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Abstract 

Exposure to maternal immune activation (MIA) in utero is a risk factor for 
neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and 
adult offspring have been well characterized, however, less is known about the effects of 
MIA-exposure on embryo development. To address this gap, we performed high-
resolution ex vivo magnetic resonance imaging (MRI) to investigate the effects of early 
(gestational day [GD]9) and late (GD17) MIA-exposure on embryo (GD18) brain structure. 
We identify striking neuroanatomical changes in the embryo brain, particularly in the late 
exposed offspring. We further examined hippocampal neuroanatomy using electron 
microscopy and identified differential effects due to MIA-timing. An increase in apoptotic 
cell density was observed in the GD9 exposed offspring, while an increase in the density 
of dark neurons and glia, putative markers for increased neuroinflammation and oxidative 
stress, was observed in GD17 exposed offspring, particularly in females. Overall, our 
findings integrate imaging techniques across different scales to identify differential impact 
of MIA-timing on the earliest stages of neurodevelopment.  
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1. Introduction 

           
Brain development is a remarkable and complex set of processes under the 

organizational control of genetic, environmental, and immune regulation. The tightly 
regulated nature and interdependence of these processes make them vulnerable to a 
variety of risk factors. Converging lines of evidence suggest an association between 
prenatal exposure to maternal infection and increased risk for a host of 
neurodevelopmental disorders in offspring, including schizophrenia and autism spectrum 
disorder (ASD) (133). Indeed, exposure to maternal immune activation (MIA) in animal 
models has been shown to induce neuroanatomical and behavioural changes relevant to 
many neurodevelopmental disorders (4). MIA leads to an increase in maternal pro-
inflammatory cytokines and chemokines, which are thought to interfere with fetal brain 
development by disturbing its delicate ecosystem, potentially as a consequence of the 
microglial response (539). Exposure to MIA during the sensitive window of in utero brain 
development may alter neurodevelopmental trajectories, thereby increasing risk for 
neuropsychiatric disorders later in life (10,11). Identifying these sensitive windows and 
their impact on later development is critical to our understanding of the effects of MIA-
exposure. Previous work from our group has demonstrated that the gestational timing of 
MIA-exposure has a differential impact on offspring brain and behavioural development, 
with a greater variation observed following early MIA-exposure (gestational day [GD]9) 
relative to exposure later in gestation (GD17) or to a control (11). These differences may 
be attributable to variation in maternal immune responsiveness and fetal brain 
development across gestation (12). 
         Although there is significant evidence that MIA-exposure in utero alters brain 
development trajectories in both human (13) and animal models (14,15), it is unclear how 
soon after MIA-exposure these changes can be detected. MIA-induced outcomes have 
been better characterized in adolescent and adult rodent offspring (12). However, to 
better understand the initiation and progression of MIA-induced pathology, it is critical to 
study the impact of MIA-exposure on brain development at the earliest stages of life. 
Human neuroimaging studies have identified alterations in functional and structural 
connectivity in the infant brain following exposure to chronic, low-grade inflammation (as 
measured by interleukin [IL]-6 levels and/or C-reactive protein [CRP] in the maternal 
plasma) (16318). Even though some observations in early phases of life have been made, 
there is less information available regarding how MIA-exposure impacts the 
morphogenesis of the fetus. Recent work on this topic suggests that MIA-exposure 
induces acute upregulation of genes involved in immune signaling, hypoxia, and 
angiogenesis in the fetal mouse brain (19). Further, alterations in neuronal proliferation, 
neuronal and glial specification, cortical lamination (19,20), global mRNA translation, and 
altered nascent proteome synthesis have been reported (21). 
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These findings suggest that effects of MIA-exposure may be detectable in the fetal 
and neonatal period across mouse and human studies. However, it is unclear whether 
the transcriptional and histological variation observed in rodents translates to the 
neuroanatomical changes detected by whole-brain imaging observed in human studies. 
Furthermore, although gestational timing has been shown to have differential effects in 
adolescent and adult offspring (11,22), it is unclear how it affects neurodevelopment in its 
early phase. A better understanding of the neurodevelopmental sequelae of MIA-
exposure on very early brain development is of importance in the context of the current 
COVID-19 pandemic, as mothers who contracted the virus during pregnancy were more 
likely to have obstetric complications leading to poor fetal health outcomes such as low 
birth weight, intrauterine growth restriction, and preterm birth (23,24).  

