

Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and related humans in the Netherlands

Lu Lu^{1†}, Reina S. Sikkema^{2†}, Francisca C. Velkers³, David F. Nieuwenhuijse², Egil A.J. Fischer³, Paola A. Meijer³, Noortje Bouwmeester-Vincken⁴, Ariene Rietveld⁵, Marjolijn C.A. Wegdam-Blans⁶, Paulien Tolsma⁷, Marco Koppelman⁸, Lidwien A.M. Smit⁹, Renate W. Hakze-van der Honing¹⁰, Wim H. M. van der Poel¹⁰, Arco N. van der Spek¹¹, Marcel A. H. Spierenburg¹¹, Robert Jan Molenaar¹², Jan de Rond¹², Marieke Augustijn¹², Mark Woolhouse¹, J. Arjan Stegeman³, Samantha Lycett^{13*}, Bas B. Oude Munnink^{2*}, Marion P. G. Koopmans^{2*}

1 Usher Institute of Population Health Sciences & Informatics, Ashworth Laboratories, Kings Buildings, University of Edinburgh, United Kingdom

2 Erasmus MC, Department of Viroscience, WHO collaborating centre, Rotterdam, the Netherlands

3 Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands

4 Municipal Health Service GGD Limburg-Noord, Venlo, the Netherlands

5 Municipal Health Service GGD Hart voor Brabant, the Netherlands

6 Stichting PAMM, Veldhoven, the Netherlands

7 Municipal Health Service GGD Brabant-Zuidoost, Eindhoven, the Netherlands

8 Sanquin Blood Supply Foundation, Amsterdam

9 Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands

10 Wageningen Bioveterinary Research, Lelystad, the Netherlands

11 Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands

12 GD Animal Health, Deventer, the Netherlands

13 Roslin Institute, University of Edinburgh, United Kingdom

† The authors contributed equally to this work.

*Corresponding authors:

Samantha Lycett (samantha.lycett@ed.ac.uk), Bas B. Oude Munnink (b.oudemunnink@erasmusmc.nl), Marion P. G. Koopmans (m.koopmans@erasmusmc.nl)

1 **Abstract**

2 In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in
3 farmed minks and genomic sequencing was performed on mink farms and farm personnel.
4 Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods
5 to explore SARS-CoV-2 transmission in minks and related humans on farms. High number of
6 farm infections (68/126) in minks and farm related personnel (>50% of farms) were detected,
7 with limited spread to the general human population. Three of five initial introductions of
8 SARS-CoV-2 lead to subsequent spread between mink farms until November 2020. The largest
9 cluster acquired a mutation in the receptor binding domain of the Spike protein (position 486),
10 evolved faster and spread more widely and longer. Movement of people and distance between
11 farms were statistically significant predictors of virus dispersal between farms. Our study
12 provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the
13 importance of combining genetic information with epidemiological information at the animal-
14 human interface.

15

16

17 **Keywords**

18 SARS-CoV-2, minks, phylodynamics, transmission patterns, transmission drivers, zoonosis,
19 One Health.

20 Introduction

21 Since the initial cluster of cases reported in Wuhan, China, SARS-CoV-2 is predominantly
22 transmitted between people, with occasional examples of transmission between humans and
23 animals. An expanding range of animals has been found to be susceptible and natural infections
24 have been documented particularly in carnivores, including dogs, cats, lions and tigers, otters
25 and ferrets, which were in contact with infected humans ^{1,2}. Infections have not been detected
26 in most common livestock species, but multiple countries have reported SARS-CoV-2 in
27 farmed minks to the World Organisation for Animal Health (OIE)
28 (<https://wahis.oie.int/#/dashboards/country-or-disease-dashboard>).

29

30 In the Netherlands, SARS-CoV-2 was first detected in farmed minks in late April with signs
31 of respiratory symptoms and increased mortality³. An in-depth One Health investigation,
32 combining whole genome sequencing (WGS) with epidemiological information, was
33 conducted in response to the outbreaks in mink farms. The findings of the initial investigation
34 between April and June highlighted that mink sequences from the first 16 farms grouped into
35 5 different clusters. Based on these genetic signatures, it was shown that people working on
36 the farm were infected with mink strains rather than strains circulating among humans in the
37 same community, providing evidence of animal to human transmission of SARS-CoV-2 within
38 mink farms ⁴. Three of the 5 different clusters continued spreading and in total 68 out of 126
39 mink farms in the Netherlands were diagnosed with SARS-CoV-2 infections between April
40 and November 2020. From January 2021 onwards all fur farming was banned in the
41 Netherlands. To date, the mode and mechanism of most farm-to-farm transmissions have
42 remained unknown. Phylodynamic analyses of whole genome viral sequences from mink farms
43 and associated human cases combined with epidemiological data can help to address specific
44 epidemiological and outbreak control questions.

45

46 In this study, we describe an in-depth molecular epidemiological analysis of the outbreak in 68
47 mink farms in the Netherlands, as well as related humans on these mink farms. We used
48 Bayesian phylodynamic methods to gain more insight in the timing of SARS-CoV-2
49 introductions and the patterns of farm-to-farm transmission. Specifically, we explored the
50 approximate time of onset for the different mink farm clusters and we compared the rate of
51 evolution and population dynamics between mink clusters with the rate of evolution in the
52 human population. Further, we have quantified the virus transmission patterns between
53 different farms and identified farms which are more likely to be the donors of such
54 transmissions; finally, we tried to infer the possible predictors that may drive the transmissions
55 between farms.

56 **Results**

57 **SARS-CoV-2 infections in mink farms in the Netherlands**

58 In total 68 (farm IDs:NB1 to NB68) of 126 mink farms in the Netherlands were diagnosed with
59 SARS-CoV-2 between the 24th of April and the 4th of November, and these farms were culled
60 within 0-6 days after sampling from NB8 onwards (mean 2, median 1) (Figure 1a and b).
61 Control measures were implemented immediately after the first infected farms were detected
62 and included culling of infected farms from June onwards. All mink farms were subjected to a
63 ban on transport of animals, animal materials, visitors and implementation of strict hygiene
64 protocols and animal surveillance programs for early detection (Figure 1a).

65

66 Most SARS-CoV-2 positive farms were located in a mink farm dense area in the south-east of
67 the Netherlands with 43 farms positive in the province North Brabant and 23 out of 68 farms
68 positive in Limburg (Figure 1b). Two farms were located in the province Gelderland, bordering
69 on another mink farm dense area. Up to July, on average 1.73 farms (median 2) were diagnosed
70 per week. Despite implemented control measures, and cessation of activities involving
71 handling of the minks and employing additional staff after the weaning period in July, the
72 weekly number of farms diagnosed increased in August and September to 3.75 (median 3.5),
73 after which it declined to 1.34 (median 1) in October and November (Figure 1b).

74

75 At 41/68 mink farms, employees were confirmed SARS-CoV-2 positive by RT-PCR.
76 Sequences belonging to all five mink clusters were identified from these human samples on
77 each farm, varying from 55% of farms in cluster A (22/40) to 100% in cluster B and E (1/1).
78 On 31 out of 41 farms, the sampling date of the human positives was after the date their minks
79 reported positive while for two farms the human sampling dates were unknown. In three out of

80 eight farms, workers tested positive over one week before their animals were reported to be
81 SARS-CoV-2 positive.

82
83 Between 24th April 2020 to 4th November 2020, we have obtained full genome sequences of
84 295 minks from 64 out of the 68 mink farms. No genomes were available from 4 farms (NB22,
85 NB30, NB37 and NB66). From 57 out of 102 human positives directly linked to 27 farms, a
86 full sequence was obtained.

87
88 **Introductions and ongoing spreading clusters in mink farms**

89 To look at the transmission of SARS-CoV-2 in mink farms in the Netherlands, we included
90 full length genomes of SARS-CoV-2 from humans and animals infected on mink farms, and
91 representative SARS-CoV-2 genomes from COVID-19 cases from the general human
92 population of the Netherlands (n=673) to perform a time resolved phylogeographic analysis
93 using BEAST (Figure 1c). The 5 distinct mink farm sequence clusters (A-E) were derived from
94 4 lineages B.1.8 (Cluster A), B.11 (Cluster B and D), B.1.22 (Cluster C) and B.1.5 (Cluster E)
95 which have been dominantly circulating in the general human population in the Netherlands
96 according to the Pango-lineage descriptions⁵(version on 1st of April 2021).

97
98 The largest cluster found on mink farms is the so-called Cluster A, which contains 195
99 sequences isolated from approximately 60% of the infected mink farms (n=40) across 15
100 municipalities in three provinces sampled between early April to mid-October 2020 (Figure
101 1b). Cluster C and D have been sampled from fewer farms and circulated for shorter time
102 periods: Cluster C viruses were isolated from 15 mink farms between late May to early
103 September while Cluster D viruses were isolated from 8 mink farms from late May till early
104 August. In comparison, Cluster B and Cluster E have only been identified on one farm (NB2

105 and NB11, respectively) in the early stage of the epizootic with no subsequent spread. The
106 majority of farms were located within 3 km of each other, but not all neighboring farms were
107 infected with a virus from the same cluster (Figure 1b).

108

109 Seventeen human SARS-CoV-2 sequences from farm NB1-16 between April-May have been
110 described previously ⁴, and here we report another 35 human sequences of mink farm
111 employees in the period June-November (tips in red in Figure 1c). All human sequences were
112 part of the mink-related Clusters A, C and D indicating ongoing transmission between minks
113 and humans (or vice-versa) within the three clusters. All but one of the human sequences were
114 part of the same cluster and were closely related to the sequences of the minks on the same
115 farm. One human sequence of a Cluster C farm (NB 24) belonged to Cluster D, which could
116 be explained by the fact that this employee assisted in the culling of minks at another farm,
117 where minks were infected with a Cluster D virus.

118 Interestingly, unique clusters were found on the majority of infected farms, only in one farm
119 two different clusters were found: NB8 (infected viruses belong to both Cluster A and D in
120 early June). It is therefore likely this farm was exposed to two sources of viruses.

121

122 We estimated the evolution rates of SARS-CoV-2 in mink populations in the Netherlands by
123 using relaxed clock models, with a mean clock rate of 7.9×10^{-4} subst/site/year with 95% highest
124 posterior density (HPD) (7.2×10^{-4} , 8.4×10^{-4}). The approximate times for the ancestral jumps
125 from humans to minks were between mid-March (Cluster A, B and C) to late-April (Cluster D
126 and Cluster E) (Figure 1d). Three clusters (A, C and D) had ongoing spread to more farms from
127 June to November after the initial investigations of the 16 farms between April to June 2020.

128 The last infected farm was detected on the 4th of November, after which no new infections were
129 detected (Figure 1a).

130

131 **Spill-over into local community and limited onward transmission**

132 In total, 218 sequences isolated from randomly selected patients from 31 postal codes, in the
133 region of SARS-CoV-2 positive mink farms were obtained in period 4th March 2020 to 4th
134 January 2021, to assess possible spill-over to the local community. In addition, all sequences
135 submitted to GISAID from the Netherlands until the 4th of January were included in the analysis.

136 In three separate occasions, a mink related strain, linked to clusters A and C (Figure 1c), was
137 detected. Two out of three patients infected with a mink strain (sampling dates in July and
138 August), lived in a province where no infected minks were reported, and they did not have
139 direct or indirect contact with the mink farming sector. One patient was found in the regional
140 screening in November but also did not report any mink farm contacts. After November, no
141 human infections with mink strains have been detected (Figure 1c).

142 Throat swabs of the two escaped mink, caught 8 and 9 days in close proximity to two culled
143 farms (NB58 and NB59), at 450 and 650 m distance respectively, tested positive for SARS-
144 CoV-2 RNA. Genome sequencing was successful for one mink sample, and it belonged to
145 Cluster A (Figure 1c).

146

147 **Specific mutations in the Spike protein in multiple mink clusters**

148 We further explored how the specific mutations in the spike protein are associated with
149 phylogenies by mapping 4 potential important mutations in the spike protein (L452M, Y453F,
150 F486L, N501T) on the tree composed of the complete dataset (Figure 2). These 4 mutations

151 are in confirmed contact residues of the viral spike protein with the ACE2 receptor^{6,7}. Within
152 the Netherlands, these ‘mink specific’ mutations were only found in minks and employees on
153 mink farms by the time the analysis has been performed (by 1st April 2021), except for 3
154 samples: two sequences from unrelated humans (one with F486L, the other with both F486L
155 and L452M, third sequence excluded due to insufficient coverage) and one sequence from an
156 escaped mink (with F486L). However, these mutations have also been seen elsewhere in other
157 independent lineages. For example, the F486L has been detected occasionally in humans in
158 Ireland and Columbia, and in mink samples from the US (<http://cov-glue.cvr.gla.ac.uk/#/home>).

159

160 The 4 mutations have evolved in multiple clusters and in both human and mink samples from
161 Dutch mink farms. Specifically, mutation F486L has been seen in 217 sequences from 40 mink
162 farms that belong to 2 separate clusters (A and C), which accounted for 67% sequences and
163 68% sequences isolated within the cluster. Y453F has been seen in 37 sequences from 10
164 different farms in 3 different Clusters (A, D and E), which accounted for 3%, 82% and 100%
165 sequences isolated within the cluster. In addition, we found the N501T mutation in only 3 mink
166 virus sequences from 3 different farms belonging to Clusters A and D. L452M was seen in 44
167 sequences isolated from 9 mink farms all belonging to Cluster C (59%). N501T only appeared
168 in a short period of the outbreak (end of April to end of May), while the others appeared in a
169 later stage and sustained longer (F486L first appeared in two sequences in Cluster A at the end
170 of April, then reappeared and replaced F486 in Cluster A since mid-August and in Cluster C
171 since June, respectively); L452M appeared from early July to September and Y453F appeared
172 from end of April to early July.

173

174 We mapped 4 types of traits (host, farm ID, province and municipality) on individual time-
175 scaled phylogenies of Cluster A, C and D using discrete trait models. We compared the 4

176 individual mutations in the spike protein and the combinations of the 4 mutations on the time-
177 scaled phylogenies of Cluster A, C and D independently. The discrete trait mapping trees of
178 Cluster A are shown in Figure 3, with the branches and nodes colored by inferred ancestral
179 traits. The trees for Cluster C and Cluster D are shown in Figure S1 and Figure S2. The
180 occurrence of the mutations did not show any significant association either to host types, to
181 farm numbers or to locations (Mann-Whitney U Test, with $p>0.5$).

