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26 Abstract

27  Brain atlas is an important tool in the diagnosis and treatment of neurological disorders.
28  However, due to large variations in the organizational principles of individual brains, many
29  challenges remain in clinical applications. Brain atlas individualization network (BAI-Net) is
30  an algorithm that subdivides individual cerebral cortex into segregated areas using brain
31  morphology and connectomes. BAI-Net integrates topological priors derived from a group atlas,
32 adjusts the areal probability using the connectivity context derived from diffusion tractography,
33 and provides reliable and explainable individualized brain parcels across multiple sessions and
34  scanners. We demonstrate that BAI-Net outperforms the conventional iterative clustering
35  approach by capturing significantly heritable topographic variations in individualized
36  cartographies. The topographic variability of BAI-Net cartographies shows strong associations
37  with individual variability in brain morphology, connectivity fingerprints and cognitive
38  behaviors. This study providesa new framework for individualized brain cartography and paves
39  the way of atlas-based precision medicine in clinical practice.

40
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44  Introduction

45  Brain atlas has been an important tool to understand the neural basis of human cognition.
46  Neuroanatomists have built a variety of macro- and microanatomical atlases to depict cyto-,
47  myelo- and receptor architectures using a few postmortem human brains '-7. Recent advances
48  innoninvasive neuroimaging techniques, such as magnetic resonance imaging (MRI), provide
49  an opportunity to explore the anatomical and functional organization of the living human brain
50  and to make subsequent cartographic explorations of the human cerebral cortex in a large
51  population 16, However, the majority of current brain atlases focus on a group representative
52 mapping of the cerebral cortex, but ignore the variations of individual brains in terms of areal
53  size, location, spatial arrangement and connectivity patterns due to genetic and environmental
54  influences !5-17. The precise mapping of individual-specific topographic organization is a
55  critical step towards better understanding the structural-functional relationship of the human
56  brain underlies cognition and behavior 3-2% as well as for personalized localization diagnosis
57  and treatment of neurological disorders 2!-22,

58  Traditional individualized cartography of cerebral cortex has relied on the linear and non-linear
59  registration based on the structural images in the volume space or cortical surfaces 23. Modem
60  machine learning algorithms provide analytic tools to align cortical areas using multimodal
61  neuroimaging data, including structural and functional localizers 2423, as well as anatomical?®
62  and functional connectomes!3-2%. As one of the most commonly used approaches to reconstruct
63  human connectomes, diffusion tractography has offered exclusive tools to map anatomical
64  connections in the human brain non-invasively?’. However, the anatomical accuracy and
65  biological meaning of diffusion tractography is still controversy nowadays 28-2%30 which may
66  bias the areal delineation on individual brains when directly applying the diffusion tractography
67  results in individualized cortical cartography 2°.

68  To tackle these issues, we first employed a fiber-tract embedding approach that projects the
69  whole-brain tractography maps to individual fiber-tract space by using TractSeg 3!. The

70  resulting connectivity fingerprint indicates the probability of the chosen major fiber tracts in
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71  the individual tractography map. The connectivity fingerprint approach has been widely used
72 in neuroscience research and demonstrated high consistency not only across subjects but also
73 between homologous areas cross species’?, providing a substantial neural basis to reveal
74 individual variations in anatomical connectomes. Besides, we applied two additional structural
75  constraints on the individualized cartography model in order to precisely characterize the
76  connectivity features from individual anatomical connectomes. The first structural constraint
77  was the areal location priors derived from the group atlas, which provide a blueprint of the
78  general organizational principles on individual brains and guide the individual-specific
79  cartography by using generalized knowledge inferred from a large population rather than
80  limited measures of a single subject '3 18-20.25.33-36 Using such populational priors, we achieved
81 robust delineation of cortical areas on individual brains under various scanning conditions, and
82  at the same time improved the inter-subject alignment of individual topography which has been
83  acommon issue in the individualized cartography model 2937, As an important characteristic
84  of human connectomes, the local continuity constraint suggests that adjacent cortical areas
85  generally follow a similar neural pathway and connect to adjacent neurons in the target area. In
86  order to implement such continuity constraint on individual anatomical connectomes, we
87  employed the convolutional operations on the vertex-level graph constructed from individual
88  cortical surfaces and trained various graph convolutional kernels to integrate the context
89  information of connectivity fingerprints at different spatial ranges.

90  With these in mind, we developed a Brain Atlas Individualization Network (BAI-Net) for
91 individual-specific cartography constrained by both populational priors of areal locations (e.g.
92  Human Brainnetome Atlas '4) and the local continuity of individual connectomes. The BAI-
93 Net method consists of three key steps, i.e. construction of individual brain graph, embedding
94  of individual connectivity fingerprints and areal delineation using the local context of
95  connectivity fingerprints. Specifically, a large-scale vertex-level graph (32k vertices per
96  hemisphere) was first constructed from individual cortical surfaces. After that, a graph neural
97  network (GNN) architecture was implemented to merge the topographical organization of

98  individual brains with the connectivity context of anatomical fingerprints. Using a gradient
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99  descent optimization algorithm and trained over a large population, the resulting GNN
100 representations learned the tradeoff between individual-specific topography and globally
101 aligned organizational principles. We first investigated the reproducibility and robustness of
102 BAI-Net individualized cartographies under various acquisition conditions including multiple
103 sessions and different scanners. We further evaluated the interpretability of the topographic
104  variability revealed by BAI-Net cartographies, e.g. association with individual variability in
105  brain morphology, connectivity fingerprints and cognitive behaviors as well as its heritability
106  in the twin population.