To build upon our previous investigations in which we characterized brain 
development from adolescence to adulthood (11), we aimed to develop a chronology of 
how the timing of MIA-exposure may impact brain development in utero, using the same 
gestational exposures as in our previous work. We leveraged structural magnetic 
resonance imaging (MRI), an inherently 3-dimensional imaging technique applicable for 
mouse phenotyping (25). This technique allows for a comparable assay across species, 
providing a potential avenue for establishing cross-species homology (26). We examine 
the effects of in utero exposure to early (GD9) or late (GD17) MIA with a viral mimetic, 
polyinosinic:polycytidylic acid (poly I:C), on embryo brain morphology at GD18 using high-
resolution ex vivo whole-brain MRI. To better understand the cellular underpinnings of the 
volumetric changes identified by MRI, we leveraged high-resolution electron microscopy 
(EM) to examine the density of certain cells including apoptotic cells, dark neurons, and 
dark glial cells. These dark cells are unique from other neurons and glia as they have 
distinct ultrastructural characteristics reflective of oxidative stress and are only identifiable 
with electron microscopy (27). We focused on dark and apoptotic cells as they have been 
identified as a putative marker for neuroinflammation, cellular stress, apoptosis, and 
disease in the brain parenchyma (27329). The dorsal hippocampus was selected as the 
region of interest as it was differentially affected by GD9 and 17 MIA-timing. Further, 
alterations in this region have been consistently associated with neuropsychiatric 
disorders (30,31), as well as in response to MIA-exposure in our previous work (11). 
Furthermore, an increase in dark cell density has been previously observed in the 
hippocampus of adult MIA-exposed mouse offspring (32). Our results demonstrate 
neuroanatomical alterations in the GD18 embryo brain following MIA, with differential 
effects due to timing in many regions, including the dentate gyrus of the hippocampus. 
Here, we observed a significant increase in the density of apoptotic cells in the GD9-
exposed embryos (but not GD17) relative to the control group, while a qualitative increase 
in the density of dark cells (both neurons and glia) was observed in the GD17-exposed 
offspring. These findings suggest that morphological changes due to MIA-exposure are 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452084
http://creativecommons.org/licenses/by/4.0/


 

 5 

already detectable in the fetal brain, and that the timing of MIA-exposure may differentially 
impact the brain both at anatomical and cellular levels. 

  

2. Materials and methods 

2.1 Animals, prenatal immune activation, and sample preparation 

C57BL/6J female and male mice of breeding age (8-12 weeks old) were subject to 
timed mating procedures (described in Supplement 1.1) to generate pregnant dams. 
Pregnant dams were randomly assigned to one of four treatment groups (Figure 1 for 
experimental design): (1) poly I:C (P1530-25MG polyinosinic:polycytidylic acid sodium 
salt TLR ligand tested; Sigma Aldrich) (5mg/kg, intraperitoneally) at GD 9 (POL E; 7 
embryo dams), (2) 0.9% sterile NaCl solution (saline) at GD 9 (SAL E; 6 embryo dams), 
(3) poly I:C at GD 17 (5mg/kg, intraperitoneally) (POL L; 7 embryo dams), or (4) saline at 
GD 17 (SAL L; 4 embryo dams). Additionally, immunostimulatory potential of poly I:C was 
confirmed in a separate group of dams (Supplement 1.1 for methods, and Supplement 

2.1 and Supplementary Table 1 for results).  
Sample Preparation for MRI: On GD18, pregnant dams were euthanized, embryos 

were extracted and postfixed in 4% paraformaldehyde (PFA) with 2% gadolinium (MRI 
contrast agent; Bracco Imaging S.p.A) in PBS for 1 week. A piece of the yolk sac was 
collected for genotyping of each embryo to identify the sex of the mouse via presence of 
the SRY gene (performed by Transnetyx, Memphis, TN). Collections were performed in 
two separate cohorts (with two different poly I:C batches from the same supplier outlined 
in Supplement 1.2 and Table 1). 
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Figure 1. Experimental timeline. A. Pregnant dams were injected (i.p.) with poly I:C (5mg/kg) or 

vehicle (0.9% sterile NaCl) solution on gestational day (GD) 9 or 17. On GD 18, pregnant dams 

were euthanized, embryos were extracted and prepared for high resolution ex-vivo MRI. B. 

