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metatranscriptomics) is in its infancy. Many currently employed differential
expression analysis methods have been designed for different data types and have
not been evaluated in metatranscriptomics settings. To address this knowledge
gap, we undertook a comprehensive evaluation and benchmarking of eight
differential analysis methods for metatranscriptomics data.

Results: We used a combination of real and simulated metatranscriptomics data
to evaluate the performance (i.e., model fit, Type-l error, and statistical power)
of eight methods: log-normal (LN), logistic-beta (LB), MAST, Kruskal-Wallis,
two-part Kruskal-Wallis, DESeq2, ANCOM-BC, and metagenomeSeq. The
simulation was informed by supragingival biofilm microbiome data from 300
preschool-age children enrolled in a study of early childhood caries (ECC),
whereas validations were sought in two additional datasets, including an ECC and
an inflammatory bowel disease one. The LB test showed the highest power in
both small and large sample sizes and reasonably controlled Type-| error.
Contrarily, MAST was hampered by inflated Type-Il error. Using LN and LB tests,
we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing
Campylobacter gracilis, had the strongest association with ECC.

Conclusion: This comprehensive model evaluation findings offer practical
guidance for the selection of appropriate methods for rigorous analyses of
differential expression in metatranscriptomics data. Selection of an optimal
method is likely to increase the possibility of detecting true signals while
minimizing the chance of claiming false ones.

Keywords: metatranscriptomics; metagenomics; differential expression;
logistic-beta; log-normal; early childhood caries

1 Introduction

1.1 Significance

The human microbiome has emerged as an undeniable cornerstone for a multitude
of health and disease outcomes. Important new insights have been recently gained
regarding the pivotal role of microbial dysbiosis in conditions such as obesity, gut
disease, cancer, oral and dental diseases [1, 2, 3, 4]. Contemporary investigations

now seek to understand not only the composition of microbial communities (i.e.,
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taxonomy) but also their functional activity. Taxonomy is typically ascertained by
16S rRNA or whole genome shotgun (WGS) sequencing with the latter offering sev-
eral advantages over 16S sequencing, including a better phylogenetic resolution and
information on genomic content (i.e., metagenomics). Microbial functional activity
can be measured via RNAseq, i.e., metatranscriptomics [5] and metabolomics. Mi-
crobial gene expression and metabolism are where the “rubber meets the road”,
as they represent the viable and active members of the microbial community and
reflect the biology underlying the microbiome’s interactions with the host and the
environment.

Gastrointestinal and oral health, above and beyond their common anatomical,
functional, and biological similarities, are now both better understood using mod-
els of microbial symbiosis and dysbiosis, while microbiome links between the two
have begun to emerge [6]. In both of these health and research fields, investiga-
tions involving metatrascriptomics have provided novel insights. An excellent ex-
ample includes a multiomics study of inflammatory bowel disease (IBD) highlighting
metatrascriptomics associations with the microbial community’s temporal variabil-
ity, taxonomic, and biochemical shifts [7]. In the oral health domain, Peterson et
al. used metatranscriptomics to identify dominant functions associated with dental
caries within the dental biofilm of 19 twin pairs—these functions supported the
microbial communities’ biochemical activities related to sugar metabolism and re-
sistance to acid and oxidative stress [8]. In another study, metatranscriptomics was
used to identify differences in the activity of the subgingival biofilm microbiome
between 7 individuals with periodontitis and periodontally-health controls [9]. A
notable recent review of metatranscriptomics analysis of the oral microbiome was
recently reported by Duran-Pinedo [10].

Despite the increasing significance and availability of metatranscriptomics data,
the development of tailored statistical analysis methods has not kept pace. There
are few statistical analysis methods specifically designed to handle microbiome data,
and a systematic evaluation of all existing methods that have been borrowed from
other areas of high-throughput sequencing analysis (e.g., human studies) has yet to
be undertaken.

1.2 State of existing differential microbial gene expression analysis methods

There are several special considerations in the analysis of microbiome data. These
include but are not limited to data normalization [11], clustering of species or genes
[12], alpha- and beta- diversity [13], differential abundance/expression (DA/DE)
analysis [14, 15, 16], and metabolome-based pathway analysis [17]. Most methods
that address these considerations have either been borrowed from analytic pipelines
used in other high-throughput sequencing technologies—e.g., bulk RNAseq—or
were developed for 16S or WGS metagenomics data. Most of these currently avail-
able methods to analyze metatranscriptome data rely on the joint mapping of mi-
crobial DNAseq and RNAseq data [17, 18, 19]. However, very few methods have
been specifically developed for DE analysis of metatranscriptomics data [20, 21].
It follows that, while there is ample room for new metatranscriptomics analysis
methods development, the existing approaches that have been developed for other
data types must be benchmarked and validated prior to being rigorously applied
for metatranscriptomics data analyses.
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Although the data distributions of metagenome and metatranscriptome are re-
garded as of the same class, either count, normalized count, or proportion with
a zero mass, the metatranscriptomics data are more sparse, or contain more ze-
ros than metagenomics data. This higher sparsity is a likely result of some taxa,
genes, or gene families not being expressed actively, but could also be attributable
to some degree to less sensitive measurements of the community’s transcriptome
due to technical reasons. It follows that, a systematic evaluation of the performance
of existing methods is warranted, so that these methods can be recommended and
put to use for the analysis of metatranscriptomics data.

In this article, we focus on DE analysis of the metatranscriptome in the pres-
ence of nuisance information. The DE analysis is one of the fundamental analyses
in other transcriptomics data—host bulk RNAseq and single-cell RN Aseq, or scR-
NAseq. It often involves identifying genes whose expression levels are significantly
associated with an outcome of interest (e.g., disease vs. health) after controlling
for nuisance factors such as batch or block information and the host characteris-
tics (e.g., demographics). While the metatranscriptomics DE analysis is meaningful
by itself, it can provide a foundation for joint analysis of the metagenomics and
metatranscriptomics data. In this article, the existence of metagenomics data is
not required. Instead, the DE analysis methods for RNAseq data will be studied,
accounting for the high percentage of zeros, overdispersion, possibly compositional
data structures, and the presence of nuisance information.

The evaluation of methods can be done at a species, gene, or pathway level.
In this paper, we focus on evaluating methods at the microbial gene level. While
genes may have distinct roles within species, it is expected that the same genes
across different species will have a similar functions. Furthermore, many genes are
either unique to a species, or are mapped to yet-unclassified species. Metatran-
scriptomics provides the opportunity to measure the activity of genes, instead of
inferring gene expression from microbial genomes. There have been attempts to
evaluate differential abundance/composition analysis methods at the species- or
the taxon-level that have included many of the commonly used pre-processing and
differential abundance analyses [11, 15, 22]. However, those studies either did not
consider the recently developed statistical models that were specifically designed
for zero-inflated over-dispersed counts or compositional data such as MAST [23]
and logistics-beta test [24] or did not evaluate their performances at the gene lev-
els in metatranscriptomics. The number of species (typically several hundreds) and
the number of genes (typically thousands, up to millions) are unique features of
metatranscriptomics and metagenomics. The drawbacks become more salient when
formally evaluating metatranscriptomics data analysis methods. Our paper aims at
overcoming such limitations of previous attempts.

1.3 Outline

In Section 2 we list statistical tests that could be used for microbial DE analyses.
In the literature of metagenomics or 16S ribosomal RNA (rRNA) data analysis,
popular DA/DE analysis approaches include rank-based methods for simple ex-
perimental designs, DESeq for bulk RNAseq data[25], multi-dimensional ANCOM
[26], and linear regression after log-transformation. We consider the following meth-
ods in this simulation study: 1) log-normal (LN) test, 2) logistic-beta (LB) test,


https://doi.org/10.1101/2021.07.14.452374
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452374; this version posted July 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cho et al. Page 4 of 41

3) Model-based Analysis of Single-cell Transcriptomics (MAST), 4) DESeq2, 5)
metagenomeSeq (MGS), 6) ANCOM-BC, 7) Kruskal-Wallis (KW) test, and 8) two-
part Kruskal-Wallis (KW-II) test. Some of these methods are based on parametric
models (LN, LB, MAST, DESeq2, MGS), some explicitly handle zero-inflation (LB,
MAST, MGS, KW2), and one can handle compositional data (LB). Our simulations
are more relevant than those of Weiss et al. [11], wherein most of the methods being
compared do not reflect the sparse nature of metatranscriptomics data.

To understand the distributional characteristics of metatranscriptomics data, in
Section 3 we introduced data collected from a genetic-epidemiologic study of early
childhood oral health (the “ZOE 2.0” study) [27, 28] wherein oral microbial meta-
transcriptomics data were generated for approximately 300 children aged 3-5 years.
We also introduced a gut microbial transcriptome dataset to study inflammatory
bowel diseases [7]. Motivated by the data distributions in ZOE 2.0, we design simu-
lations in Section 4. Our novel simulation procedure starts from defining data gener-
ative models including zero-inflated log-normal (ZILN), zero-inflated gamma (ZIG),
zero-inflated negative binomial (ZINB) distributions. These distributions have the
capacity of simultaneously characterizing the zero-inflation and the overdispersion
of microbial gene expression. These distributional characteristics complement the
recent simulation study [11]. From the distribution of the ZOE 2.0 data, a large
number of baseline parameters for each generative model are identified. The disease
and the batch effects are then sequentially incorporated in addition to the baseline
distributions. The batch effects were inspired by the observation that different se-
quencing dates had different mean expression levels in the ZOE 2.0 data. However,
the batch variable could be more generally defined as any set of categorical nuisance
variables.

In Section 5, we present the results with respect to two main aims: 1) Goodness
of fit of the different data generative models and preprocessing methods and 2)
the power analysis of the DE methods via simulations. These aims are analyzed
in terms of the relative gene expressions, the main focus of our study. In other
words, each gene’s expression levels in RPKs are summed (or marginalized) over all
species before being analyzed. However, other aspects of microbial activities—the
gene expression of a combination of a species and a gene (“gene-species joint data”)
and the gene expression of a species aggregated over all genes (“species marginal
data”)—are also considered.

