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Abstract

Direct neural recordings from human auditory cortex have demonstrated encoding for acoustic-
phonetic features of consonants and vowels. Neural responses also encode distinct acoustic
amplitude cues related to timing, such as those that occur at the onset of a sentence after a silent
period or the onset of the vowel in each syllable. Here, we used a group reduced rank regression
model to show that distributed cortical responses support a low-dimensional latent state
representation of temporal context in speech. The timing cues each capture more unique
variance than all other phonetic features and exhibit rotational or cyclical dynamics in latent
space from activity that is widespread over the superior temporal gyrus. We propose that these
spatially distributed timing signals could serve to provide temporal context for, and possibly bind
across time, the concurrent processing of individual phonetic features, to compose higher-order
phonological (e.g. word-level) representations.

Introduction

Natural speech is a continuous stream of complex acoustic features, and listeners build representations
of auditory objects at multiple levels, from phonemes, to syllables, words, and phrases (Berwick et al.,
2013; Chomsky, 1985). The cortical basis of these dynamic compositional operations is an active area of
research. There is evidence that the superior temporal gyrus (STG) performs speech-specific extraction
of acoustic-phonetic features (Mesgarani et al., 2014), but where and how these segmental features are
composed into longer units like words is less understood. Since the cascade of neural activity evoked by
a given acoustic-phonetic feature can last longer than the feature itself (Gwilliams et al., 2020;
Khalighinejad et al., 2017; Mesgarani et al., 2014; Ndatanen and Picton, 1987; Norman-Haignere et al.,
2020), there is potential for overlap in the neural representations over time. Hence the neural
computations underlying speech comprehension should have a way to keep track of the temporal
context of the individual phonetic units in order to compose them into a higher order unit such as a word
(Fischer-Baum, 2018; Gwilliams et al., 2020).

We hypothesized that the mechanisms underlying temporal context tracking and composition in
auditory cortex would be reflected in low-dimensional latent dynamics of electrocorticography (ECoG)-
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scale neural recordings. As neural recordings have grown in dimension, latent state models describing
lower-dimensional summaries of populations of neurons have become more popular as the explanatory
framework for understanding neural computation. In particular, there is a growing trend to map out
geometric characteristics of latent states that could be indicative of the computational roles that are
being played by the network (Russo et al., 2020, 2018; Seely et al., 2016; Vyas et al., 2020). One such
geometrical motif is rotational dynamics (Churchland et al., 2012), which have been implicated in
coordinating movements over time in the motor system (Buonomano and Laje, 2010; Cannon and Patel,
2021; Russo et al., 2020, 2018) (see Discussion). While the neural activity underlying speech perception
is likely to be very different from that underlying motor sequencing, low-dimensional dynamics across
the speech-responsive network in STG could reflect similar computational strategies to coordinate
temporal context during speech perception.

There is already reason to believe that STG encodes information about timing: some STG populations
respond to amplitude onset events found at the beginning of a sentence after silence period, or the
acoustic edges that occur at the onset of vowels in syllables (called ‘peak rate’) (Hamilton et al., 2018;
Oganian and Chang, 2019). If these signals are strong (representing a large proportion of the variance),
temporally similar across different populations, and spatially widespread, they could constitute a low-
dimensional latent state. In fact, Hamilton and colleagues (Hamilton et al., 2018) were able to find low-
dimensional dynamics tied to sentence onsets using unsupervised linear dimensionality reduction.
Unfortunately, due to the complex nature of the task (with a high-dimensional stimulus space and
relevant stimulus features occurring closely in time), unsupervised methods have trouble uncovering
dynamics related to other stimulus features, whose neural responses may overlap temporally and
spatially with sentence onset responses. This makes it difficult to describe latent dynamics related to
peak rate events, which are more closely aligned in timescale to the low-level compositional operations
that we seek to describe. Supervised models, on the other hand, have historically focused on individual
electrodes and as a result fail to describe latent dynamics that may reflect computational principles on
a larger spatial scale.

Here we use a multivariate supervised approach to model the activity across all speech-responsive STG
electrodes. Using integrative reduced rank regression (iRRR) (Li et al., 2019), we simultaneously estimate
a separate low-dimensional latent state for each stimulus feature, including sentence onsets, peak rate
events, and acoustic-phonetic features based on the place and manner of articulation. We find that iRRR
outperforms models that treat each electrode individually, indicating that substantial feature-related
information is shared across electrodes. The sentence onset and peak rate features explain more of the
variance than phonetic features, reaffirming the importance of these timing-related features for
encoding in STG. Furthermore, the latent states for the onset and peak rate are low-dimensional (5 and
6 dimensional, respectively) and distributed over centimeters of cortex, indicating a widespread signal
that would be available to coordinate local and downstream processing. Geometrically, the latent
dynamics contain a large proportion of rotational dynamics. Projections of the neural responses onto
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these low-dimensional spaces can be used to decode the time relative to the most recent sentence onset
or peak rate event, with performance that is better than decoding from the full high-dimensional
responses across all electrodes. We propose that the sentence onset response is an initialization signal
and the peak rate latent states encode the time relative to acoustic events at the sentence and syllable
scales. For peak rate, this spatially distributed timing signal could be used in local and downstream
processing when composing word-level representations from low-level acoustic features.

Results

Model motivation and design

We modeled the high gamma (70-150 Hz) amplitude recorded on 331 speech-responsive electrodes
located over the left superior temporal gyrus (STG) in 11 participants while they passively listened to 438
naturally spoken sentences from the Texas Instruments and Massachusetts Institute of Technology
(TIMIT) acoustic-phonetic corpus (Garofolo et al., 1993). High gamma amplitudes in neural voltage
recordings are known to correlate with the firing rates (Dubey and Ray, 2020; Manning et al., 2009; Ray
et al., 2008; Ray and Maunsell, 2011; Scheffer-Teixeira et al., 2013) and dendritic processes (Bédard et
al., 2006; Leszczynski et al., 2020; Miller et al., 2009; Suzuki and Larkum, 2017) of neurons near the
electrode (Buzsdki et al., 2012), and we use them here as a proxy for the level of population activity
under the ECoG electrodes. Using our model, we show that high gamma responses to speech stimuli
across hundreds of electrodes can be parsimoniously represented as a combination of a few low-
dimensional latent state responses to specific feature events in the stimulus. Two latent states in
particular, corresponding to the sentence onset and peak rate features, reflect a large proportion of the
explained variance in the model, and their dynamic properties suggest specific computational roles in
the speech perception network.

