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Abstract

Chemotaxis, the directional motility of cells in response to spatial gradients of chemical cues, is a fundamental process behind a

wide range of biological events, including the innate immune response and cancer metastasis. Recent advances in cell biology

have shown that the protrusions that enable amoeboid cells to move are driven by the stochastic threshold crossings of an

underlying excitable system. As a cell encounters a chemoattractant gradient, the size of this threshold is regulated spatially so

that the crossings are biased towards the front of the cell. For efficient directional migration, cells must limit undesirable lateral and

rear-directed protrusions. The inclusion of a control mechanism to suppress these unwanted firings would enhance chemotactic

efficiency. It is known that absolute concentration robustness (ACR) exerts tight control over the mean and variance of species

concentration. Here, we demonstrate how the coupling of the ACR mechanism to the cellular signaling machinery reduces the

likelihood of threshold crossings in the excitable system. Moreover, we show that using the cell’s innate gradient sensing apparatus

to direct the action of ACR to the rear, suppresses the lateral movement of the cells and that this results in improved chemotactic

performance.
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1 Introduction

For a chemical reaction to ensue, two physical processes

must take place. First, the interacting molecules must come to-

gether. The rate at which this process takes place is dictated by

the diffusivity of the molecules which, at the microscopic level,

is governed by the Brownian motion of the particles. Once the

molecules are within a given interaction radius, a chemical con-

formational change takes place. This process is also stochastic,

as it is usually viewed as overcoming a stochastic potential

well [1, 2]. The effect of this randomness on the concentration

of the biochemical species is quite acute when the copy number

of the interacting molecules is small, such as genetic regulatory

networks. Such systems have attracted considerable theoretical

and experimental attention [3–5]. However, stochastic effects

can also influence cellular behavior even when the number of

molecules is large. The migration of amoeboid cells is one

such example.

The social amoeba Dictyostelium discoideum lives in the

soil where it forages for nutrients, typically bacteria [6, 7]. To

find food, it is continuously in motion which takes the form of

actin-filled protrusions known as pseudopods (literally “false

feet”). In migrating cells, these protrusions appear randomly

around the cell perimeter but have reproducible characteristics,

such as their size, frequency and lifetime [8, 9]. These cells

also can direct pseudopods in the direction of their prey, by

using chemical traces emanating from their target, a process

known as chemotaxis. Specifically, bacteria secrete folic acid

which binds to cell-surface receptors that are specific to this

chemical. Through a complex but sophisticated method, the

amoebae can discern the direction of the gradient, and increase

the local probability of extending a pseudopod in that direction,

while simultaneously lowering the probability of pseudopods

away from the source. This spatially biases the extension of

pseudopods, resulting in the directed motion that enables the

cell to survive.

The characteristics of the pseudopods for cells that are mi-

grating randomly or following a chemoattractant gradient are

quite similar [8], suggesting that there is a common mechanism

regulating the formation of a pseudopod, and that chemoat-

tractant receptor occupancy is used solely to spatially guide

this process. During the past fifteen years, it has been in-

creasingly clear that the appearance of these extensions in

Dictyostelium cells is regulated by an excitable system [10,11].

The movement of cells using an excitable system is not lim-

ited to these amoebae. The existence of an excitable cortex

is highly conserved and has been detected in nematodes [12],

Xenopus frog eggs [13] as well as mammalian white blood cells

(neutrophils [14–16], mast cells [17] and macrophages [18]),

cultured neurons [19] and cancer cells [20, 21].

An excitable system is a class of nonlinear dynamical sys-

tems that has several features [22]. Having a single stable

equilibrium, small perturbations about this equilibrium elicit

small-scale responses. However, whenever the perturbations

are sufficiently large, they produce a large-scale deviation away

from the equilibrium before the state returns to its prestimu-

lus level. While the system is undergoing this trajectory, it

exhibits a refractory period during which no further activation

is possible. Both the size and length of this excursion are also

characteristic of the system, which can be thought to possess

a threshold for activation [23]. Stochasticity can induce the

system to cross the threshold triggering a large-scale excursion.

The rate at which this happens is governed by the ratio of the

size (standard deviation) of the noise relative to that of the

threshold [24, 25].

