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Abstract

Chemotaxis, the directional motility of cells in response to spatial gradients of chemical cues, is a fundamental process behind a
wide range of biological events, including the innate immune response and cancer metastasis. Recent advances in cell biology
have shown that the protrusions that enable amoeboid cells to move are driven by the stochastic threshold crossings of an
underlying excitable system. As a cell encounters a chemoattractant gradient, the size of this threshold is regulated spatially so
that the crossings are biased towards the front of the cell. For efficient directional migration, cells must limit undesirable lateral and
rear-directed protrusions. The inclusion of a control mechanism to suppress these unwanted firings would enhance chemotactic
efficiency. It is known that absolute concentration robustness (ACR) exerts tight control over the mean and variance of species
concentration. Here, we demonstrate how the coupling of the ACR mechanism to the cellular signaling machinery reduces the
likelihood of threshold crossings in the excitable system. Moreover, we show that using the cell’s innate gradient sensing apparatus
to direct the action of ACR to the rear, suppresses the lateral movement of the cells and that this results in improved chemotactic
performance.
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1 Introduction

For a chemical reaction to ensue, two physical processes
must take place. First, the interacting molecules must come to-
gether. The rate at which this process takes place is dictated by
the diffusivity of the molecules which, at the microscopic level,
is governed by the Brownian motion of the particles. Once the
molecules are within a given interaction radius, a chemical con-
formational change takes place. This process is also stochastic,
as it is usually viewed as overcoming a stochastic potential
well [1,2]. The effect of this randomness on the concentration
of the biochemical species is quite acute when the copy number
of the interacting molecules is small, such as genetic regulatory
networks. Such systems have attracted considerable theoretical
and experimental attention [3—5]. However, stochastic effects
can also influence cellular behavior even when the number of
molecules is large. The migration of amoeboid cells is one
such example.

The social amoeba Dictyostelium discoideum lives in the
soil where it forages for nutrients, typically bacteria [6,7]. To
find food, it is continuously in motion which takes the form of
actin-filled protrusions known as pseudopods (literally “false
feet”). In migrating cells, these protrusions appear randomly
around the cell perimeter but have reproducible characteristics,
such as their size, frequency and lifetime [8,9]. These cells
also can direct pseudopods in the direction of their prey, by
using chemical traces emanating from their target, a process
known as chemotaxis. Specifically, bacteria secrete folic acid
which binds to cell-surface receptors that are specific to this
chemical. Through a complex but sophisticated method, the
amoebae can discern the direction of the gradient, and increase
the local probability of extending a pseudopod in that direction,
while simultaneously lowering the probability of pseudopods
away from the source. This spatially biases the extension of

pseudopods, resulting in the directed motion that enables the
cell to survive.

The characteristics of the pseudopods for cells that are mi-
grating randomly or following a chemoattractant gradient are
quite similar [8], suggesting that there is a common mechanism
regulating the formation of a pseudopod, and that chemoat-
tractant receptor occupancy is used solely to spatially guide
this process. During the past fifteen years, it has been in-
creasingly clear that the appearance of these extensions in
Dictyostelium cells is regulated by an excitable system [10, 11].
The movement of cells using an excitable system is not lim-
ited to these amoebae. The existence of an excitable cortex
is highly conserved and has been detected in nematodes [12],
Xenopus frog eggs [13] as well as mammalian white blood cells
(neutrophils [14-16], mast cells [17] and macrophages [18]),
cultured neurons [19] and cancer cells [20, 21].

An excitable system is a class of nonlinear dynamical sys-
tems that has several features [22]. Having a single stable
equilibrium, small perturbations about this equilibrium elicit
small-scale responses. However, whenever the perturbations
are sufficiently large, they produce a large-scale deviation away
from the equilibrium before the state returns to its prestimu-
lus level. While the system is undergoing this trajectory, it
exhibits a refractory period during which no further activation
is possible. Both the size and length of this excursion are also
characteristic of the system, which can be thought to possess
a threshold for activation [23]. Stochasticity can induce the
system to cross the threshold triggering a large-scale excursion.
The rate at which this happens is governed by the ratio of the
size (standard deviation) of the noise relative to that of the
threshold [24, 25].

It has been hypothesized that the extension of pseudopods
represents the crossing of this firing threshold [26-28] In a
randomly migrating cell, the size of the threshold is uniform
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throughout the cell, and hence the probability that the threshold
is crossed leading to the extension of a pseudopod is spatially,
uniformly distributed around the perimeter. However, in the
presence of a gradient of receptor occupancy, the threshold
is spatially modulated. At the site closest to the chemoat-
tractant source, the threshold is lowered, making it easier to
cross and hence increasing the likelihood that pseudopods are
extended. Away from the source, the threshold is increased
reducing the likelihood that pseudopods will form. The result-
ing biased, excitable network can move cells in the direction
of the chemoattractant [27,29-33]. To date, there is ample
evidence of this model of cell movement, from the existence of
sub/supra-threshold behavior and refractory periods [34,35], to
the resultant traveling waves that are characteristic of excitable
media [14,26,36-39]. Recently, it has been possible to alter
this threshold synthetically, leading to large changes in the
behavior of the dynamical system [21,40—43].