107
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108  Results

109  BAI-Netindividual-specific cartography of cerebral cortex

110 The BAI-Net method (Fig. 1) was evaluated using 969 subjects from the HCP dataset
111 (including 100 unrelated subjects used for model training) and 74 repeated scans (consisting of
112 14 subjects) from MASiVar dataset. The detailed information about the datasets used in the
113 evaluation steps was listed in Supplementary Figure S1. During model training, a vertex-level
114 brain graph was first constructed from T1-weighted images of individual brains, with each node
115  indicating a vertex in the cortical surface and the edge indicating whether two vertices shared
116  in a triangle in the cortical mesh. Then, the anatomical fingerprints, derived from the
117  probabilistic tractography on the individual diffusion MRIs, were embedded as node/vertex
118  features in the brain graph. Next, a graph neural network (GNN) was used to integrate the local
119  context of the connectivity fingerprints and to update with a new representation that combines
120 the topographic patterns in brain morphology and the context of connectivity fingerprints of the

121  individual brains. Finally, the areal probability was inferred from the last layer of trained GNN.

122 Largely retained global topographic pattern and considerable individual differences

123 The BAI-Net individualized cartographies generally followed a similar topographic pattern
124 with the group atlas (average Dice score = 0.762+0.025 on the HCP test sets). The detailed
125  maps of the areal borders and their overlaps with the group atlas were shown in Supplemental
126  Fig. S2. On one hand, the maximum probability map (MPM) and areal size of individualized
127  cartographies were highly consistent with the group atlas (Dice=0.88). On the other hand,
128  considerable individual differences were detected in the areas associated with high-order
129 cognitive functions, for instance, the inferior frontal gyrus (IFQG), inferior parietal lobe (IPL),
130  middle temporal gyrus (MTL), and anterior cingulate cortex (ACC). Our results indicated that
131 the BAI-Net individualized cartographies mostly retained the global topographic organization
132 of cerebral cortex inherited from the group atlas, and uncovered considerable variations in the
133 topographic arrangement of the association areas by aggregating the context of connectional

134 architecture on individual brains.
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136  Figurel. Schematic diagram of the Brain Atlas Individualization Network (BAI-Net) with
137  group priors. a: Construction of individual brain graph. The cortical surfaces were
138  reconstructed from the T1-weighted image using the Freesurfer and Connectome Workbench
139 toolboxes. The individual brain graph was built based on the surface vertices, local edges, and
140  connectivity fingerprints. b: BAI-Net: Model Estimation. Samples from the HCP training
141  dataset and random-ordered dataset were fed as the inputs into the graph neural network. The
142 outputs of the graph neural network for each node were areal probabilities. The group labels as
143 well as the corresponding maximum probability maps of the group atlas were both registered

144 from the group fs LR32k surface to the individual surface tessellation. The network was
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145  optimized with probability-weighted loss function. c: BAI-Net: Model Validation. The regular
146  step for cerebral cartography of a new subject was to build the individual connection graph
147  (preprocessing, tracking, embedding, and normalization) and then to map it through trained
148  network to get the areal probabilities as well as the individual cortical area with max
149  probabilities.

150

151  Reproducible individual-specific topography

152 The reproducibility of individual-specific topography was evaluated using the HCP test-retest
153  datasets, consisting of 44 healthy subjects, who have collected structural, diffusion, and
154  functional MRI data in two independent sessions. The topography similarities between intra-
155  (between the test and retest sessions of the same subject) and inter-subject (between different
156  subjects from the same session) pairs of individualized cartographies was evaluated by Dice
157  score. As shown in Fig. 2a, the BAI-Net cartography generated highly reproducible individual
158  topography at the subject level (Dice = 0.901+£0.014 for the whole cerebral cortex), while
159  maintained high variability across subjects (Dice = 0.745+0.025), with significantly lower
160  topographic similarity between subjects than within subjects (p values < 10-°°). Examples of
161  individualized cartography in the right hemisphere were shown in Fig. 2b (maps of the left
162 hemisphere shown in Supplementary Fig. $3). Compared to the canonical iterative clustering
163  (IC) approach, BAI-Net cartography revealed higher gaps between intra- and inter-subject
164  topographic similarity (0.15 and 0.09 respectively for BAI-Net and IC, see Supplementary Fig.
165 84 for detailed information of IC) and consequently uncovered more subject-specific
166  characteristics in brain topography. For instance, the identity of BAI-Net individualized
167  cartography was successfully predicted in the HCP test-retest sessions (accuracy=100% when

168  classifying subjects based on the maximum similarity in topography).

169  Robust performance across multiple scanners
170  The generalizability of the BAI-Net method was evaluated by applying the pre-trained HCP

171 model onto the MASiVar dataset acquired from different scanners and sites. As shown in Fig.
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172 2c¢, the BAI-Net cartography yielded much higher variability between subjects than within the
173 same subject, not only within the same scanner (Dice score=0.860+0.024 and 0.707+0.027,
174 respectively for intra-subject and inter-subject pairs), but also across different scanners (Dice
175  score=0.830+0.015 and 0.703+0.025, respectively for intra-subject and inter-subject pairs). The
176  BAI-Net cartography generated highly consistent cartographies of the same subject across four
177  different scanners (Fig. 2d). It is worth noting that the reproducibility of individualized
178  cartography was slightly lower in the multi-scanner dataset (MASiVar) than in HCP at both the
179  intra- and inter-subject levels, mainly due to different scanning conditions in the two datasets.
180  We further evaluated the inter-subject topography variability (ITV) by using Cohen’s d effect
181  size. Compared to the IC method, BAI-Net method revealed relatively stable ITV for intra-
182  scanner (Cohen’s d = 4.23) and inter-scanner cases (Cohen’s d =4.35) while the IC approach
183  was more sensitive to the specific scanner (Cohen’s d = 6.64 and 3.31 respectively for within-

184  and between-scanner ITV).