Analysis flow of deformation based morphometry analysis used to detect voxel-wise brain volume 

differences due to early or late MIA-exposure. The dorsal hippocampus was selected as a region 

of interest for cellular investigation using electron microscopy due to differential effects of timing 

on bilateral volume. C. Embryo brains were extracted from scanned samples, sliced, and 

prepared for EM investigation of dark glial cell, dark neuron, and apoptotic cell density. DBM: 

deformation based morphometry; dHIP: dorsal hippocampus; EM: electron microscopy; GD: 

gestational day; poly I:C: polyinosinic:polycytidylic acid. Figure made using biorender 

(https://biorender.com). 

 

 

 

2.2 Magnetic resonance image acquisition and processing 

All samples were shipped to the Mouse Imaging Centre (Toronto, ON) for 
scanning. A multi-channel 7.0-T MRI scanner with a 40 cm diameter bore (Varian Inc., 
Palo Alto, CA) was used to acquire anatomical images of the entire embryo (whole body). 
A custom-built 16-coil solenoid array was used to acquire 40 ¿m3 resolution images from 
16 samples concurrently (33) (see Supplement 1.3.1 for details). 
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Preprocessed embryo brain images 
(https://github.com/CoBrALab/documentation/wiki/Embryo-scan-preprocessing) of all 
subjects in the study were aligned by unbiased deformation based morphometry using 
the antsMultivariateTemplateConstruction2.sh tool 
(https://github.com/CoBrALab/twolevel_ants_dbm) (34). The output of this iterative 
group-wise  registration procedure generates a group average from all the scans in the 
study, as well as the minimum deformation fields that is required to accurately map each 
individual subject to the average at the voxel level (3D representation of group average 
in Supplementary figure 2). Relative Jacobian determinants (35), which explicitly model 
only the non-linear deformations and remove global linear transformation (attributable to 
differences in total brain size) were blurred using a Gaussian kernel at 160 µm full-width-
at-half-maximum to better conform to Gaussian assumptions for downstream statistical 
testing (see Supplement 1.3.2 for details). 
 
  
Table 1. Final sample size for embryo MRI data following quality control.  

Group Males MRI 

(Cohort1/Cohort 2) 

Females MRI 

(Cohort1/Cohort 2) 

Litters 

(Cohort1/Cohort 2) 

SAL E 14 (13/1) 15 (13/2) 7 (6/1) 

SAL L 12 (10/2) 12 (6/6) 4 (2/2) 

POL E 11 (6/5) 17 (9/8) 7 (4/3) 

POL L 14 (11/3) 17 (15/2) 7 (6/1) 

Collection was performed in two rounds with two different batches of poly I:C (same supplier and 

product). Number indicates total sample size following quality control. The number of samples 

coming from each collection cohort is noted in parentheses.  

 

 2.3 Electron microscopy 

After MRI scanning, embryo brains (SAL E, n= 4 [2males/2females]; SAL L, n= 7 
[3males/4females]; POL E, n= 8 [4males/4females]; POL L, n= 8 [4males/4females]) were 
extracted from the fixed samples and further post-fixed with 3.5% acrolein in phosphate 
buffer [100mM] (pH 7.4) overnight at 4°C. Post-fixed brains were sectioned to 50 ¿m 
sagittal slices using a VT1200S vibratome (Leica Biosystem), and stored at -20 # in 
cryoprotectant (30% glycerol, 30% ethylene glycol in PBS [50mM] (pH 7.4)). Three brain 
sections in which the dorsal hippocampus was present (Coronal section 12-15,(36)), 
roughly equivalent to lateral 2.0-2.8 mm(37)), were processed for electron microscopy 
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using osmium-thiocarbohydrazide-osmium post-fixation(38) (see Supplement 1.4). 
Samples were sectioned into ~70-75 nm ultrathin sections using an Ultracut UC7 
ultramicrotome (Leica Biosystems). Three levels of section-rubans were collected at an 
interval of 10 µm, glued on a specimen mount with conductive carbon adhesive tabs 
(Electron Microscopy Sciences) and imaged by array tomography at 25 nm resolution 
with an acceleration voltage of 1.4 kV and current of 1.2 nA using a Zeiss Crossbeam 
540 Gemini scanning EM (Zeiss) (3 images per embryo). 

