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Abstract

Long-read transcriptome sequencing (LRTS) holds the promise to
boost our understanding of alternative splicing. Recent advances in
accuracy and throughput have diminished the major limitations and
enabled the direct quantification of isoforms. Considering the com-
plexity of the data and the broad range of potential applications, it is
clear that highly flexible, accurate analysis tools are crucial. Here, we
present IsoTools, a comprehensive Python-based analysis package, for
the improvement of alternative and differential splicing analysis. Iso-
Tools provides a comprehensive data structure that integrates genomic
information from LRTS transcripts together with the reference annota-
tion, and enables broad functionality to quality control, visualize and
analyze the data. Additionally, we implemented a graph-based method
for the identification of alternative splicing events and a statistical ap-
proach based on the beta binomial distribution for the detection of
differential events. To demonstrate our methods, we generated PacBio
Iso-Seq data of human hepatocytes treated with the HDAC inhibitor
valproic acid, a compound known to induce widespread transcriptional
changes. Contrasted with short read RNA-Seq of the same samples,
this analysis shows that LRTS provides valuable additional insights
for a better understanding of alternative splicing, in particular with
respect to complex novel and differential splicing events. IsoTools is
made available for the community along with extensive documentation
at https://github.com/MatthiasLienhard /isotools.
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Introduction

Long Read Transcriptome Sequencing (LRTS) allows for full-length sequenc-
ing of expressed transcripts. In contrast to short-read RNA-Seq, this tech-
nology does not require fragmentation of transcripts and thereby avoids
introduction of errors due to alignment ambiguity and other technical arte-
facts. This is particularly relevant for the analysis of complex splicing events
since short reads cannot be assigned reliably to transcript isoforms over
longer genomic distances [1, 2, 3].

With the LRT'S Iso-Seq protocol from PacBio, besides direct cDNA/RNA
sequencing by Oxford Nanopore, a technology has emerged that holds the
promise to improve isoform identification and quantification. While hybrid
sequencing approaches have been suggested in the past to combine detec-
tion (LRTS) and quantification (RNA-seq) of isoforms [4], recent advances
in accuracy and throughput facilitate direct quantification of isoforms and
splicing events from LRTS data alone.

LRTS provides a broad range of potential use cases for both model and
non-model organisms. For poorly annotated non-model organisms the tech-
nology has been applied to facilitate the identification of relevant gene struc-
tures and coding regions [5, 6]. Common use cases for human samples and
other model organisms include the discovery and characterization of novel
genes, transcripts and alternative splicing events, as well as facilitating the
quantification of isoform expression, either with or without integrating short-
read RNA-Seq data [7, 8]. Very recently, LRTS has been combined with
single-cell technology, to explore and characterize splicing on the level of
cell types [9, 10, 11].

Recent studies suggested the possibility of direct quantitative interpre-
tation of LRTS data on transcript isoform level, bypassing the error prone
iterative assignment of short reads [12, 13, 14]. On gene level, a fair cor-
relation of 0.65 and 0.8 between long read IsoSeq and short read RNA-Seq
quantification was found for human and mouse cortex samples. However,
on isoform level this correlation dropped to 0.36 and 0.41 [13].

Besides the quantification of isoforms, differential splicing can be anal-
ysed on the level of alternative splicing events (ASEs). The most common
definition of these ASEs are based on bubble structures in splice graphs
[15], usually constructed from annotated gene models. Differential analysis
of ASEs is common with short-read RNA-Seq [16, 17], and offers advantages
due to reduced complexity and improved interpretability. However, as short
reads do not cover the complete events, particularly for complex events that
are connected over longer genomic distances, this approach also suffers from
ambiguity.

For many of the common use cases, specific tools have been provided.
Most prominently, Functional IsoTranscriptomics (FIT) is a comprehensive
framework, including SQANTI3 [18], IsoAnnot and TappAS for quality con-
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trol, isoform and splice junction annotation and classification, and prediction
of functional implications of alternative isoforms. These tools provide conve-
nient standardized analysis pipelines, facilitating characterization and func-
tional interpretation of alternative splicing by open reading frame (ORF)
prediction and differential isoform expression analysis between samples by
integrating RNA-seq data for isoform quantification. As an alternative,
TAMA focuses on filtering sequencing noise and detecting novel expressed
transcripts, in particular IncRNAs [19]. TALON was developed as the EN-
CODEA4 pipeline for long-read sequencing, and provides similar functional-
ity to SQANTI3 [12].The Swan library [14], which is part of the ENCODE4
TALON pipeline, implements a statistical test based on a negative binomial
model for differential expression analysis on isoform level using LRTS.

Considering the complexity of the data and the broad spectrum of po-
tential use cases, it is clear that standardized analysis tools may become
limiting. To unravel the full potential of LRTS, researchers need to be able
to fully explore the data at all scales, ranging from single nucleotide informa-
tion over transcript and gene level, to transcriptome-wide statistics. With
this in mind, we developed IsoTools, a flexible Python framework for the
analysis of PacBio Iso-Seq data, which implements data structures integrat-
ing all relevant information from LRTS transcripts and reference annotation,
together with broad analysis functionality to explore, analyze, and interpret
the data.

In addition to this framework, we provide tutorials and Jupyter note-
books covering the most relevant use cases, including analysis of differential
splicing events between samples solely based on long-read sequencing or in
combination with short-read sequencing. The documentation also includes
the complete API reference, facilitating custom analysis approaches. Iso-
Tools was extensively tested on published LRTS data from PacBio Sequel 1
and Sequel II. To further demonstrate the utility of the workflows, we gen-
erated LRTS data of human primary hepatocytes, treated with the HDAC
inhibitor valproic acid (VPA) with latest technology (PacBio Sequel II Iso-
Seq). VPA is known to induce a wide spectrum of changes in the epigenome
and the transcriptome leading to differential isoform usage [20]. Identified
novel and differential splicing events from several categories including exon
skipping, mutually exclusive exons, and novel poly-A sites were validated
with (short-read) RNA-Seq on the same samples. We further investigated
the in-vivo relevance of detected alternative splicing by confirming expres-
sion in healthy human liver tissue.
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Results