182

183 **Comparisons of the phylodynamics of different clusters in minks**

184 We compared the phylodynamics of three clusters (A, C and D). The results of estimating the
185 time to the most common recent ancestor (TMRCA), the molecular clock evolutionary rate and
186 spatial diffusion rate (geography.clock.rate) according to available data and parameters
187 selected are shown in Figure 4. For Cluster A, the estimated TMRCA for mink sequences is
188 approximately in mid-March 2020 (mean 15th March 2020 with 95% HPD (12th March 2020,
189 28th March 2020); Evolution rate is approximately 1.41×10^{-3} subst/site/year with 95% HPD
190 (1.2×10^{-3} , 1.75×10^{-3}) subst/site/year. The other two clusters have slightly lower evolution rates
191 and more recent TMRCAs, but with wider HPD intervals; overall these results are consistent
192 with the estimations using a relax clock model on the complete data in Figure 1. Similarly, the
193 spatial diffusion rate of Cluster A is higher (means of 2.91×10^{-4}) than the other two clusters C
194 and D, which have means of 1.06×10^{-4} and 1.34×10^{-4} (Figure 4 and Table S1). Overall, the
195 TMRCA aligns with the epidemiological data about the emergence and detection of SARS-
196 CoV-2 in the Netherlands. It also has a faster and wider spatial spread and higher evolutionary
197 rate than the other clusters.

198 We further compared the population dynamics and the transmission potential of different
199 clusters. The estimated effective population size (N_e) and the estimated reproductive number
200 (R_e) are shown in Figure 4a and 4b. The phylodynamic R_e is a relative growth rate and can be

201 thought of as representing infection on a between-farm level rather than a between animal level
202 given the limited number of sequences (5 on average) sampled per farm. Different patterns of
203 Ne and Re were observed for Cluster A overtime, and for Cluster C and D. For the largest,
204 Cluster A, the population size of mink farm sequences experienced an expansion in late March
205 2020 and fluctuated later on. Re for Cluster A stayed above 1 after the start of infections then
206 decreased slightly since May 2020. The rate increased again and peaked at approximately 1.6
207 with 95% HPD (1.2, 2.1) since early August 2020 and dropped to 1.3 with 95% HPD (0.8, 1.7)
208 from the end of September till November 2020. For Ne of Cluster C, a period of slight increase
209 was observed in mid-June 2020, followed by a decline in size from June to September 2020.
210 The Re for Cluster C stayed above 1 till May 2020 then decreased sharply (below 1) and
211 increased again and stayed at around 1.5 with 95% HPD (1.0, 2.3) from the end of July 2020.
212 In comparison to Cluster A and C, both Ne and Re for Cluster D have larger uncertainties (wide
213 HPD intervals). These results are in line with the detection of SARS-CoV-2 in mink farms, few
214 farms were infected in July 2020 while there was an increase from August 2020 onwards
215 (Figure 1a). In addition, the timing of Re increases in the later stage coincides with the
216 appearance of clades with mutations on Spike protein: F486L (in Cluster A and C), L452M (in
217 Cluster C), Y453F (in Cluster D) (Figure 2, 3 and Figure 5). We observed similar results by
218 using the multi-type birth-death model which showed a strong increase in the number of
219 infections in clades with mutations rather than clades without mutations (Figure S3).

220 **Sources and frequencies of the transmissions between different hosts and farms**

221 Host (humans and minks) and farm number labels were added to the sequences, and the number
222 of transmissions between hosts (asymmetric) and between farms (symmetric) were inferred
223 using discrete traits models on the time resolved trees (Figure 3, Figure S1 and S2). To avoid
224 sample size effect on the results, sequences were further subsampled to reduce over-
225 representative sequences from the same farm. For transmissions identified by Markov jumps,

226 we also used BSSVS to identify only statistically significant pairs (with Bayes Factor >3, the
227 higher the value, the stronger the support). We summarised and compared the network among
228 three clusters A, C and D.

229

230 Overall, at least 43 zoonotic transmissions (with 95% HPD 34 to 50) from minks to humans
231 likely occurred in multiple farms (Table S2). Specific, an average of 27 transmissions of viruses
232 belonging to Cluster A occurred within 13 farms (NB1, NB3, NB8, NB13, NB21, NB52, NB55,
233 NB56, NB57, NB58, NB59, NB63, NB68); 10 transmissions of virus belonging to Cluster C
234 occurred within 7 farms (NB7, NB9, NB14, NB17, NB26, NB29, NB32) and 6 jumps of
235 viruses belonging to Cluster D occurred within 3 farms (NB15, NB18 and NB19). However,
236 some human infections may also be due to human-to-human infections, between mink farm
237 employees or farm owner family members, which is not included in the model. Therefore, the
238 true number of mink-to-human jumps may be lower.

239

240 There are also a few jumps between humans and minks from different farms. For example,
241 within Cluster A, a sequence from humans linked to NB49 are likely transmitted from minks
242 on NB47, although the low number of sequences (there is only one mink sequence obtained in
243 NB49) precludes robust conclusions. We found that viruses may jump back and forth between
244 humans and minks. The sequences sampled from humans in NB8 are likely transmitted to
245 minks in NB12, as shown in the phylogeny of Cluster A (Figure 3). Epidemiology data indeed
246 shows that the two farms have personnel links, which could be the explanation of this
247 observation (supporting file 1).

248

249 We also identified different potential transmission patterns networks between farms in Cluster
250 A, C and D (Figure 6 and Table S3). For Cluster A, NB47 seems to be the most important

251 donor, with transmission to 7 farms (Figure 6a). In comparison, fewer significant between farm
252 transmissions are identified in Cluster C and D (Figure 6b and c). Transmissions were also
253 drawn as links between locations of mink farms on the map (Figure 7). Interestingly, we found
254 transmissions with high BF supports (darker red edges in Figure 7a) that are not necessarily
255 between adjacent farms, and sequences from adjacent farms with personnel links (e.g., NB58
256 and NB59). In addition, sequences from different barns on the same farms do not necessarily
257 group together. For example, within Cluster C, sequences isolated from NB6 at the same date
258 fell into two separate sub-clades.

259

260 Assuming the presence of farm specific signatures allowed linking cases to farms, the two
261 unrelated human sequences are most closely related to sequences from farms NB17 and
262 NB58, respectively; and the sequence from an escape mink is likely to have a relation with
263 farm NB65 (Figure 6). However, the patients infected with mink strains did not report any
264 direct or indirect contact with mink or mink farm employees.

265

266 **Inferred predictors of transmissions between farms**

267 During our study, a detailed inventory of possible common characteristics, including farm
268 owner, shared personnel, feed supplier and veterinary service provider was made.
269 Epidemiological investigation indicated that many farms shared the same feed supplier or
270 veterinarian, but no unambiguous service company contacts were found between farms within
271 the different virus clusters which could explain the farm-to-farm spread. For 55% of the SARS-
272 CoV-2 positive farms, owners, family members or personnel, including people with limited
273 contact with minks, were shared between farms (supporting file 1).

274

275 Using a generalized linear model (GLM), implemented in BEAST, we tested the contribution
276 of a range of predictor variables to the spread of viruses between farms which was estimated
277 in the discrete trait phylogeographic model (Figure 6). Correlations between the predictor data
278 collected from mink farms were tested and highly correlated predictors were omitted (Figure S4).
279 The predictors being tested are 1) distance between farms; 2) personnel links between farms 3)
280 feed supplier; 4) veterinary service provider; 5) mink population per farm; 6) number of
281 sequences per farm included in the phylogenetic analysis; 7) human population density in
282 municipality where farm was located; 8) days between sampling and culling per farm
283 (supporting file 1).

284 For Cluster A, the distance between farms had a negative impact on the transmission between
285 farms (Table 1), which indicated that farms that are further apart have generally lower rate of
286 transmission between them; while farms with personnel links have a positive impact on the
287 transmission between farms, which could be an explanation of the strong supported long-
288 distance diffusion observed in Figure 7. For Cluster C and D, none of the predictors have
289 significant impact on the overall transmission between farms (Table S4).

290

291 **Discussion**

292 In this study, we explored the transmission dynamics of SARS-CoV-2, between mink farms,
293 and between minks and humans, by combining SARS-CoV-2 monitoring in humans and
294 animals, associated epidemiological information and the phylodynamic and transmission
295 patterns of different SARS-CoV-2 sequence clusters in minks and in humans.

296

297 SARS-CoV-2 has infected 100 million people worldwide. Over 1,500,000 genomes have been
298 generated and more than 800 lineages contributed to the active spread globally by 1st April
299 2021 (when the analysis was performed)⁵. Within the Netherlands, at least 140 lineages have
300 been circulating in humans. We found five distinct clusters (A-E) derived from 4 different
301 lineages (B.1.8, B.11, B.1.22, B.1.5) which had been dominantly circulating in the general
302 human population in the Netherlands until 1st April 2021. The most recent common ancestors
303 of the five different mink clusters appeared in the Netherlands between mid-March to late-
304 April 2020, which is in line with the timing of initial human detections in the country⁸. The
305 timing of introductions and expansions into mink populations are commensurate with
306 exponential growth of SARS-CoV-2 in the human population in the Netherlands and with the
307 mating season of the farmed minks, which is associated with an increase in use of external
308 labour with more chances to have contact with humans³. The last infected farm was detected
309 in November 2020, after which no new infections were detected, probably due to lack of
310 remaining farms with minks in the affected area and the start of the pelting season during which
311 all minks, including the adults, were pelleted due to the ban on mink farming from January 2021
312 onwards.

313

314

315 In comparison, the Cluster V variant, found in farmed minks in Denmark, is derived from a
316 Danish specific lineage B.1.1.298 (https://cov-lineages.org/pango_lineages.html). This variant
317 had 4 specific Spike mutations (69del, Y453F, I692V, M1229I), where Y453F was thought to
318 be strongly associated with the mink infections and may be associated with decreased antibody
319 binding and increased ACE2 affinity ⁹⁻¹¹. Cluster V viruses were also found to infect humans
320 and were associated with community transmission after mink-to-human transmission ¹².
321 Currently, viruses with the Y453F mutation have been identified in ~1500 SARS-CoV-2
322 genomes and in 24 different lineages from Europe, Africa and the USA. Other potentially
323 important mutations found in minks in Denmark in the spike protein (I692F, M1229I) can also
324 be found in humans globally. Here we highlighted Y453F together with other 3 mutations
325 F486L, 452M and N501T, which were first identified in multiple mink clusters that infected
326 both farmed minks and related humans in the Netherlands. Their exact implications for viral
327 fitness, transmissibility, and antigenicity need further investigation.

328
329 SARS-CoV-2 infections of minks are concerning as evolution of the virus in an animal
330 reservoir could lead to establishment of additional zoonotic reservoirs with the potential for
331 recurrent spill-over events of novel SARS-CoV-2 variants from minks to humans and other
332 mammals ¹³. The spread of SARS-CoV-2 among farms was examined using phylodynamic
333 methods. After the sudden increase in incidence of SARS-CoV-2 (mainly Cluster A) positive
334 mink farms in August 2020 we observed that the virus had acquired several mutations
335 compared to the virus last detected at the end of June, including the F486L mutation in spike
336 protein. It is plausible that the increased phylodynamic growth rate (Re) after summer 2020 is
337 associated with increased transmissibility in minks due to the emergence of clades with specific
338 mutations in the spike protein ¹⁴. Interestingly, mutations at positions 452 and 501 have also
339 been found emerging in some variants of interest ^{10,11,15}. However, there is currently no

340 evidence that these mutations are equivalent to the vital changes now seen in VOCs (Variants
341 of Concern) in humans and cause a substantial shift in virus properties that enabling much
342 better transmission in humans.

343
344 Our findings suggested that a personnel link is one key driver to explain the subsequent
345 transmission among minks and transmission between different mink farms. Other factors than
346 transmissions via humans are less likely to contribute in the cases where long distance
347 transmissions occurred. Nevertheless, there was generally a positive association with farms in
348 closer proximity, which is consistent with studies on SARS-CoV-2 infections in minks in other
349 countries ¹⁶ and on other pathogens ¹⁷⁻¹⁹. There are also other potential drivers of between-farm
350 transmissions of SARS-CoV-2 ^{20,21}. For example, SARS-CoV-2 has been detected in feral
351 cats and dogs around Dutch mink farms, showing evidence of mink-to-cat transmission of
352 SARS-CoV-2 ^{22,23}. In addition, free ranging mustelids have tested positive in other countries
353 as well as two escaped mink in our study ²¹. Although for some other pathogens, farm-to-farm
354 transmission via air has been proposed, SARS-CoV-2 RNA in ambient air outside of infected
355 mink farms was not detected ²⁴. The number of humans with mink strains around mink farms
356 was nearly absent, making this scenario less likely as well.

357
358 We observed varied phylodynamic and transmission patterns among different mink clusters:
359 the largest Cluster A emerged earlier and has comparably higher evolutionary rate and faster
360 and wider spatial spread over a longer period of time than other clusters. However, for clusters
361 for which we have fewer samples available, we observed higher uncertainty of the estimated
362 phylodynamic parameters (e.g., N_e and R_e with wide HPD intervals). In addition, the
363 possibilities of missing samples in clusters would also lead to a putative bias in the trait
364 analyses and GLM on identifying the significant transmission network and associated

365 predictors and therefore we need to be cautious not to overinterpret the results. For example,
366 the impact of humans on transmission between farms may still be underestimated as it is
367 difficult to identify, locate and sample unregistered or moving workers in mink farms.
368 Moreover, of 102 known human infections on mink farms, only 57 were successfully
369 sequenced.

370

371 Finally, we identified multiple events of mink clusters jumping back and forth between human
372 and minks within several mink farms. These infections were limited to people related to the
373 farms with limited spread observed in the general population. However, the mink farming
374 system and associated biosecurity policies may be different in other countries, possibly
375 increasing risk of mink infections for humans. Moreover, with increasing human vaccination
376 rate, as well as potentially animal vaccination, the relative importance and contribution to
377 SARS-CoV-2 evolution of potential animal reservoirs may become more important. Although,
378 the Cluster V variant was found in a substantial part of the population in Northern Jutland
379 region of Denmark, the variant has not been detected anymore after November 2020,
380 potentially due to culling of infected mink farms^{12,25}. This was also the case in the Netherlands
381 all infected mink farms have been culled. The high number of infections in Dutch mink farms
382 and associated human owners and workers, combined with the specific mutations found in the
383 spike region and other regions of the SARS-CoV-2, shows that continuous surveillance and
384 preventive measures in the fur farming industry¹⁶, as well as other susceptible animal
385 populations are advisable. Moreover, the emergence of novel variants may also have an effect
386 on the virus' host range, as has already been shown for the ability to infect mice of the Beta
387 and Gamma variant, as opposed to the wildtype virus and the Alpha variant²⁶. Therefore, it is
388 essential to keep monitoring the behaviour of the virus in combination with genetic information
389 in both human and animals, especially animal species that have close contact with humans.

390 **Methods**

391 **Samples and metadata**

392

393 *Mink*

394 Mink farms suspected of SARS-CoV-2 infections were visited for sampling and
395 epidemiological investigation by the competent authority (Netherlands Food and Consumer
396 Product Safety Authority, NVWA). Farms were visited based on reporting of increased
397 mortality or respiratory signs by owners or when tested positive during surveillance systems
398 (Figure 1a). These included an Early Warning system (EWS) of weekly testing of carcasses of
399 recently dead minks by RT-PCR on throat samples and mandatory serological screening by
400 GD Animal Health (GD, Deventer, the Netherlands)¹⁶.