Images from the all 4 treatment groups were analyzed blind to the experimental 
conditions using QuPath (v0.2.0-m3) software (39). For each picture, region areas were 
traced and measured to calculate cell density. Cell type and apoptotic state was 
determined by ultrastructural features. Total cell numbers, dark cells (neuronal and glial 
cells), and apoptotic cells were then counted within the dorsal hippocampus (CA1, CA3, 
and dentate gyrus). The percentage of dark cell population or apoptotic cell number was 
calculated as a ratio over the total cell population (details in Supplement 1.4). 

 

2.4 Statistical analyses 

2.4.1 Neuroimaging data analysis 

Statistical analyses were performed using the R software package (R version 
3.5.1, RMINC version 1.5.2.2 www.r-project.org). Once we confirmed there were no 
statistically significant differences between our two control groups, they were combined, 
leaving us with three treatment groups: saline (SAL), GD 9-poly I:C (POL E), and GD 17-
poly I:C (POL L). To assess the effects of poly I:C exposure at different gestational 
timepoints on embryo neuroanatomy we ran a whole-brain voxel-wise linear mixed-effects 
model (8mincLmer9; lme4_1.1-21 package; (40)) on the relative Jacobian determinant files 
using group and sex as fixed effects, and number of pups per litter, and cohort collection 
batch as random intercepts. A Satterthwaite approximation was used to compute degrees 
of freedom for every voxel (using the 8mincLmerEstimateDF9 function) . The False 
Discovery Rate (FDR) correction (using 8mincFDR9) was applied to correct for multiple 
testing (41,42) (Supplement 1.5.1 for details). This analysis was run again with the POL 
L group as the reference in order to directly compare POL E to POL L differences 
(Supplement 2.2.1). Sex differences were explored as a follow up analysis (Supplement 

1.5.1). Putative differences in organ volume (i.e. lungs, heart, liver, etc) for the embryos 
were also investigated by applying deformation based morphometry (as described above) 
to the body cavity (Supplement 1.5.1), however no differences were observed 
(Supplement 2.2.2). 

2.4.2. Electron microscopy 
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         Given the small sample size and non-normal distribution of cell density measures 
collected, parametric statistics were not an appropriate choice to analyze the EM data 
(43). We chose to use a nonparametric Kruskall-Wallis test followed by a pairwise 
Wilcoxon test were used to assess group differences in the density of dark glial, dark 
neuronal, and apoptotic cells in the combined SAL, POL E, and POL L groups averaged 
per subject across slices (the SAL group was combined to maintain consistency with the 
MRI findings).  
 Given that the variance in cell density differed quite drastically between groups, 
we wanted to understand how the distributions in cell density differed between groups 
and how much, rather than a standard approach comparing differences in mean (standard 
t-test approach for normal distributions), or median (such as the Kruskal-Wallis test for 
non-normal distributions). In order to do so we applied the shift function to the density 
measures acquired from each slice per mouse (3) to maximize variance, rather than using 
the pooled data per mouse.  The shift function (44) allows us to quantify how two 
distributions differ based on deciles of the distributions, i.e., it describes how one 
distribution should be transformed to match the other and estimates how and by how 
much one distribution must be shifted. When a significant difference is observed between 
deciles it suggests that there is a specific difference in the density of the cell type 
investigated (i.e., dark glia) between groups; this allows us to determine whether 
differences are consistent across the entire distribution, or more localized to one or both 
tails, or the center. In the context of the cell density data acquired, this technique allows 
us to compare groups beyond means or medians by accounting for the variance across 
the entire distribution of the data; this may provide us with a more nuanced understanding 
of differences between groups. Three pairwise comparisons were made (SAL - POL E, 
SAL - POL L, POL L - POL E) on the distributions for dark glia, dark neuron, and apoptotic 
cell density. A percentile bootstrap technique was used to derive confidence intervals 
based on differences in distribution at each decile of the distribution with a corresponding 
p-value. This was then repeated to assess sex differences, so the same comparisons 
were made in only males, and only females, followed by the same percentile bootstrap 
procedure.  
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3. Results 