In the presence of shallow gradients, the raising of the
threshold at the rear of the cell may not be sufficient to abrogate
completely the extension of pseudopods. These rear-directed
pseudopods would have the net effect of slowing overall mi-
gration towards the chemoattractant source. There are two
potential ways to limit these undesirable protrusions. In theory,
one could engineer a mechanism to increase the threshold at the
back further. Alternatively, one could design a control system
that provides some control over the variance in the fluctuations
of specific molecules that trigger cell movement. In this paper,
we consider the latter through a mechanism known as absolute
concentration robustness (ACR) [44—46]. ACR comes about
through the binding of a target species in a specific reaction
scheme, which ensures that the steady-state concentration of
the target remains robustly stable to fluctuations in its environ-
ment. In this study, we show how ACR can be used to achieve
control over the levels of critical lipids in the cellular signaling
network which in turn directly affects the firing rate of the
underlying excitable system. Together, this creates a control
scheme for faster and more efficient directed migration.

The rest of the paper is organized as follows. In Section 2,
we consider some mathematical preliminaries. We describe
a simplified mathematical model of an excitable reaction net-
work that closely recreates the dynamics of the system regu-
lating actin protrusions. We also present equations describing
the mathematical model of the ACR regulator. In Section 3,
we demonstrate how ACR can be used to suppress excitable
network activity and describe the signaling system used to
sense and interpret chemoattractant gradients. Following that,
we present our main findings: how the inclusion of the ACR
system can reduce the variance of the stochastic perturbations.
Further, we couple this ACR system with a spatially heteroge-
neous network to focus its activity at the rear of migrating cells.
By incorporating a simple model of cell motion, we demon-
strate, through simulation, enhanced chemotaxis towards the
chemoattractant source. Finally, in Section 4, we present some
conclusions.

2 Preliminaries

2.1 Mathematical model of the excitable network
regulating motility

The seminal work of FitzHugh [47] and Nagumo [48]
showed that it is possible to describe the dynamics of excitabil-
ity through a two-state activator-inhibitor network. The acti-
vator (1) incorporates a positive feedback loop that allows it
to stimulate its production. The inhibitor (v), whose dynamics
occur on a slower time scale, provides negative feedback to the
activator. In the classical description of cellular excitability, the
variables represent membrane potentials, which may be nega-
tive. In our case, excitability comes about because of activities
and concentrations of various interacting molecules, which
are non-negative variables. To ensure that this is the case, we
considered a two-dimensional activator-inhibitor model given
by [23] :

P L (1a)
— = —aju—auv & a w
dr S
dv
=¢e(—v+cu)+w; (1b)

dt
This model captures the dynamics of excitable systems while
ensuring that all species concentrations remain non-negative.
The essential nonlinearity in the activator dynamics in Eqn. la
is incorporated through a co-operativity term with Hill coef-
ficient two. The inhibitor dynamics operate at a slower time
scale owing to the parameter € < 1 in Eqn. 1b. The terms w;
and w; represent the contributions of any external signals to
the system.

In the context of cell migration, recent evidence has sug-
gested that the autocatalytic behavior of the activator is likely
achieved via a third species through mutual inhibition [49].
This is based on the spatial segregation of biochemical species
seen during chemotaxis, where some species accumulate to-
wards the source (front), while others accumulate at the op-
posite end of the cell (back) [50]. This mutually exclusive
segregation is characteristic of mutual inhibition [51]. To
accommodate these new findings, we modified the activator-
inhibitor system as a three-dimensional system, renaming the
variables F', B, and R for “front”, “back” and “refractory,” re-
spectively (Fig. 1A).

dF as

— =— R)F+ —— 2
5 = (@ taR) +a§B2+1 +as (2a)
dB

5 =b - (2t b:F)B (2b)
dR

o = —ciR+yF (2¢)

We refer to this system of equations as the Signal Transduction
Excitable Network (STEN) [10].