Successful previous models of high gamma activity over STG have taken two different approaches: using
supervised regression to model single-electrode responses as a function of spectral or linguistic
characteristics in the audio speech signal (Aertsen and Johannesma, 1981; Holdgraf et al., 2017;
Mesgarani et al., 2014; Oganian and Chang, 2019; Theunissen et al., 2001), and using unsupervised
dimensionality reduction to infer latent states without reference to the characteristics of the audio
stimulus (Hamilton et al., 2018).

The advantage of the single-electrode regression models is that they characterize the relationship
between the neural responses and acoustic features in the speech signal. In the models, the high gamma
responses on individual electrodes are considered to be the result of a convolution of time-dependent
receptive fields with corresponding time series of acoustic features. The classic spectrotemporal
receptive field (STRF) model, for example, uses a mel spectrogram of the stimulus as the acoustic feature
representation, resulting in a framework where the neural receptive fields act as a linear filter on the
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speech spectrogram (Theunissen et al., 2001). Based on the observation that electrode activity over STG
reflects information at the level of phonetic features rather than individual phonemes (Mesgarani et al.,
2014), Oganian and Chang (Oganian and Chang, 2019) used an event-based feature representation to
capture these effects and to show that some electrodes additionally have responses triggered by
sentence onsets and sharp transients in the acoustic envelope of the speech signal, called peak rate
events. While these models have been instrumental in describing the response patterns on individual
electrodes, they fail to capture latent dynamics that are shared across multiple electrodes, which could
uncover computational principles at work at a larger spatial scale.

An alternative approach uses unsupervised dimensionality reduction to investigate latent structure in
neural responses to speech (e.g. (Hamilton et al., 2018)). Using convex nonnegative matrix factorization,
they showed that electrodes can be naturally classified into two groups, “onset” electrodes that have a
short increase in high gamma activity at the onset of a sentence, and “sustained” electrodes that show
increased high gamma activity throughout the stimulus. This observation is also apparent using principal
component analysis, in which the first component has characteristic sustained profile, and the second
component has the onset profile (See Supplementary Figure S1). Note that the high gamma signals are
not intrinsically low-dimensional: 2 dimensions capture only 24% of the variance in speech responsive
electrodes (comparable to 16.9% of the variance in all electrodes captured in the first two clusters of
(Hamilton et al., 2018)) and 189 dimensions are necessary to capture 80% of the variance. This could be
related to the high-dimensional nature of the task: in an unsupervised framework in which the system
responds to stimulus features, the response dimensionality needs to be at least as high-dimensional as
the task itself (Gao et al., 2017; Stringer et al., 2019). Furthermore, both of these components are time-
locked to sentence onset, and it is difficult to connect them or higher components to other speech
features, possibly because the dynamics related to other features are not orthogonal to the sentence-
onset subspace or to each other. In particular, the dependence of the neural responses on the peak rate
events is not apparent from this analysis, and a model that could capture latent dynamics related to peak
rate would be valuable for describing population encoding of shorter timescales.

We chose to use a model that combines the advantages of the regression and dimensionality reduction
approaches, using a multivariate integrative reduced rank regression model (iRRR) (Li et al., 2019) to
estimate the latent dynamics attributed to each speech feature separately. This group-reduced-rank
model partitions the expected neural activity into a separate latent state for each feature, choosing the
best latent dimensionality for each feature while penalizing the total dimensionality across all features.
The model uses a multivariate adaptation of the event-based regression framework of Oganian and
Chang (Oganian and Chang, 2019). In matrix form, the model has the following structure:

Y =%F 1 X:B; + E (1)

Where Y is the T X N matrix of high gamma amplitude values across electrodes and timepoints, each X
(T X D) represents the delayed feature events for feature f, and E (T X N) is Gaussian noise, assumed
to be uncorrelated across electrodes (T: number of timepoints; N: number of electrodes, D: number of
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delays, F: number of features). In Y, X, and E, the timepoints corresponding to subsequent sentence
stimuli are stacked together. The coefficient matrices By (D X N) are the multivariate temporal response
functions (MTRFs), representing the responses of each electrode to the given feature across electrodes
and delays (up to 750ms).

Only speech responsive electrodes over STG were used for this analysis, defined using single-electrode
fits to a linear spectrotemporal model (see electrode selection in Methods). Figure 1A shows the
electrodes that were used, colored by the testing r? value of the fitted spectrotemporal model: STG
electrodes with r?>0.05 were used for subsequent analyses (N = 331).

Figure 1B shows the feature events for an example sentence stimulus, “They’ve never met, you know”.
The top two panels show the stimulus waveform and mel spectrogram, respectively, with the times of
sentence onset and peak rate events indicated with vertical lines (solid and dashed, respectively). The
features fall into two categories: timing (sentence onset and peak rate) and acoustic-phonetic (dorsal,
coronal, labial, high, low, front, back, plosive, fricative, nasal). With the exception of peak rate, all of the
feature events were encoded as binary time series with a 1 representing an event occuring, and 0
otherwise. For peak rate, the time series contained continuous values representing the slope of the
acoustic amplitude signal at the time of maximal change, and 0 at all other times (in Figure 1B, red lines
indicate peak rate event times and red numbers indicate the peak rate magnitude). We chose to include
magnitude for peak rate events, because it is known to correlate very well with stressed syllables, i.e.
syllables with higher stress will have higher peak rate magnitude.

We fit the regression model using integrative reduced-rank regression (iRRR) (Li et al., 2019), which
applies a penalty based on a weighted sum of the nuclear norms of the feature matrices (see Methods
for more detail):

D F _ o1 F 2 F
{BrirrrYr=1 = argmin —||Y — ¥y X¢ By ||7 + A Xr—y we||By || (2)
BfeRDXN
where || - || represents the Frobenius (L2) norm, the wys are chosen to balance the regularization
across features, and A is a regularization parameter. The notation || - ||, represents the nuclear norm, or

the sum of the singular values of the bracketed matrix. The nuclear norm penalty acts as an L1 penalty
on the singular values of each feature matrix, so the regression tends to find solutions where the feature
matrices are low-rank (i.e. sparse in the singular values). Because many of the singular values will be
zero, the fitted feature matrices can be represented using a low-dimensional singular value
decomposition:

By = UsS;Vf (3)

where Uy is D X k, Sg is k Xk, and VfT isk X N, forsome k < N. In other words, the full multivariate
feature receptive fields can be represented with a small number of patterns across time (columns of Uy),
patterns across electrodes (rows of VfT), and corresponding weights (values on the diagonal of S¢). The

number of dimensions k can be different for each feature, and it comes from balancing the contribution
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of the feature to the first term (the mean squared error) with the contribution of the feature to the
second term (the nuclear norm penalty), relative to other features. Increasing the tuning parameter A
will tend to increase the total number of dimensions used across all features.