3.1 Embryo brain results 

We observed a significant effect of GD9 MIA-exposure on the GD18 POL E 
embryo brain volume (t=4.242, <1%FDR), wherein POL E offspring had smaller volumes 
than SAL in the globus pallidus, hippocampus (including the dentate gyrus as well as 
more posterior regions), fornix, centromedian thalamic nucleus, and cerebellum. Larger 
volume was observed in the prelimbic area, lateral septum, subventricular zone, caudate-
putamen, sexually dimorphic nucleus of the hypothalamus, basolateral amygdala, and 
CA1 region of the hippocampus in the POL E group relative to SAL (Figure 2). 

GD17 MIA-exposure induced very striking volumetric alterations, particularly 
volumetric increases in the brain of POL L offspring at GD18 (t=3.234, <1%FDR) relative 
to SAL offspring. Regions of volume increase include the ventral pallidum, septal plate 
and lateral septal nucleus, medial and lateral preoptic nuclei, caudate-putamen, globus 
pallidus, hippocampus (both dentate gyrus and CA1 regions), cingulum, anterior 
commissure, cortical plate, corpus callosum, external capsule, centromedian thalamus, 
and cerebellum. Decreases in volume were observed in the ventral hippocampus, more 
anterior subregions of the cortical plate, bilateral amygdala, fornix, and ventromedial 
thalamus (Figure 3). 

Interestingly, POL E and POL L MIA exposure were observed to have opposite 
effects on brain volume in some regions implicated in neurodevelopmental disorders and 
identified in previous MIA studies (11,14), such as the dorsal hippocampus, wherein GD9-
exposure decreased volume, and GD17-exposure increased volume. Similar 
observations were made for the centromedian thalamic nucleus. The septal nucleus and 
caudate-putamen were increased in both MIA-exposed groups. A significant difference 
between POL E and POL L embryo brain anatomy was also observed (t=3.590, 
<1%FDR). These results are fully described in Supplement 2.2.1 and Supplementary 

Figure 1. Post-hoc investigation of sex differences revealed no significant sex-by-group 
interactions. 
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Figure 2. Neuroanatomical changes in the GD18 embryo brain following GD9-MIA exposure. A. 

t-statistic map of group (POL E vs SAL) thresholded at 5% (bottom, t=3.35) and 1% FDR (top, 

t=4.23) overlaid on the study average. B. Boxplots of peak voxels (voxels within a region of 

volume change showing largest effect) selected from regions of interest highlighted in white text 

in A. For all boxplots, the relative Jacobian determinants are plotted on the y-axis. Here a value 

of 1 means the voxel is no different than the average, anything above 1 is relatively larger, and 

below 1 is relatively smaller. For all boxplots, the midline represents the median of the data, the 

box represents the first and third quartiles, the vertical lines represent 1.5 x interquartile range of 

the data. Dots on the plot represent individual data points for each subject. 
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Figure 3. Neuroanatomical changes in the GD18 embryo brain following GD17-MIA exposure. A. 

t-statistic map of the group (POL L vs SAL) thresholded at 5% (bottom, t=2.67) and 1% FDR (top, 

t=3.44) overlaid on the study average. B. Boxplots of peak voxels (voxels within a region of 

volume change showing largest effect) selected from regions of interest highlighted in white text 

in A. For all boxplots, the relative Jacobian determinants are plotted on the y-axis as in Figure 2. 