401

402 Official sampling included non-random sampling of 20 minks, by means of throat and rectal
403 swabs, targeting minks with clinical signs. Throat swabs of two minks, caught at the end of
404 September / beginning of October 8 and 9 days after culling of two farms (NB58 and NB59)
405 at 450 and 650 m distance respectively, which most likely escaped during culling, were also
406 submitted for testing. Associated metadata was derived from the database developed by a
407 consortium of One Health outbreak experts. Data collected for each farm included farm
408 location, number of animals, ownership, shared personnel and other contacts (anonymised),
409 data of confirmed SARS-CoV-2 detection and time interval between sampling and culling. The
410 epidemiology data are in supporting file 1.

411

412

413

414 *Human cases related to mink farms*

415 On the first SARS-CoV-2 infected mink farms, NB1-NB16 (NB is the Dutch abbreviation for
416 mink farm, which were numbered consecutively based on diagnosis) active case finding as well
417 as serum collection of people with possible exposure to infected minks was performed, as
418 described previously ⁴. On farms NB17-NB68, all owners and employees of infected mink
419 farms were requested to visit a regional SARS-CoV-2 testing facility in case of any symptoms
420 indicative of COVID-19, in line with the national SARS-CoV-2 testing and surveillance policy.
421 There were no serum samples taken for antibody detection.

422

423 *Medical ethical permission*

424 Outbreak investigations of notifiable diseases such as COVID-19 are the legal tasks of the
425 Public Health Service as described under the Public Health Act, and do not require separate
426 medical ethical clearance.

427

428 *4-digit post code screening*

429 Two screenings of SARS-CoV-2 positive humans living in the same region as the infected
430 mink farms took place from 3rd April 2020 to 16th November 2020. The first screening included
431 a set of sequences obtained from anonymized samples from patients that had been diagnosed
432 with COVID-19 in the area of the same four-digit postal codes as farms NB1-NB4 in March
433 and April 2020, as described previously ⁴. For the second screening, municipal health centres
434 selected anonymised laboratory IDs for 10 SARS-CoV-2 positive humans in the period 15th
435 October 2020 to 16th November 2020 from the same postal code regions of the 68 SARS-CoV-
436 2 positive mink farms from their notification system. Based on the laboratory ID, stored
437 samples were retrieved from the diagnostic centres for sequencing. In some regions the number
438 of samples was lower than 10, due to low numbers of positives in the selected period or because

439 not all samples had been retained by the laboratories. Samples from the selected postal codes
440 that were collected in the period 27th November 2020 to 4th January 2021 were also included
441 in the analysis.

442

443 *SARS-CoV-2 diagnostics and sequencing*

444 Human and animal cases were diagnosed by SARS-CoV-2 RT-PCR testing of oropharyngeal
445 and rectal swabs (minks) or upper respiratory tract samples (humans) in one of the laboratories
446 participating in the national COVID-19 response ²⁷. RT-PCR positive samples were processed
447 for whole genome sequencing as described previously ⁴. For each mink farm, a maximum of
448 five of the RT-PCR positive samples with Ct<32 were selected, based on lowest Ct-values.

449

450 For the mandatory serological screening in mink, blood on filter paper was eluted and
451 approximately 2 µL of serum was tested for SARS-CoV-2 antibodies using an in-house indirect
452 ELISA based on the RBD antigen. The same ELISA using the S1 antigen was used for
453 confirmation (unpublished).

454

455 The first and last 30 nucleotides were trimmed, and subsequently mapped against the
456 NC_045512.2 SARS-CoV-2 reference genome using minimap2 ²⁸. After mapping the
457 alignment files were used to generate a consensus sequence using pysam module ²⁹ in a custom
458 python script. Homopolymeric regions were manually checked and resolved by consulting
459 reference genomes and positions with less than 30x coverage were replaced with “N” ³⁰. The
460 complete sequences information and metadata used in the phylogenetic analyses are in
461 supporting file 2.

462

463 **Phylogenetic reconstructions**

464 Complete SARS-CoV-2 genomes with >95% coverage isolated from minks and related
465 humans were included in the phylogenetic reconstructions. We also included human
466 sequences from across the Netherlands as background data. The data were obtained from
467 GISAID (<https://www.gisaid.org/>) and the collected date was up to 4th January 2021. We then
468 subsampled these background human sequences to keep at least 1 sequence per global lineage
469 as defined using the Pango-lineage classification (version 1st April 2021)⁵ per region per week.

470

471 Genomes were aligned with MAFFT³⁰ and edited by partitioning into coding regions and non-
472 coding intergenic regions with a final alignment length of 29,508 nucleotides. Phylogenetic
473 trees were first generated using IQtree³¹ employing maximum likelihood (ML) under 1000
474 bootstraps. The nucleotide substitution model used for all phylogenetic analyses was HKY with
475 a Gamma rate heterogeneity among sites with four rate categories. To determine if our
476 sequence data exhibited temporal qualities, we used TempEst v1.5³² to measure the root-to-
477 tip divergence for ML trees.

478

479 Phylogenetic analyses of SARS-CoV-2 in mink farms in Netherlands were conducted using
480 time-scaled Bayesian phylogenetic methods in BEAST version 1.10.4³³. The best fit models
481 were HKY+G+4 for the site substitution model and skygrid³⁴ for the tree model, determined
482 by using stepping-stone sampling³⁵. We first generated phylogeny using all full-length
483 genomes of SARS-CoV-2 from mink farms with background human samples using an
484 uncorrelated relaxed molecular clock model which assumes each branch has its own
485 independent substitution rate³⁶. We then generated independent phylogenies of Cluster A, C
486 and D using a strict molecular clock model with prior specified (a mean of 1x10⁻³ with 95%
487 HPD between 6x10⁻⁴ and 2x10⁻³). To analyse fluctuations in SARS-CoV-2 epidemic spread

488 in mink farms in the Netherlands per individual cluster, we estimated the changes of viral
489 effective population size (N_e) over time using the skygrid model ³⁴ in BEAST version 1.10.4,
490 and the effective reproductive number (R_e) during the course of the outbreak in mink farms,
491 using the Birth-death skyline (BDSKY) model ³⁷ in BEAST2 version 2.6.3 ³⁸. The effective
492 reproductive number (R_e) is estimated from the time-scaled phylogeny as a version of the
493 phylodynamic lineage growth rate, and is representative of a between farm R_e . We also used
494 the multitype-tree birth-death model (BDMM) to explore whether the appearances of certain
495 mutations in the spike protein have impact on the R_e variations ³⁹. We specified the following
496 priors according to the knowledge of SARS-CoV-2 infections in humans and our epidemiology
497 surveillance data on mink farm infections: 1) R_e : a mean of R_0 2.5 with 95% HPD (0.6, 6) ^{20,40},
498 and were estimated over 5 equidistant time intervals depending on the size of the overall tree;
499 2) the “becomeUninfectiousRate”, which refers to the number of days from infection to culling
500 for a mink/farm: a mean of 26 (equivalent to 14 days) with 95% HPD between 5 to 20 days; 3)
501 the sampling portion, which refers to the number of sequences per farm divided by the total
502 infected mink population of a farm: a mean of 2×10^{-4} with 95% HPD (1×10^{-5} , 1×10^{-3}) and 4)
503 the origin time of the epidemic: the estimated time to the most recent common ancestors
504 (TMRCA) of the three mink clusters under strict clock model with priors described above. In
505 addition, we compared the spatial diffusion rates (geography.clock.rate) among the 3 clusters
506 using the coordinates of each infected mink farm via a continuous model in BEAST2 version
507 2.6.3. For each analysis the MCMC algorithm was run for 10^8 steps and sampled every
508 10^4 steps.

509
510 We further estimated the transmissions between farms and between minks and humans using
511 the phylogenies of Cluster A, C and D separately. We used an asymmetric model and
512 incorporated BSSVS to identify a sparse set of transmission rates that identify the statistically

513 supported connectivity ⁴¹. We also estimated the expected number of transmissions (jumps)
514 between farms and hosts using Markov rewards ⁴². Finally, we inferred the possible predictors
515 that may drive to the spread of virus between farms (estimated between-farm transmission rates)
516 using a generalized linear model (GLM), an extension of the discrete diffusion model ⁴³.

517

518 **Medical Ethical Clearance**

519 Outbreak investigations of notifiable diseases such as COVID-19 are the legal tasks of the
520 Public Health Service as described under the Public Health Act, and do not require separate
521 medical ethical clearance.

522 **Data availability**

523 The sequence data and epidemiology data used in these analyses are available in
524 supplementary file 1 and 2.

References

- 1 El Masry, I., von Dobschuetz, S., Plee, L., Larfaoui, F., Yang, Z., Song, J., Pfeiffer, D., Calvin, S., Roberts, H., Lorusso, A., Barton-Behravesh, C., Zheng, Z., Kalpravidh, W. and Sumption, K. The likelihood of exposure of humans or animals to SARS-CoV-2 in COVID-19. #82 p. (2020).
- 2 Giner, J. *et al.* SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (*Mustela putorius furo*). *Animals (Basel)* **11**, doi:10.3390/ani11030667 (2021).
- 3 Oreshkova, N. *et al.* SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. *Euro Surveill* **25**, doi:10.2807/1560-7917.ES.2020.25.23.2001005 (2020).
- 4 Oude Munnink, B. B. *et al.* Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. *Science* **371**, 172-177, doi:10.1126/science.abe5901 (2021).
- 5 Rambaut, A. *et al.* A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol* **5**, 1403-1407, doi:10.1038/s41564-020-0770-5 (2020).
- 6 Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature* **581**, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
- 7 Tchesnokova, V. *et al.* Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants. *bioRxiv*, doi:10.1101/2021.02.22.432189 (2021).
- 8 Oude Munnink, B. B. *et al.* Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. *Nat Med* **26**, 1405-1410, doi:10.1038/s41591-020-0997-y (2020).
- 9 Bayarri-Olmos, R. *et al.* The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization. *J Biol Chem*, 100536, doi:10.1016/j.jbc.2021.100536 (2021).
- 10 Tchesnokova, V. *et al.* Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants. *bioRxiv*, doi:10.1101/2021.02.22.432189 (2021).
- 11 Motozono, C. *et al.* An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity. *bioRxiv*, 2021.2004.2002.438288, doi:10.1101/2021.04.02.438288 (2021).
- 12 Hammer, A. S. *et al.* SARS-CoV-2 Transmission between Mink (*Neovison vison*) and Humans, Denmark. *Emerg Infect Dis* **27**, 547-551, doi:10.3201/eid2702.203794 (2021).
- 13 Koopmans, M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. *Lancet Infect Dis* **21**, 18-19, doi:10.1016/S1473-3099(20)30912-9 (2021).
- 14 Davies, N. G. *et al.* Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. *Science* **372**, doi:10.1126/science.abg3055 (2021).

15 Liu, Z. *et al.* Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. *bioRxiv*, doi:10.1101/2020.11.06.372037 (2020).

16 European Food Safety, A. *et al.* Monitoring of SARS-CoV-2 infection in mustelids. *EFSA J* **19**, e06459, doi:10.2903/j.efsa.2021.6459 (2021).

17 Boender, G. J., van Roermund, H. J., de Jong, M. C. & Hagenaars, T. J. Transmission risks and control of foot-and-mouth disease in The Netherlands: spatial patterns. *Epidemics* **2**, 36-47, doi:10.1016/j.epidem.2010.03.001 (2010).

18 Boender, G. J., Nodelijk, G., Hagenaars, T. J., Elbers, A. R. W. & de Jong, M. C. M. Local spread of classical swine fever upon virus introduction into The Netherlands: Mapping of areas at high risk. *BMC Veterinary Research* **4**, 9, doi:10.1186/1746-6148-4-9 (2008).

19 Boender, G. J. *et al.* Risk maps for the spread of highly pathogenic avian influenza in poultry. *PLoS Comput Biol* **3**, e71, doi:10.1371/journal.pcbi.0030071 (2007).

20 Boklund, A. *et al.* SARS-CoV-2 in Danish Mink Farms: Course of the Epidemic and a Descriptive Analysis of the Outbreaks in 2020. *Animals (Basel)* **11**, doi:10.3390/ani11010164 (2021).

21 Shriner, S. A. *et al.* SARS-CoV-2 Exposure in Escaped Mink, Utah, USA. *Emerg Infect Dis* **27**, 988-990, doi:10.3201/eid2703.204444 (2021).

22 Aguiló-Gisbert, J. *et al.* First Description of SARS-CoV-2 Infection in Two Feral American Mink (*Neovison vison*) Caught in the Wild. *Animals (Basel)* **11**, doi:10.3390/ani11051422 (2021).

23 van Aart, A. E. *et al.* SARS-CoV-2 infection in cats and dogs in infected mink farms. *Transbound Emerg Dis*, doi:10.1111/tbed.14173 (2021).

24 de Rooij, M. M. T. *et al.* Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. *medRxiv*, 2021.2001.2006.20248760, doi:10.1101/2021.01.06.20248760 (2021).

25 Larsen, H. D. *et al.* Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. *Euro Surveill* **26**, doi:10.2807/1560-7917.ES.2021.26.5.210009 (2021).

26 Montagutelli, X. *et al.* The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice. *bioRxiv*, 2021.2003.2018.436013, doi:10.1101/2021.03.18.436013 (2021).

27 Corman, V. M. *et al.* Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Euro Surveill* **25**, doi:10.2807/1560-7917.ES.2020.25.3.2000045 (2020).

28 Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094-3100, doi:10.1093/bioinformatics/bty191 (2018).

29 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

30 Katoh, K. & Standley, D. M. MAFFT: iterative refinement and additional methods. *Methods Mol Biol* **1079**, 131-146, doi:10.1007/978-1-62703-646-7_8 (2014).

31 Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol Biol Evol* **37**, 1530-1534, doi:10.1093/molbev/msaa015 (2020).

32 Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* **2**, doi:10.1093/ve/vew007 (2016).

33 Suchard, M. A. *et al.* Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evol* **4**, doi:10.1093/ve/vey016 (2018).

34 Hill, V. & Baele, G. Bayesian estimation of past population dynamics in BEAST 1.10 using the Skygrid coalescent model. *Mol Biol Evol*, doi:10.1093/molbev/msz172 (2019).

35 Baele, G. *et al.* Improving the Accuracy of Demographic and Molecular Clock Model Comparison While Accommodating Phylogenetic Uncertainty. *Mol Biol Evol* **29**, 2157-2167, doi:10.1093/molbev/mss084 (2012).

36 Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. *PLoS Biol* **4**, e88, doi:10.1371/journal.pbio.0040088 (2006).

37 Stadler, T., Kuhnert, D., Bonhoeffer, S. & Drummond, A. J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). *Proc Natl Acad Sci U S A* **110**, 228-233, doi:10.1073/pnas.1207965110 (2013).

38 Bouckaert, R. *et al.* BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS Comput Biol* **15**, e1006650, doi:10.1371/journal.pcbi.1006650 (2019).