It has been hypothesized that the extension of pseudopods

represents the crossing of this firing threshold [26–28] In a

randomly migrating cell, the size of the threshold is uniform

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2021. ; https://doi.org/10.1101/2021.07.10.451673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.10.451673
http://creativecommons.org/licenses/by-nd/4.0/


throughout the cell, and hence the probability that the threshold

is crossed leading to the extension of a pseudopod is spatially,

uniformly distributed around the perimeter. However, in the

presence of a gradient of receptor occupancy, the threshold

is spatially modulated. At the site closest to the chemoat-

tractant source, the threshold is lowered, making it easier to

cross and hence increasing the likelihood that pseudopods are

extended. Away from the source, the threshold is increased

reducing the likelihood that pseudopods will form. The result-

ing biased, excitable network can move cells in the direction

of the chemoattractant [27, 29–33]. To date, there is ample

evidence of this model of cell movement, from the existence of

sub/supra-threshold behavior and refractory periods [34,35], to

the resultant traveling waves that are characteristic of excitable

media [14, 26, 36–39]. Recently, it has been possible to alter

this threshold synthetically, leading to large changes in the

behavior of the dynamical system [21, 40–43].

In the presence of shallow gradients, the raising of the

threshold at the rear of the cell may not be sufficient to abrogate

completely the extension of pseudopods. These rear-directed

pseudopods would have the net effect of slowing overall mi-

gration towards the chemoattractant source. There are two

potential ways to limit these undesirable protrusions. In theory,

one could engineer a mechanism to increase the threshold at the

back further. Alternatively, one could design a control system

that provides some control over the variance in the fluctuations

of specific molecules that trigger cell movement. In this paper,

we consider the latter through a mechanism known as absolute

concentration robustness (ACR) [44–46]. ACR comes about

through the binding of a target species in a specific reaction

scheme, which ensures that the steady-state concentration of

the target remains robustly stable to fluctuations in its environ-

ment. In this study, we show how ACR can be used to achieve

control over the levels of critical lipids in the cellular signaling

network which in turn directly affects the firing rate of the

underlying excitable system. Together, this creates a control

scheme for faster and more efficient directed migration.

The rest of the paper is organized as follows. In Section 2,

we consider some mathematical preliminaries. We describe

a simplified mathematical model of an excitable reaction net-

work that closely recreates the dynamics of the system regu-

lating actin protrusions. We also present equations describing

the mathematical model of the ACR regulator. In Section 3,

we demonstrate how ACR can be used to suppress excitable

network activity and describe the signaling system used to

sense and interpret chemoattractant gradients. Following that,

we present our main findings: how the inclusion of the ACR

system can reduce the variance of the stochastic perturbations.

Further, we couple this ACR system with a spatially heteroge-

neous network to focus its activity at the rear of migrating cells.

By incorporating a simple model of cell motion, we demon-

strate, through simulation, enhanced chemotaxis towards the

chemoattractant source. Finally, in Section 4, we present some

conclusions.

2 Preliminaries

2.1 Mathematical model of the excitable network

regulating motility

The seminal work of FitzHugh [47] and Nagumo [48]

showed that it is possible to describe the dynamics of excitabil-

ity through a two-state activator-inhibitor network. The acti-

vator (u) incorporates a positive feedback loop that allows it

to stimulate its production. The inhibitor (v), whose dynamics

occur on a slower time scale, provides negative feedback to the

activator. In the classical description of cellular excitability, the

variables represent membrane potentials, which may be nega-

tive. In our case, excitability comes about because of activities

and concentrations of various interacting molecules, which

are non-negative variables. To ensure that this is the case, we

considered a two-dimensional activator-inhibitor model given

by [23] :

du

dt
=−ã1u− ã2uv+

ã3u2

ã2
4 +u2

+ ã5 +w1 (1a)

dv

dt
= ε(−v+ cu)+w2 (1b)

This model captures the dynamics of excitable systems while

ensuring that all species concentrations remain non-negative.

The essential nonlinearity in the activator dynamics in Eqn. 1a

is incorporated through a co-operativity term with Hill coef-

ficient two. The inhibitor dynamics operate at a slower time

scale owing to the parameter ε � 1 in Eqn. 1b. The terms w1

and w2 represent the contributions of any external signals to

the system.

In the context of cell migration, recent evidence has sug-

gested that the autocatalytic behavior of the activator is likely

achieved via a third species through mutual inhibition [49].

This is based on the spatial segregation of biochemical species

seen during chemotaxis, where some species accumulate to-

wards the source (front), while others accumulate at the op-

posite end of the cell (back) [50]. This mutually exclusive

segregation is characteristic of mutual inhibition [51]. To

accommodate these new findings, we modified the activator-

inhibitor system as a three-dimensional system, renaming the

variables F , B, and R for “front”, “back” and “refractory,” re-

spectively (Fig. 1A).

dF

dt
=−(a1 +a2R)F+

a3

a2
4B2 +1

+a5 (2a)

dB

dt
= b1 − (b2 +b3F)B (2b)

dR

dt
=−c1R+ c2F (2c)

We refer to this system of equations as the Signal Transduction

Excitable Network (STEN) [10].