We first show the goodness of fit results of the generative models to the data sets
after a certain pre-processing. The results suggest that the log-normal distribution
fits reasonably well to the ZOE 2.0 data with the TPM transformation. Second, in
simulations, the LB tests showed the highest power while controlling for the type-I
error in large sample sizes. Also MGS has comparably high power with a well-
controlled type-I error. MAST and ANCOM-BC often suffers from inflated type-I
error even with a large sample size.

In Section 6, we apply the statistical analysis methods that show the highest
performance to the sizeable metatrascriptomics dataset generated in the ZOE 2.0
pediatric oral health study. We identify several genes of which the expression is as-
sociated with the early childhood caries (ECC) phenotype [29]. The paper concludes
with a discussion of considerations for future studies in Section 7.
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2 Differential expression analysis methods

2.1 Overview

The eight DE analysis methods are evaluated in this simulation study are Log-
normal test (LN), Logistic Beta test (LB) [24], Model-based Analysis of Single-cell
Transcriptomics (MAST) [23], DESeq2 [25], metagenomeSeq (MGS) [22], ANCOM-
BC [30], Kruskal-Wallis test (KW), and two-part Kruskal-Wallis test (KW-II). Most
methods are tailored so that they can control for batch effects while testing associ-
ations between gene expression and phenotypes of interest.

Linear discriminant analysis Effect Size (LEfSe) [31] was developed to identify
species or genes that are likely to differentiate two or more groups in terms of the
relative abundance of these features. Because it does not result in a statistical testing
per se—the p-value is not available—we do not include it in this simulation study.
The differential ranking (DR) method [32] and ANCOM [26] were not analyzed
for the same reason. Although MGS and ANCOM-BC does not control the batch
effects as well, we included them in the simulations due to its high relevance in the
metatranscriptomics research.

The scope of our simulations is restricted to tests of differential expression of
individual taxa, gene, or gene family level. On the other hand, there is another
group of methods that test the global effect of the whole microbiome, which will
not be covered in this simulation study: PERMANOVA [33], MiRKAT [34], aMiSPU
[35], and LDM [36].

Before we present each of eight methods in detail in the following subsections, we
introduce notational conventions and describe the screening procedures. Through-
out this paper, Y; ; denotes the expression level for the gth gene in the ith cell,
X; = (1,XP, XP) denotes the ith row of the design matrix, or a vector containing
the intercept term, a binary disease status, and a binary batch indicator. Different
models abusively use the same notation for parameters, as long as there is no con-
fusion; e.g. regression coefficients 3, are commonly used either in the LN model or
the LB model, but they are shorthand for ﬁgLN and ﬁgLB, respectively.

Before each test, genes are screened out if they are expressed in only a few par-
ticipants (the smaller of 2% of the samples and 10 samples). The rationale for such
screening is twofold. First, models are not mathematically estimable, when the sam-
ple size is less than the number of parameters in the model. Second, even if they
are estimable, many large-sample-based inferential procedures have non-negligible
finite-sample bias when they are implemented in a small sample or when a gene
expression is rare [37]. These issues become apparent when 1) the tests that involve
logistic regression encounter rare events or 2) the two-part models where non-zero
statistics are faced with only a small number of observations with nonzero expres-
sion. As evidenced in later sections, all methods except KW fall into either of these
two scenarios. To allow for fair comparisons, we apply the same screening rule for

each test.

2.2 Log-normal test
The Log-normal (LN) test relies on the assumption that the log-transformed ex-

pression is normally distributed as in (1). A small positive constant (c¢) is added to
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the gene expression to ensure that the log-transformed values are within a feasible
range. In this simulation study 1 is uniformly added to expression levels (¢ = 1).

logy (Yig +¢) ~ N(Ni,g7gg)7 (1)

where ;.3 = X' 8, with 8, = (89, 85, 87)T.

The null and the alternative hypotheses for the gth gene are
e Hy: 65? =0 and
o Hi: ﬂgD # 0.

The test statistic for the gth gene is TgLN =

. 2
3P o e
o g 5 and follows a x{ distribu-
tion under the null hypothesis asymptotically. The test rejects the null hypothesis

if the test statistic is larger than x?(1 — ), or the (1 — a)th quantile of the x?
distribution with one degree of freedom, where « is the significance level. Alterna-
tively, the individual p-values are obtained as p; = 1 — F\2 (T, gLN ), where Fy(t) is
the distribution function of d evaluated at t. The genes with p-values less than «
are declared to have a statistically significant association with disease. This test is
simply an analysis of covariance (ANCOVA) with an appropriately log-transformed
dependent variable, and is easily implemented in most statistical software pack-
ages. The testing procedure, after obtaining a test statistic and the corresponding
null distribution (e.g., p-values and rejection regions), is identical for rest of the
methods, hence will be omitted unless needed.

2.3 Logistic Beta test
The Logistic Beta model (LB) models relative expressions, R; g = Y; 4/ 2521 Yin,
instead of absolute expressions, Y; 4. Because of the sum-to-one constraint of relative
expressions, tests based on relative expression are structurally dependent. However,
in microbiome data analyses, the number of tested genes is usually large enough
and thus the dependence induced by the compositional structure is negligible.

The LB model is formulated [24] as:

Rig ~ EB(Wi,gv Hi,g> ¢g)v (2)

where m;, = expit(X; v,) with v, = (fyg,fyé),fyf)T, pig = expit(X, B,) with
By = ( 27 5, ﬂf)—r, ¢4 denotes the dispersion parameter such that var(Ri,g|Ri,g >
0) = p1i,g(1 — 1i,g)¢g, and expit(-) := ej;)((rig.—&)-l'

Note that this model can be decomposed into two orthogonal models:

1(R;,q = 0) ~ Bernoulli(m; 4), R; 4|Ri g > 0 ~ Beta(; q,0,), (3)

where 1(-) is the indicator function, p; 4 is the mean of the Beta random variable
and 0, is the dispersion parameter. Orthogonality means that the estimate of m; 4
and those of y; 4 and 6, are independent. Consequently, the test statistic can be
obtained from these two separately estimated models. The maximum likelihood
estimators (MLE) are used for estimation and an R package gamlss [38] was used
for simulation in this study.

The null and the alternative hypotheses for the gth gene are
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e Hy: 55:7913:03nd
e H;: Either ﬁf #0or 'ygD #0.
Either a Wald-type or a likelihood test statistic can be used to test these hypothe-
ses. Because they are asymptotically equivalent, here we only present a Wald test
statistic:

T;:B N <sef§£))2 * (Se?iD)>27 )

which follows a 3 distribution under the null hypothesis asymptotically.

If only one of the two parts of LB is estimable, the test statistic is constructed

based on the estimable component only and the reference distribution is x?; e.g.
2

. The same approach

D
TLB — | s
g 0GP

was followed for the other two-part tests, including MAST and the two-part Kruskal-
Wallis test.

when only the logistic model is estimable,

2.4 MAST

The“Model-based Analysis of Single-cell Transcriptomics” (MAST) [39] was pro-
posed specifically for differential expression analysis of sScRNAseq data. This model,
composed of a logistic regression model and a conditional log-normal model, regu-
larizes parameter estimation and utilizes estimated cellular detection rates (CDR)
as covariates as defined below. The model was designed to deal with zero-inflation
which is driven by both technical and biological variabilities in scRNAseq data.
Though zeros in microbiome sequencing data are believed to be generated mostly
by biological reasons, the proportion of zeros is usually greater than that of con-
ventional single-part parametric models such as Poisson, negative binomial, and
log-normal. Thus, it is feasible to interrogate the performance of MAST in the
context of microbiomal transcriptomics analysis.

The models in MAST can be summarized as

1(Yi,g = 0) ~ Bernoulli(m; 4), logy(Yig+1)[Yiy >0~ N(Hi,gvgz)a (5)

where m; o = expit(X, v,) with vy = (v9,72,7F7.75) 7, iy = (X By) with g, =
(89,50, 57, 6C)T, X, = (1,XP,XP XC), and X¢ = LS 1(Yi, > k) is the
CDR of the ith subject for background expression level k. In this simulation we set
k=0.

The parameters are estimated using a Bayesian framework, where v, is regularized
under weak informative prior and 1/, is regularized using empirical Gamma prior.
An R package mast is available [23].

The null and the alternative hypotheses for the gth gene are

e Hy: 65z’y£z0and
e H;: Either ﬂf # 0 or 'y;j # 0.

Either a Wald-type or a likelihood test statistic can be used to test these hypothe-

ses. The Wald statistic is

T = (se/f’g;D)f i (86?%))2’ o
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with X3 as its asymptotic null distribution. The testing procedure is exactly the
same as that of the LB test once the coefficients and their standard errors are

estimated.

2.5 DESeq2

The DESeq2 [25] method is currently widely used for differential expression of
RNAseq data. The underlying model of DESeq2 is a negative binomial distribu-
tion and it uses empirical Bayes for regularization.

The DESeq2 model can be summarized as

Yig ~ NB(pig,04), (7)
where ;4 = S;4Vig is the mean parameter, 0, is the dispersion parameter,
sig is the size factor, v;, = exp(X, B,) with B, = ( 0, gD, gB,Bg)T, and

X; = (1, XP,XB, XF). The size factor is the parameter with which we adjust
the sequencing depth. In this simulations we use the median-of-ratios method [40].
The parameters are estimated using maximum likelihood estimation and then 6,
and ﬁf are regularized using an empirical Bayes approach. An R package DESeq2
is available.
The null and the alternative hypotheses for the gth gene are
e Hjy: 55:7;3:Oand
e Hi: Either ﬁé) # 0 or WgD # 0.
A Wald test is used to test these hypotheses. The Wald statistic is given as

BD 2
DESeq2 __ g9

with x? as its asymptotic null distribution. The testing procedure is exactly the same
as that of LB test, once the coefficients and their standard errors are estimated.
Because DESeq2 cannot accomodate high zero proportions, an extension was re-
cently developed to enable the modeling of a greater number of zeros in the scR-
NAseq context [41]. In this modified DESeq2 method, namely DESeq2-ZINBWaVE,

first the zero-inflation parameter is estimated using the model,
}/i,g ~ ZINB(Hi,gvegaﬂ-i,g)a (9)

and each observation is assigned a weight of the posterior probability of non-zero-
(1};; )[]: z yI,NgB;Ei/ggeg £ (Z-S’ 0 where fzrnp is the corresponding density of the
ZINB distribution. For the size factor estimation in DESeq2-ZINBWaVE, we use

the positive counts method. Then the conventional DESeq2 method is applied, as

inflation,

described earlier, including the weights. Whenever there is no ambiguity, “DESeq2”
refers to the original method and “DESeq2-ZINBWaVE” to its extension.
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2.6 metagenomeSeq

MetagenomeSeq (MGS) is a differential abundance analysis method for metage-
nomics data [22] and the corresponding bioconductor package, metagenomeSeq is
available. MGS assumes zero-inflated log normal distribution. Furthermore, MGS
uses an empirical Bayes shrinkage method for parameter estimation. Hence, MGS
shares common modeling approaches with MAST; however, the two approaches are
different in a few aspects. First, MAST uses CDR as a controlling factor in the model
while MGS does not. Second, MAST provides tests on two parts of the model; i.e.,
two p-values are obtained from the zero-inflation part and the log-normal part in
MAST. However, in MGS, after estimating the two-part model parameters, only
the log-difference of the marginal mean is tested and a single p-value is given [42].
In our simulations, the fitFeatureModel function in the R package metagenomeSeq
is used for implementation [43]. Although the MGS test can account for batch ef-
fects mathematically, the current metagenomeSeq software does not allow batch
variables in the model. Thus, only results without batch effects will be reported in
the simulation study in Section 4.