For comparison, we also fit the same model using ordinary least squares (OLS) and ridge regression
where a separate regularization parameter was chosen for each electrode. All models were fit using 10-
fold cross validation. For the iRRR and ridge models, the regularization parameters were fit with an
additional level of 5-fold cross-validation nested within the outer cross-validation.

A C Total D Group E #
Explained Nuclear Parameters
Variance Norm %105

3

Testing r?

[

00 01 02 03 04 05

B They'venever met, you know.

Acoustic
Waveform

7500
5000 1
2500

Frequency
(Hz)

Envelope

% of full model

Time (s)

Figure 1: iRRR outperforms models that treat each electrode individually, and sentence onset and peak rate
capture more of the variance than phonetic features. A: Electrodes used for model fitting, colored according
to the testing r? of the linear spectrotemporal (STRF) model (electrodes were selected for subsequent
analysis if they were located over STG and if their testing r? for the spectrotemporal model was greater than
0.05). B: Features used for feature temporal receptive field modeling. Top: the acoustic waveform of an
example sentence. The solid vertical line shows the sentence onset event, and the dashed vertical lines
show the times of the peak rate events. Second panel: the corresponding mel-band spectrogram. Third
panel: the envelope of the acoustic waveform (black) and the positive rate of change of the envelope (red).
The peaks in the positive envelope rate of change are the peak rate events. Bottom: the feature time series.
White space represents no event (encoded by 0 in the feature matrix), black lines represent event times
(encoded by 1), and red lines indicate peak rate event times with their corresponding magnitude indicated
to the right. C, D, E: Performance of the iRRR model in comparison to ordinary least squares (OLS) and ridge
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regression (Ridge). 95% confidence intervals were estimated using the standard error of the mean across
cross-validation folds (see Methods). Significance was assessed for comparisons using two-sided paired t-
tests across cross-validation folds, *** p<0.0005. C: Total explained variance, computed as the testing r?
computed over all speech-responsive electrodes. D: Group nuclear norm, meaning the penalty term from
the iRRR model (see Equation 2). E: The effective number of parameters for the fitted models. F: Unique
explained variance for each feature (over all speech-responsive electrodes), expressed as a percentage of
the variance captured by the full model. Comparing individual features, both timing features have
significantly more unique explained variance than all phonetic features, after Bonferroni correction over
pairs (left). Also shown is the unique explained variance for the combined timing features (sentence onset
and peak rate) and the combined phonetic features (right). When the features are grouped, the phonetic
features capture more unique explained variance than the timing features.

iRRR outperforms models that treat each electrode individually, and sentence onset and
peak rate capture more of the variance than phonetic features

Figure 1C-E compare the three different fitting frameworks: OLS, ridge regression, and iRRR. Because the
regression framework is the same for all three, the fitted models have very similar total explained
variance (r2 computed over all electrodes, Figure 1C), but iRRR by design achieves a much smaller nuclear
norm (Figure 1D), which results in solutions that can be described with 94% fewer parameters than OLS
andridge regression (Figure 1E). The fact that the iRRR model captures as much information as the single-
electrode models using far fewer parameters suggests that substantial feature-related information is
shared across electrodes.

In order to compare the contribution to the model of the different features, we fit reduced versions of
the iRRR model with each feature left out. From there, we could compute the percent of explained
variance by comparing the r? of the full model (rﬁu”) to the r? of the model without feature f (r_zf):
100 X (réuu — 12¢) /Téun (4)

Figure 1F shows the result of this analysis: sentence onset and peak rate explain a larger percentage of
the full model variance than each of the phonetic features (p<0.0005 for all comparisons using a two-
sided paired t-test after Bonferroni correction). This suggests that these two timing features reflect a
substantial amount of the speech-induced response across STG.

When the features are grouped into timing (sentence onset and peak rate) and phonetic (all other
features) groups, both groups explain a large proportion of the variance (15% and 22%, respectively).
Comparing the groups, however, the phonetic features explain more of the unique variance than the
timing features (p<0.0005, two-sided paired t-test). This could be surprising in light of the individual
feature comparisons: while timing features capture more explained variance than phonetic features
when compared individually, when combined they capture less explained variance. This is likely due to
(1) correlations between individual phonetic features that lead to lower individual unique explained
variance and (2) the fact that more electrodes respond to sentence onset and peak rate than individual
phonetic features (Oganian and Chang, 2019), meaning that sentence onset and peak rate have more
widespread spatial support than the more spatially localized phonetic features. This more widespread
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249 spatial support means that the iRRR model is better able to consolidate the activity patterns across
250  multiple electrodes, i.e. capture the latent dynamics, for the sentence onset and peak rate features than
251 for the phonetic features. Accordingly, the following two sections describe the latent state
252 representations for the sentence onset and peak rate features in more detail.

A Sentence Onset B Peak Rate
15 1
Scaled Time 10
Components
(a.u.) 5
o g
6 260 4(I)0 660 0 2(I)O 4(I)0 660
Delay (ms) Delay (ms)
C

Spatial
Components
E
Electrode °*
Response 2
Functions :
(a.u.) 0
-1
0 200 400 600 [ 200 400 600 0 200 400 600 0 200 400 600
Delay (ms) Delay (ms) Delay (ms) Delay (ms)
-0.15-0.10-0.05 0.00 0.05 0.10 0.15
Spatial Component Weight (a.u.)
253
254 Figure 2: The model fit captures known response differences between pSTG and mSTG. A and B: Time
255 components for the sentence onset and peak rate response matrices, scaled by their singular value (all
256 panels of this figure use the fit from the first cross-validation fold). C: The first two spatial components
257 (across electrodes) for sentence onset. E: The electrode responses to sentence onset events (rows of the
258 sentence onset response matrix), colored by the first (left) or second (right) peak rate spatial component.
259 The first spatial component for sentence onset shows that electrodes with large sentence onset responses
260 (red lines in the left plot of E) tend to be in posterior STG (red circles in the left plot of C). D and F: (like C
261 and E, but for peak rate). The second spatial component divides electrodes into fast and slow peak rate
262 responses (red and blue lines in the right plot of F), which tend to occur over pSTG and mSTG, respectively
263 (red and blue circles in the right plot of D).
264

265  The model fit captures known response differences between pSTG and mSTG

266 InHamilton and colleagues’ (Hamilton et al., 2018) unsupervised model, the “onset” cluster of electrodes
267  was found to occur primarily over the posterior portion of STG (pSTG). This observation led them to
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propose that pSTG may play a role in detecting temporal landmarks at the sentence and phrase level,
because the short-latency, short-duration responses to sentence onsets in pSTG would be able to encode
the event time with high temporal resolution. This idea fits well within a long history of evidence that
stimulus responses in mSTG have longer latencies and longer durations than those in pSTG (Hamilton et
al., 2020; Jasmin et al., 2019; Yi et al., 2019). Here, the model fits recapitulate these known differences
between mSTG and pSTG.