IsoTools provides full control over all stages of LRTS data
analysis
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Figure 1: The internal data structure of the IsoTools framework

One challenge of LRTS analysis is posed by the wide range of information
on different scales, ranging from single nucleotides (e.g. variant information)
over exon information, alternative splicing events, transcript isoforms, genes,
to transcriptome-wide statistics, e.g. on transcript length distribution. We
address this challenge by implementing an efficient tree-based data structure,
facilitating access to all relevant information by genomic positions as well
as by names or identifiers. In order to provide the user full control over the
data, IsoTools can import these information from aligned long read files and
reference annotation. During import of the long reads, the transcripts are
assigned to reference genes and categorized. After import, the complete gene
models are encoded as segment graphs [21], where nodes represent disjoint
exonic segments, while edges imply that the two exonic segments succeed one
another within one of the transcripts (see Methods). This segment graph is
an efficient way to store complex splicing structure of a gene and facilitates
a range of algorithms to characterize and compare transcripts, as well as
to define alternative splicing events. Figure 1 provides an overview on the
internal data structure of the IsoTools framework.

To demonstrate a basic LRTS workflow using IsoTools, we produced a
PacBio IsoSeq dataset from human hepatocytes treated with the HDAC class
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I and IT inhibitor valproic acid (VPA) and controls (CTL), yielding 2,615,181
and 4,200,885 aligned full-length non chimeric poly-A reads, respectively.

Saturation analysis estimates required sequencing depth
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Figure 2: Probability of observing a transcript depending on the cellular
concentration from 0.5 (blue line) to 10 TPM (purple line) and sequencing
depth at detection threshold of 1 read (A), 2 reads (B), 5 reads (C) and
20 reads (D). Dashed horizontal lines represent the sequencing depth of the
VPA and CTL IsoSeq samples.

Prior to LRTS data generation it is of general interest to assess the
required depth of sequencing for recovering transcripts of interest. We de-
veloped a general saturation model based on 3 relevant parameters. First,
the required sequencing depth depends on the cellular concentration of the
transcript in the samples. A highly expressed transcript is more likely to
be covered compared to a transcript with few RNA molecules per cell. Sec-
ond, the minimum required coverage to confidently call a transcript impacts
the chance of a transcript to be discovered. The PacBio IsoSeq clustering
pipeline requires two copies of a transcript to report it. However, depending
on the application, it may be appropriate to reduce or increase this thresh-
old. As third factor, transcript discovery depends on the sequencing depth.
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Figure 3: Quality control metrics. A) Read length distribution compared to
level 1 GENCODE transcripts. B) A content downstream of novel unspliced
transcripts and reference matching multi-exon transcripts. C) Direct repeat
length at intron boundaries of gencode transcripts and novel non-canonical
splice junctions. D) Fraction of reads affected by one of the three artifacts.

Assuming sufficient library complexity, the more transcripts are sequenced,
the higher is the chance of sequencing one particular transcripts.

Neglecting potential biases and assuming linear relation between RNA
concentration and sampling probability, the probability of observing a tran-
script can be modeled by the negative binomial distribution. Figure 2 pro-
vides the probability of observing transcripts at different expression levels
and at different detection thresholds, depending on the read coverage. Ac-
cording to this model, the probability of observing a transcript expressed
at one TPM with at least two reads is 93% for the CTL sample and 74.7%
for the VPA treated sample (intersection of orange line and vertical lines
in Figure 2B). For transcripts at a cellular concentration of 2 TPM, the
probability of observing at least two reads is close to 100% for both sam-
ples, indicating saturation of transcript discovery at this concentration and
detection threshold.

Quality control measures allow filtering for technical artifacts

Although LRTS holds the promise to boost alternative splicing, several tech-
nical artefacts have been identified that might bias or impair LRTS analysis.
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In order to control for these artefacts and to filter related transcripts in a
flexible and efficient way, IsoTools provides different quality control (QC)
measures (Figure 3).

The transcript length distribution reflects the depletion of transcripts
depending on their length. It should be comparable between samples and
can be compared to the length distribution of all transcripts in the reference
annotation. Quite surprisingly, we noticed that the transcripts sequenced
with Sequel2 are longer compared to the annotated transcripts, suggesting
a depletion of shorter transcripts. (Figure 3A)

Technical artifacts are indicated with different QC measures. Here, we
consider three kinds of technical artefacts known to occur in LRTS data [18]:

e Genomic stretches of adenosines may be bound by the poly-A primer,
inducing sequencing of genomic templates, which are not spliced and
thus yield a single exon transcript in LRTS. This effect is called in-
ternal priming.

e The ability of the reverse transcriptase to switch between templates
(RTTS) is exploited to anneal the primers during the SMRT sequenc-
ing. However, this switching can also occur unintended within or be-
tween templates, resulting in incomplete or chimeric templates. This
template switching preferably occurs at short direct repeats.

e Transcripts may be truncated during library preparation, resulting in
transcript fragments. Due to poly-A priming, 3’ fragments are unlikely
to be sequenced, but 5 fragments yield incomplete transcripts with
apparent novel transcription start sites.

To control for these artefacts, IsoTools facilitates the definition of fil-
ters to tag affected transcripts. For subsequent analyses, visualizations, and
data exports, the user can filter the transcripts according to these tags. In
order to find reasonable thresholds for the filter definitions, we compared
corresponding metrics from the most credible GENCODE transcript with
support level 1 to the most suspicious transcripts identified by LRTS. How-
ever, all filter expressions may be adapted or extended by the user.

To identify internal priming, we monitor the fraction of adenosines in
the genomic sequence 30 bases downstream of the transcript. For the highly
credible (support level 1) GENCODE transcripts we find a downstream
adenosine content distributed with a single mode around 25% adenosines.
However, when looking at single exon genes that do not overlap any refer-
ence genes, we observed a second mode at 70% adenosines. For the CTL
and VPA samples, 55.5% and 48.3% of all "novel” single-exon transcripts
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feature > 50% adenosines respectively (Figure 3B). This suggests, that 50%
downstream adenosienes is a reasonable threshold to mark internal priming.