  
 
 3.2 Electron microscopy of embryo dorsal hippocampus 

        For aggregate density measure per group, there were no group differences in total 
cell density (chi-squared = 0.68038, df = 2, p-value = 0.7116; Supplementary figure 3). 
Although the density of dark glial and dark neuron cells appeared to be higher in the POL 
L offspring, there were no differences in dark glial cell density (chi-squared = 3.3221, df 
= 2, p-value = 0.1899), nor dark neuron cell density (chi-squared = 0.75759, df = 2, p-
value = 0.6847). A significant group effect was observed for apoptotic cell density (chi-
squared = 6.3491, df = 2, p-value = 0.04181) wherein the POL E offspring appeared to 
have greater density than the POL L offspring (p=0.053), as well as the SAL offspring, 
although not significantly so (p=0.117) (Figure 4; see Supplementary figure 4 for more 
representative images of dark glia, dark neurons, and apoptotic cells).  
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Comparison of cell density distributions across groups confirmed that there were 
no overall differences in total cell density between groups (apart from a significant 
difference between POL E and SAL distributions only at the seventh decile of distribution 
(p=0.045) Supplementary tables 2-4).  

Interestingly, dark glial density was significantly lower for POL E offspring relative 
to SAL at higher deciles of the distribution (5-9th decile, p<0.02; Supplementary table 

5; Figure 5A), indicating that in general POL E offspring had decreased cell density. 
Distribution for POL L offspring were no different than SAL, however, they also had 
significantly more dark glia than POL E at higher deciles of the distribution (6-9th decile, 
p<0.04; Supplementary tables 6 and 7); in other words, POL L tend to have higher glial 
cell density than POL E, particularly among larger observations. Comparison of 
distributions for dark neurons revealed only subtle differences, with significantly higher 
density for POL E relative to SAL (decile 9, p=0.016; Supplementary table 8) and POL 
L (decile 8 and 9, p<0.01; Supplementary table 10) only at higher deciles of the 
distribution, with no differences between POL L and SAL (Supplementary table 9; 

Figure 5B). Finally, for apoptotic cell density, POL E offspring had significantly higher 
density across lower deciles of distribution relative to SAL (deciles 1-4, p=0.039; 
Supplementary table 11), and across all deciles relative to POL L (p<0.02, 
Supplementary table 12); this indicates that among smaller observations, POL E tend 
to have higher apoptotic cell density than SAL, and higher density than POL L. No 
differences between POL L and SAL were observed (Supplementary Table 13; Figure 

5C).  
Sex differences in distribution were also observed for all cell types (total, dark glia, 

dark neurons, and apoptotic cells). Of interest, increased density of dark glial cells was 
observed in the POL L females relative to SAL, while decreased density was observed 
for the POL E females, further described in Supplement 2.3.2 and Supplementary 

Figure 5, with the summary of results per decile provided in Supplementary tables 14-

37. 
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Figure 4. Differences in 

dark and apoptotic cell 

density with representative 

images captured using 

electron microscopy. A. 

Sagittal slice orienting to the 

region of the hippocampus 

selected, with the 

corresponding brain slice 

stained with Cresyl Violet 

from the GD18 mouse brain 

atlas (1mm scale bar), 

coronal slice 14 (36). The 

region of interest is 

highlighted in the circles. B. 

Representative slices of the 

hippocampus from the MRI 

results for POL E relative to 

SAL and POL L relative to 

SAL. The region of interest 

is highlighted in the circles. 

C. Image acquired by 

scanning electron 

microscopy (25 nm 

resolution) in the dorsal 

hippocampus from 

representative offspring 

(equivalent to coronal slice 

14 from A) highlighting dark 

glial cells. Boxplot showing 

dark glial cell density (per 

mouse) per group (n=6-

8/group). D. Representative 

dark neuron image with 

boxplot for dark neuron cell 

density per mouse. E. 

Representative apoptotic 

cell image with boxplot for 

apoptotic cell density per 

mouse. Scale bar 

equivalent to 5 µm. * 

p=0.053 
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Figure 5. Differences in distribution of dark glial, dark neuron, and apoptotic cell density per group. 

