covariates (including age, sex, age2, 606 

sex×age, age2×sex, total surface area and FreeSurfer-derived intracranial volume.), B was the 607 
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fixed effects, G was the additive genetic effects from single nucleotide polymorphism (SNP) 608 

and E was the unique environmental factors. The detailed calculation of the heritability can be 609 

seen in the article 61. 610 
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