To select for putative RTTS sites, we screen for introns without reference
support where both donor and acceptor sites are within reference exons,
and which do not feature a canonical splice site. At the boundaries of
these introns, we compute the length of direct exact repeats and compare
it to the repeat length at regular introns of the high confidence GENCODE
transcripts (3C). While the putative RTTS sites feature a slightly longer
average repeat length of 5 bases compared to 2 for the regular introms,
this difference does not allow to define a threshold that would separate
the majority of putative RTTS transcripts from the credible transcripts.
Therefore we simply label transcripts as RT'TS if they have a non-canonical,
non-reference intron, e.g. both donor and acceptor are not annotated and
the sequence at the splice site is not 'GT-AG’.

Without additional experimental evidence, there is no way of differenti-
ating true alternative start sites from potential truncations. All transcripts
that start or end within an internal exon of another transcript, but share
all other splice sites with this transcript, may be considered potential frag-
ments.

According to the definitions above, 10.5 % and 9.2 % of the reads are
affected by technical artefacts in the CTL and VPA hepatocytes samples.
However, the largest fraction is contributed by potential transcript frag-
ments, affecting 4.3% and 3.7% of the reads, for CTL and VPA. This is
followed by RTTS (3.7% and 3.2%) and internal priming (2.6% and 2.4%)
(Figure 3D).

In order to assess potential truncations, we took additional evidence
from publicly available CAGE data into consideration. To this end, we
downloaded CAGE TSS peaks of HepG2 cells from ENCODE [22]. 9.9%
of the potential fragments feature overlapped CAGE peaks in HepG2 cells
from ENCODE, compared to 76.9% of all transcripts expressed with at
least 2 reads that correspond to high confidence GENCODE transcripts,
suggesting that many of the fragments are indeed truncated transcripts.
However, the remaining 9.9% are good candidates for novel transcription
start sites, and might therefore be of particular interest and should not be
discarded. Also, the lack of CAGE peaks is not sufficient evidence to rule
out a T'SS. Furthermore the ENCODE cell line samples are quite different
from the primary hepatocytes used in this study.

In order to cope with such ambiguity, IsoTools does not filter out poten-
tial technical artefacts, but rather tags these cases and lets the user decide
in which situations transcripts associated with biases are considered or ne-
glected.
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Chimeric alignments identify fusion transcripts

An interesting aspect in analyzing LRTS data are chimeric alignments.
These alignments can have several potential causes, of both technical and
biological origins and IsoTools provides methods to distinguish these cases.

First, large introns > 200 kb often can not be mapped by the align-
ment tool and are reported as chimeric alignments. Also, RT'TS between
templates yields chimeric cDNA fragments. Further, during PCR amplifi-
cation, templates may get joined together through transcriptional slippage
[23], yielding apparently fused transcripts. However, there are also inter-
esting biological effects resulting in chimeric alignments: mRNAs can be
spliced back, yielding circular RNA molecules [24]. Since circular RNAs do
not contain poly-A tails, these cases are usually not covered by LRTS and
only appear in specific situations, such as due to internal priming. Further,
fusion transcripts result in chimeric alignments. Fusion transcripts may
either emerge from genomic rearrangements or trans splicing, and are com-
monly found in cancer cells [25]. In principle, LRTS provides great means to
not only identifying these fusion transcripts but also revealing the fraction
of fused vs. unfused transcripts as well as the transcript isoforms involved.

Chimeric alignments mapping on the same strand and less than 1 megabase
apart can be considered as large introns, and hence the parts can be chained
to a single alignment. To separate the other cases is challenging and we
should consider additional evidence of the fusions and critically evaluate the
plausibility. To facilitate these considerations, IsoTools extracts the break-
points, gene annotations and sequencing coverages of all additional chimeric
alignments for further inspection as a table (Suppl. Table 1).

In total, we found 30,561 and 66,293 chimeric alignments for the VPA
and CTL samples respectively, of which 3,610 and 4,688 could be chained
to a consecutive alignment, and thus are likely caused by long introns. To
reduce the impact of the technical artefacts, we focused on chimeric align-
ments that were supported by at least 2 reads, leaving 1,786 and 3,737 reads
respectively. Of those, the majority (1,287 and 2,144 reads) have both non-
consecutive parts of the alignment at the MALAT1 IncRNA locus, but the
second part of the alignment is upstream of the first part. Such alignments
could be explained by backsplicing, however, as the respective junctions have
no short-read support, they are more likely technical artifacts.

The remaining chimeric reads cover 21 breakpoints with at least 10 reads
over both samples, involving 30 different genes. Despite the fair coverage,
none of these chimeric alignments show significant short-read support, mak-
ing RTTS and/or transcriptional slippage during the PCR step more likely
explanations. This implies that potential fusion transcript candidates iden-
tified by IsoSeq require careful investigation and validation, also for samples
where gene fusions might be more plausible.


https://doi.org/10.1101/2021.07.13.452091
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452091; this version posted July 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

N CTL
= VPA

—_ ’;-. |-~
= de ey - _
7y Qe o din m
B S @8N Ba o~
T 6 Ze " ¥ OR
o 2 AR AN
= = B e | N S
af farn n @ -
5 e ‘Qs - lal-} o - _—
5] © & - an ™ o
-] ar B © [«] o=
c i~ ES - we ~No W © —
5 < 08 o ¥ nm mN =N S TN = =
£ 4 ” MM BN e gt S 0o 25 To wme A . %
o "1 H M %n —=— @wm w09 ¥g B o® ~o - - i
@ I i I ~in e == =N 20 Pn mh om A2 o3 AN M
= 3 H e e £ S RA wY o~ On o Ne© =
] 5 f5 Rg £g S= A2 sn 35 28 on N o
2 A me S8 Ba =% Je oo To =% 25 L L)
; e A W ho B FS 2L gR ey ee =
- ~® og N,y oo e & s £
g S 33 23 A% A3 Bs 23 RE 2
1 o -] o 13 . '
B Zm S 99 g2 8 o 1) 2
L | | . - -

novel 3'
splice site
(NNC}
novel 5'
splice site
(NNC)
exon skipping
novel exon
(NNC)
mono-exon
(Ism)
5' fragment
{isMm)
3' fragment
(1sM)
intronic
(novel gene) | 0.12% (2809)

inter?emc ] %; 6?
(novel gene) ] 0.14% (3374

(NIC)
(NIC)
(NIC)
antisense !0.23%6811?
(novel gene) 11 0.18% (4188
(NIC)

o
c
o
@
o
4
3
=

novel combination
(NIC)
intron retention
(NIC)
novel intronic TSS
(NNC)
genic genomic
novel exonic PAS
novel intronic PAS
(NNC)
novel exonic TSS
readthrough fusion
(novel gene}
novel junction

Figure 4: Alternative splicing classification of the IsoSeq reads not fully
matching reference annotation for CTL and VPA treated hepatocyte sam-
ples.