As discussed above (Equation 3), the feature response matrices that are fitted by the iRRR model can be
decomposed into a small number of components across time (“time components”, columns of Uy),
components across electrodes (“spatial components”, rows of VfT), and corresponding weights (values
on the diagonal of S¢). Figure 2 shows the Sentence Onset and Peak Rate fitted feature matrices
decomposed in this way (Since Ur and V; are orthonormal, their columns are unit vectors: as a result,
their units are arbitrary and can be best interpreted in relative terms).

Figures 2A and B show the time components scaled by their corresponding weights, and Figures 2C and
D show the first two spatial components. To illustrate how the low dimensional components map back
tothe response functions for individual neurons, Figures 2E and F show the individual electrode response
functions (rows of By), colored by the spatial component from Figures 2C and D.

Looking at the left panel of Figures 2C and 2E, we can see that electrodes that have large values in the
first spatial component (red circles in Figure 2C, left) have relatively larger overall responses to sentence
onset events (red lines in Figure 2E, left). These electrodes occur primarily over pSTG, which is in line
with previous findings (Hamilton et al., 2018).

For peak rate, the first component plays the same role: electrodes that have larger values in the first
spatial component (Figure 2D, left) have relatively larger overall responses to peak rate events (Figure
2F, left). Electrodes with large peak rate responses are not limited to pSTG like sentence onset
electrodes: rather, they are distributed over all of STG. In other words, the encoding of peak rate in STG
is not focal but is distributed over centimeters of cortex, suggesting a representation on a large spatial
scale. Interestingly, the second component does appear to have a spatial distinction between pSTG and
mSTG: electrodes with positive values for the second component tend to occur over pSTG, while
electrodes with negative values for the second component tend to occur over mSTG (Figure 2D, right).
The negative and positive values distinguish response functions by their temporal response profile:
positive values correspond to electrodes that have an early peak rate response, while negative values
correspond to electrodes that have a late peak rate response (Figure 2F, right). This suggests that peak
rate responses over pSTG are faster than peak rate responses over mSTG.


https://doi.org/10.1101/2021.07.15.452519
http://creativecommons.org/licenses/by-nc-nd/4.0/

304
305
306
307
308
309
310
311
312
313
314
315

316

317

318
319
320
321
322
323
324
325
326
327
328

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452519; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Predicted Latent States

A "Thtay‘ve never rr.met, you l.<now" D Top 3 F Rotational
Dimensions Projections
Acoustic
Waveform 2 #3
T T T O
0.00 0.25 050 0.75 1.00 1.25 Sentence &
Onset _‘of
B 5.0 4 2
10 X
5 J 25 0
Sentence ( — #1 0.0 #2 -2
Onset #2 0 5 19 SHS 20 2
S— 15 -
I o —
— ﬁf{ E #1 G jPC1
IS, #5
C 10 , #3
5} 2T
0 : #1 Peak ] g
Peak e~ e S — = #2  Rate , £ 5
Rate o N e WG Q
e e e e 11 0 ., 2 ;
#5 -2
r T T T T T 10 =2 0 2
0.00 0.25 0.50 0.75 1.00 1.25 #1 jPC1
Time (ms)

Figure 3: Feature latent states have rotational dynamics that capture continuous relative timing
information. A: Acoustic waveform of the stimulus. Solid and dashed vertical lines indicate the timing of the
sentence onset and peak rate events, respectively. Colors along the x-axis are used to indicate time parts
D-G. B, C: Predicted latent states for the sentence onset and peak rate features corresponding to the given
stimulus. D, E: Top three dimensions of the predicted sentence onset and peak rate latent states (the top
three dimensions capture 98.7% and 98.8% of the variance in the sentence onset and peak rate coefficient
matrices, respectively). F, G: Projection of the predicted sentence onset and peak rate latent states onto
the plane of fastest rotation (identified using jPCA). The displayed jPCA projections capture 31.8% and
20.3% of the variance in the sentence onset and peak rate coefficient matrices, respectively. All panels of
this figure use the fit from the first cross-validation fold.

Feature latent states have rotational dynamics that capture continuous relative timing
information

To show how the latent states behave during the presentation of a stimulus, we used the fitted model
to predict the dynamics in each latent state during the presentation of the sentence “They’ve never met,
you know” (Figure 3). Predictions from the model can be computed in latent space using the
decomposition defined in Equation 3:

1?}“;latent = XrUrSr (5)

The sentence onset latent space has 5 dimensions and the peak rate latent space has 6 dimensions.
While the sentence onset feature only occurs once at the beginning of the stimulus, evoking a single
response across the sentence onset dimensions, the peak rate feature occurs several times, and the
dynamics of the peak rate latent state do not go back to baseline in between peak rate events (Figure
3B and C). Plotting the top three dimensions, which capture more than 98% of the variance in the
coefficient matrices (I§f), shows cyclical dynamics for both sentence onset and peak rate (Figure 3D and
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E): the sentence onset state rotates once at the beginning of the sentence, and the peak rate latent state
rotates 3-4 times, once after each peak rate event.

To quantify this effect, we used jPCA (Churchland et al.,, 2012) to identify the most rotational 2
dimensional subspace within the top three components of Ef. These planes capture 31.8% and 20.3% of
the variance in the sentence onset and peak rate coefficient matrices, respectively, and they highlight
the cyclical dynamics that were visible in the top 3 dimensions (Figure 3F and G).

Note that seeing cyclical dynamics in the latent states is not necessarily surprising: the coefficient
matrices Bf describe smooth multivariate evoked responses that will tend to start and end at the same
baseline. We highlight them here to motivate a geometrical argument for the computational role of the
peak rate responses (see Discussion) and to make the case that the structure of the peak rate responses
enables them to act as a temporal context signal against which other features are organized. In order for
the peak rate latent state to play this role, the trajectories should be sufficiently spread out in latent
space to enable downstream areas to decode the time relative to the most recent peak rate event using
just the instantaneous latent state. We investigate whether this is true in the next section.

Decoding time relative to event
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Figure 4: Latent states from the model can be used to decode time relative to feature events. Performance
of a perceptron model trained to decode the time relative to the most recent feature event, for each
feature. The models were trained either using the full high-dimensional set of high gamma responses across
electrodes (blue bars) or using the projection of those responses onto the subspaces spanned by the feature
latent states (orange bars). Performance is quantified using the testing set r2.