39 Kuhnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data. *Mol Biol Evol* **33**, 2102-2116, doi:10.1093/molbev/msw064 (2016).

40 Petersen, E. *et al.* Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. *Lancet Infect Dis* **20**, e238-e244, doi:10.1016/S1473-3099(20)30484-9 (2020).

41 Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. *PLoS Comput Biol* **5**, e1000520, doi:10.1371/journal.pcbi.1000520 (2009).

42 O'Brien, J. D., Minin, V. N. & Suchard, M. A. Learning to count: robust estimates for labeled distances between molecular sequences. *Mol Biol Evol* **26**, 801-814, doi:msp003 [pii] 10.1093/molbev/msp003 (2009).

43 Lemey, P. *et al.* Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2. *Plos Pathog* **10**, doi:ARTN e1003932 10.1371/journal.ppat.1003932 (2014).

1 Acknowledgements

2 We acknowledge the authors, originating and submitting laboratories of the sequences from
3 GISAID's EpiCov Database on which the phylogenetic analysis was based (see Supplement).
4 All submitters of data may be contacted directly via the GISAID website www.gisaid.org.

5

6 This work is supported by European Union's Horizon 2020 research and innovation
7 programme under Grant No. 874735 (VEO). The mink farm outbreak investigation was funded
8 by the Dutch Ministries of Health, Welfare and Sport, and of Agriculture, Nature and Food
9 Quality.

10

11 We declare that we have no competing financial, professional, or personal interests that might
12 have influenced the performance or presentation of the work described in this article.

13

14

15 Author Contributions

16 LL, RSS and FCV wrote the manuscript. FCV, PAM, NBV, AR, MCAWB, WB, PT, MK,
17 LAMS, RWHH, WHMP, ANS, MAHS RJM, JR, JAS and MA set up sample and data
18 collection. BBOM, RSS, DFN generated sequence data. LL, RSS, FCV and EAJF were
19 involved in data analysis and interpretation. LL, RSS, SL, BBOM, MPGK designed the study.
20 All authors provided critical feedback and contributed to manuscript editing.

21

22 Competing Interests

23 The authors declare no competing interests

Figure legends

Figure 1. Distinct Clusters of SARS-CoV-2 circulating in mink farms in Netherlands. **a** Overview of SARS-CoV-2 outbreaks on mink farms in the Netherlands in relation to implementation of control measures and the mink farm cycle. The diagnosed farms per week are colored based on cluster. One farm in week 2020-06-01 is indicated as half A/half D as both clusters were found. The blue arrows above the graph point to the starting week of implementation of more strict hygiene protocols with regard to people working on or visiting farms. Orange arrows point to the start of other control measures including obligation for notification of clinical signs and mortality (Not.), first and second serological screening (SER1 and 2), early warning system with weekly sending in of carcasses (EW) and culling of infected farms. Below the graph important periods in the farm mink cycle are indicated. These include generally the mating season (March), whelping (April/May), vaccination (June) and weaning (June and July). Also, the start of the pelting season is shown. **b** The location of sequences isolated from each mink farm. The locations of farms on the map have been jittered for privacy reasons. **c** Time-scaled MCC tree of SARS-CoV2 sequences isolated from humans and minks in the Netherlands (n=673). Humans in red and minks in green, the subsampled human samples (n=72) isolated from the same 4-digit post code are highlighted as triangle, and 3 samples (1 escaped mink and 2 unrelated human sequences) which fell within mink clusters are highlighted as diamond and indicated by arrows. Clusters of sequences from minks and the lineages are indicated on the right. **d** The number of samples in time for each cluster. The estimated TMRCAs of each cluster are indicated via dotted line (mean) and grey shade (95% HPD intervals).

Figure 2. Time-scaled MCC tree of SARS-CoV2 sequences mapping with 4 mutations **a** L452M, **b** Y453F, **c** F486L and **d** N501T of the spike protein (n=673). Tips with mink specific mutations are enlarged. The phylogeny is the same as Figure 1a.

Figure 3. Discrete trait mapping on time-scaled phylogeny of Cluster A. Nine traits including host, farm number, province, the 4 individual mutations in the spike protein (L452M, Y453F, F486L and N501T) and the combinations of the 4 mutations are mapped on Cluster A tree using discrete trait model, with the branches and nodes are colored by inferred ancestral traits. Samples (1 escaped mink and 1 unrelated human sequences) fell within mink clusters but not isolated from farms are highlighted in diamond. The outgroup human samples in the origin are cross labelled.

Figure 4 Comparisons of TMRCA, evolution rate and spatial diffusion rate of Cluster A, C and D. **a** The mean TMRCA and 95%HPD interval for each cluster. **b** The mean clock rate and 95% HPD interval for each Cluster. **c** The mean spatial diffusion rate and 95% HPD for each cluster.

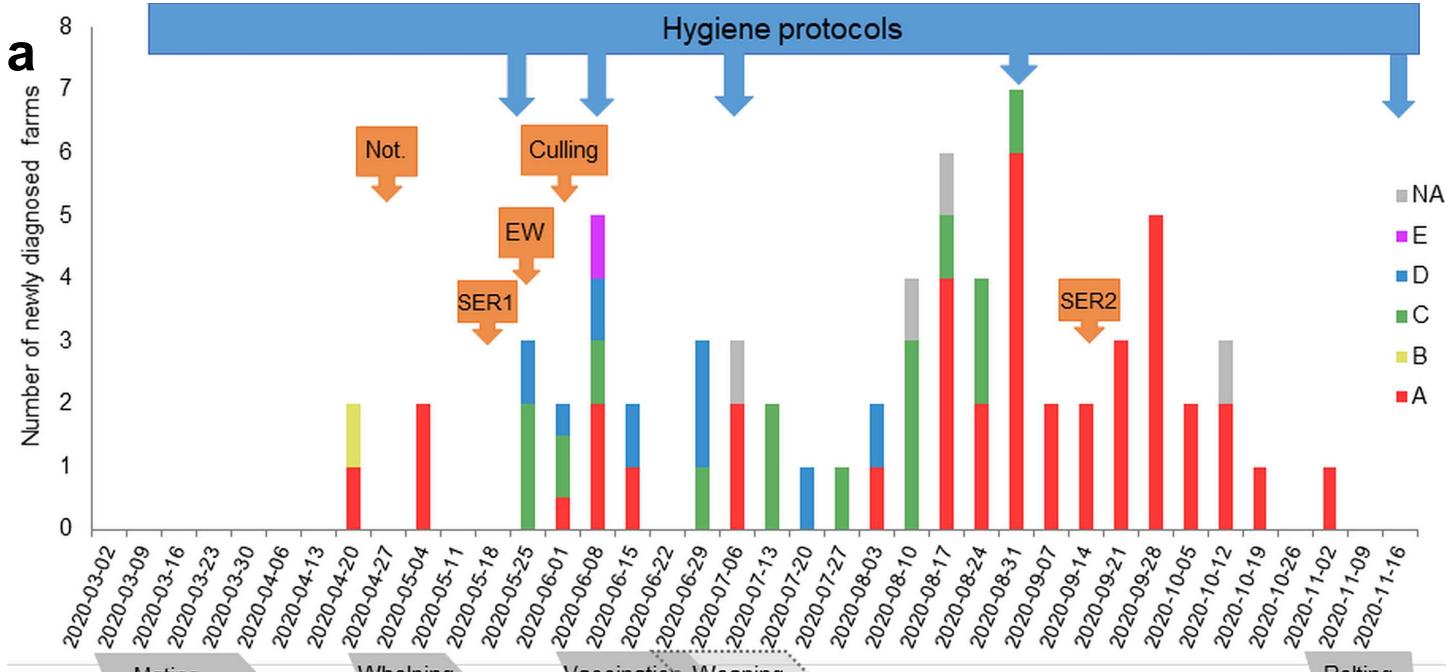
Figure 5 Bayesian skygrid and BDSKY analysis reveal spatiotemporal independent population dynamics of Cluster A, C and D. **a** Estimation of effective population size by skygrid analysis for Cluster A (red), C (green) and D (blue) sequences. The logarithmic effective number of infections (N_e) viral generation time (t) representing effective transmissions is plotted over time. 95% HPD intervals are plotted in lighter colors. Vertical dashed line is the mean TMRCA. **b** Estimation of Reproductive number R_e by BDSKY analysis of Cluster A (red), C (green) and D (blue) sequences. The shaded portion is the 95% Bayesian credibility interval, and the solid line is the posterior median. Vertical dashed line is the mean TMRCA.

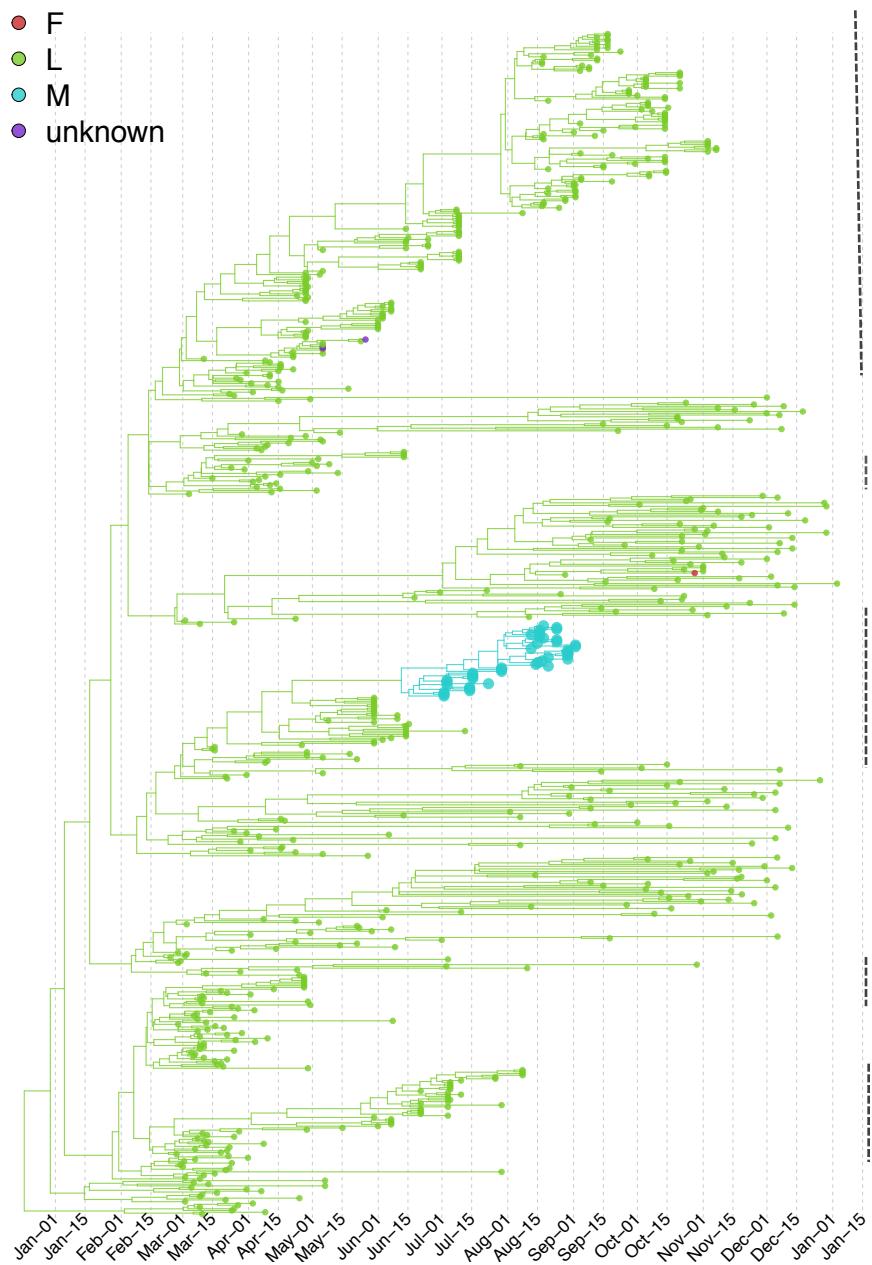
Figure 6 Transmission network between farms inferred from phylogenies of 3 mink clusters. **a** Cluster A **b** Cluster C and **c** Cluster D. Size of node indicates number of samples; edge weight indicates median number of transmissions between pairs of farms; arrow on edge indicates transmission direction; color of edge from light to dark indicates Bayes Factor (BF) support from low to high only transmissions with $BF > 3$ are shown). The correlated farms are grouped together. Nodes with no link to the others indicated no significant transmissions with other farms although sequences belong to the cluster have been sampled. The number of transmissions and the correlated BF supports are shown in Table S3.

Figure 7 Transmission network between farms on map inferred from phylogenies of 3 mink clusters. **a** Cluster A **b** Cluster C and **c** Cluster D. The locations of farms on the map have been jittered for privacy reasons. Size of nodes indicates number of samples; arrow on edge indicates transmission direction; color of edge from light to dark indicates Bayes Factor support (BF) from low to high (only transmissions with $BF > 3$ are shown), color keys are the same as Figure 6.