Refined classification scheme facilitates biological interpreta-
tion of novel transcript isoforms

In order to assess the nature of novel transcripts, Sqanti [18] introduced
a classification scheme based on a comparison to the reference transcrip-
tome. The authors distinguish full splice matches (FSM), incomplete splice
matches (ISM) matching consecutive splice junctions, novel in catalog (NIC)
containing exclusively annotated splice sites, and novel not in catalog (NNC)
containing at least one novel splice site. We adopted this scheme, but ex-
tended it by additionally assigning specific subcategories to the transcripts
that enable direct biological interpretation, and thus inference of underlying
biological principles.

ISMs correspond to fragments of reference transcripts, and IsoTools dis-
tinguishes 75’ fragments”, 73’ fragments” and ”mono-exons”. NIC tran-
scripts are sub-classified in ”exon skipping”, ”intron retention”, ”novel com-
binations” of known splice junctions and other "novel junctions”, e.g. both
splice sites are annotated, but not used by the same junction according to
the reference. Further, if the first or last exon shares its splice site with an
internal reference exon, the transcript is classified as "novel exonic TSS” or
”novel exonic PAS”. NNC contains transcripts with "novel 5’ splice sites”
(splice donors), "novel 3’ splice sites” (splice acceptors), or "novel exons”,
not overlapping any reference exon. If a novel exon is the first/last exon of
the transcript, it is classified as "novel intronic TSS/PAS”. If a transcript
includes splice sites from more than one reference gene it is classified as
”readthrough fusion”. Finally, transcripts not overlapping any splice junc-
tions from the reference are classified as novel genes. Here, we follow the
subclassification of Sqanti and distinguish ”genic genomic” (implying ex-
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onic overlap with a reference gene), ”intronic”, ”antisense” and ”intergenic”

transcripts.

Note, while the Sqanti categories are mutually exclusive, a transcript
may be assigned to several subcategories. Suppl. Figure S1 provides an
overview of the different categories. To find these subcategories we compare
the exon structure of an LRTS transcript to the segment graph of the refer-
ence gene. This implementation facilitates the definition of a set of rules to
identify the relevant subcategories.

In the primary hepatocyte LRTS, 72.5% and 73.5% of the reads (after
filtering for technical artefacts) fully match known transcripts (FSM) while
the most prevalent category for novel transcripts are novel combinations of
known splice junctions, affecting 10.1% and 9.5% of the reads, for CTL and
VPA treated samples respectively (Figure 4). While the high fraction of
transcripts in this non-reference category may be surprising, the evidence is
clear and convincing in this case and reflects the incompleteness of reference
annotation. One of the highest expressed transcripts in this category is a
novel isoform of the SPTBN1 gene, which combines the promoter of the iso-
form SPTBN1-201 with the poly-A site of SPTBN1-202 and SPTBN1-207,
after sharing 30 intermediate exons with both transcript variants. (Suppl.
Figure S2). The novel transcript is covered by 3306 and 1620 IsoSeq reads,
about 30% of all reads of that gene. Note that both alternative splicing
events affect the coding region, potentially yielding a novel protein sequence.
As the next most frequent categories of novel transcripts, we observed novel
exon skipping as well as 5" and 3’ alternative splice sites. However, we found
that a large part within this categories must be attributed to misalignment
of short exons < 30 bases, which are aligned to either of the neighboring
exon boundaries. This issue affects up to 20% of the transcripts in these
categories, and more than 50% of the highly covered transcripts with more
than 50 IsoSeq reads (Suppl. Figure S3).

One example of a novel skipping event which is likely not a technical
artefact affects the 102 bp exon 7 of PATLI1, which is skipped in 28.8% and
21.5% of the transcripts in CTL and VPA respectively (Suppl. Figure S4).
PATL1 is involved in mRNA degeneration, and the skipped exon overlaps
the protein domain involved in RNA-binding, according to UniProt [26].
Junction coverage of short-read data from the same samples confirm exon
skipping of a similar proportion of transcripts. Notably, the exon skipping
event can also be found in short read RNA-Seq of human liver samples,
suggesting in-vivo relevance of the novel isoform.

3.0% and 2.6% of transcripts feature retained introns, which may be
due to incomplete processing of pre-mRNA. The categories 75’ fragment”,
”novel exonic TSS” and "novel intronic T'SS” all describe potential novel al-
ternative transcription start sites. We checked these sites for CAGE support
from the HepG2 cells and found 11.7%, 10.1% and 31.1% of the transcript
starts overlapping CAGE peaks for the 3 categories respectively, compared
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Figure 5: Comparison of expression levels derived from Illumina RNA-Seq
and IsoSeq on gene level (A) and transcript isoform level (B). RNA-Seq vs
IsoSeq expression logl0 difference depending on transcript length on gene
level (C) and transcript level (D). Dashed line represents the binned average.

to 76.9% for the full splice match transcripts. While novel transcription
starts overlapping exons can also be explained by fragmentation, novel in-
tronic TSSs provide the best evidence for true novel TSS. All transcripts
found covered by at least 10 reads in the primary hepatocyte samples, along
with their novelty classification, are listed in Suppl. Table 2.