2.7 ANCOM-BC
ANCOM-BC is a differential abundance analysis method for metagenomics data
[30]. Tt shares the philosophy of its predecessor, ANCOM [26], in that it models
the ratio of abundances between taxa. However, unlike ANCOM which is a rank-
based approach, ANCOM-BC specifies the test statistic and its associated p-value
for a large sample. In ANCOM-BC, the observed abundance Y; , is assumed to be
a realization of the unknown abundance U; , of the whole ecosystem from where
the sample is taken with possibly different sampling fraction 7; for each sample. In
other words, E[Y; 4|U; 4] = n;U; g, where U; 4 is a random variable with mean 62 or
0}, depending on the membership of the sample i to the disease (D) or health (H)
group. Of note, ANCOM-BC is not limited to two-group problems but are designed
for multi-group problems. Then it formulates logY; , = log 7; +1og 0; 4 + €; 4, Where
7; is a slightly-redefined sampling fraction parameter due to the log-transformation,
and Ele; 4 = 0.
The hypotheses of ANCOM-BC are
e Hy: log&f = logﬂf and
o Hi:logf? #loghZ,
which are tested by the test statistic,

—

log 67 — log 611 — log 7

{67} +{o]'}?

TANCOM—-BC _
g9

—

where log 05‘ is the estiLn\ates of log 9;]47 {6;‘}2 is the mean squared error for each
group A = D, H, and log7 is the estimate of the bias, log7) = E[log 05 — log 05].
The statistic follows the standard normal distribution per the large sample theory,
and the authors defined a small sample version of the statistic of which distribution
was not defined.

ANCOM-BC does a further procedure of detecting “the structural zero” which
is defined to be the absence of a certain taxon in a specific group that is present
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in another group. Once the structural zero is detected, ANCOM-BC declares that

the taxon is differentially abundant, giving T/NCOM=BC

= oo and p-value = 0.
However, since such procedure often inflates the type-I error significantly in this sim-
ulation study, we add another version of ANCOM-BC that declares those sturctural
zeros inconclusive (i.e., p-value = NA). We report the simulations results for second
version as “ANCOM-BC2” and disclose the results of the original version, denoted

as “ANCOM-BC1,” in the Supplementary Materials.

2.8 Kruskal-Wallis test

The Kruskal-Wallis (KW) test is equivalent to one-way analysis of variance
(ANOVA) on ranks. KW is equivalent to Wilcoxon’s rank sum (WRS) test, or
Wilcoxon-Mann-Whitney test, for two sample problems and can accomodate com-
parisons of more than two samples [44]. Although the prototypical KW test was
designed without consideration of covariates, it can be modified to account for pos-
sible batch effects [45]:

Z?:1(ng — féb)Q

TEW = (n — 1) =
! 2z (rig = 75)?

(10)

where ;4 = 30 {1(Yiy > Yj,) + 1(Yiy = Yj,)} + 1 is the rank of the

2
L chieete db . iy rigL(XP=d. XP=b) _g.
ith subject’s gth gene among n subjects, 75" = A xXPaxPo) 0 g

i rig WX =d) e 1 n
S P=g) o ad Ty = 5 D Tige

The null and the alternative hypotheses for the gth gene are

e Hy: The ranked expression levels are independent of the phenotypic outcome
controlling for batch effects,
e H;: The complement of H.

The exact and approximate distributions of the statistic under the null hypothesis
can be obtained through analysis or resampling [45]. However, when disease and
batch strata are large, the statistic converges to x?. Based on the null distribution,
p-values are obtained for each gene.

For implementation of this test, an R function coin::kruskal wallis() [46] is

available. The coin package function allows only a single batch variable.

2.9 two-part Kruskal-Wallis test

Nonparametric tests such as KW and Wilcoxon’s rank-sum (WRS) test have mini-
mal distributional assumptions. The lack of model-induced information often results
in lack of power. While zero-inflation is a well-known characteristic of microbiome
sequencing data, explicitly modeling the proportion of zeros can enhance the power
in detecting differential expression. This additional assumption can be integrated
into the nonparametric models using two-part model framework [47]. Of note, the
LB test and the MAST are also two-part models but they are fully parametric.
Nonparametric two-part models have been used in other ’omics applications [48]
and microbiome [49] data analysis. The binary part of these nonparametric mod-

els has been modeled using a conventional proportion test where no covariates are
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allowed. To incorporate covariate information in the binary model, a logistic re-
gression model can be used. The KW or the WRS test can be used as the nonzero
model-to allow for the inclusion of covariates in the model, the modified KW test
can be used. In this paper we combine a logistic regression model and a KW test
and name it two-part KW test. The binary component of the model is the same
as that of LB model, i.e. Equation (3). The nonzero component’s test statistic is
derived based only on subjects with non-zero gene expressions and has the same
formula given in KW test, i.e. Equation (10).

The p-values can be obtained by combining two 3 statistics derived from each

component:
KWII ._ b
T, =W+ Wy,
By
se(BD)
(two times the difference of log-likelihood of logistic regression models), and Wé’ has

2
where W¢' is either a Wald test statistic (( > ) or a likelihood ratio statistic

the same form as Equation 10. The test statistic, T gK WII follows a x? distribution
under the null hypothesis asymptotically.

3 Description of the three metatranscriptomics datasets

To understand and characterize the distributional features of metatranscriptomics
data, we leverage three datasets made available by two recent studies involving
the human microbiome. The first two datasets (namely, ZOE 2.0 and ZOE-pilot)
were generated in a molecular epidemiologic study of early childhood caries (ECC;
defined as dental cavities in children under the age of 6) [29] called Zero Out Early
Childhood Tooth Decay (ZOE) [28, 27]. In that study, the association between
the supragingival oral microbiome and the prevalence of clinically-determined ECC
is investigated. The third dataset (namely, the IBD data) was generated in the
context of a recent study of the gut microbial ecosystem and its association with
Inflammatory Bowel Diseases (IBD) [7]. We base our analyses mainly on the largest
(n = 300) oral microbiome dataset, or the ZOE 2.0 data, and use the other two
datasets for the purposes of validation.

3.1 The pediatric dental caries datasets

One of the main aims of the ZOE project is to understand the biological basis
of ECC, including the human genome and the oral microbiome. To-date, approxi-
mately 5% of the parent cohort (“ZOE 2.0”, 300/6,404) has been carried forward
metagenomics, metatranscriptomics, and metabolomics analyses [27]. In addition,
118 participants from the same population were included in a pilot study (“ZOE-
pilot”) that included identical phenotyping and biofilm sequencing procedures. In
sum, dental biofilm metatranscriptomics analyses have been done to-date on 418
children ages 3-5 [27]. As noted above, the ZOE data were harvested in two differ-
ent periods. First, the current ZOE 2.0 samples of 300 children were sequenced in
2018-19 and the 118 samples of the ZOE-pilot cohort were sequenced in 2018-19.
Further, within ZOE 2.0, 53 samples were sequenced in May 2018 and 249 were
sequenced in November of 2019, respectively. Importantly, the average sequencing
depth varied significantly across the sequencing dates, and thus the dates are con-
sidered as batches in the parameter selection procedure in Section 4.3. Similarly,
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batch effects were evident in the ZOE-pilot data: 60 samples were sequenced in
June and an additional 58 samples were sequenced in July of 2017, respectively.
Three and two subjects were excluded for further analyses due to no or significantly
low expression levels in the ZOE 2.0 and the ZOE-pilot data, respectively. For the
purposes of this analysis, ECC was defined as a dichotomous trait, healthy or dis-
eased, based on modified International Caries Detection and Assessment (ICDAS)
criteria [28]. ECC prevalence was similar in the two ZOE waves, i.e., ZOE 2.0: 49%
(147/297) and ZOE-pilot: 50% (58/116). A detailed microbiome analysis protocol
for this study has been reported recently [27].

Adapter-trimmed, quality-controlled, demultiplexed Illumina HiSeq sequencing
reads were aligned against the human hgl9 reference to eliminate host derived
reads. Generally speaking, the alignment and data pre-processing followed the pro-
cedure described previously [27]. For details, estimates of taxonomic composition,
gene family, path abundance, and path coverage were produced from the remaining
reads using HUMAnNN2 [50]. The resulting reads were scaled into reads-per-kilobase
(RPK). We considered additional pre-processing methods including transcript-per-
kilobase-million (TPM) and arcsine in Section 5.

The total number of gene-species combinations in the ZOE 2.0 metatranscrip-
tome is 535,299; there are 204 distinct species, and 402,937 distinct genes. In the
ZOE-pilot sample, there are 439,872 gene-species, 185 distinct species, and 342,004
distinct genes. Total RPKs per sample is on average 13,053,428 in ZOE 2.0 and
2,815,749 in ZOE-pilot. The RPKs are rescaled by dividing by the total RPKs per
sample and then multiplying by 4.0 million in ZOE 2.0 and 3.4 million in ZOE-pilot,
to make the total expression level for each subject to be 10 times the number of
genes. This is a scaled version of TPM-normalized data. In this article, for notational
convenience, this scaled version of TPM is referred to as TPM.