185  Flexible and time-saving regional cartography

186  The BAI-Net method can be easily adjusted to the cartography of a small region of interest
187  instead, namely the regional cartography. As shown in Fig. 2e, the subdivision of the ventral
188  lateral prefrontal cortex (vIPFC) was highly consistent with the whole-cortex cartography
189  (Dice=0.92 for an exemplar subject, more examples can be found in Supplementary Fig. S5).
190  Another advantage of the BAI-Netregional cartography is the time-saving mode when applying
191  toa small region. For instance, the BAI-Net cartography of vIPFC only takes 4 minutes, about
192 one tenth of the time spending on the whole-cortex model (2.7k vs 32k vertices, respectively in
193 the seed mask). In contrast, the IC method requires iteratively updating signals of the entire
194  cerebral cortex at each iteration, which highly limits its applications on small regions and
195  potentially biases the areal delineation when only local information was available (see

196  Supplementary Fig S5b for three examples).
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197

198  Figure2. Reproducibility and specificity of BAI-Net individualized cartographies. a: Inter-
199  and intra-subject variability of brain cartographys using BAI-Net and iterative clustering (IC)
200  methods on the HCP test-retest dataset. b: Examples of BAI-Net individualized cartographies
201  for three random subjects. c: Generalizability of the BAI-Net method on multiple scanners
202  evaluated on the MASiVar dataset. d: BAI-Net individualized cartography for the same subject

203  on four different scanners. e: Exemplar regional cartography when applying the BAI-Net
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204  method on a small region of interest, e.g. VIPFC. High overlaps were achieved between the
205  regional cartography and whole-cortex cartography. The box represents the first and third
206  quartiles in the distribution of the Dice scores.

207

208  Interpretability of BAI-Net cartographies

209  Topography variability associated with individual variability in brain connectomes and
210  morphology

211  The effect size of the inter-subject topography variability (ITV) was evaluated by Cohen’s d on
212 the HCP test-retest dataset, which computes the differences in individualized brain cartography
213 between subjects after taking in account the intra-subject variability. The BAI-Net
214 individualized cartographies exhibited large effect of ITV at the whole-brain level (Cohen’ d =
215  7.07 and 7.19 for the left and right hemispheres, respectively). The pattern of topography
216  variability generally followed the functional and connectional gradient of the cortical
217  organization (as shown in Fig. 3a). Specifically, we found small ITV values in the primary
218  cortices (e.g. the primary motor and sensory cortex) and relatively high ITV values in the
219  association cortices, especially for cortical areas involved in higher-order cognitive functions,
220  e.g. the middle frontal gyrus (MFG) and inferior parietal lobule (IPL). These high-order
221  association areas also exhibited greater functional variability than the other parts of the cerebral
222 cortex!”. Similar organizational patterns were observed in the variability maps of brain
223 morphology (modulated surface area) and connectomes (connectivity fingerprints), both of
224 which revealed significant associations with ITV (» = 0.569, p < 0.001 for connectivity
225  fingerprintsin Fig. 3e;r=0.810, p<0.001 for modulated surface area in Fig. 3f), and regulated
226  the topography variability through direct and indirect effects (Fig. 3d). Our results indicated
227  that BAI-Net cartography captured reliable variations in topographic organization of individual
228  brains that mainly driven by both brain morphology and human connectome. Such topographic
229  variability was not noticeable in the conventional registration-based approach that only relies

230  on the shape and intensity of brain structures.
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232 Fig. 3 Topography variability of BAI-Net cartography was associated with and regulated
233 by brain morphology and connectivity fingerprints. a: The distribution of inter-subject areal
234  topography variability. b: The distribution of variability in anatomical connectivity fingerprints.
235  c: The distribution of variability in brain morphology. d: The mediation analysis of ITV and
236  the variability in brain morphology and connectivity. e, f: The association analysis between
237  ITV and the variability in brain morphology (r=0.810, p < 0.001) and connectivity (= 0.569,

238  p<0.001). Each dot in the scatter plot represents one cortical area.

239  Integrating area-specific connectivity fingerprints

240  We uncovered a long-tail distribution of ITV for BAI-Net cartographies (Figs. 3 and 4), with
241  the top 10% of topography variability located in the frontoparietal regions (yellow regions in
242 Fig.4a) while the bottom 10% located in the limbic areas (blue regions in Fig.4a). Different
243 range of context information was employed in the BAI-Net cartography of these two types of
244 brain regions. Specifically, for frontoparietal regions, the areal probability of each vertex was
245  mainly driven by the connectivity context within a local neighborhood and itself (i.e. positive
246  activations at K<2) while suppressing the contributions of connectivity profiles far away
247  (negative activations at K>3), as shown in Fig.4b. The limbic areas followed a similar trend
248  but showed significant differences in the activations at different K-orders (i.e. integration scale

249  of context). For instance, frontoparietal regions showed higher positive activations within the
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250  local filed (p-values<0.05 when K<2) and more negative activations at distributed areas (p-
251  value<0.01 when K=5, as shown in Fig.4b). These findings indicated the proposed BAI-Net
252 cartography integrates the connectivity context from local neighborhoods, adapts the
253  integration rule according to area-specific characteristics and captures reliable features from

254  the integrated context of anatomical connectivity profiles.