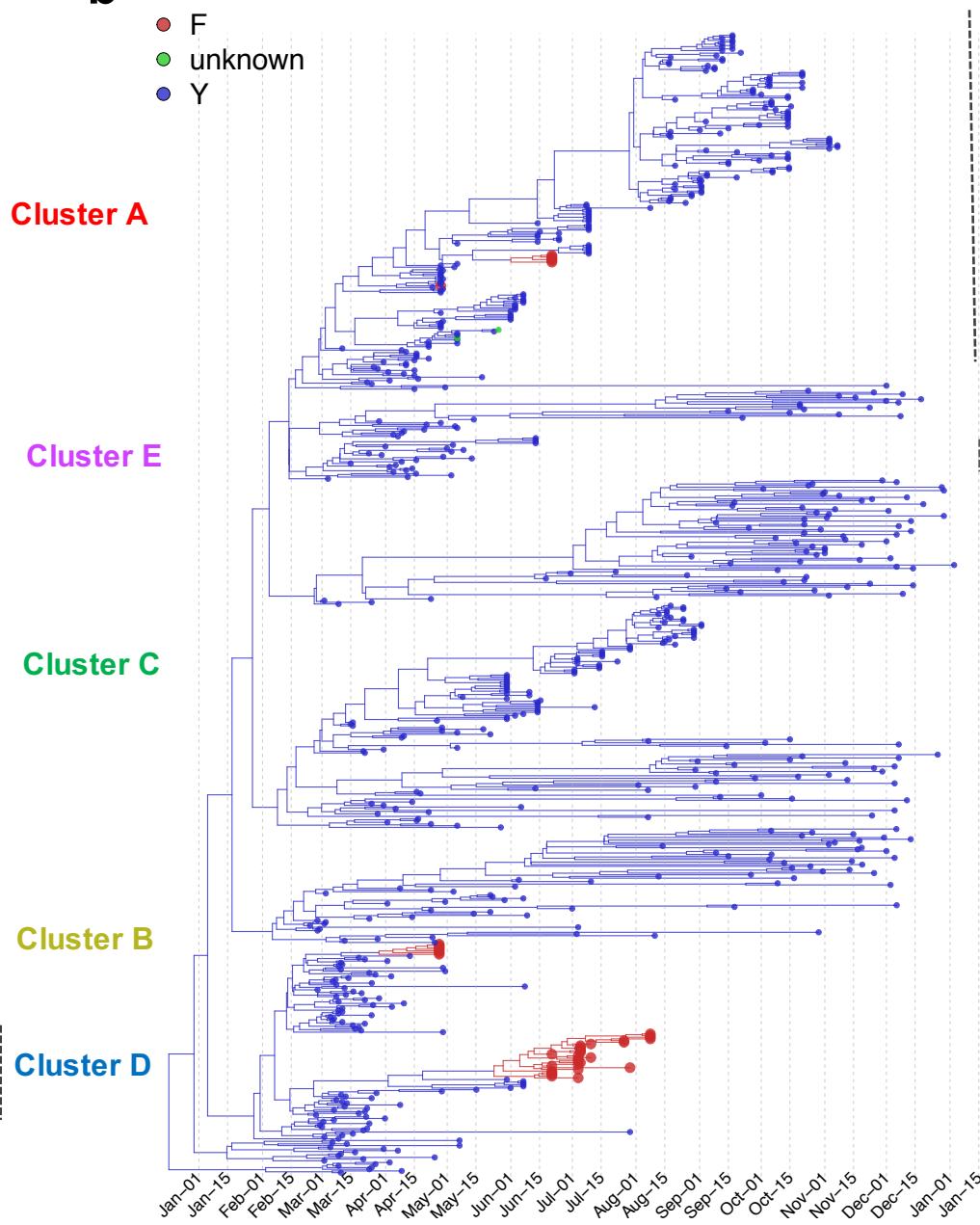
Table

Table 1 The contribution of predictors of SARS-CoV-2 (Cluster A) transmissions between mink farms


Predictor	Coefficient 95% HPD		Inclusion Prob	Coefficient*Indicat or
	t	interval		
distance between farms ^{1*}	-0.63	[-0.90, -0.41]	0.99	-0.62
personnel links ^{2*}	1.30	[0.51, 2.11]	0.97	1.26
feed supplier	0.02	[-3.78, 3.85]	0.06	0
veterinary service provider	0.04	[-3.77, 3.99]	0	0
mink population of the origin farm	0.004	[-3.95, 3.72]	0	0
mink population of the destination farm	-0.01	[-3.86, 3.85]	0	0
sample size of the origin farm	-0.03	[-4.10, 3.78]	0	0
sample size of the destination farm	0.02	[-3.96, 3.73]	0	0
human density of the origin farm	-0.11	[-3.81, 3.91]	0.07	-0.01
human density of the destination farm	0.04	[-3.94, 3.79]	0	0
days between sampling and culling of origin farm	-0.01	[-3.85, 3.86]	0	0
days between sampling and culling of destination farm	0.04	[-4.05, 3.76]	0	0

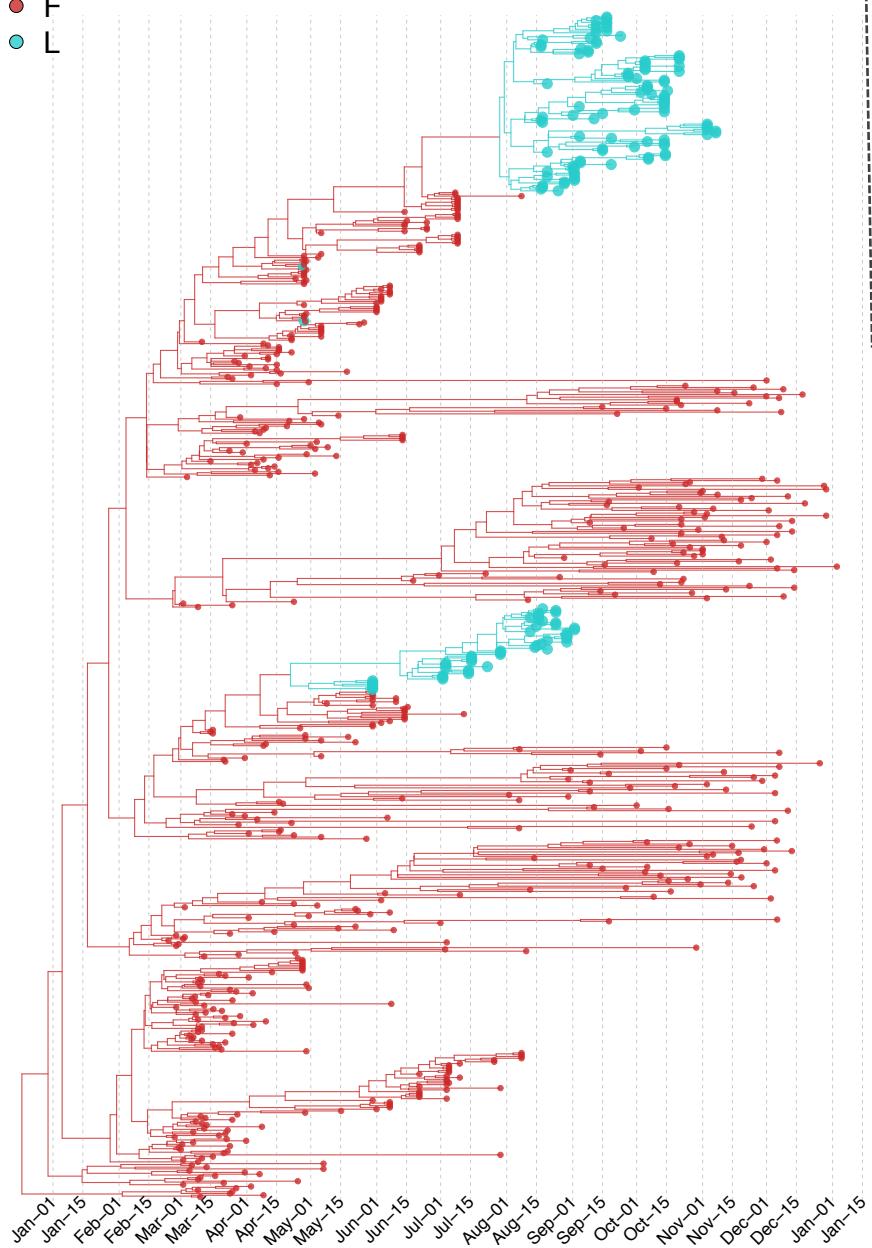
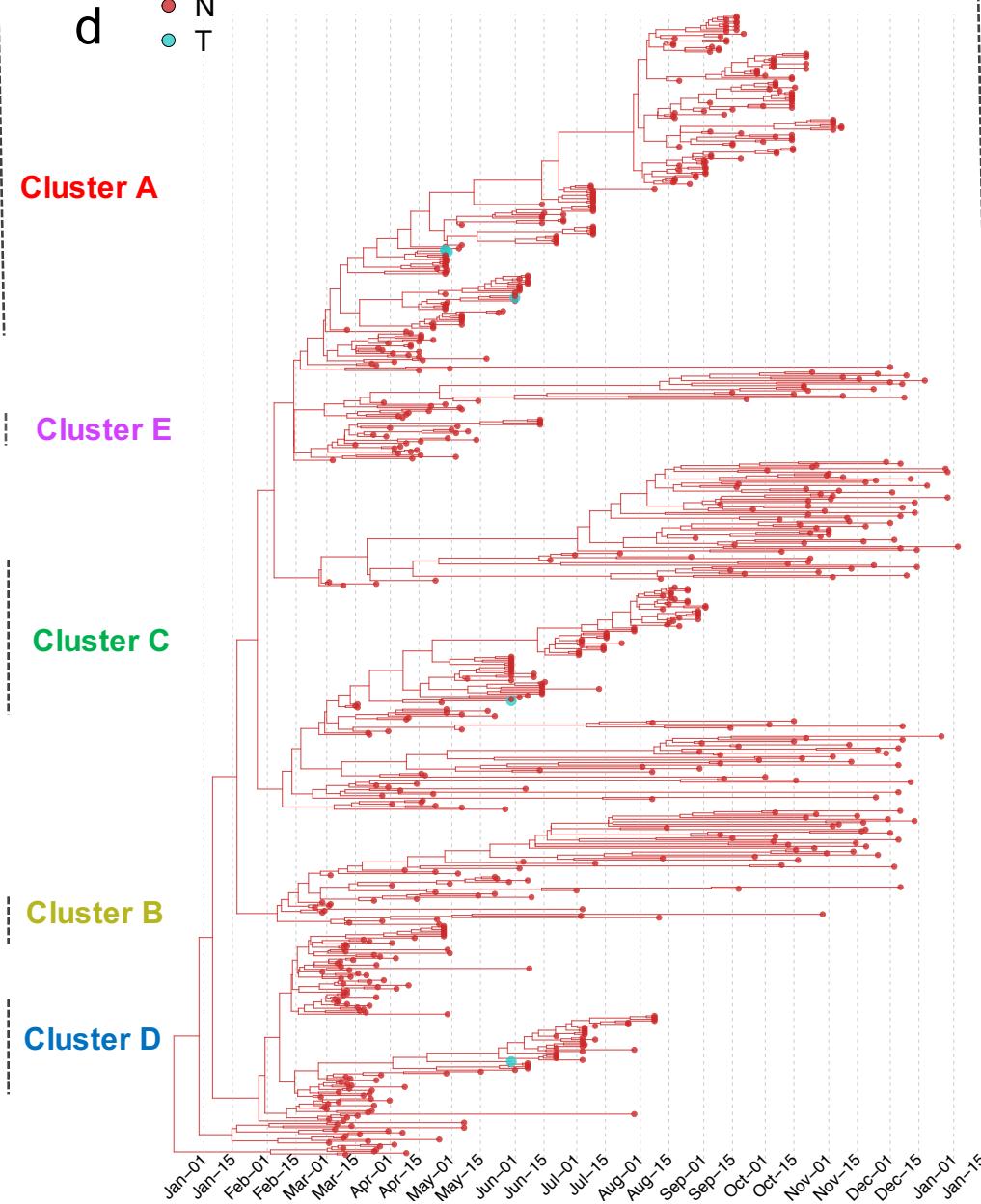

*Predictors included in the model with significant impact

¹ The shortest distance between farm coordinates estimated in R (package distHaversine)


² Links include farms with the same owners, farms sharing employees, farms owned by other members of the same family, or other links like social links and technicians visiting other farms.