Under the quasi-steady-state assumption on Eqn. 2b as the

second reaction approaches steady-state: B = b1/(b2 +b3F),
and the remaining two equations assume the form of Eqn. 1.

The dynamics of this system can be better visualized using

phase space (Fig. 1B). Whereas the F-nullcline is cubic and dis-

plays an inverted “N-shape,” the R-nullcline is linear. Changes

in the parameter c2, in Eqn. 2c, alter the slope of the R-nullcline
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Figure 1: Excitable dynamics. (A) Schematic of the signal transduction excitable network (STEN) showing the entities F, B and R

and their interactions. (B) F-R phase portrait showing the respective nullclines (F: green solid, R: blue dashed) and the

equilibrium point (yellow circle). The arrows represent the magnitude and direction of velocities (Ḟ, Ṙ) in the field. (C)

Lowering of F-dependent activation rate of R (c2) results in a change in position of the R-nullcline (a → b → c) as well as in

vth. The local extrema of the F-nullcline are denoted as red circles. (D) Typical time profiles of F, B and R. Parameter values

used in simulation: a1 = 2, a2 = 20, a3 = 240, a4 = 120, a5 = 0.04, b1 = 3, b2 = 0.006, b3 = 240, c1 = 0.08 and c2 = 5.76.

(E) Plots of the firing frequency and threshold (vth) as a function of parameter c2. The firing frequency was measured by

counting the number of firings in a time window of 600 A.U. The dashed section corresponds to the parameter space where

vth is undefined following the definition from Eqn. 4.

(which thus gets translated in log scale) as shown in a zoomed-

out view of the phase space (Fig. 1C). These variations could

affect system behavior as they may alter the stability of the

existing equilibrium, or result in the emergence of multiple

equilibria [23]. The normal mode of operation in chemotaxis

is at position “a”, where a stable equilibrium exists to the left

of the minimum of the cubic nullcline. If an external input

or intrinsic noise in the system is sufficient to displace the

state beyond this minimum, then the state (F, R) undergoes a

large excursion (firing) in phase space, creating a spike in time

observed in both the F and R states (Fig. 1D). This is followed

by a refractory period, during which no further firings are pos-

sible, as the inhibitor (R) decays back to equilibrium. B shows

a complementary profile to F [49] and thus reaches a minimum

whenever a firing takes place.

We now briefly demonstrate what parameters control the

firings of the excitable network. According to Kramer’s the-

ory [1, 2], the relationship between firing frequency, f , and the

noise level is given by

f ∝ exp
(

−
2∆U

σ

)

, (3)

where ∆U is the height of a potential barrier and σ is the noise

variance. This potential barrier is related to the activation

threshold of the excitable system, vth, that can be described as

(Fig. 1C):

vth =











Req −R1, for Feq ≤ F1

R2 −Req, for Feq ≥ F2

undefined, otherwise.

(4)

Here, (F1,R1) and (F2,R2) are the local minimum and max-

imum, respectively of the cubic nullcline (red markers in

Fig. 1C). In this definition of vth, we only consider param-

eter values that give rise to a single, stable equilibrium and

have excluded cases of unstable and/or multiple equilibria

(Feq ∈ (F1,F2)). Note, that the parameter space that gives rise

to multiple equilibria in our system is small.

Decreasing c2 (e.g., to point “b” in Fig. 1C) lowers the

threshold level which in turn increases the firing rate until

(Feq,Req) reaches (F1,R1) (Fig. 1E). Beyond F1, a bifurcation

occurs and the equilibrium is rendered unstable resulting in a

limit cycle. Upon decreasing c2 further, another stable equi-

librium is created at (F2,R2). As c2 is lowered even further,

the threshold vth increases resulting in lower firing rates. Thus,

the firing frequency shows a biphasic relationship with the

activation threshold of the network (Fig. 1E).

2.2 Protrusions in spatial simulations

So far, we have used temporal simulations of the excitable

network to explain how noise-induced firings occur. These

firings are posited to lead to cellular protrusions and hence

cell motility. To describe the effect on directional motility,
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Figure 2: Spatiotemporal simulation of excitable dynamics. (A) Kymographs of F, B and R. Brighter regions represent higher

molecule numbers. The F and B kymographs show complementary patterns whereas the R kymograph is similar to that of F

but more diffused in time. (B) Temporal profiles of F, B and R at the location marked by the yellow dashed lines in panel A.

however, requires that we consider a spatial dimension. To this

end, we extend our excitable system in one spatial dimension

which represents the perimeter of a circular cell. In this spatial

model, we allow the reacting species to diffuse isotropically.