255  Individualized cartography used biologically meaningful salient features

256  Whether the salient features that mostly driven the areal probability in individualized
257  cartography are biologically meaningful is an important question. We took areas A4hf and
258  A45c (for motor and language functions, respectively) as examples to visualize the contribution
259  of major fiber tracts in the process of individualized cartography. As shown in Fig. 4c, for areal
260  delineation of A4hf, which was involved in the movement of the hand and face!4, we found that
261  the highly contributed fiber tracts included granterior midbody of corpus callosum (CC 4),
262 corticospinal tract (CST), thalamo-precentral circuits (T PREC) and prefrontostriatal circuits
263 (ST PREC). For areal delineation of A45c, which was involved in semantic and language
264  processing!4 38, the highly contributed fiber tracts consist of the longitudinal fascicle I1I (SLF
265  III), thalamo-premotor circuits (T PREM) and corticostriatal circuit (ST PREM), coinciding
266  with the structural and connectional substrates of language processing 3%. Our results indicated
267  that the BAI-Net cartography captured biologically meaningful and area-specific signatures

268  coinciding with both connectional and anatomical organization of human brain.
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270  Fig. 4 Area-specific contributing factors to the topography variability of BAI-Net
271  cartography. a: The distribution of the top 10% and bottom 10% ITV cortical areas. b:
272 Different activated patterns of top 10% and bottom 10% ITV cortical areas measured at
273 different K orders in BAI-Net. c: Contributions of major fiber tracts for the areal delineation of
274 A4hf and A45c. Different colors in the boxplot represent different major fiber tracts in the
275  connectivity fingerprints. Note: *: p<0.05, **: p<0.01, ***: p<0.001.

276

277  Prediction of cognitive behaviors and genetic associations

278  Individualized global cartographies predicted cognitive behaviors

279  The topography variability of BAI-Net cartography not only significantly associated with
280  individual variability in brain morphology and connectivity fingerprints, but also strongly
281  predicted individual differences in cognitive behaviors. As shown in Fig. §, we trained a kernel
282  ridge regression model for each of 58 behavioral measures and obtained 31 predictive
283  behavioral models that showed significant predictions (p<0.001) using either the BAI-Net or
284  IC approaches. The results indicated that BAI-Net method achieved higher overall prediction
285  accuracies on 58 behavioral scores (average » = 0.102 and 0.078 respectively for BAI-Net and
286  IC, paired t-test p<0.001), as well as better predictions on 31 significantly predicted behavioral

287  measures (average = 0.152 and 0.130 respectively for BAI-Net and IC, paired t-test p=0.028).


https://doi.org/10.1101/2021.07.15.452577
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452577; this version posted February 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1 BAI-Net
05 - B Ic

0.25 - 58 behaviors 31 behaviors

Averaged Accuracy (Correlation)

B
=
=

cDCc O -~ T oCE>>otfYm oo CcUTTS o o8 o ==
Hcoucg_%j@oo.t'LOBEcu@oEﬁﬁagmmogooo
-2 5 c @ S S o nm s 2Wwgo s ®©E SO g S 2 Qv wduww gy
s42CBEegggsESe  seEECfEg 252=¢
— [ < — ' v — — = = =
S 0c2c -2 2wl oL IAEE TS CoFc v an o
w o @ cuo—08 ODg o n D Q 0w ey >~ 0 6 > u0 n g
thcjubgmh_umaomtmz<c.guIJ—JU-—'_':GJGJ:
= 20 U 5 ¢ <ocwmscccfpal® T ESc=g9gPEccow
5 s=oc ¥ 9@, g3 v 5 9 = un = S8 g @ v c o
OCeB s oE5. 5By >0 SEREx_ ,>8300C
SR X805 9GS ®mE©® 0 O s = S8ocado® 38-0_
:‘:Q_Evgz.ag}Emeow E_l = |.uO1-..—_Eu ot (7]
T wn o E e c — ¥ EO E =8 o = o £
] gc—8‘>,<49 S o W g S 58 I S »

o4 S8 g o n 7 < = c o2 woS @

mEL’_U = o EU-CIJ'GC g

x££ 3 k= = 5 o o

= o = wn O
© = (]
1] S
288 = =

289  Fig. 5 Prediction accuracy of cognitive behaviors using individualized cartographies.
290  Using a 10-fold cross validation procedure, we evaluated the perdition accuracy on each of 58
291  cognitive behaviors using the topography variability from the BAI-Net or IC methods. Among
292 which, we obtained 31 predictive behavioral models that showed significant predictions
293 (p<0.001)using either the BAI-Net or IC approaches. a: Prediction accuracy on 31 significantly
294  predicted cognitive behaviors. b: Average prediction accuracy on 58 behaviors and 31

295  significantly predicted behaviors.

296  Topography variability controlled by genetic effects

297  The topography variability of BAI-Net cartography was significantly heritable in HCP twin
298  populations. To validate this hypothesis, we first split the whole dataset into four groups, i.e.
299  Unrelated, Siblings, dizygotic twins (DZ) and monozygotic twins (MZ). We found that BAI-
300  Net cartography showed more similar individualized cartographies in closed-kinship groups
301  (Fig. 6a), e.g. higher similarity in the MZ than unrelated groups (Dice=0.783 and 0.733,
302  respectively). The IC approach showed similar patterns between the four groups (e.g

303  Dice=0.829 and 0.816, respectively for MZ and unrelated groups) but detected smaller gaps
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between MZ and unrelated groups (gap=0.050 vs 0.013 respectively for BAI-Net and IC).
Moreover, the topography variability of individualized cartographies was significantly impact
by genetic factors, with a higher heritability value in BAI-Net (4’=0.175, p<0.001) than IC

(h?=0.105, p<0.001).

a b.
0.20+
0.85 o
<> @ <y Jr 3
0-80 1 0.15-
= 0.75 €
o) >
& 0701 5 0.10-
©
8 0.65- £
(0]
o I
a 0.60 A 0.05-4
== IC
0:99 == BAI-Net
0501 . : , 0.00- :
Unrelated Sibling Dz MZ IC BAIl-Net

Fig.6 Genetic effects of the topography variability of individualized cartographies. a:
Topography similarity of individualized cartographies among four different groups (Unrelated,
Sibling, DZ and MZ). b: The heritability of the topography variability of individualized
cartographies. The BAI-Net method showed a higher heritability value (A°=0.175, p<0.001)

than the IC method (4°=0.105, p<0.001).
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314 Discussion