There were high proportions of zero gene expressions in both the ZOE 2.0 (80.4%)
and the ZOE-pilot (87.9%) metatranscriptomics data. These high zero proportions
are comparable and actually higher than what is encountered in the correspond-
ing metagenomics data (75% in ZOE 2.0 and 68% in ZOE-pilot), as illustrated in
Figure 1. While a significant number of genes in the metagenomics data are not
sparse—one ninth in the ZOE 2.0 (one sixth in ZOE-pilot) of all genes have zero
proportion smaller than 20%, virtually all genes, or 94% (97%) are sparse in the
ZOE 2.0 (ZOE-pilot) metatranscriptomics data. Specifically, 54% (43%) of genes
have > 90% zero proportions in metagenomics compared to 59% (71%) in the
metatranscriptomics data of the ZOE 2.0 (ZOE-pilot) data.

3.2 The inflammatory bowel diseases dataset

The second dataset that we use in this study is one generated in the context of IBD
multi-omics research wherein the association between IBD and the gut microbial
ecosystem was studied [7]. The investigators followed 132 subjects for a one-year
period obtaining repeated measurements of multi-omics components including fecal
metatranscriptomes over multiple time points. For metatranscriptomes, a modi-
fied RNAtag-seq protocol was used to create Illumina cDNA libraries which were
sequenced on the Illumina HiSeq2500 platform yielding approximately 13 million
paired end reads. In this IBD study, the authors have generated the taxonomic and
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functional profiles (http://huttenhower.sph.harvard.edu/biobakery). Reads
were mapped the human genome. Taxonomic profiles of shotgun metagenomes were
generated using MetaPhlAn. Functional profiling was performed by HUMAnN2 to
quantify gene presence and abundance on a per-species basis (UniRef90s), for both
metagenomics and metatranscriptomics. To ensure a reasonable read depth in each
sample, the authors only used samples (metagenomes and metatranscriptomes) with
at least 1 million reads (after human filtering) and at least one non-zero microbial
abundance detected by MetaPhlAn. The dataset includes a total of 1,595 metage-
nomic and 818 metatranscriptomic samples.

We focus on the cross-sectional features of the metatranscriptomics data distri-
bution, and thus we only examined the baseline information, or the first visit data,
including a sample of 104 participants. We further dichotomized participants’ dis-
ease status as IBD (i.e., 50 Crohn’s disease and 26 ulcerative colitis cases) versus
non-IBD (i.e., 28 ‘control’ participants). Clinic location was considered as a batch ef-
fect in that study, and thus was employed in our analyses after dichotomization (the
pediatric versus the adult cohorts). The total number of gene-species combinations
in the IBD dataset was 42,688, including 235 distinct species, and 1,629 distinct
genes, among samples that had at least 1 million reads and at least one non-zero
microbial abundance captured by MetaPhlAn2. The data are publicly available in
a compositional format, where the gene expression sums up to one over genes and
species for each measurement of a subject.

The average proportion of zeros per gene in the IBD metatranscriptomics data
is 96.3%, while that in the metagenomics data is 87.8% consistent with the trend
of higher zero proportions in metatranscriptomics data over metagenomics data.
Figure 1 illustrates the higher zero proportion in the metatranscriptomes over the
metagenomes: 91% of genes have zero proportion > 90% in the metatranscriptomics
data, compared to 69% in the metagenomics data.

3.3 Data scaling and transformation

It is widely acknowledged that the DE analysis in metatranscriptomics depends not
only on the DE methods but also on pre-processing of the data. For count data, scal-
ing and transformation are commonly used as part of data normalization to make
the data more comparable across samples and/or taxa or to remove distributional
irregularities such as skewness. Reads-per-kilobase (RPK), transcripts-per-kilobase-
million (TPM), rarefying, and upper-quartile log-fold change normalization [51] are
frequently used as the scaling techniques. The examples of transformation include
arcsine, logarithm, and variance stabilizing transformation (VST) [40] among many
others.

The strengths and the shortcomings of each scaling and transformation approach
have been previously presented and discussed in the literature [52, 13], and also
some simulation studies have been done to compare the methods in the differential
abundance testing context [11]. However, in this paper, we do not pursue a com-
prehensive comparison of the scaling and transformation methods. Rather, we only
consider the three widely used methods, RPK, TPM, and arcsine, because the DE
methods evaluation is the main aim of our paper and, also, those scaling and trans-
formation methods provide reasonably good distributional results in the example
data.
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Among the three pre-processing methods, TPM is defined as RPK divided by the
RPK;
stant, ¢, was chosen to reflect the actual scale of the RPKs, or ¢ = 5(20) million in the

ZOE-pilot (2.0) study. Arcsine-transformation is defined as cZ arcsin(y/TPM/c).

Note that the Beta distribution is for compositional data and thus RPK and TPM
data are equivalent for the Beta distribution. The IBD data are available only in a

sample sum of RPKs times a constant (T'PM,; 4 = ¢ ) where the con-

compositional form, and thus, we do not consider the RPK-form of data.

4 Simulation design

4.1 Overview

To comprehensively evaluate the performance of the available tests, we consid-
ered multiple scenarios defined by the following generative models with a nested
factorial design. Three data generative model classes were used: zero-inflated log-
normal (ZILN), zero-inflated negative binomial (ZINB) and zero-inflated gamma
(Z1IG) models. Each of the generative models is characterized by three factors: 1)
baseline distribution, 2) disease effects, and 3) batch effects (without interaction
with disease), and they are defined in Sections 4.2 and 4.3. The factorial elements
of the simulations are selected based on the ZOE 2.0 data. For each generative
model, we estimate the parameters of the transformed gene expression of randomly
chosen 300 genes in that dataset. A set of parameter values for each factor is chosen
so that it reasonably covers the distribution of the estimates.

We first obtain the baseline distribution of parameters by estimating them
marginally in dental health and disease (H: non-ECC and D: ECC) and sequencing
groups (i.e., batches). Next, we obtain the distribution of the estimated disease and
batch effect parameters. Sets of parameters were chosen for this simulation study so
that they reasonably represent the real data distributions of parameter estimates.
Details regarding parameter selections are described in the corresponding subsec-
tions of Section 4.3. Once the data distribution is defined, we generate random
samples of a small (n = 80) and a large (n = 400) size, where all four subgroups of
disease-batch combinations are equally sized and there are ngene = 10,000 genes.
Then we apply all tests listed in Section 2, and calculate the average rejection rate
of each test at the 5% significance level. However, to avoid possibly high variability
of averaged rejection rate of MAST, DESeq2, MGS, and ANCOM-BC where indi-
vidual tests for each of ngene genes are done non-independently, we ran 10 sets of
each of those three tests using additional data replicates and this way obtain the
average rejection rates. Simulations are done in R 4.0.3 and the code is available at
https://github.com/Hunyong/microbiome2020.

4.2 Generative models

Three generative models are considered: zero-inflated log-normal (ZILN), zero-
inflated gamma (ZIG), and zero-inflated negative binomial (ZINB). We do not in-
clude the zero-inflated beta (ZIB) distribution, as only a few methods, such as the
LB test, model relative gene expressions or abundances rather than their absolute
quantities. Furthermore, because ZIB can be considered a compositional transfor-
mation of independent ZIG distribution, ZIG-based results should serve as a good
proxy for ZIB-based simulations.
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4.2.1 Generative model 1 - ZILN-based
The zero-inflated log-normal model is a mixture of log-normal distribution with a

point mass at zero. The density is given as

fzien(y) =7 Ly =0) + (1 — ) o(y, p, u0)1(y > 0), (11)

where o(x, 1, 02) is the log-normal density at  with mean p and variance o2, T is
the zero-inflation parameter, or 7 = Pr(Y = 0), p is the non-zero mean parameter
(i.e. p = E[Y|Y > 0]), and 0 is the over-dispersion parameter so that var[Y|Y >

0] = u?6

4.2.2 Generative model 2 - ZINB-based
ZINB is an extension of the negative binomial distribution and is widely used to
model count data with excess zeros. In many real world applications, if more ze-
ros are observed than the negative binomial distribution assumes, the zero-inflated
negative binomial distribution is suitable and has in fact become one of the most
commonly used methods in count data analysis [53]. This is true for omics data
analysis including scRNAseq [54, 41] and microbiome data [55, 56].

)T

ZINB without covariates has three parameters, (u,8,7) ", with the following den-

sity:

yt+g- 1> (u6)Y 12)

o) =7 =0+ (1=m) (V0 T

y = 0,1,2,..., where 7 is the zero-inflation parameter, u is the mean parameter
assuming no zero-inflation (i.e. E[Y] = u(l — 7)), and 6 is the over-dispersion
parameter such that var[Y] = p?7(1 — ) + (1 — ) (1 + p26).

We use the same notation £ = (u, 8, 7) for each generative model as long as there

is no ambiguity, and use a superscript denoting the model if distinction is needed.

4.2.8 Generative model 3 - ZIG-based
The zero-inflated Gamma model is a mixture of a Gamma distribution and a point

mass at zero. The density is given as

yu/a—le—y/f)

om0, (13)

fzic(y) =7 1(y=0)+ (1 —)

where 7 is the zero-inflation parameter or 7 = Pr(Y = 0), u is the non-zero mean
parameter (i.e. p = E[Y|Y > 0]), and 6 is the over-dispersion parameter so that
var[Y|Y > 0] = p20.

4.3 Model parameters

4.3.1 Baseline parameters

A set of baseline parameters uniquely defines a null distribution where there is
neither disease nor batch effects. Based on each of these baseline distributions, the

disease and/or batch effects are added to form alternative distributions.
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The ZILN parameters were estimated (Figure 2A) for the 300 randomly chosen
genes in the ZOE 2.0 dataset for each of the disease and batch subgroups. The
method of moments was used for estimation. The first, the second, and the third
quartiles of the p estimates are 7.4, 19.7, and 52.6, respectively. Those for the
0 estimates are 0.7, 1.2, and 1.8. Those for the 7 estimates are 0.34, 0.64, and
0.83. Based on the parameter distribution, we selected sets of baseline parameters
for the ZILN model as in Table 1. The parameter estimates for the ZIG model
are identical to those of the ZILN model and for this reason are not presented.
ZINB model parameter estimates are provided in Supplementary Section 3.1 of the
Supplementary Material.