Plotting the activity as a function of time and space (x and

y-axes, respectively) gives rise to the kymographs of Fig. 2. In

these kymographs, the firing of the system is seen as an initial

trigger that spreads in space (along the cell perimeter) in the

form of a traveling wave (bright F and R; dark B) [52]. The F

and B kymographs show complementary patterns whereas the

R kymograph is similar to that of F, but more diffused in time

owing to the slower time scale in the refractory equation.

In cells, these spatiotemporal waves correspond to protru-

sions on the cell membrane. A line scan through the kymo-

graphs shows the activity in Fig. 2B as a function of time at

one point on the cell perimeter (yellow dashed line in Fig. 2A).

These profiles match the previous plots in Fig. 1D. These ky-

mographs closely resemble similar plots of cell protrusions

obtained in experiments [21, 40, 49].

2.3 Absolute concentration robustness

Per Eqn. 3, the rate at which activity is triggered in an ex-

citable system depends on both the size of the threshold as

well as the size of the noise. Having seen how the threshold af-

fected the firings, we now consider the role of the noise and, in

particular, how absolute concentration robustness (ACR) could

be used to limit these firings. To illustrate the essential features

of ACR, we consider the following toy model [44]. This model

consists of two biochemical species: the target species, M,

whose concentration is to be regulated, and N, which achieves

this regulation. The two species obey the following mass action

reaction scheme (Fig. 3A, top)

M+N
α
−→ 2N (5a)

N
β
−→ M (5b)

We assume that the total number of molecules is conserved

(i.e. M + N = constant = T). Solving for the steady-state

concentrations of the species leads to two possible equilibria:

(M̄, N̄) =

{

(T,0),

(

β

α
,T −

β

α

)}

where the first is unstable and the second stable. Thus, as

long as the initial steady-state avoids the unstable equilibrium,

the steady-state concentration of M is constant. This depends

only on the reaction rates, α and β (Fig. 3B), and not on the

concentration of the binding species. This is in contrast to the

case of regular binding reactions (Fig. 3A, bottom):

M
α ′

−→ N (6a)

N
β ′

−→ M (6b)

where the steady-state is given by

(M̄′, N̄′) =

(

β ′

α ′+β ′
T,

α ′

α ′+β ′
T

)

.

Unlike ACR binding, here the steady-state of M is a linear

function of the total concentration (Fig. 3C).

It follows that, in a deterministic setting, the ACR scheme

provides a robust mechanism for maintaining a constant con-

centration of a particular reactant. Our main interest, however,

is in controlling concentration variations. As shown by Ander-

son et al. [45], the ACR scheme enables the system to control

the variance of the target species. In particular, for a large total

number of molecules, the stationary distribution of M assumes

a Poisson distribution with parameter β/α. The advantage of

a Poisson process is that variance is now equal to the mean:

µACR = σ2
ACR =

β

α
.

The same is not necessarily true for normally distributed sys-

tems where the mean and variance are independent parame-

ters. For large means, Poisson fluctuations are small relative

to the mean. Thus, in the case of a Poisson process, if we

have a method to control the mean of the system, we can

automatically put a restriction on the variance. Fig. 3D il-

lustrates the results of a stochastic simulation of the ACR
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Figure 3: Comparison between ACR and regular binding. (A) Schematic of ACR and regular binding with species M, N and their

respective rate constants. M0 and M(t) are the initial condition and the system output, respectively. (B, C) Steady-state

concentrations of M (M̄) following stochastic simulations (using SSA) of ACR (B) and regular binding (C) for varying total

number of molecules. (D) Steady-state distributions of M following stochastic simulations of ACR for two different initial

distributions, M0,1 ∼ N (50,20) and M0,2 ∼ N (25,10)+N (75,20). Simulations used α = 0.1 and β = 0.5.

scheme assuming two different initial distributions, a unimodal

Gaussian distribution given by M0,1 ∼ N (50,20) (gray) and

a bimodal distribution given by the sum of two Gaussians:

M0,2 ∼ N (25,10) +N (75,20) (blue). In both cases, the

steady-state distribution converges to a Poisson distribution

with mean and variance ≈ β/α = 5. In this way, the ACR

scheme grants robust control over both the mean and fluctua-

tion level of the process.

2.4 Stochastic simulations

Although, in this paper, we have described all systems us-

ing reactions and their corresponding differential equations, all

our simulations are, in fact, based on a stochastic description

of the systems. This requires that reactions be described by

propensity functions. Descriptions of the propensity functions

for all simulations and the corresponding parameters are listed

in Table 1.

For these stochastic simulations, we adopted two methods.