315  Inthe present study, we propose a deep-learning approach for individualized cartography which
316  aligns the group-level cortical areas onto individual brains by taking into account the variations
317  in brain morphology and anatomical connectomes. The proposed BAI-Net method generated
318  highly reproducible, individual-specific cartography across various acquisition conditions, not
319  only revealing reliable topographic patterns of a single subject across multiple sessions
320  (Dice=0.901+0.014) but also capturing highly variable organizational principles across
321  different subjects (Dice=0.745+0.025),yielded a significant heritability in twin population. The
322 topography variability of BAI-Net individualized cartographies generally followed the
323  functional and connectional gradient of the cortical organization, strongly associated with
324  individual variability in brain morphology and connectivity fingerprints, and significantly
325  predicted individual cognitive behaviors. Our study provides an important tool for better
326  understanding of individual cognition, behavior, and the pathology of brain diseases and paves
327  the way of individualized atlas-based precision medicine in clinical practice.

328  One of the big challenges in diffusion tractography is that massive short-distance fibers usually
329  dominate long-distance fibers in the tractograms?-3°, which can easily bias the areal delineation
330  onindividual brains based on diffusion tractography maps. To overcome this issue, we used a
331 fiber-tract embedding approach to project high-dimensional diffusion tractography maps (50k+
332 voxels) to a low-dimensional fiber-tract space (72 fiber bundles). This embedding technique
333 highly reduced the computational complexity in GNN. In addition, the fiber-tract embedding
334  focused more on the long-distance anatomical connections, largely suppressed the error
335  accumulation effects on long-distance fibers in individual anatomical connectomes, improved
336  the alignment of connectivity fingerprints across subjects??-4%, and boosted the reproducibility
337  of individual-specific areal delineation (Fig.2). The majority of existing individualized
338  cartography methods aimed for a high local homogeneity of brain signals or connectivity
339  profiles within individualized brain parcels '® 2. This might not be an appropriate goal for the

340  anatomical connectomes derived from diffusion tractography due to the distance effects. In
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341  contrast, the proposed BAI-Net method yields smaller areal homogeneity of anatomical
342 connectivity in the tractography than the IC method (Supplementary Results SR1), but revealed
343  higher variations in individual topography along with better heritability than IC(Fig. 6).

344 Another challenge in the mapping of individual anatomical connectomes is the reliability and
345  reproducibility of probabilistic tractography results 28. To solve this issue, we used a rich set of
346  graph convolutions to integrate the local context of anatomical connectivity fingerprints. The
347  local contiguity was specified by a large-scale vertex-level graph (32k vertices per hemisphere)
348  with each node indicating a cortical vertex and each edge indicating whether two nodes shared
349  ina triangle in individual cortical surfaces. The usage of such brain graph implicitly applied a
350  smoothing effect on the cortical surface such that adjacent vertices on the graph had similar
351  connectivity fingerprints and graph representations. Besides, in contrast to previous
352  individualized parcellation approaches which only used the connectivity information of the
353  target vertex (e.g. the IC method 2¢), our model also took into account the local context of
354  connectivity fingerprints within a specified neighborhood. The contributions at different spatial
355  neighborhoods (K-orders) were dependent on the nature the brain parcels and varied a lot across
356  different brain regions (Fig.4). Together, the deep graph convolutional architecture combined
357  the vertex graph and connectivity context in the model and ensured the balance between
358  individual-specific topography and populational aligned organizational principles. The BAI-
359  Net model generated highly reproducible and robust individualized cartographies, not only
360 aligning with the global topographic pattern specified in a group atlas but also revealing
361 considerable differences in individual topography that strongly associated with the anatomical
362  gradients in both brain morphology (=0.810) and anatomical connectivity (r=0.569) (Fig.3).
363  Lastly, the usage of group-prior constraints further enhanced the inter-subject alignment in
364  individualized cartographies and might ensure the significant predictions of individual
365  cognitive behaviors (Fig.5) as well as its consistency on repeated sessions and in the twin
366  populations.

367  Individualized brain cartography has played a more and more important part in neuroscience

368  research and clinical studies. Accumulating evidences suggested considerable and meaningful
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369  variations in individual topography at the levels of brain areas and networks. !8-20.26,33 41
370  Despite various imaging features used in individualized cartography methods so far, we still
371  observed high consistency in terms of the variability in individual topography (ITV) by using
372 either anatomical or functional connectomes. First, the anatomical ITV revealed by BAI-Net
373  exhibited small values in the primary cortices (e.g. the primary motor and sensory cortex) and
374  relatively high ITV values in the association cortices, especially for cortical areas involved in
375  higher-order cognitive functions including MFG and IPL, coinciding with the functional ITV
376  maps despite of using different group atlases 2°.More importantly, the anatomical ITV showed
377  similar predictability on individual cognitive behaviors (=0.102 for 58 cognitive behaviors) as
378  compared to the functional ITV (=0.111 for 58 cognitive behaviors) 2°, and even achieved
379  higher prediction accuracies on some behavioral measures (e.g. grip strength and fluid
380 intelligence shown in Fig.6). Besides, the anatomical ITV exhibited much higher
381  reproducibility (Dice=0.90) as compared to the functional ITV (Dice=0.81 for 400 cortical
382  areas 2%, Dice=0.78 for 17 networks'®)

383  The reproducibility of individualized cartography is an essential requirement in clinic practices,
384  long with the robustness, interpretability and time-consumption. The BAI-Net method achieved
385  high specificity (Dice=0.703), high robustness (Dice=0.83) across various acquisition
386  conditions on different scanners. Then area-specific activated rules in spatial activations
387  interpretates the areal identification process of BAI-Net method. Meaningful and salient
388  connectivity fingerprints was captured and contributed more in areal identification. For

389  example, the SLF III, TPREM, ST PREM elements of the connectivity fingerprints contributed

390  more in A45c area, which coincides with the structural and connectional substrates of language
391  processing!'# 3%, More importantly, with a preprocessed individual cortex surface, the time
392  consumption of the BAI-Net method to inference the cerebral cartography of anew subject was
393  around 2~3h on the Centos 6 Linux system from raw diffusion images. But it will cost less time
394  intheregional cartography of BAI-Net method according to the size of the region, which might

395  partially solve the time problem of probabilistic tracking when regional areas are needed. As
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396  mentioned above, the BAI-Net satisfies these necessities for the clinic applications.