To add to our understanding of metatranscriptomics data distributions generated
under realistic conditions, we followed the same procedures to estimate the param-
eters using the ZOE-pilot and the IBD data. Because the ZILN model is the main
focus of our simulation study and the expression of the IBD data was only provided
in a compositional form, we use these validation data to estimate the ZILN model
parameters only. In the ZILN model, p is the only parameter that is affected by
scale transformations and most test results are thus invariant to scale transforma-
tions except for the NB- and the ZINB-based tests. These estimated parameters
from the ZOE-pilot and the IBD data are presented in Supplementary Section 1. In
Supplementary Figure 1A and 2A, the estimated parameters of the gene expression
distribution for genes in the ZOE-pilot and the IBD data have a range that overlaps
reasonably with Figure 2A and the sets of parameters in Table 1.

Of note, in this paper we focus on total gene expression for each gene aggregated
over all the species in the sample. We further consider parameters for i) expression
of each gene-species combination (i.e., the joint data) and ii) species expression
marginally across genes (i.e., the species marginal data). The corresponding distri-
butions are provided in Supplementary Section 2 of the Supplementary Material.
The distributions from the gene-species joint data and the species marginal data are
reasonably covered by the parameter sets chosen in this section for all the settings
except the ZINB model for the marginal species data, where the parameters are
often either not estimable or outlying. In other words, the results are generalizable
to the other aspects of data and in most settings, except for the species data with
the ZINB model.

4.8.2 Disease effects

For each of the baseline distributions, disease effects are further considered to con-
struct the alternative distributions. Let 6 = (d,,dp, 0-) denote the disease effects
such that log up = log u+ %5,“ logfp = log 0+ %69, and log 172~ = log 17— + %6,”

177rD

where £p = (up,fp,7p) is the parameter for the diseased group. We simply
denote such operation as £p = g¢(&,d). The parameter for the healthy group is
$a = (pw,0m,mr) = 9(§, —90).

The disease effect estimates for the ZILN model are estimated from randomly
chosen 300 genes from the ZOE 2.0 dataset assuming that there are no batch effects.
These estimates are presented in Figure 2B. The quartiles of the J,, estimates are
0.1, 0.2, and 0.5 in the order. Those for the Jy estimates are 0.3, 0.5, and 0.9.
Those for the d, estimates with finite values are 0.2, 0.3, and 0.6. Based on the
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No. w 0 T
B01-03 | 1,10,50 | 0.5 | 0.3
B04-06 | 1,10,50 | 2.0 | 0.3
B07-09 | 1,10,50 | 0.5 | 0.6
B10-12 | 1, 10,50 | 2.0 | 0.6
B13-15 | 1, 10,50 | 0.5 | 0.65
B16-18 | 1, 10,50 | 2.0 | 0.65
B19-21 | 1, 10,50 | 0.5 | 0.7
B22-24 | 1, 10,50 | 2.0 0.7
B25-27 | 1, 10,50 | 0.5 | 0.75
B28-30 | 1,10,50 | 2.0 | 0.75
B31-33 | 1,10,50 | 0.5 | 0.8
B34-36 | 1,10,50 | 2.0 | 0.8
B37-39 | 1,10,50 | 0.5 | 0.85
B40-42 | 1, 10,50 | 2.0 | 0.85
B43-45 | 1,10,50 | 0.5 | 0.9
B46-48 | 1,10,50 | 2.0 | 0.9
B49-51 | 1, 10,50 | 0.5 | 0.95
B52-54 | 1,10,50 | 2.0 | 0.95

Table 1: Baseline ZILN parameters

parameter estimates, we select sets of disease effects for ZILN model as in Table 2.
Note that the 7 effect of scenario D4 is —1 to maintain consistency of the direction
of the effects. The parameter estimates for the ZINB are provided in Supplementary
Figure 7B. The corresponding ZILN parameter estimates for the gene-species joint
data and the species marginal data are presented in Supplementary Figure 3B and
5B. The estimated ZILN parameters of the gene expression distribution for genes,
gene-species, and species have a range that overlaps reasonably with Figure 2B and
the sets of parameters in Table 2. The corresponding ZILN parameter estimates for
gene expression levels in ZOE-pilot and the IBD data are given in Supplementary
Section 1, and the selected sets of parameters in Table 2 cover the distributions
well.

Another aspect of this simulation is that the signs of disease effects are randomly
perturbed. For example, if every gene is systematically higher expressed—higher
nonzero mean values—for the diseased subjects and lower expressed for healthy
subjects, despite the significant group mean difference in absolute terms, the mean
differences may be negligible in relative terms. In other words, doubling the expres-
sions of every gene in the disease group would not change the composition. This
implies that LB may fail to detect signals that have similar magnitudes and are
all of the same direction. In reality, only some of the genes might be differentially
expressed, while others are not. Also the sign of the difference might vary between
genes. Thus, the random perturbation of disease effects signs provides a realistic
scenario.

Another interesting scenario is related to possible disease effects on the zero-
inflation parameter. When the disease group has systematically higher proportion
of zeros than the healthy group, while the nonzero mean values are similar for both
groups, the compositional transformation would force the nonzero mean expression
of the disease group to be lower than that of the healthy group resulting in false
non-zero mean differences between them. This issue, again, can be resolved by the
random perturbation of the sign of the effects. In the main results of the simulations,
Bernoulli distribution with 50% chance is used for perturbation, and results based

on 25% and 0% chances are also presented for LB tests.
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scenario name

0 0 0 null effect
D2 1 0 0 p effect
D3 0 1 0 0 effect
D4 0 0 -1 7 effect
D5 1 1 0  p&0 effect |
D6 1 0 -1 p& effect |
D7 0 1 -1 0&m effect |
D8 1 0 1 p&mw effect |l
D9 1 -1 0  p&0 effect Il
D10 0 -1 -1 0& effect |l

Table 2: Disease effects. Additive effect size on log- (for p and 6) or logit- (for )
transformed scale; e.g., under u&m effect I (D6) without batch effects, the disease
(healthy) group has one unit higher (lower) nonzero mean on the log scale and one
unit lower (higher) zero proportion on the logit scale than the baseline.

No. Ky Ko K scenario name
K1 0 0 0 null effect

K2 0.5 05 -05 small effect |
K3 1 1 -1 large effect |
K4 05 -0.5 -0.5 small effect Il
K5 1 -1 -1 large effect Il

Table 3: Batch effects. Additive effect size on log- (for p and ) or logit- (for =)
transformed scale; e.g., under a large effect I (K3), within a disease group, a batch
group has 2 x 1 higher nonzero mean and dispersion on the log scale and 2 x 1 unit
lower zero proportion on the logit scale compared to the other batch group.

4.3.8 Batch effects

For each of the alternative distributions, we further considered batch differences. As
batch effects are in most cases nuisance parameters, we considered limited settings
and only binary effects were modeled. Batch effects are reflected on parameters for
each health and disease group in a similar way as that of disease effects.

Let k = (ky, ko, Kx) denote the batch effects such that €51 = g(€q, k) and g2 =
g(&q, —k) are the distribution parameters for disease group d(d = DorH) in batches
1 and 2, respectively. Alternatively, we denote {p 1 = g(&, 0, k).

The batch effects for the ZILN model are estimated from randomly chosen 300
genes in the ZOE 2.0 dataset assuming that there are no batch effects. These are
presented in Figure 2 C. The quartiles of the x, estimates are 0.3, 0.6, and 1.0 in the
order. Those for the kg estimates are 0.3, 0.7, and 1.2. Those for the k, estimates
with finite values are 0.4, 0.8, and 1.4.

Based on the ZILN parameter estimates, we select sets of batch effect parameters
for the ZILN model as in Table 3. The parameter estimates for the ZINB are pro-
vided in Supplementary Figure 7C. The corresponding ZILN parameter estimates
for the gene-species joint data and the species marginal data are given in Supple-
mentary Figure 3C and 5C. The estimated ZILN parameters of the gene expression
distribution for genes have a range that overlaps reasonably with Figure 2C and
the sets of parameters in Table 3. The corresponding ZILN parameter estimates for
gene expression levels in ZOE-pilot and the IBD data are given in Supplementary
Section 1, and the selected sets of parameters in Table 3 provide good coverage of

the distributions.
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5 Results

5.1 Goodness-of-fit of the generative models

5.1.1 Goodness-of-fit in the ZOFE data

We use the Lilliefors procedure [57] to evaluate the goodness-of-fit of the gen-
erative models (ZILN, ZIG and ZINB) in the ZOE data. The Lilliefors proce-
dure is a data-adaptive version of the Kolmogorov-Smirnov (KS) test [58], where
the empirical distribution function (EDF) of a specific gene is compared to the
cumulative distribution function (CDF) of the estimated model rather than to
a fixed CDF. We randomly select 300 genes and the maximal difference of the
EDF and the CDF for each gene is calculated. A p-value is calculated for each
gene based on a null distribution generated by Monte Carlo simulations, and
the histogram of the p-values and the proportion of the p-values less than the
0.05 threshold are reported. The code for the procedure is available at https:
//github.com/Hunyong/microbiome2020/blob/master/Readme_KS_test.Rmd.

The Lilliefors procedure is only applied to the non-zero values and ZINB is not
evaluated with this procedure. This is because the KS test and the Lilliefors proce-
dure are designed for continuous distributions, while the zero-inflation components
in ZILN and ZIG have virtually perfect goodness-of-fit. The Beta distribution, the
continuous part of the ZIB model, is also considered in this evaluation. For ZINB
distributions, a graphical comparison is provided as an alternative to the quan-
titative procedure. Estimation of distribution parameters is based on three scal-
ing/transformation methods: RPK, TPM, and arcsine.