Latent states from the model can be used to decode time relative to feature events

So far, we have described how the model is fit using known feature event times, and how the fitted
model can be used to predict responses given new feature events. We also wanted to know whether the
model fit could be used to decode the timing of events, which would indicate that sufficient information
is contained in the feature responses for downstream areas to use them as temporal context signals.

11


https://doi.org/10.1101/2021.07.15.452519
http://creativecommons.org/licenses/by-nc-nd/4.0/

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

379

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452519; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The set of spatial components for each feature defines a feature-specific subspace of the overall
electrode space. The projection of the observed high gamma time series onto this subspace is an
approximation of the feature latent state (note that it is not exact, because the different feature
subspaces are not orthogonal to each other):

T pros = YV (6)

We asked whether this latent projection time series could be used to decode the time since the most
recent feature event.

Figure 4 shows the result of this analysis: a perceptron model was trained to decode the time since the
most recent feature event up to 750 ms, given either the activity on the full set of electrodes or the
projection of the electrode activity onto the corresponding feature subspace (see Methods). The
decoder for sentence onset performs slightly better when using all electrodes, which may be due to the
large proportion of the overall activity that is time-locked to sentence onsets (see Supplementary Figure
S1). For all other features, however, decoder performance using the reduced-dimensional latent
subspaces performs even better than decoding using the full dimensional activity across electrodes
(paired t-test over 10 cross validation folds, p<0.05 with Bonferroni correction across features). Because
no information is gained in the projection operation, this is an indication that projecting onto the latent
subspaces increases the signal to noise ratio, i.e. removes activity that is irrelevant to decoding relative
time.

Discussion

We have shown that a low dimensional regression model, iRRR, performs as well as classic models in
representing high-gamma responses to timing and phonetic features of auditory stimuli, while using far
fewer parameters. It accomplishes this compression by capturing similarities in feature responses that
are shared across electrodes, which enables a low-dimensional latent state interpretation of the
dynamics of high gamma responses to stimulus features. The sentence onset and peak rate features
capture more unique variance than the other (phonetic) features, their responses are spread over both
mSTG and pSTG, and their latent states show rotational dynamics that repeat after each event. Based
on the geometry, duration, and spatial extent of the latent dynamics, we make the case that the
sentence onset response could act as an initialization signal to kick the network into a speech-encoding
state, while the peak rate response could provide a widespread temporal context signal that could be
used to compose word-level representations from low-level acoustic and phonetic features.

The large magnitude of sentence onset responses in ECoG high gamma responses has been reported
before (Hamilton et al., 2018): here, we confirm their large contribution to STG responses both using our
iRRR model (Figure 1) and using PCA (Supplementary Figure S1). Importantly, the latent dynamics related
to sentence onset last about 600 ms (Figure 2a). Since sentences in English often last longer than 600 ms
(e.g. the sentences in the TIMIT corpus used here ranged from 900 ms to 2.6 s), these onset-related
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dynamics are unsuited to encode temporal context on an entire sentence level. Furthermore, sentence
boundaries in continuous natural speech are rarely indicated with pauses or silence (Yoon et al., 2007),
meaning that neural responses to acoustic onsets are unlikely to code sentence transitions. Rather, the
latent dynamics in response to onsets may serve as a non-speech specific temporal indicator of the
transition from silence to sound, occurring during perception of any auditory stimulus. During speech
perception, the speech-related cortical networks could use this non-specific event as a reset or
initialization signal. The idea that a large transient in the latent state could act to transition a network
between states is also thought to occur in the motor system, where condition-invariant movement onset
responses in the latent state mark the transition from motor preparation to motor behavior (Kaufman
et al.,, 2016).

With regard to the peak rate dynamics, we propose that the computational role of the peak rate feature
response is to keep track of word-level temporal context using a clock-like representation. The idea that
structured latent state dynamics can act as clocks has been proposed in several different cognitive
domains, most commonly in the motor system (Buonomano and Laje, 2010; Churchland et al., 2012;
Remington et al., 2018; Vyas et al., 2020) (c.f. (Lebedev et al., 2020)) and in temporal interval estimation
and perception (Cannon and Patel, 2021; Gdmez et al., 2019; Mauk and Buonomano, 2004; Wang et al.,
2018). In the motor system, Russo and colleagues (Russo et al., 2020) describe population dynamics in
primary motor cortex (M1) and supplementary motor area (SMA) while a monkey performed a cyclic
motor action. The population dynamics in M1 were rotational, exhibiting one rotation for each motor
cycle, while the dynamics in SMA were shaped like a spiral, where 2-dimensional rotations for each
motor cycle were translated along a third dimension. They proposed that this structure would be well-
suited to keep track of progress through multi-cycle actions: each rotation encodes a single action, and
translation along the third dimension encodes progress through the motor sequence. The rotational
component of SMA population trajectories has also been suggested to operate as a time-keeping signal
in auditory beat perception, where rotations through latent space keep track of the interval between
beats (Cannon and Patel, 2021).

The peak rate latent state in STG could similarly be playing a computational role in auditory speech
perception: the rotations in the peak rate subspace could serve to keep track of the time relative to the
peak rate event, chunking time into intervals starting at the onset of a vowel. These intervals could then
be used by downstream processing to give temporal context to the fine-grained phonetic feature
information conveyed by other subpopulations. In other words, the rotational peak rate latent state
could provide a temporal scaffolding on which individual phonetic features can be organized. Figure 5
illustrates this idea: when hearing the sentence “It had gone like clockwork,” the peak rate latent state
partitions the sentence into four rotations, each one capturing the time since the most recent peak rate
event. Downstream processing streams could combine this information with the phonetic feature
information to put the phonetic feature events into their local context, here at the level of words or
small sets of words (Figure 5C). Peak rate is in a unique position to play this role: it is the only feature
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that repeats within the linguistic structure of speech at the level of syllables/words, without reference
to the linguistic contents. In addition, the peak rate responses are distributed over centimeters of cortex
(Figure 2D) so the temporal context information would be widely available to local and downstream
processing.

>
w

It had gone like clockwork.

3 9
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Figure 5: Peak rate rotational latent states could provide a temporal scaffolding on which individual acoustic
features can be organized. A: The acoustic waveform for the stimulus “It had gone like clockwork”. Solid
vertical lines indicate the times of peak rate events, and colored dashed vertical lines indicate the times of
phonetic feature events. Colors are used to indicate time in all panels. B: The predicted peak rate latent
state follows a spiral trajectory in the top 3 dimensions. C: Projected onto the plane of greatest rotation
(jPC1 and 2), the predicted peak rate latent state divides the sentence into four intervals, each consisting
of a rotation through state space that captures the time since the peak rate event occurred. Downstream
processing could combine the relative time information encoded in the peak rate subspace (grey traces)
with the feature identities encoded in the feature subspaces (colored points) to compose higher-order
representations of words or small groups of words. Text in panels B and C indicates the approximate timing
of the words in the stimulus.