LRTS provides quantitative information on expression level

Recent advances with the new Sequel II system allow direct quantitative
interpretation of the transcript counts. Compared to the predecessor, the
maximal CCS read length has increased, and thus the technology is capa-
ble of covering the majority of the transcriptome without depleting longer
transcripts. Previously, this bias was countered with enrichment of long
fragments during library preparation, disturbing the quantitative signal of
transcript read counts. In addition, the throughput has increased 8-fold at
comparable cost and time requirements, facilitating the required sequencing
depth for quantitative interpretation of the read counts.

After basic normalization for sequencing depth, both hepatocyte samples
had a similar distribution of read counts over transcripts (Suppl. Figure S5).
Consistent with recent results [13], we also found good agreement between
RNA-Seq gene expression levels and Sequel II IsoSeq coverage (r = 0.756
and 0.765 for CTL and VPA), underlining the quantification performance
(Figure 5). On transcript isoform level, the correlation dropped considerably
(r = 0.421 and 0.427), also confirming previous results [13]. A plausible
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explanation for the reduced accordance on transcript level is the uncertainty
in assigning ambiguous short RNA-Seq reads, and the errors introduced
due to violated assumptions of uniform read coverage [27] and imperfect
reference model [28].

To investigate a potential transcript length bias, we analysed the de-
viance of IsoSeq derived expression levels from RNA-Seq derived expression
levels, depending on the transcript length. For transcripts > 3,000 bases,
this deviance was constant, reflecting good agreement between RNA-Seq and
IsoSeq. However, for shorter transcripts, IsoSeq yields lower expression lev-
els, suggesting a depletion of short transcripts within our IsoSeq data. This
finding is in line with the comparison of transcript length to the reference
annotation (Figure 3A).

Alternative splicing events facilitate interpretation of complex
splicing

Even though LRTS serves as a direct approach to transcript reconstruction
and quantification, the statistical analysis and interpretation on this level
is not trivial because of the large number of potential different transcripts.
Similar to RNA-seq analysis it might thus be convenient to decompose the
splicing landscape of a gene into alternative splicing events (ASEs).

To this end, we implemented a method to detect ASEs based on segment
graphs (Figure 6 A and B). This approach allows to isolate the individual
events that distinguish the isoforms, and hence break down the complex-
ity. The relative expression of these events is quantified with the percent
splice index (PSI), which is the fraction of reads supporting the alternative
(see Methods). Our definition additionally subdivides and classifies splicing
events according to the underlying molecular principles as exon skipping
(ES), intron retention (IR), 5 and 3’ alternative splicing (5AS and 3AS),
and mutually exclusive exons (ME) (Figure 6 C).

In total, we identified and quantified 3.706 IR, 2.813 ES, 1.582, 3AS 1.319
5AS, and 369 ME events in the primary human hepatocytes, covered by at
least 100 reads over both VPA and CTL, where the alternative contributed
at least 10% of the reads. To validate the quantification of these events based
on LRTS, we tried to match the LRTS IsoTools events with those identified
by rMATSs using the RNA-Seq data, but found only 41.6% of the events. In
particular alternative events not covered by the reference annotation were
not identified from the short reads: from the novel events, only 10.77%
where also found by rMATS. In order to yield better overlap, we exported
the events detected by IsoTools from LRTS to rMATS [16]. Since the rMATS
event definition is less flexible, not all events could be exported, but 80.1% of
the found IsoTools events could be exported to rMATS, and were quantified
with the short reads. We found high correlation of PSI values for ES (r=.84),
5AS (r=0.8) 3AS (r=0.74) and IR (r=.62), while quantification of ME events
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Figure 6: Splice Bubble decomposition of the Segment Graph to identify
alternative splicing events (ASEs). A) Exemplary gene with 3 transcripts
and B) the corresponding Segment Graph. C) The 3 ASEs and correspond-
ing categories, defined by the Segment Graph. Note that the ME event is
defined by two Splice Bubbles from x; to z5. The primary and alterna-
tive paths of the bubbles are depicted by purple and orange coloring of the
edges, respectively. (D) Comparison of ASE quantification with IsoTools
from IsoSeq and with rMATS from Illumina RNA-Seq, for the untreated
hepatocytes separately for the event classes: exon skipping (ES), intron re-
tention (IR), mutually exclusive (ME) and 5’ and 3’ alternative splice sites
combined (AS). (E) Differential splicing of SLC39A14 mutually exclusive
exon 4 upon VPA treatment. Top track represents the reference annota-
tion, and bottom tracks show log scaled sashimi plots of IsoSeq transcripts.
Purple arcs represent splice junctions involved in the alternative splicing
event, and are labeled with the total number and the fraction of supporting
reads IsoSeq full length reads. Other splice junctions which are supported
by at least 1% of the transcripts are depicted as green arcs, and by less than
1% grey.
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were not correlated (r=-.05) (Figure 6 D). This result suggests that LRTS
provides reliabe ASE detection and quantification, also for novel splicing. In
contrast, short-read sequencing ASE detection preforms well if the splicing
event is annotated, but is less reliable for novel events not present in the
reference annotation.

VPA induces differential splicing events in primary human
hepatocytes on different levels of complexity

IsoTools provides a couple of statistical approaches to identify differential
splicing events either with two samples or groups of samples. To demonstrate
the capability of these approaches to identify biologically relevant events,
we applied a two proportions z-test (cf. Methods) to compare VPA-treated
hepatocytes to control samples, and found 806 differential splicing events
in 556 different genes at an FDR of 1%. These events include 26 mutually
exclusive exons, 259 exon skipping events, 105 5’ and 62 3’ alternative splice
sites and 354 intron retention events. Also for the differential events, short
read quantification with rMATS was in good agreement, with a Spearman
correlation of APSI of 0.68 (Supplementary Figure S6). In addition, we
found differential usage of 974 transcription start sites and 306 poly-A sites
between VPA and CTL. Differential splice events between VPA and CTL
treated hepatocytes are listed in Suppl. Table 3.

These numbers suggest a widespread effect of VPA on the usage of TSS.
Indeed, it has been shown that HDAC inhibitors (as well as DNMT in-
hibitors) specifically introduce cryptic transcription start sites (TSSs) in
long terminal repeats [29]. This was shown for the HDAC inhibitor SAHA,
a class I, IT and IV inhibitor, while VPA is acting on class I and II proteins.