a L452M**b**

Y453F



Cluster A

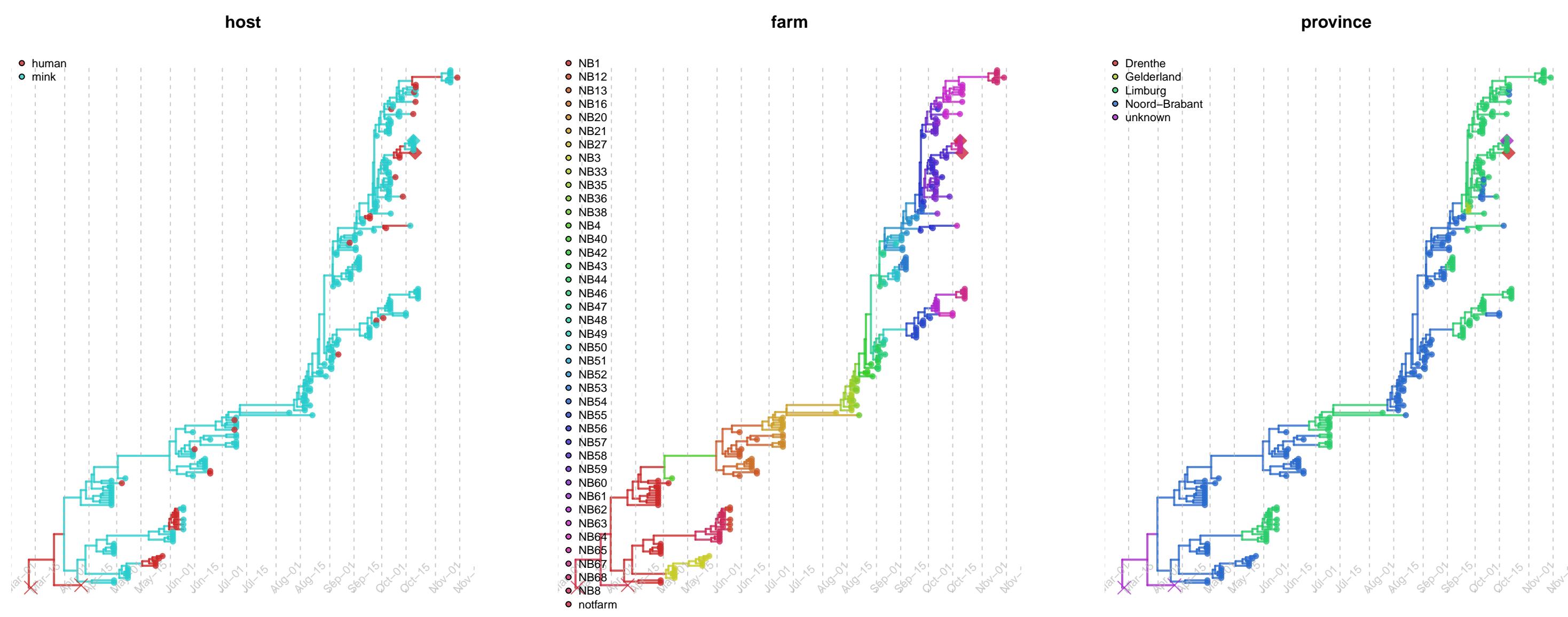
Cluster E

Cluster C

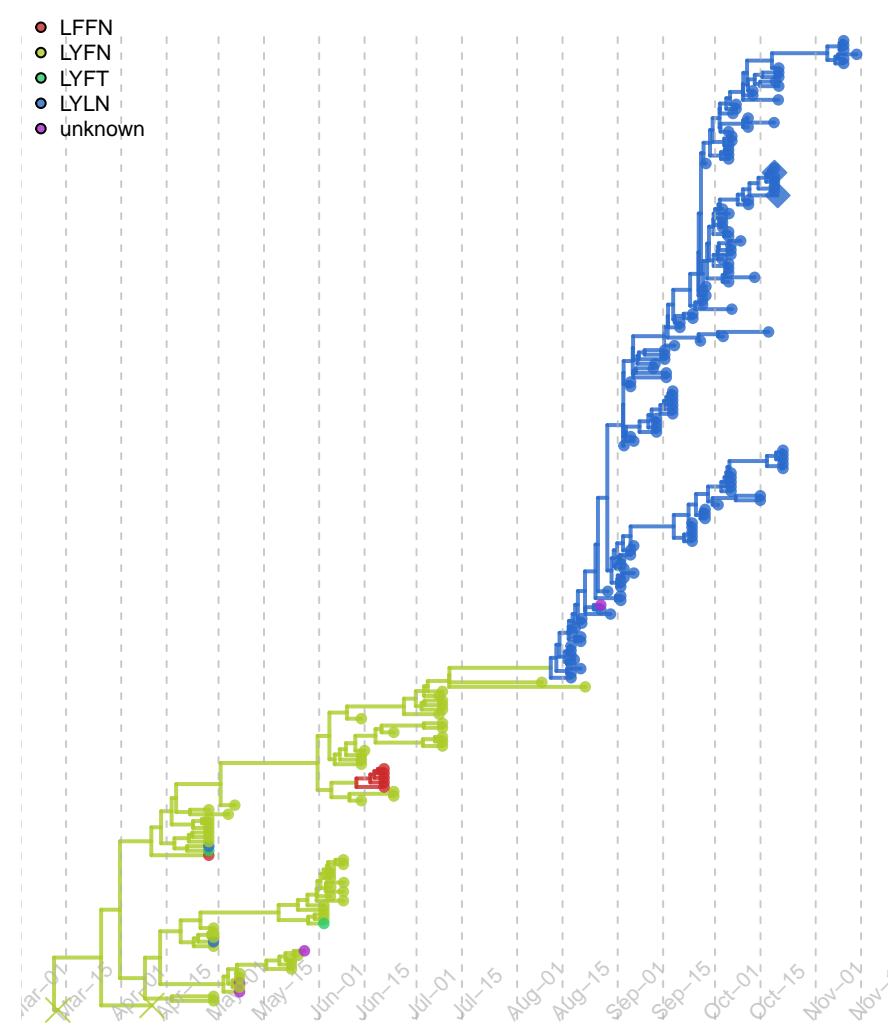
Cluster B

Cluster D

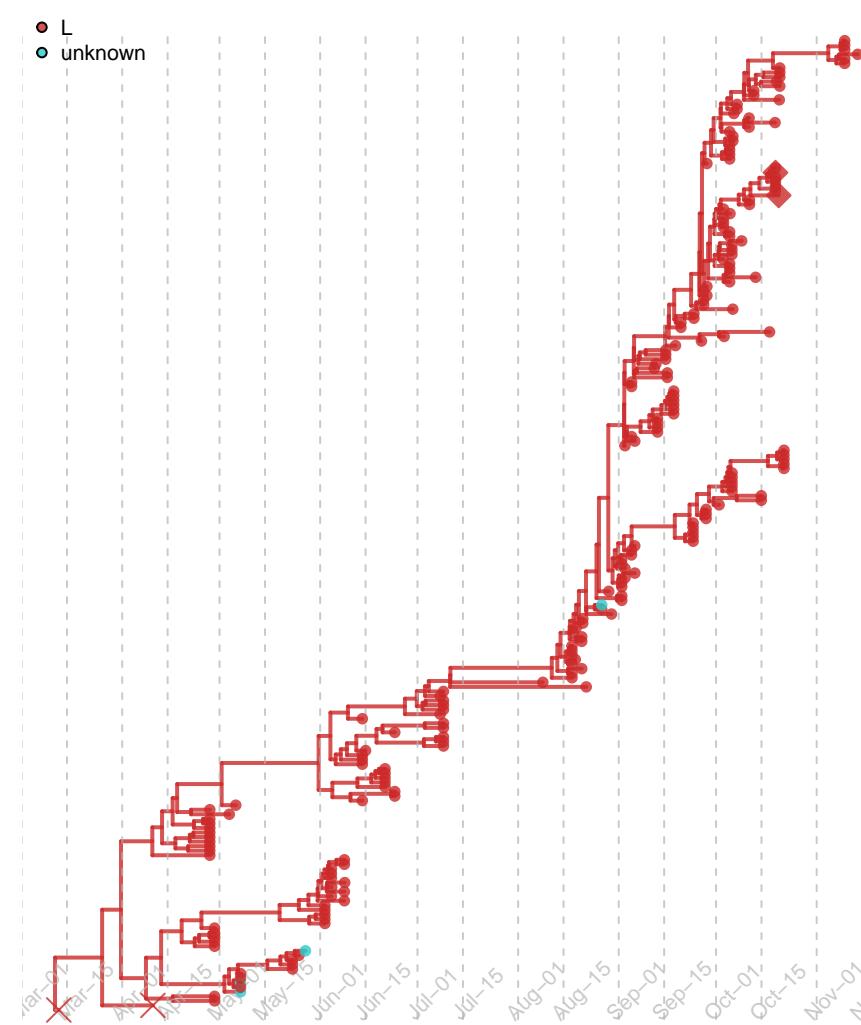
c F486L**d** N501T

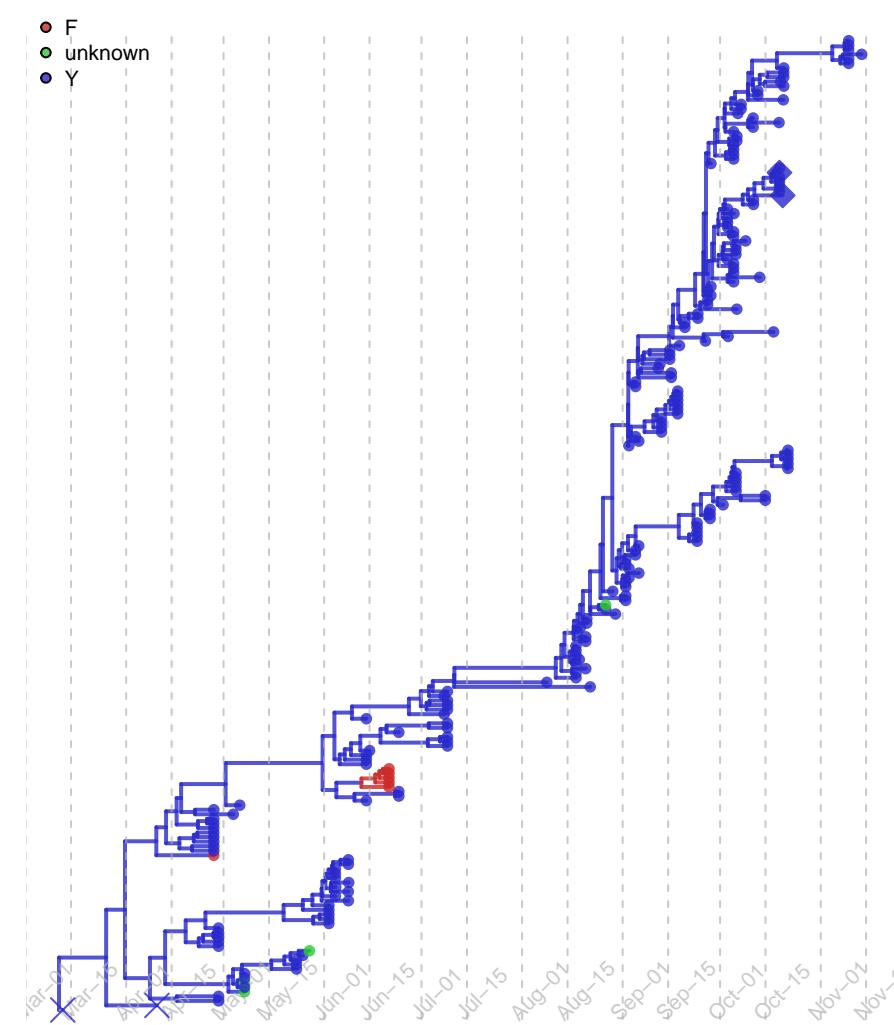

Cluster A

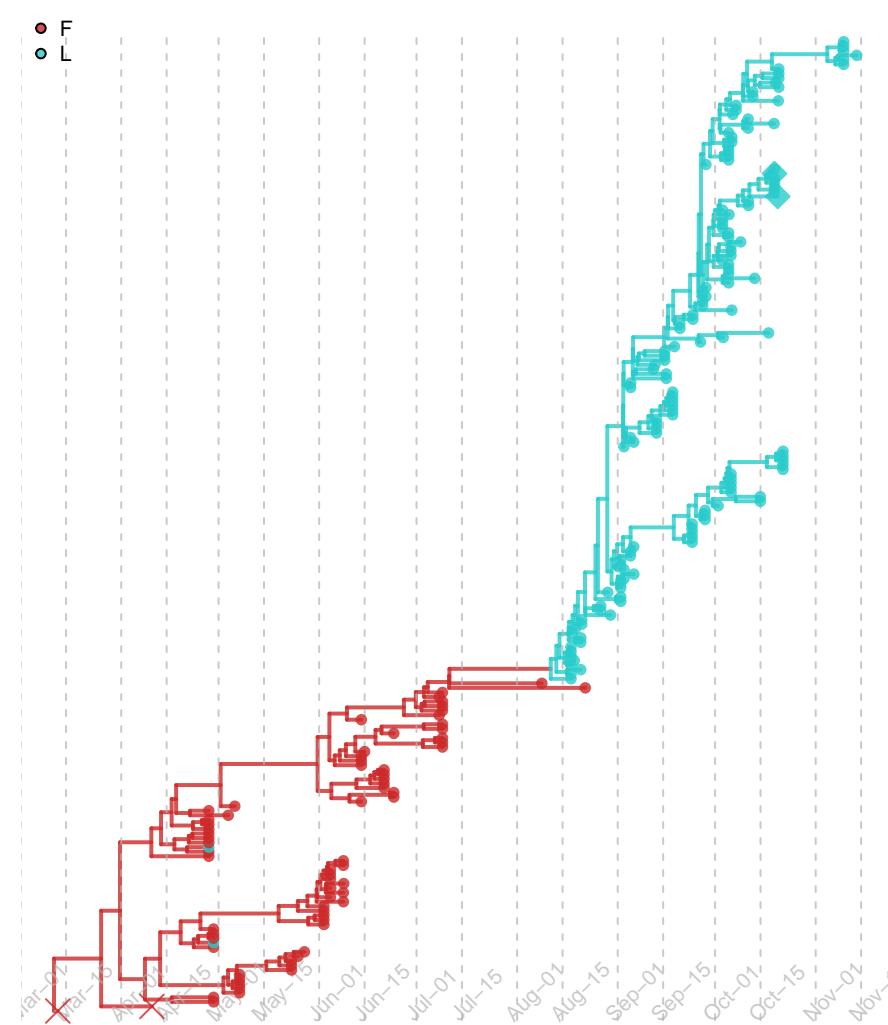