In order for the peak rate latent state to play this role, it should have a couple of properties. First, there
should be a mapping from points in state space to different relative times. As we showed in Figure 3, the
rotational dynamics cause different relative times to be encoded in different locations of the latent
space. Second, the trajectories in latent space should be consistent enough to support decoding of
relative time in the presence of noise. In Figure 4, we showed that the projections of the neural activity
onto the subspaces spanned by the feature latent states support decoding of the time relative to the
most recent feature event. Note that while the latent state projections support decoding better than
decoding from the full high-dimensional signal, the actual performance for peak rate is somewhat low
(~50%). A possible reason for this could be that some peak rate events are more effective at driving the
latent state than others (even after accounting for peak rate magnitude, as the model does), resulting in
inconsistent decoding of the time since the most recent peak rate event.

Beyond the two-dimensional rotational dynamics, the peak rate latent trajectory forms a spiral in 3
dimensions (Figure 5B), similar to population trajectories in SMA during motor sequences (Russo et al.,
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2020). This suggests that the peak rate subpopulation may additionally encode the ordering of the word-
level intervals within a larger linguistic context, such as the phrase level.

Furthermore, the representation of these intervals does not require top-down predictive coding
(Hovsepyan et al., 2020; Lewis and Bastiaansen, 2015; Park et al., 2015; Pefkou et al., 2017) or
entrainment of ongoing oscillations (Canolty, 2007; Ghitza, 2011; Giraud and Poeppel, 2012; Hovsepyan
et al., 2020; Martin, 2020; Pittman-Polletta et al., 2020): in our model they are implemented via event-
related potentials triggered by discrete acoustic (peak rate) events. While top-down and oscillatory
mechanisms may play important roles in speech perception, our model demonstrates that some speech
segmentation and context processing can be performed without them.

The events that we focus on for speech segmentation are peak rate events, moments of sharp increases
in the acoustic envelope. The peak rate events in the model are coded with their magnitude (the slope
of the rise in the acoustic envelope), which allows the model dynamics to change proportionally to the
size of the event. This is important because peak rate events, also called auditory onset edges (Biermann
and Heil, 2000; Doelling et al., 2014; Heil and Neubauer, 2001), differ in magnitude based on the stress
level of the corresponding syllable (Oganian and Chang, 2019). This means that the dynamics triggered
by peak rate events are sensitive to prosodic structure, both stressed syllables within words and stressed
words within phrases. To investigate this further, it would be helpful to use a speech stimulus corpus
with more complex prosodic structure than the TIMIT corpus used here.

In summary, our model (iRRR) represents STG high gamma responses to natural speech stimuli as a
superposition of responses to individual phonetic and timing features, where each feature has a
corresponding low-dimensional latent state that is shared across electrodes. It performs as well as single
electrode models while using far fewer parameters, indicating that substantial feature-related
information is shared across electrodes. Sentence onset and peak rate events, features representing
timing at the sentence and syllable scales, capture more unique variance than phonetic features. The
latent dynamics for sentence onset and peak rate contain information about the time since the most
recent (sentence onset or peak rate) event, and the information is distributed across centimeters of
cortex. We make the case that for peak rate, this relative timing information could play a role in
composing word-level representations from low-level acoustic features, without requiring oscillatory or
top-down mechanisms.
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Methods

Participants

Participants included 11 patients (6M/5F, age 31 +/- 12 years) undergoing treatment for intractable
epilepsy. As a part of their clinical evaluation for epilepsy surgery, high-density intracranial electrode
grids (AdTech 256 channels, 4mm center-to-center spacing and 1.17mm diameter) were implanted
subdurally over the left peri-Sylvian cortex. All procedures were approved by the University of
California, San Francisco Institutional Review Board, and all patients provided informed written
consent to participate. Data used in this study was previously reported in (Hamilton et al., 2018).

Experimental Stimuli

Stimuli consisted of 499 English sentences from the TIMIT acoustic-phonetic corpus (Garofolo et al.,
1993), spoken by male and female speakers with a variety of North American accents. Stimuli were
presented through free-field Logitech speakers at comfortable ambient loudness (~70 dB), controlled
by a custom MATLAB script. Participants passively listened to the sentences in 4 blocks, each lasting
about 4 minutes. A subset of 438 sentences were selected for analysis that were heard once by all 11
subjects. The sentences had durations between 0.9 and 2.6s, with a 400ms intertrial interval.

Neural recordings and electrode localization

Neural recordings were acquired at a sampling rate of 3051.8 Hz using a 256-channel PZ2 amplifier or
512-channel PZ5 amplifier connected to an RZ2 digital acquisition system (Tucker-Davis Technologies,
Alachua, FL, USA).

Electrodes were localized by coregistering a preoperative T1 MRI scan of the individual subject’s brain
with a postoperative CT scan of the electrodes in place. Freesurfer was used to create a 3d model of
the individual subjects’ pial surfaces, run automatic parcellation to get individual anatomical labels,
and warp the individual subject surfaces into the cvs_avg35_inMNI152 average template (Desikan et
al., 2006; Fischl et al., 2004). More detailed procedures are described in (Hamilton et al., 2017).

Preprocessing

For each electrode, the high gamma amplitude time series were extracted from the broadband neural
recordings as follows (Hamilton et al., 2018; Oganian and Chang, 2019). First, the signals were
downsampled to 400 Hz, rereferenced to the common average in blocks of 16 channels (blocks shared
the same connector to the preamplifier), and notch filtered at 60, 120, and 180 Hz to remove line noise
and its harmonics. These LFP signals were then filtered using a bank of 8 Gaussian filters with center

frequencies logarithmically spaced between 70 and 150 Hz. Using the Hilbert transform, the amplitude
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of the analytic signal was computed for each of these frequency bands, and for each electrode the high
gamma amplitude was defined as the first principal component across these 8 frequency bands.
Finally, the high gamma amplitude was further downsampled to 100Hz and z-scored based on the
mean and standard deviation across each experimental block.

Electrode selection

In order select speech-responsive electrodes over STG, electrodes were included (1) if they were
located over the STG, as identified in the Freesurfer anatomical parcellation of the individual subject
cortical surface, and (2) if their high gamma activity was well-predicted by a linear spectrotemporal
model (Hamilton et al., 2018).