Distribution of dark glial cell density (A), dark neuron density (B), and apoptotic cell density (C) 

for all hippocampal slices per animal. The red line identifies the median of the data, while each 

black bar denotes a decile of distribution. A percentile bootstrapping technique applied to identify 

the difference in decile between the POL E and SAL for dark glial cell density (D) dark neuron 

density (E), and apoptotic cell density (F) showing decreased density of dark glia, and increased 

density of apoptotic cells for POL E offspring. Next, POL L and SAL comparisons are shown for 

dark glia (H), dark neurons (I), and apoptotic cells (J). Finally, POL E vs POL L density is shown 

for dark glia (K), dark neurons (L), and apoptotic cells (M) showing that POL L had higher density 

that POL E for dark glia and neurons, while POL L has lower apoptotic cell density. *p<0.05 
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4. Discussion 

There is a well-established link between MIA-exposure in utero and latent 
neuroanatomical and behavioural abnormalities that emerge in adolescence or 
adulthood, with relevance to schizophrenia and ASD pathology (45347). However, limited 
work has been conducted in the early neurodevelopmental period (12). We leveraged 
high-resolution ex vivo MRI and EM to characterize the effects of MIA-exposure at two 
gestational timepoints on the embryo brain at GD18. Our results suggest that the embryo 
mouse brain undergoes significant remodeling in response to MIA, particularly due to late 
gestational exposure, coupled with changes in the presence of dark and apoptotic cells 
in the hippocampus. Elucidating the neurodevelopmental changes across the embryonic 
periods following MIA-exposure is an important step towards our understanding of MIA-
exposure as a primer downstream psychopathology and as a risk factor for an array of 
neuropsychiatric disorders. 

Interestingly, we see volume reductions due to early MIA-exposure in a number of 
brain regions where we see striking volume expansions with late exposure. Since the late 
exposed embryo brains were harvested 24 hours following immune exposure, we are 
likely capturing an acute neuroinflammatory or stress response, or an acceleration of 
brain development in response to the immune stimulus. However, given that there was 
no difference based on SAL timing, it is likely that any acute effects are attributable to the 
MIA itself. Interestingly, there is homology between regions affected in the embryo brains, 
and those in which we observed altered neurodevelopmental trajectories from childhood 
to adulthood in our previously published work (11). Some of these regions include the 
striatum/caudate-putamen, hippocampus, lateral septum, cingulate cortex, and 
cerebellum, many of which have been implicated in neuroimaging studies of humans with 
schizophrenia or ASD (30,48,49). Previous animal studies also report that MIA in late 
gestation increases neuroinflammation in the embryo rat brain and decreases placental 
function as measured by T2-signal intensity (50). These findings suggest that increased 
neuroinflammation and decreased placental function could, in part, be driving some of the 
volumetric increases in the late exposed embryo brain, which may provide some 
mechanisms underlying disease pathology. 

To gain more insight into the putative cellular underpinnings of the volumetric 
changes, we performed EM experiments in the dorsal hippocampus, a region highly 
implicated in neurodevelopmental pathology (31). In addition to the current findings, we 
previously observed interesting transcriptional changes to genes involved in early 
neurodevelopmental processes in the dorsal hippocampus of adolescent MIA-exposed 
mice - although following a different gestational exposure (11). Identifying the cellular 
processes triggered by MIA-exposure is critical to our understanding of how this risk factor 
may alter offspring neurodevelopmental trajectories. By leveraging high-resolution EM 
techniques, we have an unprecedented opportunity to investigate the brain parenchyma 
at nanoscale resolution (28). This allows for identification of changes in different cell types 
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and their unique features. We identified differential effects due to gestational MIA-timing. 
In GD9-exposed offspring, where decreased dorsal hippocampal volume was detected, 
we observed an increase in apoptotic cell density and decrease in dark glial cell density 
compared to SAL offspring. Conversely, in GD17-exposed offspring, who had enlarged 
dorsal hippocampal volumes, there was a tendency for greater dark cell density (although 
not significantly), particularly for dark glial cells in the late exposed females. These cellular 
results align well with the volume-based MRI results wherein increased apoptosis could 
be linked to the decreased volume in GD9-exposed offspring, while increased dark cell 
density could be linked to an acute inflammatory response and increased volume in the 
GD17-exposed offspring. Importantly, this may point to differences in neuropathological 
mechanisms in the fetal brain associated with MIA-exposure, and to some putative sex 
differences that require further investigation.   