First, for homogeneous systems, we used Gillespie’s stochas-

tic simulation algorithm (SSA) [54]. Briefly, in the SSA, at

each time point in the simulation, two random numbers are

used to find the identity of the next reaction and the time at

which it is to takes place. In the limit, the distribution obtained

from these SSA simulations exactly recreates the probability

distribution of the chemical master equation that describes the

system. Second, for spatially heterogeneous systems, we used

the reaction-diffusion master equation (RDME). Here, the spa-

tial volume is discretized into smaller voxels. Within each

subvolume, the reactions are assumed to follow the statistics

of a well-stirred system. Additionally, diffusion is modeled as

a first-order reaction transferring molecules from one voxel to

another one. To implement the RDME, we used the software

package URDME [55], which allows for unstructured lattices

and uses the Next Sub-volume Method [56] to simulate the

system. For our spatiotemporal simulations, we assumed a

one-dimensional cell perimeter of length 30 µm with periodic

boundary conditions (roughly equivalent to the perimeter of a

circular cell of radius 5 µm). The domain was subdivided into

601 equally-sized voxels.

3 Main Results

3.1 Controlling the firing frequency of the excitable

system through ACR

As argued above, membrane protrusions are initiated by

the firings of an excitable network, and the frequency of these

events is controlled by the size of the noise relative to that of

the threshold. The results of Section 2.3 suggest that this noise

could be regulated through the inclusion of an ACR mecha-

nism in the excitable network. For directed migration, we want

to inhibit protrusions at the rear of the cell (i.e. away from

the chemoattractant source). Thus, we are primarily interested

in regions where the concentration of “back” (B) molecules

is high. Thus, we couple the ACR scheme to the excitable

network Eqn. 2 through state B. In particular, we posit the exis-

tence of a controlling variable BACR that binds to B according

to the ACR scheme:

B+BACR
α
−→ 2BACR (7a)

BACR
β
−→ B (7b)

Thus, Eqn. 2b becomes:

dB

dt
= b1 − (b2 +b3F)B+(β −αB)BACR

where BACR obeys:

dBACR

dt
=−(β −αB)BACR.

Note, that from the latter, in the steady-state B̄ = β/α which

forces the concentration of F to:

F̄ =
b1 −b2B̄

b3B̄
=

b1α −b2β

b3β

In particular, note that this is independent of the parameters in

Eqn. 2a and Eqn. 2c.

To explore the effect of this scheme on the firings of the

excitable system, we used spatial simulations, shown in Fig. 4.

For the first half of the simulation, the system followed the

dynamics of the regular F, B, R system. Thereafter, the

ACR scheme was turned on by the incorporation of the BACR

molecule. The kymographs of the F and B molecules show

how the concentrations of both molecules decreased upon the

incorporation of ACR, reaching a steady state after approx-

imately 200 time steps (Fig. 4A). Once at steady-state, the
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Figure 4: ACR controller suppresses firing. (A) Kymographs of F (left) and B (right) showing the effect of the ACR controller.

ACR controller was manually turned on at t = 600 A.U. (dashed yellow line) and was able to suppress the activities within

200 time units. (B) Boxplot showing the change in the standard deviation of B computed over time and space (voxels) before

and after the ACR controller was on. Simulations used α = 0.2 and β = 4.

Table 1: Parameters used in the stochastic simulations.

Stoich. Vector Parameter

No. Reaction Propensity E E* I I* F B R BACR
Nom.
Val.

Units†

S
T

E
N

1. F −→∅ a1[F] 0 0 0 0 −1 0 0 0 a1 1 T−1

2. F
R
−→∅ a2[F][R] 0 0 0 0 −1 0 0 0 a2 37 [µM T]−1

3. ∅
B⊥
−−→
RR

F
[RR]

a2
4[B][B−1]+1

0 0 0 0 +1 0 0 0 a30 120 µMT−1

RR = a30 +a3([E*]-[I*]) a3 1 T−1

a4 444 µM−1

4. ∅ −→F a5 0 0 0 0 +1 0 0 0 a5 5.4 ×10−3T−1

5. ∅ −→B b1 0 0 0 0 0 +1 0 0 b1 0.41 µMT−1

6. B −→∅ b2[B] 0 0 0 0 0 −1 0 0 b2 3 ×10−3T−1

7. B
F
−→∅ b3[B][F] 0 0 0 0 0 −1 0 0 b3 444 [µM T]−1

8. R −→∅ c1[R] 0 0 0 0 0 0 −1 0 c1 0.04 T−1

9. ∅
F
−→R c2[F] 0 0 0 0 0 0 +1 0 c2 2.88 T−1

L
E

G
I

10. E −→E* k1[E] −1 +1 0 0 0 0 0 0 k1 2.9 ×10−8T−1

11. E
S
−→E* k2[E][S] −1 +1 0 0 0 0 0 0 k2 1.1 ×10−3[µM T]−1

12. E*
−→E k3[E*][E*-1] +1 −1 0 0 0 0 0 0 k3 3.1 ×10−3[µM T]−1

13. I −→I* k4[I] 0 0 −1 +1 0 0 0 0 k4 8.7 ×10−9T−1

14. I
S
−→I* k5[I[S] 0 0 −1 +1 0 0 0 0 k5 3.3 ×10−4[µM T]−1

15. I*
−→I k6[I*][I*-1] 0 0 +1 −1 0 0 0 0 k6 9.3 ×10−4[µM T]−1

A
C

R

16. B+BACR
E*

⊥
−−→2BACR

d1α[B][BACR]