For this single electrode analysis, the model had the form of a spectrotemporal receptive field (STRF):
y(©) =2 X S(f, t —OP(T, ) + e(t) (7)

where y is the high gamma amplitude on a single electrode, S is the mel spectrogram of the speech
audio signal over frequencies between 75Hz and 8kHz, coefficients 3 vary across frequencies and
delays between 0 and 500ms, and e is the zero-mean Gaussian error term. Ridge regression was used
to fit the models (see Model fitting below for details of the ridge regression framework): the data were
split into 80% training and 20% testing data sets, the training data was used to choose the alpha
parameter according to a 5-fold cross-validation, the full training data was fit using the chosen o
parameter, and the r? was assessed on the testing data (see Explained Variance Calculation below for
computation of r?). Electrodes with r?>0.05 were included in subsequent analyses. The selected
electrodes and their corresponding r? values are shown in Figure 1A.

Regression model setup

The multivariate temporal receptive field model has the following structure:
Y =%f 1 X:B; + E (8)

Where:

e YistheT X N matrix of z-scored high gamma amplitude values across electrodes and timepoints.
The time dimension represents a concatenation of all 438 sentence stimuli that were heard by
every subject, from 500 ms before sentence onset until 500 ms after sentence offset (132,402
timepoints, later split for cross validation, see Model Fitting below). The electrode dimension
includes speech-responsive electrodes from all subjects (331 electrodes).

e Each X; (T X D) represents the delayed feature events for feature f. The first column contains
the feature events across time (1 representing an event occuring, O otherwise. For peak rate,
events were coded by a real-valued magnitude, see Figure 1B). Following columns contain the
same time series, offset by time-delays between 10 ms and 750 ms (76 delays). There were 12
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features: sentence onset, peak rate, dorsal, coronal, labial, high, front, low, back, plosive,
fricative, and nasal (described below).

e F (T x N)is Gaussian noise, assumed to be uncorrelated across electrodes

® By (D X N) are the coefficient matrices, i.e. the multivariate temporal response functions
(MTRFs), representing the responses of each electrode to the given feature across electrodes and
delays

T: number of timepoints; N: number of electrodes, D: number of delays, F: number of features.

Sentence onset was defined as the sound onset time for the sentence stimulus. Peak rate was
extracted by taking the derivative of the analytic envelope of the speech signal: the peak rate event
times were the times when the derivative reached a maximum, and the peak rate magnitude was the
value of the derivative at that time point (Oganian and Chang, 2019). Phonetic feature event times
(dorsal, coronal, labial, high, front, low, back, plosive, fricative, nasal) were extracted from time-aligned
phonetic transcriptions of the TIMIT corpus, which were timed to the onset of the respective
phonemes in the speech signal (Garofolo et al., 1993).

Model fitting

The model was fit using ordinary least squares (OLS), ridge regression, and iRRR. The difference
between the three is the objective function that is minimized to choose the fitted coefficient matrices:

A . 1
Brovs}f=1 = argmin o7 [ = 37, X, Byl (9a)
f
o L1
{Bf,ridge}§=1 = argmin - [Y — 25;1 X¢By 1% + 0‘2?:1 ||Bf 1E (9b)
BfER x
o o1
{Bfirrr}f=1 = grg;glrllv 7Y = YFo1XeBe |5 + AN o wrl|Br |l (9¢)
FERDX

The weights used for the iRRR model were chosen to balance the different features (Li et al 2019):

wy = o(X, 1) {W + \/Txf)} /T (10)

where G(Xf, 1) is the first singular value of the matrix Xy and r(Xf) = D is the rank of matrix Xf. All
predictors X and responses Y were column-centered before fitting the models.

In order to compute confidence intervals for model performance metrics, models were fit using 10-fold
cross validation, using group cross validation to keep time points corresponding to the same sentence
stimulus in the same fold. For ridge regression and iRRR, an additional nested 5-fold cross validation
was used to choose the o and A parameters within each fold of the outer cross-validation.
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Note that the approach of using a regression framework to fit a group-reduced rank model of neural
activity has been used before (Aoi et al., 2020; Aoi and Pillow, 2019): the iRRR framework differs in that
it uses an L1 relaxation, resulting in a convex optimization formulation that can be fit efficiently using
alternating direction method of multipliers.

Model performance metrics

Total explained variance (Figure 1C) was calculated as:

r?=1-2re (11)
SStot
where the SS,.; is the residual sum of squares computed on the testing dataset:
SSres = |IY — Z?:leBf H% (12)
and SS;,¢ is the total sum of squares computed on the testing dataset:
SStot = ||Y||J2E (13)

The group nuclear norm (Figure 1D) was computed as the penalty term in the iRRR model:
Yr1 wrllBs . (14)

Because OLS and ridge regression yield full-rank coefficient matrices, the number of parameters
(Figure 1E) used for both is DN. For iRRR, the number of parametersis k(D + N + 1), based on the
singular value decomposition described in Equation 3, reproduced here:

By = UsSpV/ (15)

Unigue explained variance for each feature (Figure 1F) was computed by fitting a reduced iRRR model
without the feature f, and then comparing the total explained variance of the full model r#,;; to the
total explained variance of the reduced model r_zf. The reduced iRRR model was fit using the same A
value as the full model, chosen using nested cross validation on the full model as described above. For
the “all timing” category, the reduced model was fit without sentence onset and peak rate, and for the
“all phonetic” category, the reduced model was fit without the phonetic features. The unique
explained variance was expressed as a percentage of the full model:

100 x T (16)

TFull

All metrics are reported in terms of the mean across the 10 folds of the cross validation, and 95%
confidence intervals are it9,0_9755/\/1_0, where s is the sample standard deviation across the 10 cross
validation folds. Note that these confidence intervals do not account for the dependence between
cross-validation folds due to reuse of samples in training and testing sets, and may therefore be
smaller than the true intervals (Austern and Zhou, 2020; Bates et al., 2021; Bengio and Grandvalet,
2004).
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Significant differences between conditions were assessed using paired two-tailed t-tests across cross-
validation folds (Dietterich, 1998) for the following comparisons (with the resulting p-value ranges):
1. Total explained variance for OLS vs Ridge (p>0.05), OLS vs iRRR (p<0.0005), and Ridge vs iRRR
(p<0.0005).
2. Unique explained variance of sentence onset vs each acoustic-phonetic feature and peak rate
vs each acoustic-phonetic feature. Here the p-values were Bonferroni corrected across the (2
timing features times 10 acoustic-phonetic features) 20 comparisons. After correction, all
comparisons were significant with p<0.0005.
3. Unique explained variance of the combined timing features vs the combined acoustic-phonetic
features (p<0.0005).
Similar to the confidence intervals described above, the significance tests did not account for the
dependence between cross-validation folds and may therefore have an inflated type Il error (Austern
and Zhou, 2020; Bates et al., 2021; Bengio and Grandvalet, 2004).