Figure 3B suggests that for a small sample, all three generative models appear to
have a reasonable fit to the data—the rejection rates are at most 10%. However,
the overall high rejection rates in Figure 3A (ZOE 2.0) suggests that the reasonable
high rejection rates in Figure 3B (ZOE-pilot) are probably due to typical lower
testing power when sample size is small. Despite the high rejection rates in many
settings in Figure 3A, the log-normal model shows a consistently good fit. In both
Figures 3A and 3B, the TPM normalization is shown to provide a better fit com-
pared to the RPKs, and the arcsine transformation further enhances the rejection
rate. It is noteworthy that the results are almost identical between the TPM and the
arcsine transformations for the log-normal distribution. This is because, with a large
number of genes in the data (ngenes > 300,000 for ZOE 2.0), most compositional
(TPM/c) values are close to zero and, consequently, the arcsine transformation is

essentially equivalent the square root transformation with scaling:
arcsin(vz) = vz + O(z?), asz — 07,

This implies that the arcsine transformation is merely a location-shift transforma-
tion in the log-normal model for most of compositional values.

The model fit of the ZINB distribution is illustrated in Supplementary Section
3.2 for a couple of randomly chosen genes after rounding values to nearest integers.
The results suggest that the ZINB distribution has overall a reasonable fit to the
RPK or the TPM transformed data, but has a poor fit to the arcsine transformed
data.
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5.1.2 Goodness-of-fit of the generative models — the IBD data

Figure 3C shows that the goodness of fit of the IBD data is overall worse than that
of the ZOE-pilot data that have a similar sample size. However, for both data, the
log-normal distribution with either the TPM or the arcsin transformation yields the
best fit.

5.2 Type-I error

Figure 4 presents the type-I error rates of each test for selected representative sce-
narios. The full results are provided in the Supplementary Material (Supplementary
sections 4-6). For MGS, the software does not accommodate batch effects in its cur-
rent version (1.24.1), and ANCOM-BC also does not control the batch effects. The
results of the methods under the batch effects scenarios are still reported. LB, LN,
KW, KW-II, and MGS have type-I error rates close to the nominal significance
level. The LB has inflated type-I error rates especially when = is large and when
the sample size is small (n = 80). In contrast, LN, KW, KW-II, and MGS have
type-1 error rates lower than or equal to the nominal significance level even when 7
is large in a small sample size.

The type-I error is less stably controlled especially in the two-part models, such
as LB and DESeq2-ZINBWaVE, when the zero-inflation (or zero proportion) pa-
rameter is high. This is likely a consequence of the nonzero part of those models
relying on a small number of nonzero values, that causes high finite sample bias.
For example, for a ZILN sample of size n = 80, 7 = 0.9 means that there are only 8
nonzero values on average and that large sample theory may not be applicable. The
inflated or deflated type-I error of those methods dissolves or attenuates when the
sample size is large, further implying that finite sample bias is the culprit. Thus,
we suggest that, when the sample size is not large and has a high proportion of ze-
ros, the two-part models are not recommended without knowledge that the posited
distribution of the test and the true underlying distribution of data match.

MAST, however, frequently has type-I error that is higher than the nominal sig-
nificance level even for a larger sample size. This becomes even more evident when
there are batch effects, e.g., x = (1,—1,—1)T,(0.5,0.5,—0.5)T, and (1,1,—1)T.
Hence, MAST needs to be used with caution.

ANCOM-BC2 frequently has an inflated type-I error, which is more apparent
under the batch-effects scenarios due to model mis-specification. Its type-I error is
often amplified with a larger sample size, implying the existence of systematic bias.
ANCOM-BCI, or the original version, has a considerable inflation of type-I error
for most of the scenarios, especially under the high zero-proportion scenarios. See
Supplementary Figures 9-10. Identification of the structural zeros in ANCOM-BC1
could be unreliable under the high zero-proportion settings.

Finally, DESeq2 has a very low type-I error when used to model these zero-
inflated data. Because it was designed for negative binomial distributions without
zero-inflation, this may not be a surprising result. On the other hand, DESeq2-
ZINBWaVE has on average higher type-I error than DESeq2. However, it has higher-
than-nominal type-I errors for larger baseline nonzero mean values, and the inflation
becomes even larger for a large sample size, implying that the aberration may not
be attributable to the finite sample bias. Designed for the scRNAseq and with its
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unstable control of type-I error, the ZINB-WAVE extension of DESeq2 should be
used with caution.

5.3 Power in a small sample size

The rejection rates at 5% cutoff under alternative distributions, or the power of
tests, are illustrated in Figure 5 for selected scenarios of the ZILN model and sample
size of n = 80. The corresponding results for sample size of n = 400 are presented
in Figure 6 of Section 5.4. The simulations based on the generative models other
than ZILN are discussed in Section 5.5. The full results under all scenarios, i.e., all
combinations of generative models, baseline distribution, batch effects, and disease
effects, are provided in Supplementary Figure 9 to 14 in Supplementary Sections
4 to 6. We further vary either the significance level or the disease effect size to
provide a more comprehensive landscape of the test performances in Sections 5.6
and present an experiment result in Section 5.7 regarding the effect perturbation
discussed in Section 4.3.2. In what follows, the power, illustrated in Figure 5, is
discussed according to different disease effect scenarios (D2-D8).

D2 (pup > pg). When the disease status is only associated with the difference
in nonzero means (u), LB, MGS, MAST, ANCOM-BC2, and DESeq2-ZINBWaVE
have the highest powers for most of the baseline scenarios. However, while the
high power of MAST, ANCOM-BC2, and DESeq2-ZINBWaVE comes at a cost of
inflated type-I error, the type-I error of LB is relatively reasonably controlled and
that of MGS is well controlled. KW-II, that often has one of the highest powers, has
relatively weak power for the high zero-proportion scenarios. LN has good power for
many baseline scenarios but lacks power when the zero-proportion is high (7 = 0.9).
This is due to the bias from model misspecification of the LN model. KW suffers
from low power with even smaller 7. DESeq2 has a reasonably good power when
the zero inflation is not high (7 < 0.6). However, it often has lower than 5% power
when the data are sparse. This again can be explained by DESeq2’s inability to
model zero-inflation.

D3 (0p > 0y). Most tests lack power in detecting difference in 6 (D3), which is
expected as all the tests considered in this paper detect the marginal or conditional
mean differences and 6 difference alone does not affect the mean. However, there
are quite a few methods that have power greater than 5%. Methods with inflated
type-I error, such as MAST, are expected to have rejection rates higher than 5%.
Also, the equal variance assumption that is implied in methods could be the source
of the inflation. See, for example, 6, in (3) of LB and 02 in (5) of MAST.

D4 (mp > mg). Differences only in 7 are captured by methods such as LB,
LN, KW, and MAST. MAST’s slightly higher power than the other methods is
counterbalanced by inflated type-I error rates. For these methods, relatively low
power for baseline 7 = 0.9 and high power for baseline m# = 0.6 can be explained by
the design of the experiments. When the baseline 7 is close to 1 or 0, the absolute
difference (mp — mp) between two groups is relatively smaller than that when the
baseline 7 is close to 0.5.

D6 (up > pm,mp < 7x). Rejection rates are higher for D6 (up > pg,mp < 7g)
than for both D2 (up > pp) and D4 (mp < 7)), as D6 is expected to have larger
marginal mean differences than D2 and D4. As a result, most tests have powers
> 0.50 for m < 0.9 including LN and KW.
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D8 (up > pw,mp > wg). The disease effect scenario D8 is complicated, as the
signal from p difference and that from 7 difference offsets the effect on the marginal
mean. Thus, tests based on marginal models, i.e. single-part models such as LN,
KW, MGS, DESeq2, and ANCOM-BC, inherently cannot avoid low power under
this scenario, because they do not separate two opposite signals from two parts.
Consequently, they have lower rejection rates under D8 than under either D2 or
D4. In contrast, two-part models (LB, MAST, KW-II) entertain the two distinct
signals resulting in almost the same power as in D6.

Other scenarios involving 6 (D5, D7, D9, D10). Other scenarios involving
such as D5 (up > pg,0p > 0x), D7 (0p > Oy, 7p < 7r), DI(up > pw,0p < 0g),
and D10(0p < Oy, 7p < wg) do not have remarkable differences in results than
the corresponding scenarios without 6 effects, i.e., D2, D4, D2, and D4, respectively
(Supplementary Figure 2). This is expected, because 6 differences do not affect the
marginal mean difference and the methods considered in this paper treat 6 as a
nuisance parameter.

Power in the presence of batch effects. The presence of batch effects affects
power even when the batch information is incorporated in the tests. This could
be due to the fact that batch effects are made multiplicatively in the generative
models, while the models in tests only consider main effects of diseases and batches
without their interaction. However, the unevenness of power across different batch-
effect scenarios is neither dramatic nor systematic. The patterns, e.g. higher power
for MAST and LB, lower power for large 7w values and so forth, discussed in earlier
sections, still hold across different batch-effect scenarios.

Summary. In reality, differential expression only in nonzero mean (D2), only
in zero proportion (D4), or in both nonzero mean and zero proportion with the
opposite direction (D6), is of most interest and is more feasibly observed than the
others. Thus, the LB and MGS tests that have high power under D2 and D6 and
the LN test that has high power under D4 and D6 are noteworthy. KW and KW-II
tests have high power under D6. However, KW has very low power for most of the
settings of D2 and KW-II suffers from low power when m = 0.9 under all of D2, D4,
and D6.

5.4 Power in a larger sample size

As expected, rejection rates are higher in a larger sample size (n = 400) and many
tests under most scenarios have power close to 1. The patterns for the larger sample
size are mostly the same as those under the smaller sample size; MAST, LB, and
MGS have the highest power under most scenarios, two-part models have higher
power than single-part models when signals are in the opposite directions as in D8,
and 0 difference (D3) is not properly detected for most of the tests.

5.5 Power under ZINB and ZIG

The patterns of rejection rates under ZINB and ZIG models are not very different
from those under ZILN models. The full results are presented in Supplementary
Figure 11 to 14.


https://doi.org/10.1101/2021.07.14.452374
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452374; this version posted July 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cho et al. Page 23 of 41

5.6 Sensitivity analysis of power
To provide a broader view of the power of the tests we vary the significance level
and the disease effect size, respectively. Figure 7 presents the power according to
the cut-off values ranging from 0 to 0.2 under a few baseline distributions and
disease effects scenarios of the ZILN model without batch effects. Each curve either
dominates or is dominated by the others for most of the settings uniformly over the
cut-off values in [0.0,0.2], which suggests that the pattern of the previous results is
mostly preserved with a different choice of cut-off values.