While mutual exclusive exon events are rare (3.2%), the most significant
splicing event affects the mutually exclusive exons 4A and 4B of SLC39A14
(Solute Carrier Family 39 Member 14), a metal cation transporter responsi-
ble for the uptake of trace elements such as zink, iron and manganese in the
liver [30]. Both versions, containing either exon 4A or 4B, yield functioning
proteins, but the uptake kinetics vary substantially [31]. While we found
both variants expressed at comparable level in the CTL sample, the pro-
portion of 4B increased to 75% in the VPA treated sample (Figure 6E). A
similar shift has been observed between normal and colorectal cancer sam-
ples (CRC) [32]. Notably, we found the same trend with rMATS using the
short read RNA-Seq data when providing the events identified with IsoTools
(42% to 70% PSI of 4B), while rMATS alone did not identify the correct
event. The human liver samples where in-between the two hepatocyte sam-
ples (64% PSI of 4B).

Exon skipping events account for 32.1% of differential splicing. The
most significant differential ES event affects increased inclusion of exon 32
of the FN1 gene. (fibronectin 1; ¢ — value = 3,55E — 111, PSI 9% in
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CTL and 15% in VPA). Again, rMATS analysis of short read RNA-Seq
confirmed this differential event (PSI in CTL 12% and VPA 18%), while in
human liver the exon was almost completely skipped (3% PSI). FN1 is one
of the first genes for which alternative splicing was described, and regulation
and functional effects of splicing in FN1 have been studied extensively [33].
The particular exon subject to the skipping event is referred to as extra
domain A (EDA), one of two extra domains of this gene, and inclusion is
regulated by Serine/arginine-rich splicing factors SRSF1 and SRSF3. While
the extra domains are essential for normal development, elevated inclusion
of EDA is associated with several diseases, including psoriasis, rheumatoid
arthritis, diabetes and cancer. Previous studies observed similar effects on
splicing of FN1 triggered by HDAC inhibitor sodium butyrate (NaB), but
in this case resulting in elevated inclusion of exon 23, which is extra domain
B[34]. Aberrant splicing of FN1 may be related to hepatotoxic effects, as
downregulated or dysfunctional SRSF3, and subsequent aberrant splicing
of its targets including elevated EDA-Fnl, has been associated with liver
disease [35]. We thus conclude that the implemented LRTS workflow reliably
identifies differential splicing events on different levels of complexity.

Discussion

Here, we presented IsoTools, a flexible and powerful Python framework for
the analysis of LRTS data. It provides data structures to search, access,
and filter the transcripts, as well as functionality to compute quality control
metrics, to compare and annotate the transcripts with reference annota-
tions, to integrate data from several LRTS experiments, to quantify isoform
expression levels based solely on LRTS, to perform statistical analysis for
differential splicing, and to export of the data in several output formats.
In addition, the tool facilitates the depiction of summary statistics as well
as complex splicing models of individual genes and transcripts. IsoTools is
explicitly designed to facilitate integration of custom metrics and algorithms
to enable advanced users the application to novel use cases, such as for the
analysis of single cell LRTS.

To characterize novel transcripts, we introduce a fine grade biologically
motivated classification scheme, refining the established technically defined
classes. The categories facilitate direct interpretation of differences between
samples, and may hint towards specific disturbed splicing mechanisms, such
as introduced by SF3B1 hotspot mutations, which specifically result in
shifted in 3’ splice sites [36]. By far, the most common category of novel
transcripts was “novel combinations of known splicing events”. Often, these
combinations are separated by several kilobases, and thus cannot be iden-
tified with short read sequencing. Some of the identified novel transcripts
result from misalignment of long reads at short exons. [37]. IsoTools helps
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identifying these cases, such that alignment algorithms can be improved in
this regard.

Alternative splicing events (ASEs) have previously been defined as bub-
bles in splice graphs [15]. According to this definition, a ”complete” ASE
summarizes all variants that share common start and end splice sites, but no
splice sites in between those. While the focus on splice sites sounds intuitive,
this definition neglects the lack of splicing within a variant, with unintended
consequences. For example, an alternative 5’ splice site event includes the
flanking 5’ exon — and potentially additional splicing within this exon — but
not the flanking 3’ exon, since the 3’ splice site is the same for the variants.
This is incoherent, but also joins potentially distinct ASEs, unnecessarily
increasing the complexity.

We propose a novel graph-based approach to identify and classify alter-
native splicing, based on bubbles in the segment graph, ensuring common
exonic segments on both ends of the event without extending to common
splice sites. In addition to be more coherent, our definition has two practical
advantages over the definition on splice graphs: first, ASEs are subdivided
in different classes, which can be analyzed independently. Second, while
the original definition on splice graphs combines a variable number of al-
ternatives to an event, our definition decomposes the event in two sets of
transcripts. This binary perspective can be motivated biologically, as pri-
mary and alternative sets reflect the binary choices of an alternative splicing
event (Figure 6 C) and has practical benefits, simplifying subsequent statis-
tical analysis of ASEs.

Our definition of ASEs provides the basis for statistical tests for the de-
tection of differential splicing events, either between two samples or between
two groups of samples. This approach is fundamentally different from differ-
ential expression analysis on transcript level, for which the well established
framework based on negative binomial generalized linear models (GLMs)
[38, 39] can be applied, also with LRTS data [14]. However, identification
of differential splicing events (DSE) has several advantages over differential
transcript expression (DTE). While DTE may be a combination of differen-
tial regulation on gene level and differential splicing, DSE focusses on local
splicing regulation, and is independent from gene expression levels. Further,
DSE can distinguish several related or independent splicing events on the
same gene. As the individual events can be classified, DSE facilitates cat-
egorization of differential splicing. Last, DSE aggregates statistical power
from all transcript isoforms covering the event. Even transcripts affected
by technical artefacts, such as RTTS and fragmentation, may still provide
useful information for event level analysis. On isoform level, these artefacts
would result in distinct transcript isoforms, and thus further increase the
complexity and disturb the analysis if not filtered out. Hence, to interpret
and validate the effects of differential splicing, DSE analysis yields more
concise results.
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Much like gene expression, alternative splicing is subject to biological
variability within samples and groups of samples of the same condition.
Statistical tests that compare individual samples, such as the two propor-
tion z test and the likelihood ratio test with binomial model implemented
here, neglect this variability, making the analysis prone to false positive
results. Thus, the third implemented test, the likelihood ratio test with
beta-binomial model, facilitates the comparison of groups of samples. The
biological variability within the groups is estimated from the data and taken
into account. While this approach promises to be more robust, it depends
on replicates and thus could not be demonstrated with our data. LRTS
datasets with biological replicates are the exception today, but continuously
falling sequencing cost, higher throughput in combination with sample mul-
tiplexing, as well as better software facilitating additional applications will
improve the cost benefit ratio of biological replicates.