Cluster E

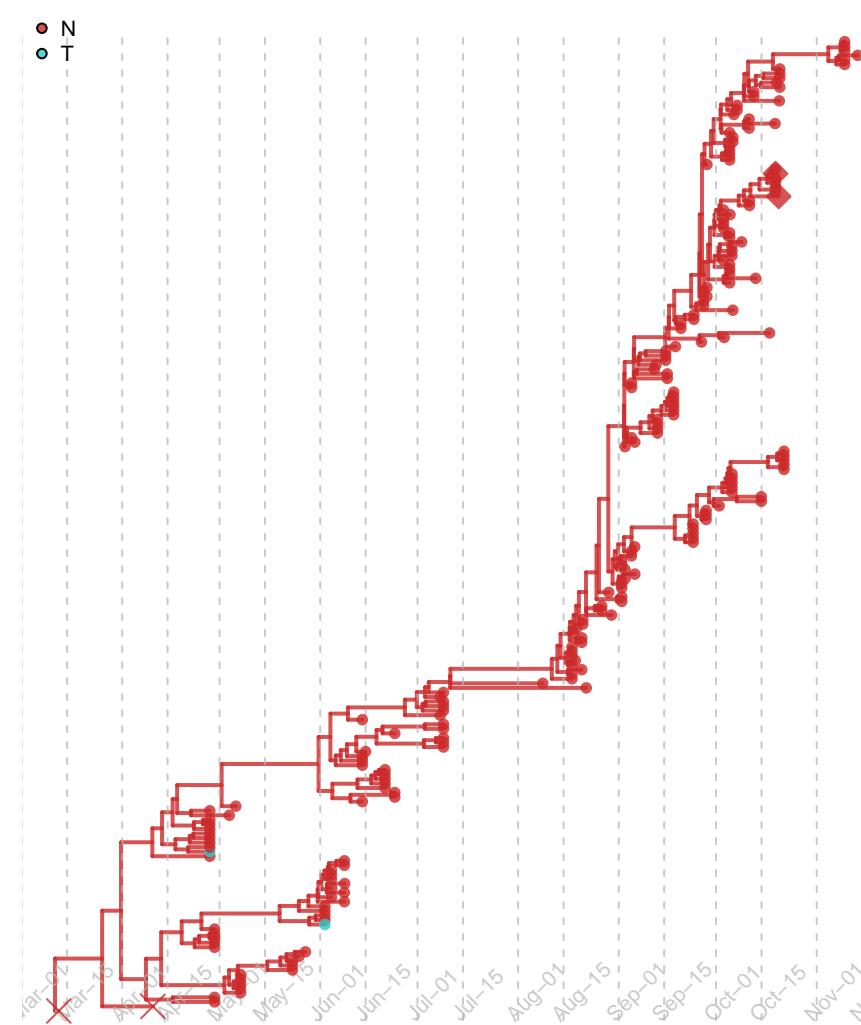

Cluster C

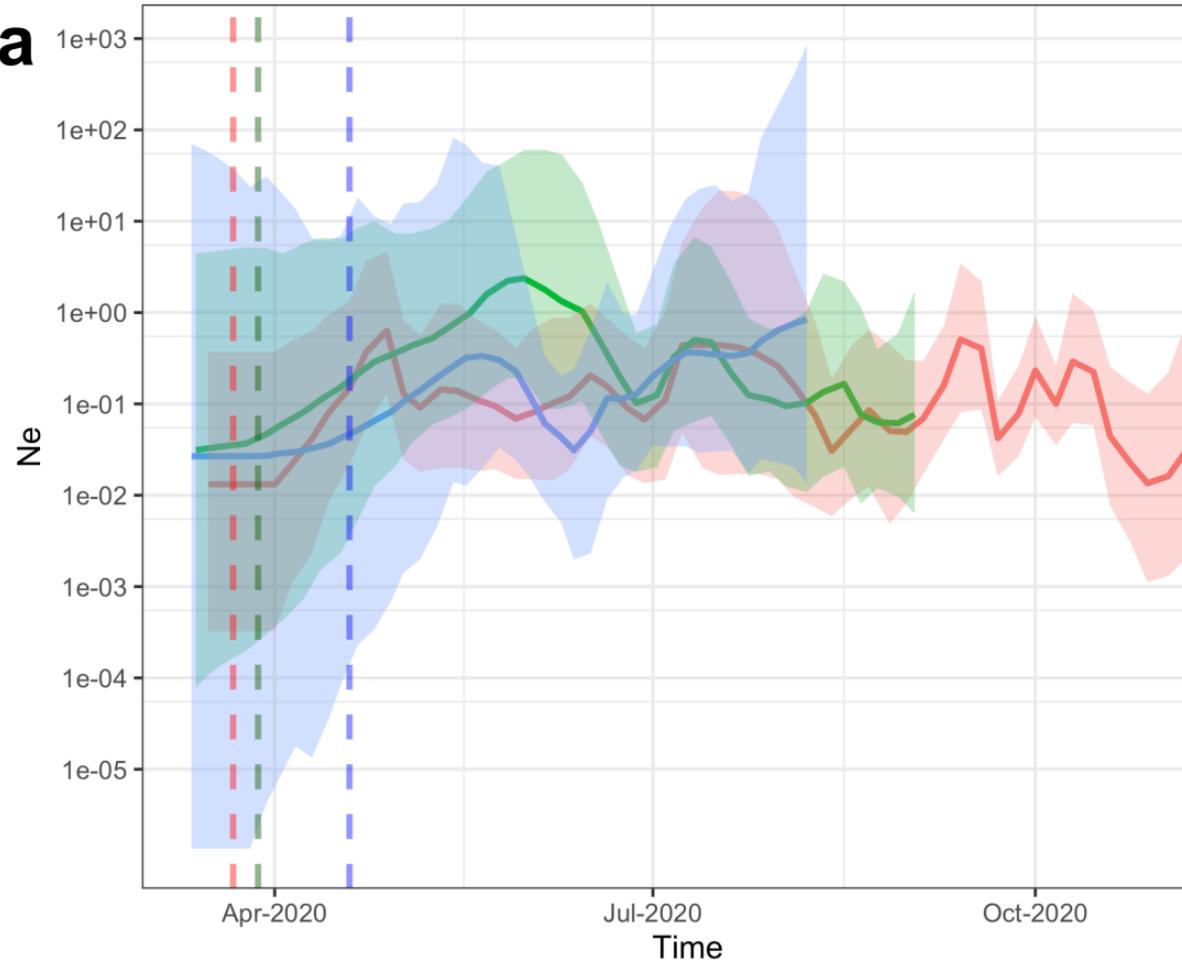
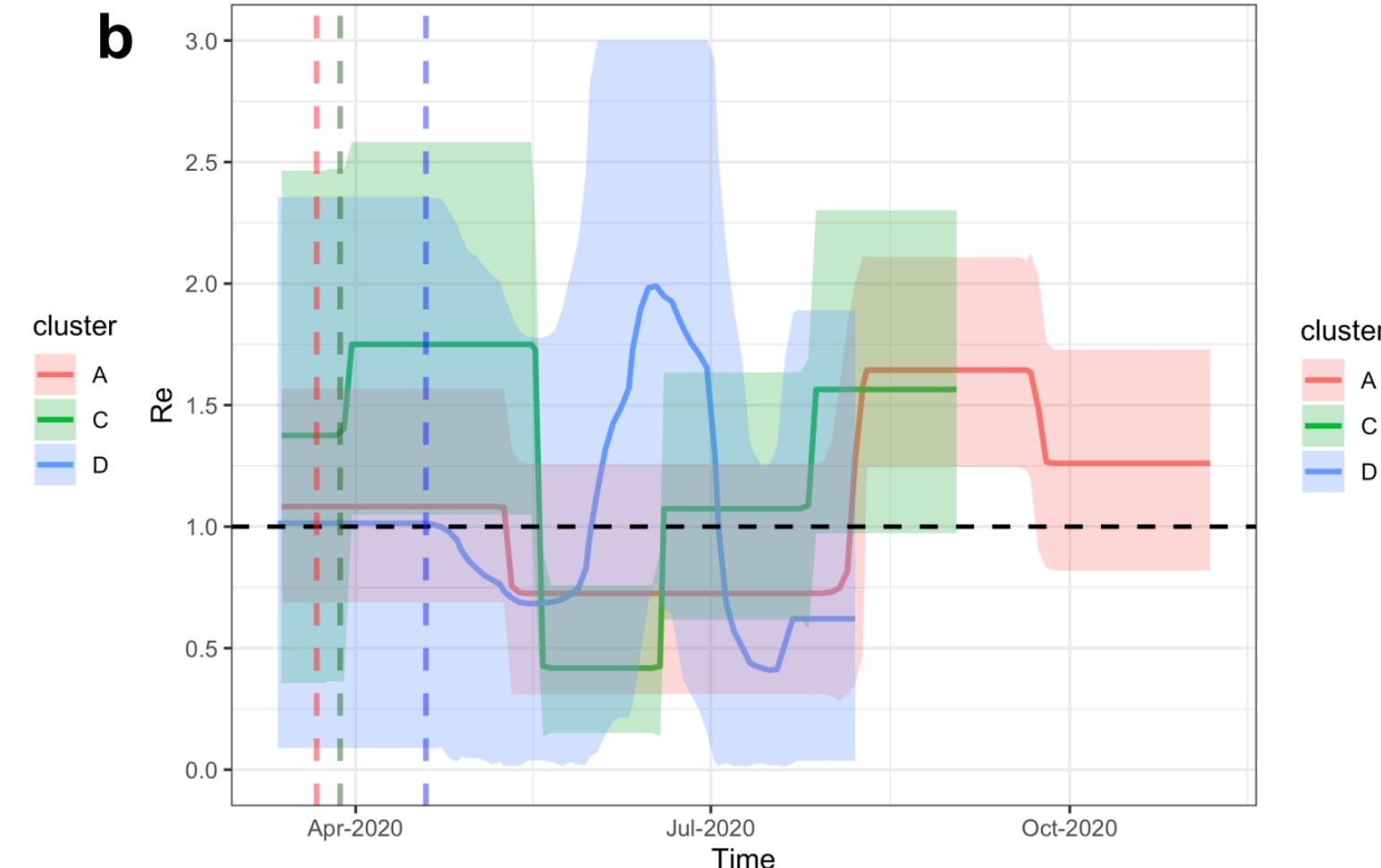
Cluster B

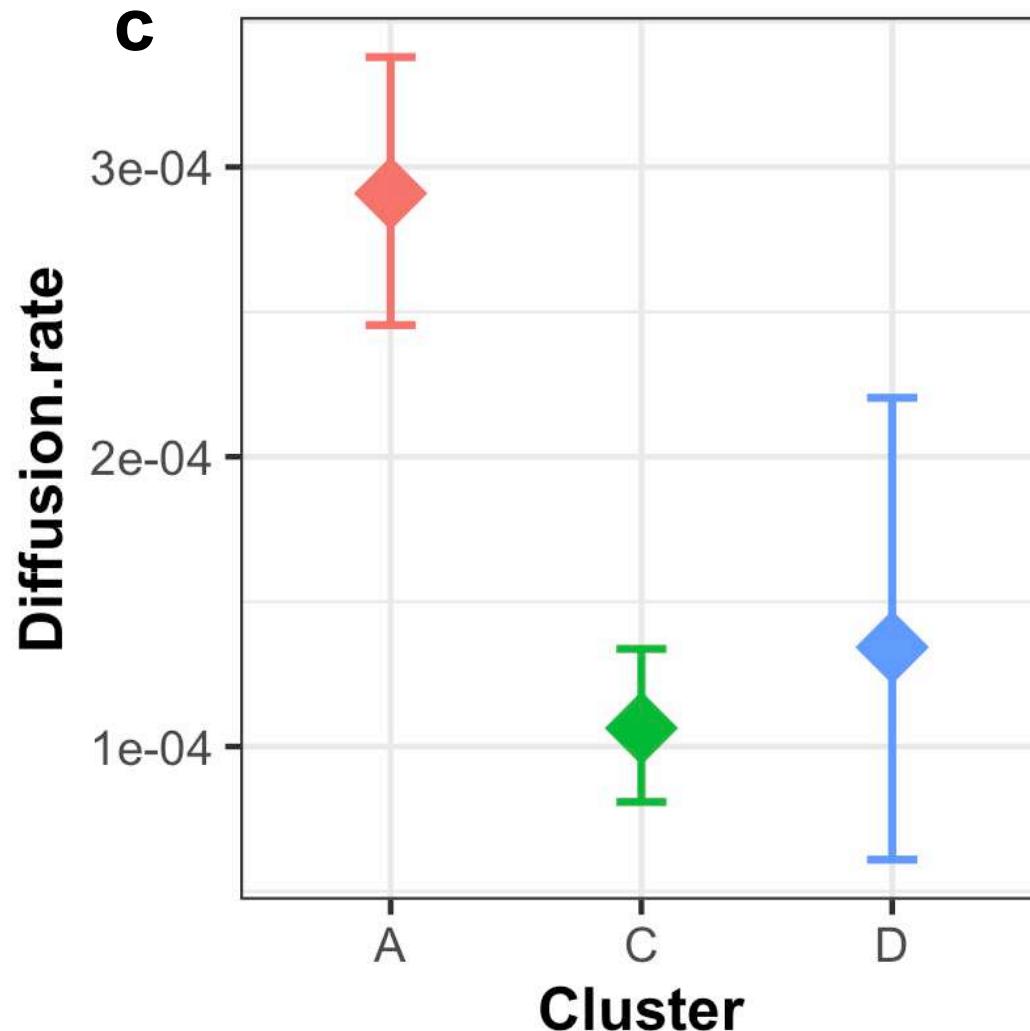
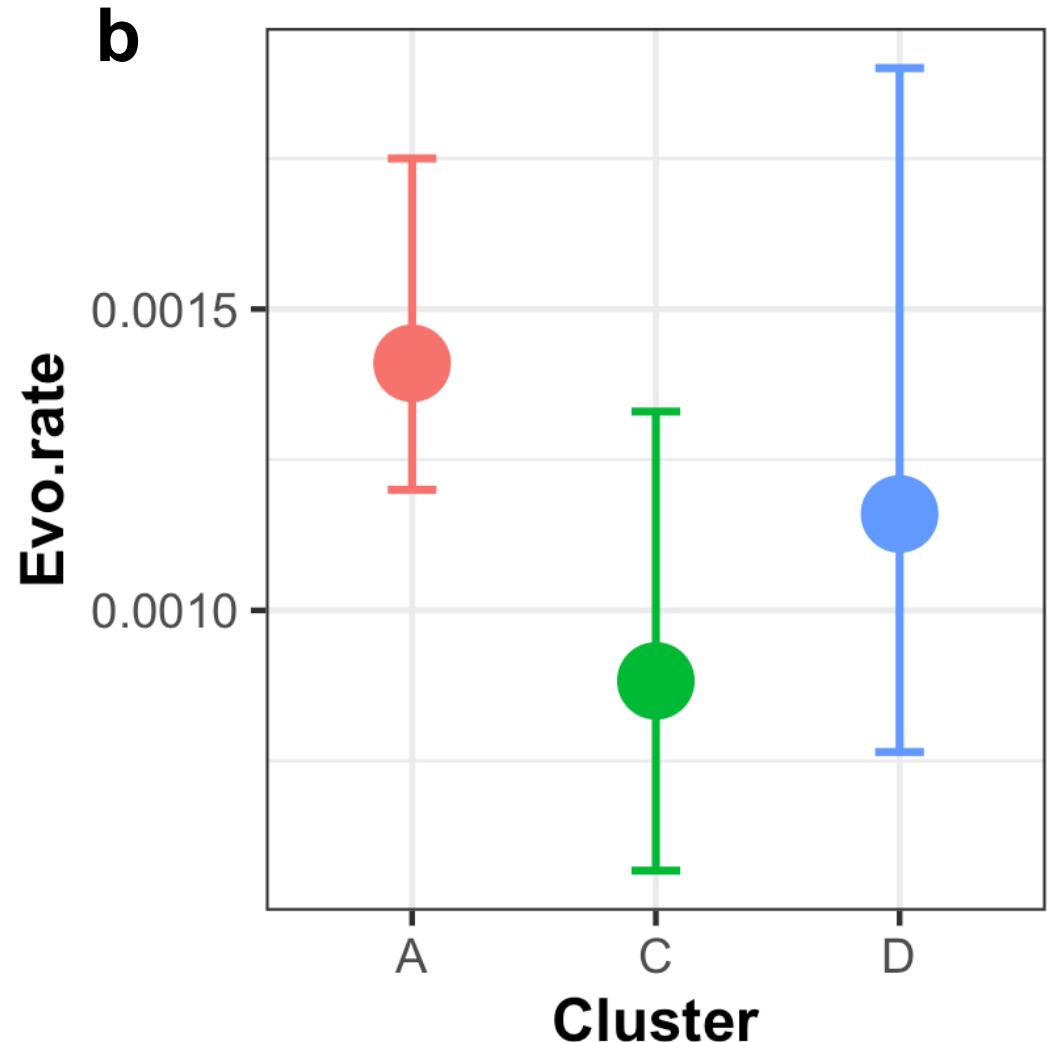
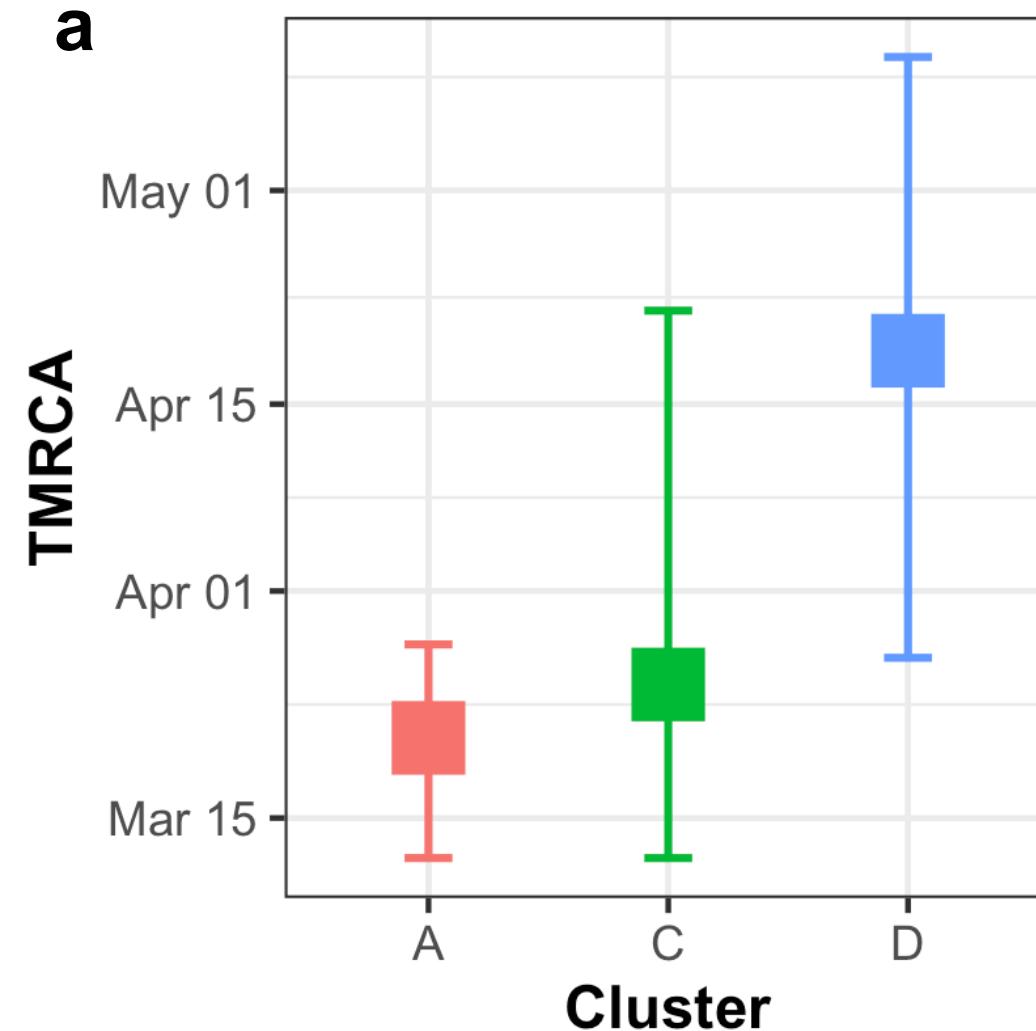