Figure 8 illustrates the power of the tests under different sizes of disease effects for
a subset of the baseline scenarios and n = 80 without batch effects. The pattern of
lower (higher) power for smaller (larger) disease effect sizes was expected. However,
it is noteworthy that when there are only small disease effects on the non-zero mean
(i.e., Scenario D11), some methods have virtually no power (DESeq2 and KW) or
very low power (LN), suggesting that to compensate for the lack of fit, the effect

size should be large enough.

5.7 Power under unbalanced perturbations

As mentioned in Section 4.3.2, LB is based on compositional data where its power
attenuates when the disease effects have the same sign across all genes. All the
results presented above, i.e., Figures 4 to 6, are based on random perturbation of
directions with 50% probability. To illustrate the effect of unbalanced perturbations,
we present LB test results under 25% and 0% perturbation, of which rejection rates
are presented in Figure 9.

The results indicate that the power of detecting non-zero mean differences dimin-
ishes as the probability of perturbed directions diminishes below 50%. However, it
should be noted that this subtlety of compositional data only affects the non-zero or
Beta model part and not the logistic model part of LB. As discussed in the preceding
section, when the disease has a positive effect on zero-proportion uniformly across
all genes, false signals are induced on the non-zero mean values by the composi-
tional transformation. This results in inflated power of the LB test under Scenario
D4. However, when the perturbation probability is close to 50%, the false positive

signals disappear and the power of LB is no more inflated.

6 Application

6.1 Application to the ZOE 2.0 data

We apply the methods that were shown to have reasonable performance with a
controlled type-I error in simulations to the ZOE 2.0 data. Because the ZOE 2.0
data have batch effects—significantly different sequencing depths between the two
sequencing waves—we do not apply MGS, and hence, LB and LN tests are selected
for the analysis. The data are normalized according to the TPM format with an
average scale of 20 million. Differences in expression levels in TPM for each gene be-
tween health (non-ECC) and disease (ECC) participants are tested after controlling
for batch effects and age (coded in months). The data set includes 297 children of
ages between 36-71 months (3-5 years old). There are 402,937 genes from 204 bac-
terial species. Genes with < 10% prevalence and average TPM < 0.2 were excluded
from the analysis, resulting in 157,113 genes in the final analysis data set. For the
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LN test, the minimum positive value (0.007) is uniformly added to the TPM values.
Because this application is for illustration purposes, we did not apply a multiple
testing correction and report only crude p-values.

The p-values of each of the 157,113 genes for the LN and LB tests are summarized
in Figure 10. Clearly, the non-uniform shaped histograms for both LB (A) and
LN (C) tests in Figure 10 indicate the existence of differentially expressed genes
between health and dental disease, at a nominal statistical significance level. The
higher peak observed in (A) than (C) implies that there are more genes found to be
statistically significant by the LN model than by the LB model. Figure 10 (B) shows
that between the two LB model parts, the discrete (logistic) model part yields more
significant results than the continuous (beta) model part. This indicates that the
significance of the Wald test statistic (C) is mostly driven by the discrete model
part. The scatter plot (D) of the coefficients from the two parts and the regression
line thereon exhibit only a weak relationship between the two model parts. Genes
with Wald statistic p-values are less than 107° are circled on plot (D) and have
same-sign coefficients in both parts, where positive coefficients imply higher nonzero
mean (p) and higher nonzero proportion (1 — ), respectively. However, noting that
the coefficients of the continuous model part are close to zero, it appears that the
significance is driven by the discrete model part.

This weak relationship may strengthen or weaken the justification for the Wald
statistic. In rare events where the signals from the two parts are both strong and
with opposite signs, the Wald statistic can detect the signals that would have van-
ished if the two effects were marginalized. On the other hand, when the signal from
only one part is strong, while the other is not, the Wald statistic may not be able
to detect the strong signal after being diluted by the weak one, resulting to low
power. In this case, using the minimum p-values from both parts with an adjusted
significance level, i.e., twice the nominal level for the Bonferroni-type adjustment,
could be an alternative strategy.

The number of significantly differentially expressed genes (p < 1075) are summa-
rized in Figure 11. There are more number of significant genes according to the LN
test (184) than the LB test (6 for the global test, 30 for the discrete part, and 1
for the continuous part). This is congruent with the fact that the LN test is more
powerful than the LB test under D4 (the differential disease effects in zero propor-
tion) in Figure 9. Most of the genes found significant in the LB models are also
reported as significant by the LN models. The ten genes with the lowest p-values
from the LN models are: C8PIH7, C8P110, CSPHV7, C8PEV7, C8PKZ2, C8PJY1,
C8PG93, C8PKGY, C8PH26, and C8PJDI1. Significantly differentially expressed
genes according to the LB Wald test were E0DI62, CSPHV7, C8PEV7, C8PI10,
C8PIH7, and C8PHVS. The species and proteins associated with those genes and
their functions are present in Supplementary Table 10.

The results for the gene-species joint data and for the species marginal data are
provided in Supplementary Sections 7 of the Supplementary Material. The pat-
terns are overall similar to those obtained in the gene marginal data analysis; hiked
frequency at the low p-value areas for the LN and global LB tests, significance
mostly comes from the discrete part than the continuous part, the directions of the
two parts in the significant taxonomic units are only weakly consistent with each
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other. The significant features (p < 107°) in the gene-species joint data analysis us-
ing the LB models are EODJ07 Corynebacterium matruchotii; CSPHV7, CSPHVS,
and C8PEV7 Campylobacter gracilis; A3CQN5 Streptococcus cristatus; GIWEB2
Prevotella oulorum; and C7TNCB2 Leptotrichia shahii. The ten most significant
gene-species from the LN tests were all associated with Campylobacter gracilis
and included C8PHV7, C8PHVS, C8PEV7, CS8PKGY9, C8PI10, C8PH26, CSPHRS6,
C8PIH7, C8PFDO, and C8PG15.

The significant (p < 0.01) taxa from the species marginal data analysis using the
LB models include Campylobacter gracilis, Streptococcus cristatus, Leptotrichia
hofstadii, Lachnoanaerobaculum saburreum, Leptotrichia shahii, Streptococcus mu-
tans, Campylobacter concisus, Prevotella oulorum. None of the species had p < 0.01
in the LN tests.

Streptococcus mutans, one of the identified species, is the most well-document
dental caries-associated pathogen. The species most strongly associated with child-
hood dental caries in this analysis was Campylobacter gracilis, a gram-negative
anaerobic bacillus, traditionally isolated from gingival crevices and dental biofilms
accumulated close to the gingival margin [59]. Oral campylobacters are enriched in
genes for lactate metabolism, which plays an important role in the development
and maintenance of acidic conditions in cariogenic biofilms as the predominant
glucose-derived product, which is considered to be the main acid involved in caries
formation [60]. The capacity of Campylobacter species to produce lactate may be
contributing to the development and establishment of early childhood caries, as
other microorganisms directly associated to caries disease like Streptococcus sp
and Leptotrichia sp, which are benefited by this lactate-rich environment [60, 61].
Chalmers et al. (2015) showed that Campylobacters gracilis is associated with se-
vere early childhood caries at a frequency detection rate of 87.5% [62]. Campy-
lobacters gracilis’ active genes shown to have a significant association with ECC
were associated with essential steps for: (1) bacterial growth (C8PIH7, encodes for
an enzyme that catalyzes the first committed step in fatty acid synthesis) [63];
(2) protein biosynthesis and transport (C8PI10, encodes for an enzyme that cat-
alyzes the attachment of serine to its cognate transfer RNA molecule; C8PKZ2, en-
codes for the enzyme from biosynthesis of diverse amino acids leading to L-lysine,
L-threonine, L-methionine and L-isoleucine; C8PJD1, encodes for an amino acid
biosynthesis pathway) [64, 65]; (3) protein transport (C8PG93 encodes for twin-
arginine translocation (Tat) pathway, which catalyzes the export of proteins from
the cytoplasm across the inner/cytoplasmic membrane.) [66]; (4) DNA replication
and transcription (C8PJY1, encodes for key enzymes in the synthesis of nucleoside
triphosphates molecular precursors of both DNA and RNA) [67]; (5) biofilm forma-
tion or adhesion through gene C8PKG9 (encodes for NFACT-R 1 domain-containing
protein) [68] and; (6) energy conservation (C8PHR6 encodes for methylenetetrahy-
drofolate reductase (MTHFR) of acetogenic bacteria during reduction of carbon
dioxide with molecular hydrogen to acetate) [69]. Other genes associated with ECC
were ABCQN5 (encodes for Ribosomal RNA small subunit methyltransferase A,
which play the role of switch proteins in the ribosome assembly in Streptococcus
sanguinis) and CTNCB2, which encodes for a multidrug and toxic compound ex-
trusion (MATE) family of efflux pumps to actively transport of a solute across the
membrane in Leptotrichia buccalis [70].
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6.2 Application to the IBD data

Next, we apply the LB and LN tests to the IBD data to identify the differentially
expressed genes. Out of 1,119,472 genes, 103,966 genes with prevalence rate > 0.1
and mean expression level > 1078 in the relative RPKs were tested. Differences in
expression levels in TPM for each gene between control (non-IBD, 26 (25%) partici-
pants) and cases (IBD, 78 (75%) participants) groups are tested after controlling for
batch effects (binary-coded) and sex. The data set includes 104 patients (52 male
and 52 female) who were between 5 and 74 years old at the time of diagnosis (for
the cases). For the LN test, the minimum positive value (5 x 10719) is uniformly
added to the TPM values.

The p-values of each of the 103,966 genes for the LN and LB tests are summarized
in Figure 12. Similarly to the ZOE data analysis results, the hike on the left end in
both LB (A) and LN (C) indicates the existence of differentially expressed genes.
However, in Figure 12 (B), only the continuous part has a conspicuous hike while the
discrete part is mostly flat, implying that the signal lies massively in the continuous
part, which is also confirmed in the scatter plot (D). It is noteworthy that about
4% of genes have very high discrete model coefficients but are insignificant in two
clusters around either 26 and -26 on the y-axis. These are a manifestation of the
undesirable feature of Wald statistics called the Hauck-Donner effects, where larger
disease effects may not always result in a larger statistic and, as a consequence, may
yield lower power [71]. This occurs when a phenotype group has prevalence rate of
exactly zero or one, while the other group has prevalence rate away from zero and
one. The likelihood-ratio test, permutation tests, Fisher’s exact test, regularization,
and Bayesian approaches are the alternatives to the Wald test. Among the 523
candidate genes with such prevalence rate pattern, no genes were found significant
at the significance level of the nominal P value 10~° by the likelihood-ratio test and
the Fisher’s exact test of which p-values are presented in Supplementary Figure 21.