In addition to DSE analysis, the identified alternative events can be used
for exploratory analysis. By computing a PCA or UMAP embedding, the
relation of samples with respect to event classes can be depicted. Further-
more, the events can be exported to be used with external tools designed for
short read RNA-seq analysis. This facilitates integration and comparison of
long and short read technologies.

We observed a depletion of short transcripts with the IsoSeq technology.
The cause of this bias needs to be investigated. If it cannot be avoided
technically, a dedicated normalization method would improve the accuracy
of quantitative interpretation.

In primary human hepatocytes, IsoTools identified aberrant splicing events
in different categories, caused by the HDAC inhibitor VPA. The role of
HDACSs in modulating alternative splicing has recently been emphasized by
investigating the role of histone marks in the choice of splice sites and regu-
lation of splicing [40]. We observed changes in splicing after VPA treatment
on all levels of complexity but most prominently with usage of mutually
exclusive exons, exon skipping and alternative T'SS events, and we validated
these events by short-read RNA-Seq of the same samples. While not yet re-
ported after VPA treatment, many of the identified differential events have
been observed to be triggered also by other HDAC inhibitors in compara-
ble models, demonstrating the ability of LRTS to detect differential splicing
between samples.

IsoTools is simple to install, flexible, versatile, and easy to use. It offers
novel functionality, including expression quantification and differential splic-
ing analysis, extending the range of potential applications for LRTS. Several
example workflows cover relevant use cases and can simply be adapted by
the user to realize more specific analysis. We demonstrated the utility of our
tool by analyzing LRTS data from hepatocytes treated with VPA, and iden-
tified novel and differential splicing events, of which several are expressed
also in human liver samples and are thus likely relevant in-vivo.
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Methods

VPA-treated and control primary hepatocyte samples

The preparation of the samples processed here are described in [41]. In
brief, human hepatocytes were exposed to 15 mM valproic acid (VPA) or
1% EtOH (CTL) and sampled after one day, two days and three days of
treatment. For the 4th timepoint, VPA was washed out after day three, and
cells were resampled after three additional days.

PacBio IsoSeq Sequencing

For each time point and condition, we prepared triplicate cDNA samples.
For library preparation, all VPA treated samples as well as the control sam-
ples were pooled. The libraries were sequenced on the PacBio Sequel II
platform, using one 8M SMRT cells for each pool.

After confirming sample integrity using Agilent Bioanalyser, 300 ng RNA
from each triplicate sample was incubated with NEBNext Single Cell RT
Primer Mix for 5min at 70°C. Afterwards, Single Cell RT buffer and Sin-
gle Cell RT enzyme Mix were added and incubated for 75min at 42°C.
Then, template switching oligo was added, followed by 15 min of incubation
at 42°C. cDNA was cleaned up using 1:1 Pronex beads followed by two
washing steps with 200 ul 80% ethanol and elution of the sample with EB.
After addition of NEBNext Single Cell cDNA PCR master mix, NEBNext
primer and the Iso-Seq Express cDNA PCR primer, cDNA was amplified in
12 cycles with 3min elongation time. We targeted for standard transcript
length of 2kb using 86 jl of Pronex beads for cleanup.

For sequencing, all control and VPA-treated samples were pooled equimo-
larly and PacBio IsoSeq libraries were prepared using the Express TPK 2.0
kit, including damage repair, end repair and A-tailing steps. Next, overhang
adapters were ligated and the resulting libraries were cleaned up using 1:1
ProNex beads. Agilent bioanalyser assessment reported an average library
insert sizes of 4,222 bp for CTL and 4,336 bp for VPA treated samples,
respectively. Sequencing complexes were generated using Sequel II Binding
Kit 2.0, Sequencing Primer v4.0, and Sequel II Polymerase 2.0, and then
purified using ProNex beads.

Libraries for the pooled CTL and VPA treated samples were loaded
individually together with PacBio internal control libraries on two Sequel 1T
SMRT cells (diffusion loading). Sequencing was conducted with 30 h movie
time, yielding 660.7 GB (CTL) and 460.1 GB (VPA) of total sequencing
data. This resulted in 6,720,864 and 3,926,050 polymerase reads, with an
average length of 98,305 and 117,202 bases.
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PacBio IsoSeq pre-processing

IsoSeq subreads were processed using the Iso-Seq v3.4 bioinformatic pipeline
with recommended parameters. In brief, we used the ccs tool to call circu-
lar consensus sequences, lima to remove primers and adapters, and isoseq
refine to filter out reads not featuring poly-A sequences. This resulted
in 2,643,404 and 4,265,020 ”full length non chimeric” (flnc) HiFi poly-A
reads, with an average length of 3,636 and 3,880 bases for the VPA and
CTL samples, respectively. 96.6% and 95.5% of these HiFi reads have an
error rate of less than 1%, according to base quality values. The flnc reads
were directly (without an additional clustering step) aligned to the human
genome GRCh38.p13, obtained from the GENCODE website [42], by call-
ing minimap2[43] with the pbmm2 align --preset ISOSEQ command.
2,611,571 and 4,196,197 of the reads could be aligned in one consecutive
alignment, 30,561 and 66,293 were split in two or more parts, 1,272 and
2,530 were not aligned. All further analysis steps were performed with the
IsoTools package, as described in the respective results sections. For these
samples, the analysis including data import, computation of quality control
metrics, characterization of novel isoforms, and differential analysis took
about 67 minutes on a single CPU core, using a maximum of 20 GB RAM.