Cluster D

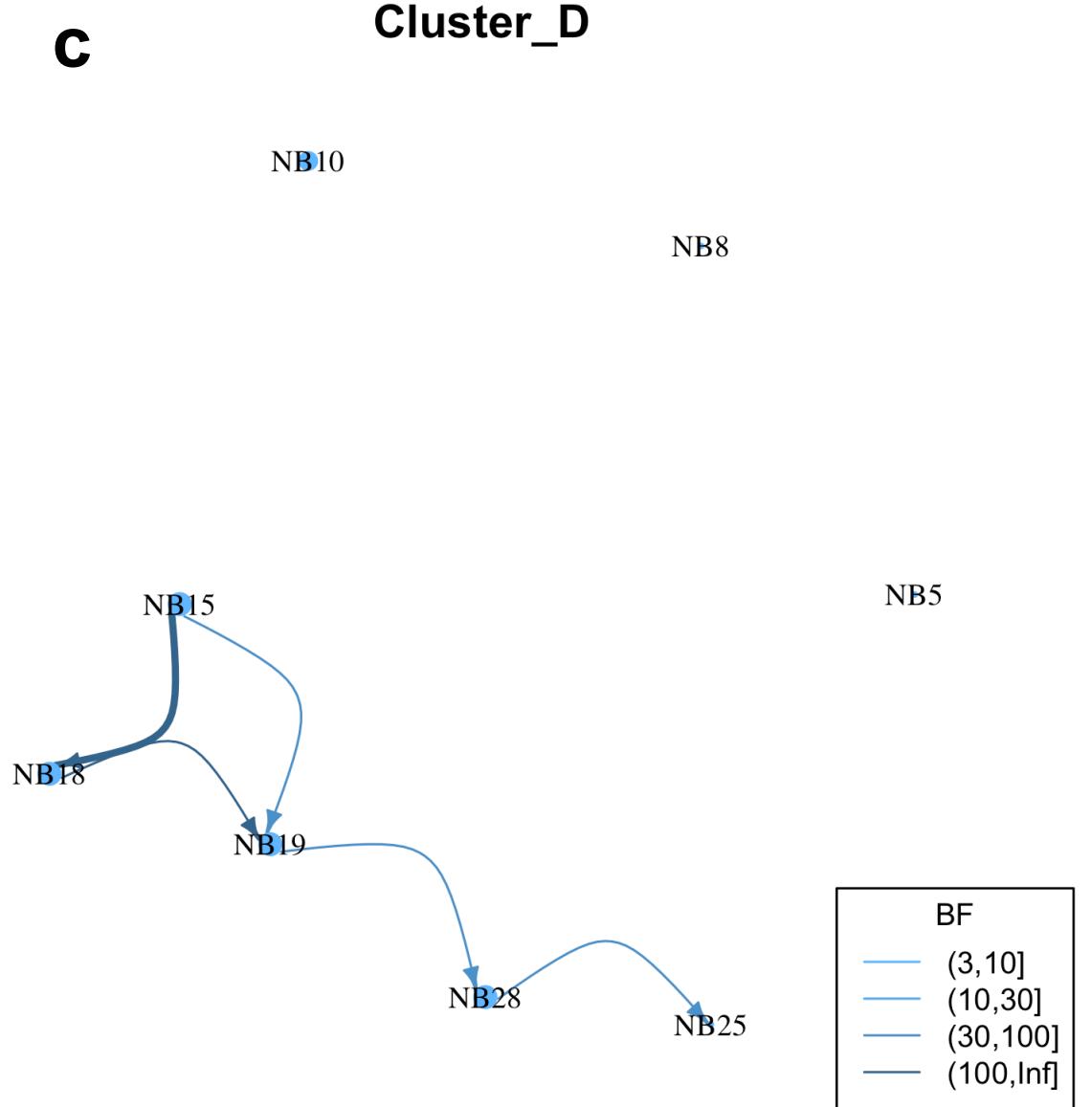
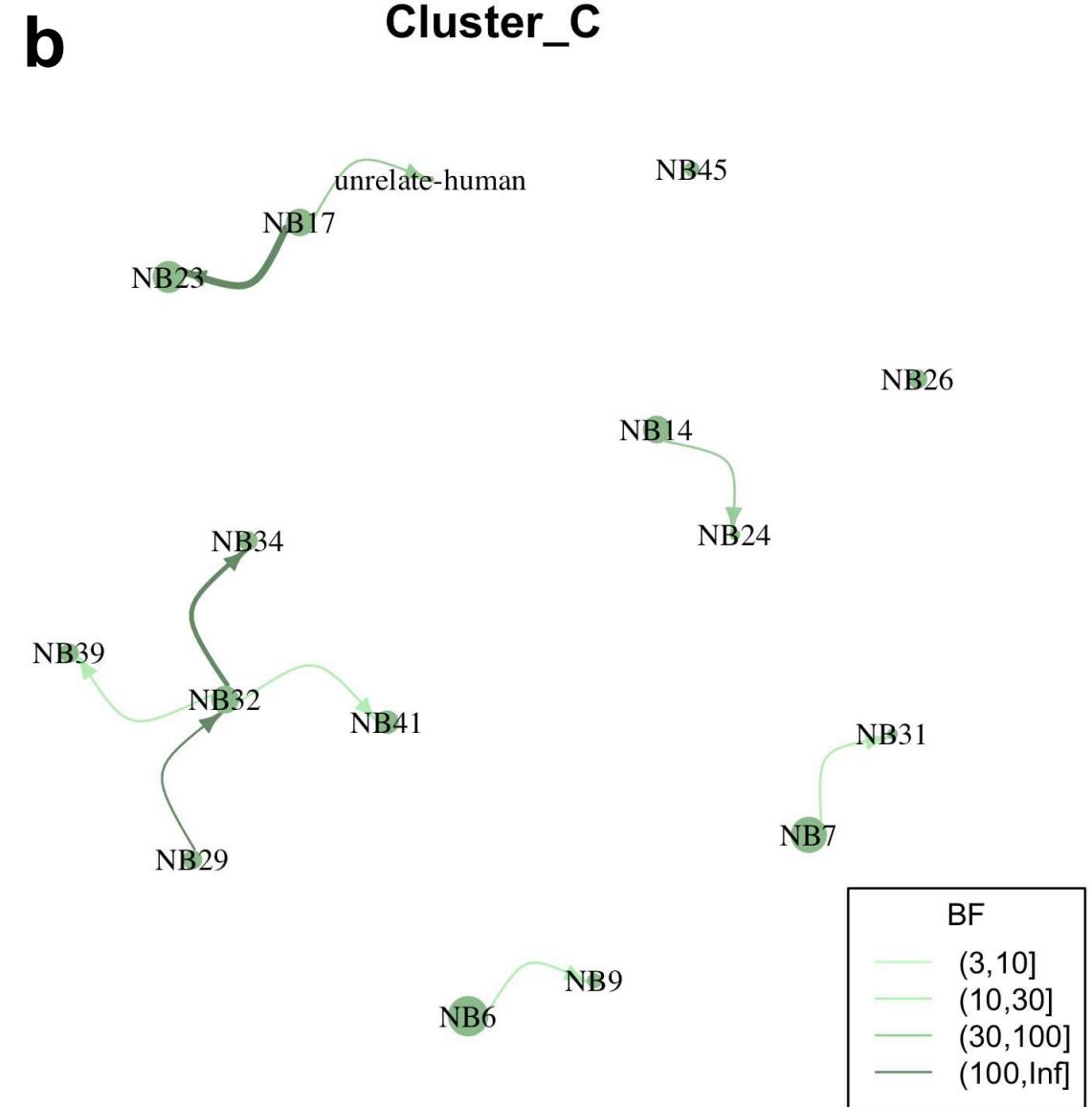
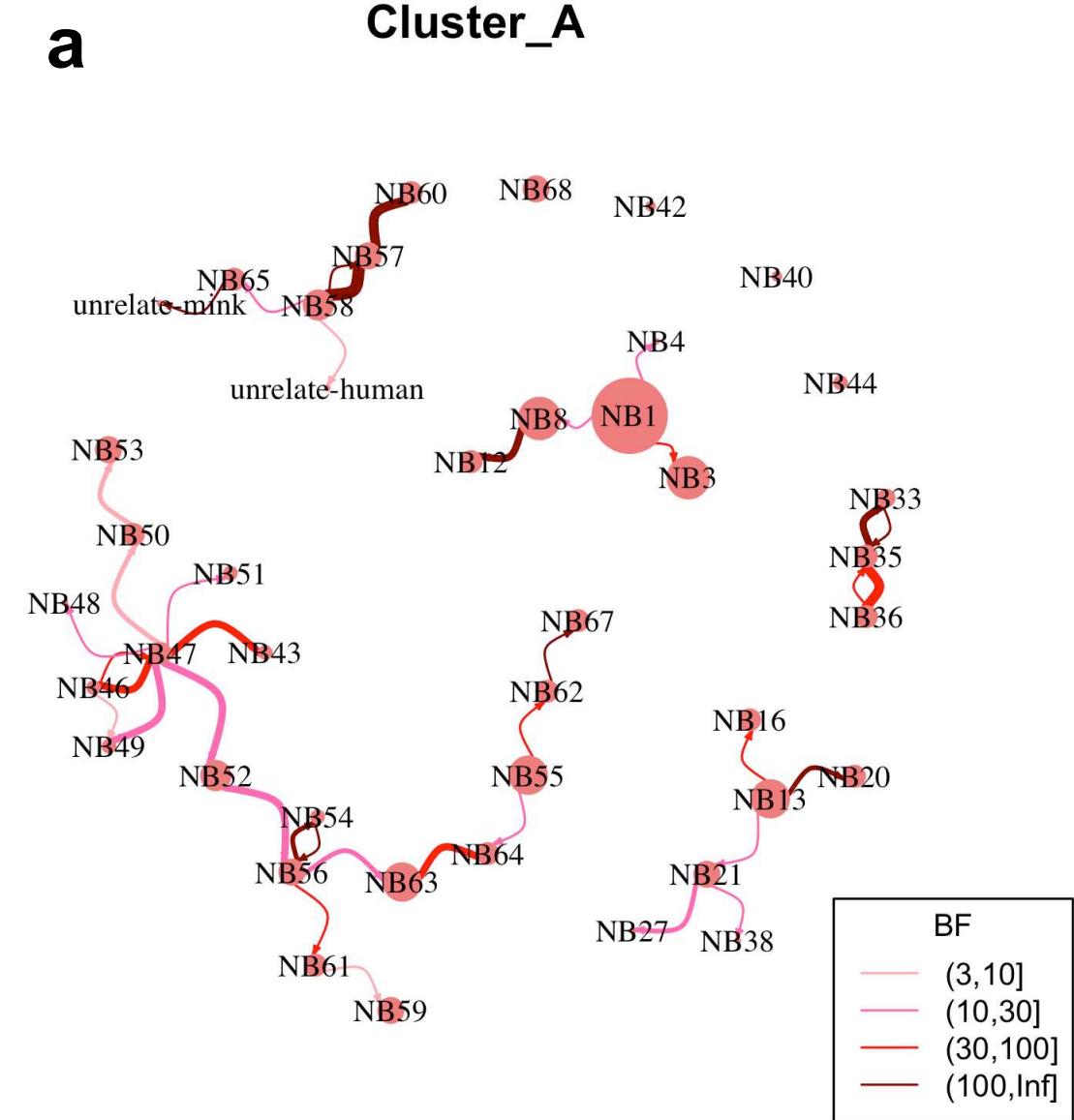

combineAA

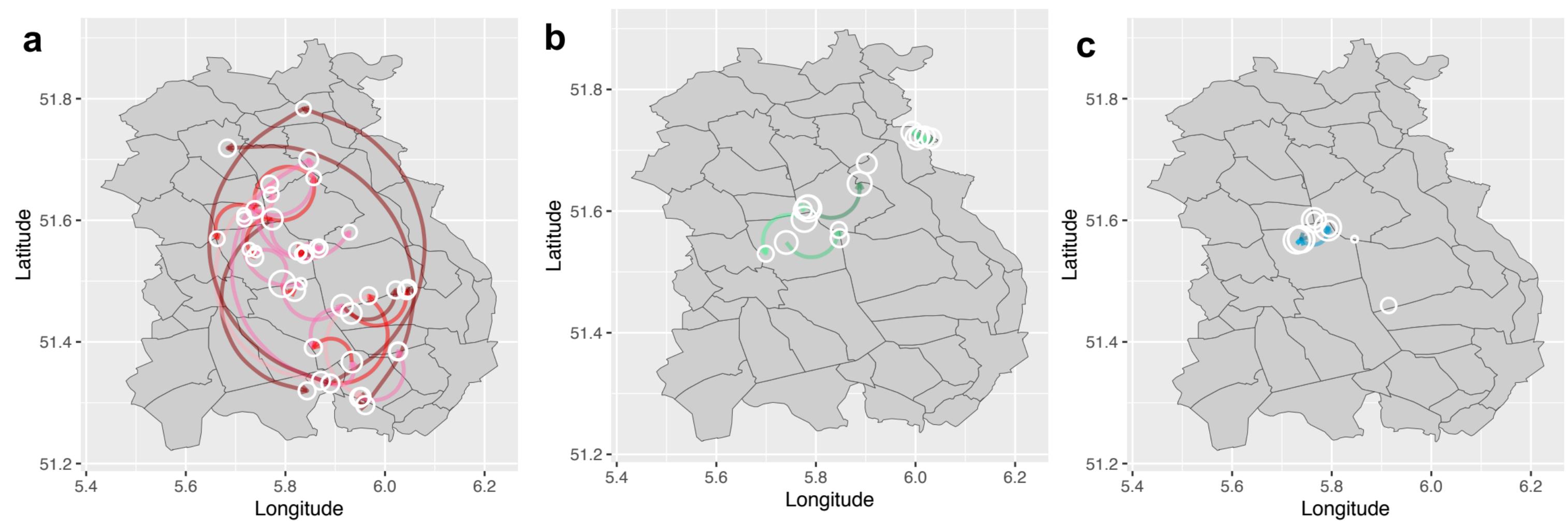

S_452


S_453




S_486


S_501

a**b**