The numbers of the signficant genes in LN, LB-continuous, and LB-discrete
models are given in Figure 13. The ten most statistically significant genes in the
LN model are S3BI82, R5Q3H7, R5PRG3, R5Q1H1, R5QAG2, R5QE55, S3CESS,
R5QEQ4, R5PLJO, and, G2T243 while the top ten genes for the LB model are
D4WIY6, QOTKG5, ReW6W2, DIPDG3, Q17UW4, I19USK4, E27ZM16, R7TNP61,
BONN15, and U2ZZD9.

7 Discussion
For the first time, we have provided a comprehensive evaluation of the main analysis
methods for differential gene expression of metatranscriptomics data. This simula-
tion study design is inspired by the human oral microbiome sequencing data, to
which we investigated the goodness of fit of the generative models after scaling or
transformation. The methods were evaluated in terms of control of type-I error and
power. The best-performing methods were further used for detecting the differen-
tially expressed genes in the ZOE 2.0 oral metatranscriptomics data and the IBD
gut metatranscriptomics data. The microbial genes found significantly associated
with ECC were reported and interpreted accordingly, and those having significant
association with IBD were also presented.

This simulation study provides a guideline for microbiome researchers in choosing
proper DE analysis methods. Our simulation framework could be further applied for
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method type-l error power zero model  other

LB fair high (D2, D4, D6, D8) O Inflated type-I error for high
7 and small n in D2.

MGS good high (D2, D6) A No batch control available.

LN good good (D4, D6) X Low-powered for high 7 in
D2.

MAST not controlled high O Type-| error not controlled.

ANCOM-BC  not controlled good (D4, D6) A Type-l error not controlled.

DESeq2 good low X

DESeq2Z1 unstable good AN Type-| error not controlled

KW good good (D4, D6) X

KW2 good good (low ) O Low-powered when w >

90%.
Table 4: Summary of performances. DESeq2ZI is the abbreviation of DESeq2-

ZINBWaVE. (O, models zero counts and considers the differential effects on zeros in
the tests; /A, models zero counts but the tests only the marginal or non-zero mean
differences; x, does not model zeros.

validating current and future DE methods that were not included in this manuscript.
In what follows, we summarize the main findings and discuss the limitations of the
simulations.

Which method is the best in general?
In Table 4 we summarize the performance of each method evaluated in this study.
The simulation results suggest that for metatranscriptomics data, LB and MGS
have good power and good control of type-I error under the scenarios that involve
p-differences (D2 and D6). However, the current version of MGS does not control
for batch effects and MGS does not have good power under D4 (w-differences) and
LB needs to be used with caution as it may have inflated type-I error for high zero
proportion with a small sample size. LN has a fair amount of power when there is
non-zero mean difference (for low baseline 7 values) or zero-proportion difference,
or when both differences are present with the opposite directions. Both MAST and
ANCOM-BC have considerably high power to detect non-zero mean differences,
marginal mean differences, and the combinations of the two under many scenarios,
but they do not properly control type-I error. DESeq2 without ZINBWave has
both low type-I error and power for metatranscriptomics data, and the one with
ZINBWave shows unstable control of type-I error. KW as a nonparametric test,
has generally lower power compared to other methods. As simulations are based
on parametric generative models, the low power of KW is somewhat expected, but
KW can still be considered when the data at hand and the model that other tests
assume differ to a great degree.

TPM transformation.
According to our simulations, the log-normal distribution has a decent goodness-
of-fit to the ZOE data after TPM transformation. This is consistent with the fact
that MGS, which assumes zero-inflated log-normal distribution, is one of the highest
powered methods.

Two-part models are beneficial in some cases.
Two-part models have advantages in power over single-part ones when the signals
come from two different sources with different directions (D8). Specifically this
occurs when the non-zero mean difference and the difference in zero-proportion (or
zero-inflation probability for ZINB model) both exist and they have the same sign


https://doi.org/10.1101/2021.07.14.452374
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452374; this version posted July 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cho et al. Page 28 of 41

(or the opposite directions in terms of the marginal mean). Even KW-II, the low-
powered test under D2 or D4, often performs better than other single-part models
when both signals are present.

Distinct generative models.
Some of the variational factors in this simulation may not have practical impli-
cations: e.g., generative models and batch effects. Simulation results showed that
there were no substantial differences in power between different generative models,
even if each generative model might have different tests as the most powerful test.
This might be due to the fact that all the generative distributions considered in
this paper, ZILN, ZIG, and ZINB, have similar features such as zero-inflation and
left-skewed unimodal distributions in their non-zero parts. Batch effect scenarios
(K2 to K5) did not appreciably affect power even when the models were not cor-
rectly specified; for instance, the disease and batch effects were misspecified in the
sense that independently generated multiplicative effects in p of disease and batches
resulted in interaction effects, whereas, the testing models assumed no interaction
effects in this study.

Limitation: distributional assumptions.
This simulation study deals with a sizable number of distinct scenarios. However, it
does not cover all possible data generative mechanisms. It is based on a combination
of a few parametric generative models and a limited number of parameter sets. For
example, the differential expression is based on fixed functions such as log-difference
and logit-difference, we did not consider (multiplicative) interactions between dis-
ease effects and batch effects, and genes’ expressions were generated independently
from each other. Each of these issues adds a chance that the simulation results may
not plausibly represent the true data distributions in real-life experiments. How-
ever, we believe that this simulation results provide useful and practical insights
regarding the behavior and performance of each test under certain settings, if the
data are not too different from the models considered in this simulation.

Limitation: gene independence assumptions.
It must be acknowledged that we assumed independence between genes. Although
in reality, it is likely that some dependency or co-expression of genes is at play
and it may affect the significance of potential gene set tests [72] or multiple testing
adjustment, such dependency would not affect the differential expression analysis
at the individual gene level. Furthermore, all non-collective testing methods and
the multiple testing procedures assume independence between genes, where the
collective testing methods include MAST, MGS, and DESeq2, and p-values are
calculated taking into account the dependence between genes using empirical Bayes.
In other words, for each gene, the p-values obtained by individual gene tests on
independently simulated data are valid; and so are the corresponding type-I and
type-1I error rates. Although, in real data settings, genes are dependent to some
degree, we expect that, the high dimensionality of the data used here (i.e., a large
number of simulated genes) likely introduced spurious correlations between features
[73], our simulation results may not be far from a realistic scenario. Future work

could explore more realistic settings where gene expression levels are correlated.
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Figure 1: Histogram of zero-proportions at the gene-level in the metagenomics
(LEFT) and the metatranscriptomics (RIGHT) data of the ZOE 2.0 (Row 1), the
ZOE-pilot (Row 2), and the IBD (Row 3) studies. A. ZOE 2.0 metagenomics; B.
ZOE 2.0 metatranscriptomics; C. ZOE-pilot metagenomics; D. ZOE-pilot meta-
transcriptomics; E. IBD metagenomics; F. IBD metatranscriptomics; Numbers
on the histogram represent the proportion of genes of which the zero propor-
tion is greater than or equal to the cutoff values, or the vertical bars left to the
numbers.
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Figure 2: Column A: Parameter estimates of baseline ZILN distributions obtained
from the ZOE 2.0 data with the 3-dimensional scatter plot on the top row and
each of the subsequent rows representing 7 estimates being within 0.03 from 0.9,
0.6, and 0.3.
Column B: Disease effect estimates based on ZILN models obtained from the
ZOE 2.0 data in absolute values (|9,], |0s],|9x|)
Column C: Batch effect estimates based on ZILN models obtained from the ZOE
2.0 data in absolute values (|k,], |Kko, |~x|)
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Figure 3: Goodness of fit (Kolmogorov-Smirnov) test results for Beta, Log-
normal, and Gamma distributions (rows) with different scaling/transformation
methods (columns). The top nine histograms (A) are based on the ZOE 2.0
data (n = 297), the middle nine graphs (B) are based on the ZOE-pilot data
(n = 116), and the bottom six graphs (C) are based on the IBD data (n = 104).
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Figure 4: Type-I error rates for ZILN models. Columns and rows correspond to
sample sizes and tests, respectively, the X —axis represents baseline distributions,
and colors represent batch effects. The dotted horizontal lines denote the signif-
icance level (5%). DS2 = DESeq2, DS2ZI = DESeq2-ZINBWaVE, ANCOM =
ANCOM-BC2.
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Figure 8: The powers of the differential expression tests according to different
effect sizes. No batch effects are assumed.
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Figure 9: Type-I error rates and power of LB under different probabilities of
perturbation.
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Figure 10: Application to the ZOE 2.0 data analysis results. A. Histogram of
the p-values of the log-normal models. B. Histogram of the joint p-values of
the logistic Beta models (logistic and Beta parts). C. Histogram of the single
p-values of the logistic Beta models (Wald test statistics). D. Scatter plot of
the coefficients of the LB models, with the circled dots representing the most
significant genes—Wald test statistic p < 107°. NA on the y-axis indicates that
the logistic part was not estimated.
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Figure 11: Venn diagram of genes with p-values are less than 10~° for each
evaluated model in the ZOE 2.0 data.

050
p-values

coefficient, logistic

significant models
.

075 75 00 B3
prvalues coefficient, Beta

Figure 12: Application to the IBD data analysis results. A. Histogram of the p-
values of the log-normal models. B. Histogram of the joint p-values of the logistic
Beta models (logistic and Beta parts). C. Histogram of the single p-values of the
logistic Beta models (Wald test statistics). D. Scatter plot of the coefficients of
the LB models, with the circled dots representing the most significant genes—
Wald test statistic p < 107°. NA on the y-axis indicates that the logistic part

was not estimated.
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Figure 13: Venn diagram of genes with p-values are less than 10~° for each
evaluated model in the IBD data.
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