Definition and classification of binary alternative splicing events

In analogy to the commonly used definition on splice graphs [15], we define
binary alternative splicing events (ASEs) based on bubbles in the segment
graph of a gene. In a segment graph, nodes represent disjoint exonic seg-
ments, and edges imply that the two exonic segments succeed one another in
one or more transcripts. The segment graph is bi-directed, as each node has
a set of incoming and outgoing edges, and ordered by the genomic position,
meaning an edge from node z; to node z; is only allowed if z; < z;, e.g. the
genomic end position of z; is smaller or equal to the start position of z;.
If two succeeding segments are separated by an intron, the edge represents
a splice junction. On the other hand, if the genomic end position of the
preceding segment corresponds to the genomic start position of the succeed-
ing segment, the edge is called internal. This implies either an alternative
preceding or succeeding segment, connected by a splice junction edge.
Bubbles are structures in the segment graph, with two paths starting in
a common segment rs and ending in a common segment x., but the paths
do not share any segments except xs and x. (cf. Figure 6A-C). We define
the ”primary path” as the path for which the outgoing edge from z, exceeds
the outgoing edge of the other path, which in turn is called the ”alternative
path”. We further categorize the alternative path in 5 different classes: the
alternative is classified as mutually exclusive (ME) if the primary path from
xs to x. contains at least one additional segment xpsr. The definition of the
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other classes depend on whether the outgoing edge of x5 and the incoming
edge of x. on the alternative path correspond to splice junctions or internal
edges (within an exon). Alternative paths are called exon skipping (ES) if
both edges are splice junctions, and as intron retention (IR) if both edges
are internal. If one of the edges is a splice junction and the other internal,
the alternative is classified as 5’ or 3’ alternative splice site (5AS and 3AS).
For each primary path, we group all alternative paths of the same category,
and find the set of transcripts A supporting one of the alternatives and B
supporting the primary.

This definition results in a finite set of classified binary alternative splic-
ing events for each gene. They can be quantified by the proportion spliced
in (PSI), defined as the number of long reads supporting transcripts from A
over the total number of reads, supporting transcripts from A or B.

Statistical tests for differential splicing

Detecting differential splicing events between two samples or groups of sam-
ples is a major goal of splicing analysis. This can be achieved by specific
statistical tests. In IsoTools, we implemented 3 statistical tests for differen-
tial splicing. The first two, two-proportions z-test and likelihood ratio test
with binomial model, apply if two individual samples are compared. For
the third test, splicing proportions are modeled with beta-binomial distri-
butions. With this approach, the likelihood ratio test is appropriate for the
comparison of two groups of samples, as the models account for variability
within groups.
The two-proportions z-test is specified by the statistic

pP1— P2
z= ~ N (0,
VPO =PG5 + %) o W

where n; = k; + 1; is the total number of reads of sample i € [1,2] covering
the event. k; and [; are the number of reads supporting the alternative (set

A) and primary (set B) variants, respectively. p; = % is the proportion of
reads supporting the alternative for sample 7, and p = % the proportion

supporting the alternative for both samples combined.

Alternatively, when the number of supporting reads is modeled with a
binomial distribution, a binomial likelihood ratio test can be applied.
This test is specified by the statistic

A==2(; —bo) ~ X (2)
where
/L = ln(B(/ﬁ |]§1,n1)) + ln(B(k‘z ’]52,712)) and

by = ln(B(/Cl + ko ’]3, ny + ng))
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are the maximized log-likelihoods under the alternative H; and the null
hypothesis Hy. B(n | p,n) is the probability mass function of the binomial
distribution, which is maximal at the empirical proportion p defined above.
Both tests yield very similar results (p-values r=0.999, see Suppl. Figure
S7).

In the presence of two groups of samples IsoTools offers a beta-binomial
mixture likelihood ratio test. This test models the variability within the
two groups with a beta-binomial mixture distribution, a binomial distribu-
tion where the probability parameter p follows a beta distribution Beta(a,b).
The maximum log-likelihood parameters a and b are determined numerically
by a quasi Newton optimization method (LM-BFGS from SciPy [44]).

In addition to ASEs, all tests defined above can also be applied to de-
tect differential usage of transcription start and poly-A sites. In this case,
all transcripts supporting a particular start/poly-A site are considered the
alternative set B, whereas all other transcripts constitute the primary set

A.

RNA-Seq

RNA-Seq data for the primary hepatocytes and liver samples were down-
loaded from ENA accession PRJEB22198 and PRJEB35350 respectively.
The short reads were aligned to the human reference genome GRCH38.p13
using STAR aligner version 2.7.6a [45], with provided gff annotation from
GENCODE release 36 including annotation of non-chromosomal scaffolds
[42]. For hepatocytes, we merged all alignments from the same time point,
to resemble the IsoSeq samples. We used rsem v1.3.1 [46] with the transcrip-
tome alignment from STAR to obtain read counts on transcript and isoform
level. Next, we used rMATS rmats-turbo v4.1.1 [16] to find differentially
spliced events between VPA-treated hepatocytes and control, either using
events calculated by rMATS, or by providing events generated by IsoTools
from the GENCODE reference as well as from IsoSeq LRTS.

ENCODE CAGE data

We downloaded CAGE TSS peaks for HepG2 cells from the ENCODE data

portal [22] (https://www.encodeproject.org/) with the following identifiers:
ENCFF089AFK, ENCFF2200WX, ENCFF241CGD, ENCFF248QKX, ENCFF373BNI,
ENCFF419FNU, ENCFF875ILB, ENCFF885VJU.

Data Availability

The primary human hepatocyte LRTS data is available from ENA under
accession number PRJEB46194.
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Code Availability

IsoTools is available at https://github.com/MatthiasLienhard/isotools and
the PyPI software repository. The documentation, including tutorials with
example applications and case studies as well as the API reference, is avail-
able at https://isotools.readthedocs.io/en/latest/. The github repository
includes a Jupyter notebook to replicate all analyses from this study.
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