397  The BAI-Net method provides a generalized framework for individuated cartography with the
398  assistance of graph neural networks. The presented method is not limited to a certain group
399  atlas, a similar implementation of BAI-Net using Glasser’s atlas !> was shown in
400  Supplementary Fig. S10. In clinical applications, a faster, reliable, individual-specific mapping
401  of the cerebral cortex is the critical step towards for personalized precision medicine, which
402  enables the personalized localization of neuroimaging biomarkers, the investigation of
403  individualized structural-functional relations, and potentially assist the development of new
404  technologies in practical treatments, e. g. locating the target areas for transcranial magnetic
405  stimulation (TMS) and deep brain stimulation (DBS) therapies, and reducing functional
406  impairment in neurosurgery.

407
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408 Materials and Methods

409  Datasets and preprocessing

410  Dataset 1: Human Connectome Project (HCP)

411  We acquired healthy young adults from the HCP S1200 release, consisting of T1 weighted
412  (Tlw) data, resting-state functional MRI (rs-fMRI), as well as diffusion MRI (dMRI) data for
413  each subject. Specifically, the BAI-Net method was trained and evaluated on the first dataset,
414  consisting of 969 subjects (Age: 21-35, Female: 519) acquired from the Human Connectome
415  Project S1200 release (after removing subjects with large head motions). The test-retest
416  reliability of the model was then evaluated on the second dataset, consisting of 44 subjects
417  acquired from the HCP test-retest datasets. The preprocessed datasets were used in the current
418  study using the HCP minimal preprocessing pipeline 4>#. The individual cortical surfaces were
419  first reconstructed from T1-weighted MRI data and then projected onto the standard surface
420  template (fs LR 32k) with 32k vertices per hemisphere by using the MSMAII registration
421  approach 23. Diffusion MRI data had been mainly preprocessed by motion correction, eddy
422 current distortion correction, and echo-planar images (EPI) susceptibility-induced field
423  distortion correction. The preprocessing of the functional MRI data mainly included motion
424 correction, EPI susceptibility-induced distortion correction, linear trend removal, and
425  independent component analysis (ICA)-based artifact removal. Further preprocessing details

426 can be found in the HCP preprocessing pipeline (https://github.com/Washington-

427  University/HCPpipelines ) 4546, In heritability analysis, all HCP subjects were divided into for

428  four groups, 1) Unrelated (468119 pairs): no shared parent IDs; 2) Siblings (297 pairs): sharing
429  one parent ID and but not twins. 3) DZ (60 pairs): dizygotic twins according to the genetic

430  records. 4) MZ (119 pairs): monozygotic twins according to the genetic records.

431 Dataset 2: MASiVar dataset
432 Additional dataset was used acquired from the Multisite, Multiscanner, and Multisubject

433 Acquisitions for Studying Variability (MASiVar) dataset 47, consisting of 74 scans (removed 8
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434  scans due to incomplete brain tissues in diffusion images) and 14 healthy adults (8 males and 6
435  females, age 27-47). This dataset was used to evaluate the stability of individualized
436  cartography on multiple sessions, sites, and scanners. Specifically, dMRI data was acquired
437  from 3 cohorts using four different scanners (two 3T Philips Achieva scanners at two different
438  sites, one 3T General Electric Discovery MR750 scanner, and one 3T Siemens Skyra scanner)
439  with at least one T1-weighted image for each subject at each session. Of the three cohorts,
440  different scanning sequences were used in diffusion imaging, including different b-values (b =
441 1000 to 3000 s/mm?) and diffusion directions (about 40~96 directions for each b value),
442  different spatial resolutions ranging from 2.5 mm isotropic or 2.1 mm by 2.1 mm by 2.2 mm
443  (sagittal, coronal, and axial), and so on. These diffusion images were preprocessed using the
444 PreQual pipeline #® with the default settings, including intensity normalization and distortion
445  correction, as well as the Marchenko-Pastur technique*-3!. More information on PreQual can

446  be found at https://github.com/MASILab/PreQual.

447  Pipeline of BAI-Net individualized cartography
448  The Brain Atlas Individualization Network (BAI-Net) pipeline included three key steps:
449 construction of individual cortical graph, embedding of individual connectivity fingerprints and

450  node classification using the connectivity context.

451  Stepl: Construction of individual cortical graph

452 The graph structure of individual brains was derived from the cortical mesh data of each subject.
453 Foreach hemisphere of each subject, we constructed a spatial brain graph, with nodes indicating
454  each cortical vertex (consisting of around 30k vertices/nodes after excluding confounding
455  vertices in the medial wall), and edges indicating whether two vertices shared in a triangle of
456  the cortical surface, weighted by the inverse of the geometric distance between them. The brain
457  graph was sparsely connected and highly localized in space, with each vertex connecting with
458  2-6nearest vertices on average. The brain graph architecture provided a reference structure for

459  each vertex to search for its spatial connectivity context.
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460  Step2: Embedding of individual connectivity fingerprints as node features in the graph