d2 +E*
0 0 0 0 0 −1 0 +1 d1 2.7 ×10−2µM

d2 1.35 µM

α 1 [µM T]−1

17. BACR
E*

⊥
−−→B

d1β [B]

d2 +E*
0 0 0 0 0 +1 0 −1 β 20 T−1

Unit S E E* I I* F B R BACR

Diffusion constant µm2T−1
×10−2 0.25 2.5 2.5 12.5 12.5 5 4 4 1

†T = time in A.U. Additional parameters:

1. E + E*= I + I*= 140,000.

2. Viscoelastic model: [53]. γa = 6.09nNs/µm3, γc = 0.064nNs/µm3, kc = 0.098nN/µm3
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ACR controller completely suppressed firings. Additionally,

as shown in Fig. 4B, the variance of the B molecule was also

suppressed.

3.2 Local-excitation, global inhibition based directed cell

migration

The spatial simulations of the excitable network of Fig. 2

and Fig. 4 recreated patches of F and R molecules. Along

with the downstream effectors, these patches lead to the for-

mation of protrusions. However, these patches do not show

any preferential direction. Thus, these kymographs represent

the random, undirected movement of cells. To achieve direc-

tional sensing, it is important that an external gradient bias

the location of these firings. In cells, this is achieved through

a mechanism known colloquially as LEGI (local-excitation,

global inhibition) [26].

The basic scheme is represented in Fig. 5A. In response to

a chemoattractant signal, S, two species are activated that pro-

vide complementary excitation (E*) and delayed inhibition (I*)

to a third species: the response regulator (RR). What allows

this system to interpret chemical gradients is the difference

between the diffusion properties of the different species [57].

Specifically, whereas the excitation molecule and the response

regulator are mostly local, indicative of low diffusivity, the in-

hibition molecule is mostly global because of high diffusivity.

In this study, we implement this system using the following

reactions:

dE∗

dt
= (k1 + k2S)E− k3E*2

(8a)

∂ I∗

∂ t
= (k4 + k2S)I− k3I*2

+D
∂ 2I∗

∂θ 2
(8b)

RR = a30 +a3(E
*
− I*) (8c)

——

The first terms in Eqn. 8a and Eqn. 8b denote the stimulus-

independent activation of E and I. The quadratic term in

Eqn. 8a represents degradation, mimicking the recombination

G-protein heterotrimer components [58,59]. Temporally, the

system takes the form of an incoherent feedforward network.

The dynamics of E*and I*assume that the inhibitor is delayed

relative to the excitation molecule (Fig. 5B, top). Thus, when

the exciter is activated in response to a stimulus, there is a brief

period during which the inhibitor has yet to catch up, resulting

in a rise in RR (Fig. 5B, bottom). As the mean levels of E

and I converge at steady-state, the response regulator returns

to its prestimulus level, ensuring adaptaion to a spatially ho-

mogeneous stimulus [15], as is characteristic of incoherent

feedforward networks.

The LEGI mechanism can be used to stimulate an excitable

network, for example, by making a5 in Eqn. 2a proportional

to the level of RR. This causes increases in RR levels to lower

the firing threshold of the excitable system. Thus, the transient

pre-adaptation response of the LEGI response regulator, due

to a stimulus, induces global firings of the excitable system.

Eventually, as RR adapts, these firings subside and the sys-

tem returns to its prestimulus state. This is the basis of the

LEGI-biased excitable network that is believed to guide cell

migration [10, 26, 28].

The plots of Fig. 5B show the behavior of E*, I*and RR

summed over the whole spatial domain. In the spatial simula-

tions, we focused on one randomly-selected voxel, to see more

easily the effect of stochastic fluctuations in the constituents

of LEGI (Fig. 5C). After the adaptation, the fluctuations in

the E*and I*profiles give rise to a noisy response regulator

(Fig. 5C). This noise input from RR contributes to the increased

fluctuations in STEN - resulting in random firings.

Now, we focus on the direction-biasing capability of LEGI.