We focused our analyses on dark cells, both neurons and glia, as well as apoptotic 
cells as these have been frequently detected in response to stress (29), aging (51), and 
neurodegeneration (52). They are thought to play a role in both normal and pathological 
synapse and neuronal network formation (52). Dark neurons are typically defined by a 
darker appearance, with an accumulation of mitochondria and nuclear indentations, 
associated with structural plasticity (52354), as well as markers of cellular stress (dilated 
endoplasmic reticulum and Golgi apparatus) (28). Dark glial cells, particularly microglia, 
also display cellular markers of stress and have been shown to have hyper-ramified 
processes, which often leads to increased physiologically relevant contents such as 
synaptic contacts and increased phagocytic capacity(27,55). Further, reports of microglial 
reactivity and density in the brains of prenatally immune-challenged animals early in life 
are mixed, with observations of increased density and motility, as well as no differences 
(56). By focusing specifically on dark microglial cells in the future, we may gain better 
insight into the phenotypic variability of these reactive cells, and parse some of the 
heterogeneity in the literature.  

At GD9, corresponding with our first MIA-exposure, microglia colonize the brain, 
initiating their development towards maturity. Interestingly, sex differences in the number 
and morphology of microglia have been observed with males showing greater numbers 
of these cells earlier in development (PND4) than females, who have more microglia later 
in development (PND30-60) (57). GD9 also occurs at a time at which the fetal brain is 
undergoing extensive neural proliferation and migration, which transitions more towards 
circuit refinement and cortical organization by GD17 (our late MIA-timepoint) (58). 
Importantly, microglia may play important roles in the regulation of apoptosis (59) as well 
as the permeability and formation of the blood-brain barrier, which typically takes shape 
between GD13.5-15.5 in the mouse. Apoptosis is a critical cellular process in early brain 
and placental development in utero (60). The process of apoptosis has been detected as 
early as GD5, but increases significantly towards the end of gestation, peaking in early 
postnatal life before dropping off (61). In contrast with our findings, previous rodent 
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studies using immunohistochemical techniques have actually observed an increase in 
apoptosis following lipopolysaccharide exposure in late pregnancy in rats (62), and poly 
I:C exposure at GD17, but not GD9 in mice  (22). This discrepancy between these findings 
and ours may be due to differences in techniques or features used to identify these cells; 
immunohistochemistry may be less sensitive to detection of ongoing apoptosis. 
         The results presented here should be considered in light of their limitations. The 
design of our embryo study would be more complete with an assessment of 
neuroanatomy acutely following the GD9-exposure at GD10; this would allow us to detect 
whether volume increases, as those detected in the GD17-exposed offspring, are a 
response to acute inflammation, or specific to that gestational time point. Additionally, 
examining the brain of GD17-exposed offspring 9 days following MIA exposure, at PND8, 
could provide a similar delay after MIA before collection for imaging, however, the 
comparison of embryonic vs. postnatal brain development may have its own confounds. 
Unfortunately, the embryo is too small for MRI acquisition at GD 9 or 10, however, imaging 
could be performed using other techniques such as optical projection tomography (63). 
Regarding the EM analysis, we did not look at the extracellular space, which could 
contribute to the changes in volume detected in the MRI. In future work, cryofixation 
methods for preserving the EM samples would allow for more in depth analyses of the 
extracellular space volume and composition (64). 
         We comprehensively examined the effects of prenatal MIA-exposure, a known risk 
factor for neuropsychiatric disorders, at two gestational timepoints on embryo brain 
anatomy at the gross morphological and cellular levels. We identified striking 
neuroanatomical remodeling in the embryo brain, particularly following exposure in late 
gestation; we also observed sex-dependent alterations in the density of dark neuronal 
and glial cells in the dorsal hippocampus, with greater cell density in female offspring. 
This may reflect the initiation of pathological circuit remodeling. These findings show that 
MIA-exposure induces striking neurodevelopmental changes in embryonic development, 
which may further our understanding of how this risk factor increases the likelihood of 
developing neuropsychiatric illnesses later in life. 
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