461  After constructing the graph, the connectivity fingerprint of each vertex was calculated as
462  follows: 1) A surface-based probabilistic tractography algorithm was applied to track 5000
463  streamlines from each vertex on the cortical surface throughout the whole brain, including both
464  cortical and subcortical regions 32-33. The resulting whole-brain tractography map Track, €
465  RNv»*Nbvs( N, is the number of surface vertices and N,,¢ is the numbers of brain voxels of subject
466  s), was first threshold at 2 and then down-sampled to a 3mm-resolution space *°. 2) A binary
467  mask was created for each of 72 fiber bundles (names of fiber bundles listed in Supplementary
468  Table S1) by using a pretrained deep-learning model named TractSeg 3'. The resulting fiber-
469  tract mask was also down-sampled to 3mm resolution. 3) An embedding of the whole-brain
470  tractography map was created for the projection from the volume space (50k+ voxels) to the
471  fiber-tract space (72 fiber bundles). After that, the connectivity fingerprint FeRN»*T (N,, ~30k

472  and T =72) was generated as follows:

Zgbs Track, (i, k) x Tract,(k,t)

7 i't) B le‘\f”s Tractg (k,t) )
it
Flfie) =577 @)

473  where each element f;, in F indicates the probability of any fiber-tract ¢ existing in the
474  tractography map of vertex i. These connectivity fingerprints are biologically meaningful and

475  have been used to locate similar functional areas across different species3?.

476  Step3: Node classification using the connectivity context

477  Most of current cortical parcellation strategies predicted the area/parcel assignment solely
478  Dbased on the connectivity information of the target vertex while neglecting the context
479  information of the connectivity profiles 37. The connectivity context starts to show potentials in
480  the field of brain cartography. Cohen and his colleagues proposed to detect local changes in
481  functional connectivity maps through an edge detection algorithm on the cortical surface %,

482  which only used the local context from the first-order neighborhood (directly connected
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483  vertices). Graph neural networks provide a more generalized approach for integrating the
484  context information at each node. One type of graph convolution of x using Chebyshev
485  polynomials is defined as:

K

g *x=> O,T,(L)x 3)

k=0
486  where L is a normalized version of the graph Laplacian and is equal to 2L/A 4, — I, with A
487  being the largest eigenvalue. 8, is the parameter to be learned for each order of the Chebyshev
488  polynomial Ty, (T, (x) = 2Ty_1 (%) — Tx_, (%), Ty(x) =1, T; (x) = x). By using a truncated
489  expansion of the Chebyshev polynomial (as shown in Eq.1), the ChebNet graph convolution is
490  naturally K-localized in the graph 3°. Specifically, when K=1, the graph convolution only
491  considers the context information from the direct neighbors at each node. When K>1, the graph
492  convolution also takes into account the information from a larger scale neighborhood, including
493 nodes that can be reached within K steps of random walk on the graph. All this information is
494  then integrated using the graph convolution. A stacked two-layer GNN architecture was used
495  to enlargethereceptive fields of information integration. The GNN model took individual brain
496  graphs as inputs, integrated the context information of brain connectivity at each vertex, and
497  generated new representations (shown in Fig. 1b).
498  Optimization of BAI-Net method
499  The constructed individual brain graphs were used to train a GNN model constrained by group
500  priors (Fig. 1b). Specifically, an example of the group prior was extracted from 210 areas on
501  the cortical surface of the Human Brainnetome Atlas, defined based on a group of 40 healthy
502  subjects. The group atlas was first mapped onto the standard surface template (fs LR 32k)
503  using the MSMAII approach 23 ¢°, A one-hot encoding of the areal label was created for each
504  vertex (in total of C+/ dimensions, where C is the number of parcels in the group atlas), and
505  then used to modify the loss function for the GNN. Specifically, the GNN model takes an
506  individual brain graph G = (V,E,F) as inputs, where V is the set of vertices (around 30k per

507  hemisphere) in the cortical surface, € is the set of edges, showing whether two vertices share a
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508 common triangle in the surface, and F eRMXT is the set of feature vectors indicating the
509  connectivity fingerprints f; defined on each vertex, N,, is the number of vertices , T is the
510  number of fiber tracts (here N,, around 30k and T =72). Using the validation dataset, optimal
511  parameters for the two-layer GNN model is chosen. The learned graph representations extracted
512 from the last layer were then projected to a (C+1)-dimensional probability vector at each vertex
513 using the SoftMax function. The K-L divergence was used to calculated the difference between
514 the group prior y; , (one-hot encoding) and the predicted areal probability p; ; at each vertex
515  v; for each region k. The weight of uncertainty w; at each vertex was inferred from the
516  populational probability map of the group atlas. Thus, the final loss function was defined as
517  follows:
N K
Loss = ZI: Wi;yi’k log(p,,) 4

518  The benefits of using the above loss function include: 1) high contributions of the vertices near
519  the center of regions help to obtain a high level of inter-subject alignment for the global
520  topographic organization. 2) small contributions of the vertices at the borders of regions help
521  retain the inter-subject variability to some degree and allow the mismatching of label
522 assignments in the local architecture.

523  The hyperparameters of the model was determined in the validation set. A Sth-order graph
524 convolution was used in GNN with M=32 convolutional kernels in the first GNN layer and
525  C+I1=106 kernels in the second GNN layer. We used Adam as the optimizer with an initial
526  learning rate of 0.01 (decreased to 0.0001 after the 5th epoch). An additional L2 regularization
527  of 0.0005 on weights was used to control model overfitting and noise in the imaging data. The
528  network was trained on 100 unrelated subjects for 50 epochs with the batch size set to 1
529  (processing one subject at a time on the 12G GeForce GTX 1080K) using traditional dataset
530  and random-order dataset respectively and evaluated on the validation set of 20 subjects at the
531  end of each training epoch. The best model over 50 training epochs, that is, the one that
532 achieved the lowest loss on the validation set, was saved and further evaluated on the

533  independent test set. During the model evaluation (Fig. I¢), an individual brain graph was first
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534 constructed from the test subject, using surface construction, diffusion tractography, and fiber-
535  tractembedding. Then, the GNN model took the brain graph constructed from the target subject
536  as input, predicted the areal probability vector at each vertex and labelled graph nodes with the
537  highest probability.