Computing predicted responses

Given a fitted model, the predicted latent response to a stimulus matrix Xy is (reproduced from
Equation 5):

?f;latent = XeUpSy  (17)

where, as before, X; (T X D) represents the delayed feature events for feature f, Ur isthe D X k time
components for feature f, and S; is a diagonal matrix containing the weights for each component

(k X k). ?f;latent isaT X k matrix representing the predicted response within the k-dimensional
latent space of the feature. Figure 3 shows the predicted sentence onset and peak rate responses to
the sentence “They’ve never met, you know”.

jPCA
The plane of fastest rotation for the sentence onset and peak rate latent states (Figure 3C) was
identified by applying jPCA (Churchland et al., 2012) to the feature coefficient matrices f?f. Using jPCA,

we modeled the temporal receptive fields in the coefficient matrix as a linear dynamical system

evolving over delays:

dﬁf(t)
dt

where t indexes the delay dimension of L?f, so the dynamical system describes the evolution of an N-

= MB(t) (18)

dimensional dynamical system over D timepoints. By approximating the derivative on the left hand
side using first differences, the transition matrix M can be fit using regression. Furthermore, the purely
rotational component of the transition matrix can be isolated by constraining the matrix M to be skew-
symmetric, having purely imaginary eigenvalues that come in complex conjugate pairs. The pair of
eigenvectors with the largest magnitude eigenvalues describes the plane with the fastest rotations.
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It is important to note that jPCA identifies planes with fast rotational dynamics, regardless of whether
they capture a large proportion of the variance of the dynamics in the original dynamical system.
Classic jPCA uses PCA in preprocessing in order to confine the analysis to six dimensions of largest
variance. Here, the iRRR model chooses k dimensions for each feature that are most valuable to the
overall fit of the model. Hence there was no need to perform additional PCA to reduce the
dimensionality. However, because the coefficient matrices had dimensions capturing very little
variance, we did subselect components to capture 98% of the variance of the coefficient matrices. For
both sentence onset and peak rate, this corresponded to the top 3 components. Hence the jPCA plane
represents the plane of maximal rotation within a 3-dimensional subspace capturing 98% of the
variance in the 5-dimensional (or 6-dimensional) coefficient matrix for sentence onset (or peak rate). If
we had used more components for the jPCA computation, the rotational dynamics would be stronger
but they would capture much less of the variance (using k dimensions vs using 3 dimensions: 2.8% vs
31.8% for sentence onset and 4.8% vs 20.3% peak rate), making them less informative about the
overall population dynamics.

Once the jPCs were computed using the coefficient matrices, the predicted trajectory for a given
stimulus (Figure 3F and G) is calculated as:

Vrjpca = X¢ly (19)

Jr = [Ex + E3, j(E; — Ep)]

where E; and E, are the eigenvectors with largest eigenvalues of the skew-symmetric matrix M
defined above. J; is therefore the N X 2 projection matrix from electrode space onto the plane of
highest rotation from jPCA.

Event latency decoding

For the decoding analysis (Figure 4), a perceptron model was trained to predict the time relative to the
most recent feature event (up to 750 ms). The model was designed using the MLPRegressor class of
the sklearn package, with one hidden layer with 20 hidden units using a logistic activation function. We
used a simple perceptron model in order to account for possible nonlinearities in the mapping from
electrode space / feature latent space to relative times.

Using the same cross-validation framework that was used for iRRR model fitting, the perceptron model
was trained using the training data (high gamma amplitudes) either across all electrodes Y or using the
projected data onto the latent state subspace (reproduced from Equation 6):

1F},proj = YVf (20)

where Vg is the N X k matrix of electrode components for feature f, as above. The T X k matrix

Zf,prOJ' is an approximation of the latent state across time, but it may be contaminated by activity from
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other features because the V; matrices do not describe orthogonal subspaces. It also contains activity
from noise.

Performance of the models was assessed using r? (Equation 11) on the held-out testing data for the
cross-validation fold. The 95% confidence intervals were computed using the t distribution as described
above, and the performance of the models trained on all-electrodes was compared to the performance
of the models trained on the latent projections using a two-sided paired t test, as described above
(Model Performance Metrics), Bonferroni corrected across the 12 features. The sentence onset model
performed better using all electrodes than the latent projection (corrected p<0.05), while the models
for all other features performed better using the latent projection than using all electrodes (corrected
p<0.05).

Code availability

Custom Python code to perform the iRRR fits is available online
(https://github.com/emilyps14/iRRR_python), which is a port of the Matlab implementation by the
original authors (https://github.com/reagan0323/iRRR, Li et al 2019). Python code for the analysis
pipeline described above is also available (https://github.com/emilyps14/mtrf_python). We thank
Antin and colleagues (Antin et al., 2021) for their implementation of jPCA in the Python programming
language (https://github.com/bantin/jPCA), which we used to perform the jPCA.
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Supplementary Material

Table S1. Clinical and demographic details for subjects. Hem = hemisphere of implantation.

Subject
ID

SLO1
SLO2
SLO3
SLO4

SLO5

SLO6

SLO7

SLO8

SLO9

SL10

SL11

Hem Age
L 44
L 19
L

L 32
L 25
L 31
L 20
L 60
L 26
L 22
L 31

Sex

< =2 £

-

Handedness

R

R (converted
from L)

Language
dominance

L

Epilepsy focus

Left posterior STG

Left anterior frontal lobe
Left anterior temporal lobe
Left anterior temporal lobe
Left medial temporal lobe

Left hippocampus/anterior lateral
temporal

Left hippocampus

Left mesial temporal structures

Left mesial and anterior lateral
temporal cortex

Left anterior temporal lobe

Left hippocampus/amygdala
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Figure S1: PCA partitions the high gamma activity across speech-responsive electrodes into a posterior
onset response and a spatially widespread sustained response. A: The percent explained variance of the
principal components. B: The cumulative percent explained variance. Note that 189 dimensions are
required to capture 80% of the variance in the high gamma activity. C: The timecourse of the first
component, aligned to sentence onset. Dashed lines indicate the start and end of the sentence stimulus,
and the sentences have been ordered by their duration. This component has sustained responses, in the
sense that the activity is high during the entire stimulus. D: The timecourse of the second component,
aligned to sentence onset. This component has onset responses, in the sense that there is a short positive
transient immediately after sentence onset. E: The spatial support of the first component. This component
is spatially spread out over all of STG. F: The spatial support of the second component. This component is
spatially divided, with strong positive weights over posterior STG.
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