This capablity arises from the difference in diffusion levels of

the exciter and the inhibitor, as mentioned earlier. As shown in

the kymographs and respective line scans of Fig. 6, we assume

that the cell experiences a chemoattractant gradient resulting in

a spatial bias in the concentration of stimulus S, creating front

and back regions. Fig. 6B shows the effect of the gradient on

the LEGI-STEN system. Over time, RR reaches a state where,

in the region facing the gradient (line scan through “a”), it is

above its basal level, and in regions away from the gradient

(line scan through “b”), it is below (Fig. 6C). Because RR

serves as the input to the excitable network, the elevated level

of RR induces more activity in F in the front of the cell. Con-

sequently, after the chemoattractant was presented, the patches

in the region with the highest level of S (marked “a”) were

enhanced, while those in the regions near it (marked “b”) saw

a decline in overall activity. Far away (position marked “c”)

there was no appreciable change, largely because the inhibitor

had not diffused there. Eventually, as the LEGI system reached

its steady-state, this region too saw diminished activity similar

to that of point “b”. Thus, LEGI created a spatial activity bias

in the cell, which would be reflected as the spatial segrega-

tion or self-organization of biochemical species on the cell

membrane [50, 60].

3.3 Enhanced chemotaxis: combining LEGI and ACR

The biased local-excitation, global inhibition input to the ex-

citable system ensured increased activities towards the source

of chemoattractant. However, occasional unwanted firings at

the back of the cell are also observed which cause undesirable

protrusions. On the other hand, we saw in Section 3.1 that

coupling the ACR scheme to the STEN network could mitigate

excitable behavior. In a chemotaxing cell, this would not be

desirable, as the cell needs to move. However, if we can direct

the effect of ACR in a spatially selective way, this could be

beneficial. We now investigate whether the inclusion of an

absolute concentration robustness module to the LEGI-STEN

system could improve the chemotactic response. In particular,

we propose to use the LEGI mechanism to direct the ACR

control towards the rear of the cell.

As before, we use the back molecule as the target species

for ACR, as this molecule is found preferentially at the back

of the cell. Thus, as in Section 3.1, molecule B would be ren-

dered robustly stable through ACR in both mean and variance.

As B is directly involved in the mutually inhibitory loop of

F, this would consequently allow us to control the firings of

the system. A necessary component still missing, however,
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is a spatial regulator of the binding and unbinding reactions

of ACR, i.e. something to make the parameters α and β , of

Eqn. 7, spatially dependent. For this purpose, we use the local

signal of the LEGI mechanism, E*. As this signal is found

preferentially at the front of the cell, we use it to inhibit the

two binding reactions of the ACR scheme:

B+BACR
E*

⊥
−−→

α
2BACR (9a)

BACR
E*

⊥
−−→

β
B (9b)

Here, E*
⊥ refers to the inhibition of the reaction by the pres-

ence of E*; specifically:

dBACR

dt
=−

(

β ′(E*)−α ′(E*)B
)

BACR

where

α ′(E*) = α ×
d1

d2 +E*
, and β ′(E*) = β ×

d′

1

d′

2 +E*
.

The overall scheme is illustrated in Fig. 7A. Fig. 7B shows

a kymograph of a simulation of the combined LEGI-STEN-

ACR network. For the first part of the simulation, the ACR

mechanism is not active, owing to the low concentration of

S. Upon addition of the chemoattractant (at t = 300), LEGI

responds. Since the activation of E* is fast, the ACR is also

switched on. Because E* is active near the front of the cell, we

see how the action of ACR abrogates activity in the cell owing

to the strict mean and variance control of B - similar to what

we saw earlier. However, unlike the case of Fig. 6B, due to

the spatial regulation of the ACR controller, i.e. owing to the

inhibition of ACR at the front by E* , it is only at the rear that

the firings disappear completely. Fig. 7C illustrates this in time

by plotting line scans of the kymograph at positions “a” and

“b”. While the front of the cell (point “a”) shows an increase in

the number of firings (due to the LEGI mechanism), the back

of the cell (point “b”) becomes completely quiescent because

of the spatially-regulated ACR mechanism.

The simulations above show a reduction in the activity of

the excitable network. To test the effect of these firings on

the chemotactic efficiency of the cell, we simulated the move-

ment of the cells using a center of mass approximation. To

this end, the activity of the variable R, as a function of the

angle θ around the perimeter of the cell was translated into a

vector normal to the cell surface. The vector sum was used as

a measure of the net protrusive force (Fig. 8A). This net force

was then appropriately scaled (so that it was in the range of

experimentally observed protrusive pressures 0.5–5 nN/µm2)

and then fed into a viscoelastic model of Dictyostelium me-

chanics [53]. In this model, Fx, the net force in the x-direction

(the direction of the gradient) alters the center-of-mass position

(CMx) through the following dynamics:

ẍ+(kc/γc)ẋ = (1/γc +1/γa)Ḟx +(kc/τ2
c )Fx,

with a similar equation for the displacement in the y-direction

(CMy). To illustrate the movement generated through this ap-

proximation, in Fig. 8B, we plot the trajectories of 10 cells

migrating randomly in absence of any stimulus. We then sim-

ulated and compared the movement of 100 cells each with

and without the ACR mechanism. While cells relying only

on the LEGI-STEN coupling still moved along the direction

of the chemoattractant source (Fig. 8C, top), the chemotactic

efficiency was signficantly enhanced by the addition of ACR

controller (Fig. 8C, bottom). A comparison of the final position

in the x-direction shows that the ACR controller enabled the

cells to travel further in the direction of needle (Fig. 8D. left),

when compared to the cells without the ACR control. More-

over, the ACR mechanism also restricted their movements in

the vertical direction as can be seen from the difference in the

standard deviation of the final position along the y-direction,

which was 1.45 µm for the system without ACR and 0.68 µm

with (Fig. 8D, right).

4 Discussion

For efficient chemotaxis, cells must overcome noisy chemi-

cal cues and intrinsic stochastic perturbations to interpret the

chemotactic gradient and direct protrusions in the direction of

the chemotactic cue. There are broadly two ways to enhance

directional migration: increasing the protrusion frequency at

the front of the cell or lowering the frequency at the back of

the cell. Because protrusions are driven by the crossing of

the threshold of the excitable system, lowering the threshold

would have the effect of generating more protrusive activity.

This has been demonstrated experimentally [10]. However,

because of the refractory period of the excitable system, there

is an underlying upper bound to the achievable frequency of

firings. Moreover, lowering the threshold too far leads to a loss

of stability which can cause oscillatory behavior [40] or per-

manently high levels of activity [41], neither of which results

in motile cells.

For this reason, spatial control of the threshold to reduce

the firings at the back of the cell is more promising: a per-

fectly quiescent back ensures that all the protrusive activity is

directed towards the chemoattractant gradient. Cells achieve

this spatial threshold regulation through the LEGI mechanism,

which lowers the threshold at the front and raises it at the

rear [28]. When combined with a synthetic increase of activity,

spatial control of the threshold leads to fan-shaped cells that

migrate 3-4 times faster than wild-type cells [40].

LEGI alone may not be enough to completely eliminate

protrusions away from the source, particularly in shallow gra-

dients. Even if the threshold is high at the back of the cell,

fluctuations may still cause unwanted firings if these are suf-

ficiently large. For this purpose, in this study, we considered

how the efficiency of chemotaxis could be improved through

the inclusion of a mechanism for regulating these fluctuations

of various regulators of the chemotactic response. We saw

that variance control of the stochastic inputs using absolute

concentration robustness limited the number of firings of the

excitable system (Fig. 4), by converting the species concentra-

tion distribution to a Poisson distribution. The variance of a

Poisson process equals the mean, and, thus, this creates tight

control not only over the species mean but also the variance.

This control, however, should only occur at the back of the
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cell. In this study, we not only show that ACR can control

the number of firings of the cell, but also suggest a seamless

method to incorporate ACR selectively at the rear without the

need for an additional external biasing input. That is, by link-

ing the ACR molecule with the excitatory species of LEGI we

achieve back-quiescence simply on the addition of the chemoat-

tractant gradient. Previously [61], we suggested that ACR be

used to increase cell migration capability, but in that study the

ACR controller was added externally without the use of the

LEGI system. In contrast, by combining LEGI and ACR as

we do here, we are proposing a feedforward control scheme

where the chemoattractant gradient itself is sufficient to turn

on ACR at the back of the cell and achieve better chemotaxis.

The controller we propose here has the advantage of being

relatively simple as it relies on much of the existing architecture

of the system. Incorporating this scheme experimentally only

requires that we have a candidate for the excitation element

of the cell and a protein that is inhibited by the local signal.

The Gβγ subunits, that couple receptor signaling to the down-

stream effectors, are the likely candidates for the LEGI exciter

(E*) [15, 62, 63]. We next need a molecule BACR that can bind

to the back markers, which include the phospholipids PI(4,5)P2

and PI(3,4)P2 [49], the phosphatase PTEN [64], the novel

protein Callipygian [65] and the actin motor myosin II [66].

PI(4,5)P2 is inhibited by the phosphatases that degrade it (for

example, Inp54p [40]), PLC [67] and the kinase PI3K [68]. In-

terestingly, the the activities of PLC and PI3K are upregulated

by the receptor as would be required for the scheme suggested

here. Thus, it is possible that cells may already be making use

of a combined LEGI-STEN-ACR mechanism to direct their

migration.
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