538  Group-registered map and iterative clustering

539  We included two approaches as the baseline approaches in this study. First, the group-registered
540  map was generated by mapping the original group atlas from the MNI volume space to high-
541  resolution surface template (164k), and down-samplingto thefs LR 32k surface template, and
542 then projecting onto individual surfaces.

543  The second approach was to iteratively assign each vertex to different brain parcels and update
544  the connectivity information of each area until model convergence. This iterative clustering
545  approach was originally proposed for fMRI-based individualized brain cartography, we adapted
546 it onto diffusion tractography based individual cartography (detail descriptions can be seen in
547  Supplementary Methods).

548  Robustness, specificity and inter-subject variability

549  The robustness and specificity of individual cartographies were evaluated by the areal overlaps
550  (Dice coefficient) between intra-subject and inter-subject pairs, using HCP test-retest dataset
551 as well as multi-scanner MASiVar dataset. In the calculation of areal overlaps, the surface
552 cartography for each subject was first converted into binary ROIs (C cortical areas in each
553  hemisphere, one for each area), and were concatenated into a single vector. The Dice coefficient
554  was calculated with the equation (2*ANB)/(A + B) between two vectors '3 for any area overlap
555  (topography similarity) mentioned in this article. All cortical surfaces were created using the
556  Connectome workbench toolbox.

557  Inter-subject variability of a property was estimated by the effect size, Cohen's d, which
558  revealed the real inter-subject variations after removing the intra-subject variations. Thus, inter-

559  subject variability (the effect size) was defined as:
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560  Where U pter and Oj,er represented the mean and standard deviation of the variabilities
561  between each pair of subjects, while ;4 and g;,,4-4 represented those in the variabilities
562  between different scans for the same subject.

563  Different measures were used to calculate inter-subject variabilities, including areal topography
564  (areal overlaps), areal morphology (modulated surface area), and areal connectivity
565  (connectivity fingerprint). Modulated surface area was calculated by the averaged vertex area
566  within a cortical region (‘surface-vertex-areas’ command in Connectome Workbench toolbox).
567  The variability in brain connectivity. The variability in areal topography was measured by 1 —
568  Dice (topography similarity of two individual cortical areas). The variability in brain
569  morphology was measured by the absolute difference of two modulated surface area. The
570  variability in brain connectivity was calculated by 1 — r (Pearson correlation of two area-
571  averaged fingerprints). Additional correlationanalysis was performed between the inter-subject
572  variability of areal topography, morphology and connectivity.

573  Model activations in the BAI-Net model

574  The model activations in the 1st GNN layer of BAI-Net were analyzed and interpreted in two
575  aspects: activations at different spatial ranges and contributions of each connectivity fingerprint.
576  The order of the Chebyshev polynomials (K-order) can be regarded as the distance from each
577  cortical vertex to the related connectivity context, ranging from K = 0 (the vertex itself) to K =

578 5 (connected to the vertex through five steps on the graph). The activations at different K-orders

579  were averaged across all the graph filters with positive activations indicating supporting the
580  identification of the target area and negative activations indicating suppressing the
581  contributions of connectivity fingerprintsto the target area. For the delineation of each area, the
582  contributions of each major fiber tract was estimated in two steps: 1) selecting all the positively
583  activated graph filters from the model; 2) calculating the averaged activation of each fiber tract

584  in the selected graph filters. The activations of the major fiber tracts were regarded as the
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585  contributions of connectivity fingerprints.

586  Prediction of individual cognitive behaviors

587  The topography variability of individual cartographies could reflect the individual
588  idiosyncrasies??. Here, we adopted the kernel ridge regression with L2-norm regularization to
589  predict the individual cognitive behaviors. We used the Dice coefficient as the kernel function

590 k() and regularization parameter o=/ in the prediction model:

N,

Cy=> k(p,,p)w,=DW (6)

i=0

591  where D eRNtrain indicates the topographic similarity (measured by Dice score) between the

592  selected cartography p, with the training cartographies p;,i = 1, ..., Nppgin; Cs indicate the
593  predicted behavioral scores for subject s; W indicates the regression parameters on training

594  subjects. The objective function was defined as follows:
min|DW - Cf, + | (M

595  We trained a prediction model for each behavioral score and evaluated the model using a 10-
596  fold cross-validation procedure. The prediction accuracy on the test fold was evaluated by the
597  Pearson correlation between all predicted and actual behavioral scores. The averaged accuracy
598  onthe 10 folds was reported as the final performance.

599  The heritability of individual-specific topography

600  The topography of individual functional networks can be explained proportionally by the
601 genetic variation among individual in a population ¢!. The genetic effect of the topography
602  should also be revealed in the region-level cerebral cartography. So, we calculated the
603  heritability of individual-specific topography according to the scripts in

604 https://github.com/kevmanderson/h2 multi/blob/master/h2 multi/h2 multim. A multivariate

605  linear mixed effects model was built as follows:
Y=XB+G+E (8)
606  where Y was the multi-dimension phenotype, X was the covariates (including age, sex, age?,

607 sexXage, age”Xsex, total surface area and FreeSurfer-derived intracranial volume.), B was the
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608  fixed effects, G was the additive genetic effects from single nucleotide polymorphism (SNP)
609  and E was the unique environmental factors. The detailed calculation of the heritability can be

610 seen in the article ©!.
611 Data Availability

612 The pipeline of BAI-Net method will be open-sourced on Github website once accepted. And

613  other data and figures of this article are available on request from the authors.
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