Under the quasi-steady-state assumption on Eqn. 2b as the
second reaction approaches steady-state: B = b; /(b + b3F),
and the remaining two equations assume the form of Eqn. 1.
The dynamics of this system can be better visualized using
phase space (Fig. 1B). Whereas the F-nullcline is cubic and dis-
plays an inverted “N-shape,” the R-nullcline is linear. Changes
in the parameter c;, in Eqn. 2c, alter the slope of the R-nullcline
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Figure 1: Excitable dynamics. (A) Schematic of the signal transduction excitable network (STEN) showing the entities F, B and R
and their interactions. (B) F-R phase portrait showing the respective nullclines (F: green solid, R: blue dashed) and the
equilibrium point (yellow circle). The arrows represent the magnitude and direction of velocities (F,R) in the field. (C)
Lowering of F-dependent activation rate of R (c¢;) results in a change in position of the R-nullcline (a — b — ¢) as well as in
veh- The local extrema of the F-nullcline are denoted as red circles. (D) Typical time profiles of F, B and R. Parameter values
used in simulation: a; = 2, ay = 20, a3 = 240, ag = 120, as = 0.04, by =3, by = 0.006, b3 = 240, ¢; = 0.08 and ¢, = 5.76.
(E) Plots of the firing frequency and threshold (vy,) as a function of parameter ¢;,. The firing frequency was measured by
counting the number of firings in a time window of 600 A.U. The dashed section corresponds to the parameter space where

V¢h 1s undefined following the definition from Eqn. 4.

(which thus gets translated in log scale) as shown in a zoomed-
out view of the phase space (Fig. 1C). These variations could
affect system behavior as they may alter the stability of the
existing equilibrium, or result in the emergence of multiple
equilibria [23]. The normal mode of operation in chemotaxis
is at position “a”, where a stable equilibrium exists to the left
of the minimum of the cubic nullcline. If an external input
or intrinsic noise in the system is sufficient to displace the
state beyond this minimum, then the state (F, R) undergoes a
large excursion (firing) in phase space, creating a spike in time
observed in both the F and R states (Fig. 1D). This is followed
by a refractory period, during which no further firings are pos-
sible, as the inhibitor (R) decays back to equilibrium. B shows
a complementary profile to F [49] and thus reaches a minimum
whenever a firing takes place.

We now briefly demonstrate what parameters control the
firings of the excitable network. According to Kramer’s the-
ory [1,2], the relationship between firing frequency, f, and the
noise level is given by

f«eXP(—ZA—U),

o

(©))

where AU is the height of a potential barrier and o is the noise
variance. This potential barrier is related to the activation
threshold of the excitable system, v;j, that can be described as

(Fig. 10):
Req — R], for Feq S F1
Vih = { Ro —Reg, for Feq 2 F2 (4)
undefined, otherwise.

Here, (F|,R|) and (F,,Ry) are the local minimum and max-
imum, respectively of the cubic nullcline (red markers in
Fig. 1C). In this definition of v;,, we only consider param-
eter values that give rise to a single, stable equilibrium and
have excluded cases of unstable and/or multiple equilibria
(Feq € (F1,F2)). Note, that the parameter space that gives rise
to multiple equilibria in our system is small.

Decreasing ¢ (e.g., to point “b” in Fig. 1C) lowers the
threshold level which in turn increases the firing rate until
(Feq;Req) reaches (Fi,R;) (Fig. 1E). Beyond Fy, a bifurcation
occurs and the equilibrium is rendered unstable resulting in a
limit cycle. Upon decreasing ¢, further, another stable equi-
librium is created at (F»,R;). As ¢ is lowered even further,
the threshold vy, increases resulting in lower firing rates. Thus,
the firing frequency shows a biphasic relationship with the
activation threshold of the network (Fig. 1E).

2.2 Protrusions in spatial simulations

So far, we have used temporal simulations of the excitable
network to explain how noise-induced firings occur. These
firings are posited to lead to cellular protrusions and hence
cell motility. To describe the effect on directional motility,
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Figure 2: Spatiotemporal simulation of excitable dynamics. (A) Kymographs of F, B and R. Brighter regions represent higher
molecule numbers. The F and B kymographs show complementary patterns whereas the R kymograph is similar to that of F
but more diffused in time. (B) Temporal profiles of F, B and R at the location marked by the yellow dashed lines in panel A.

however, requires that we consider a spatial dimension. To this
end, we extend our excitable system in one spatial dimension
which represents the perimeter of a circular cell. In this spatial
model, we allow the reacting species to diffuse isotropically.
Plotting the activity as a function of time and space (x and
y-axes, respectively) gives rise to the kymographs of Fig. 2. In
these kymographs, the firing of the system is seen as an initial
trigger that spreads in space (along the cell perimeter) in the
form of a traveling wave (bright F and R; dark B) [52]. The F
and B kymographs show complementary patterns whereas the
R kymograph is similar to that of F, but more diffused in time
owing to the slower time scale in the refractory equation.

In cells, these spatiotemporal waves correspond to protru-
sions on the cell membrane. A line scan through the kymo-
graphs shows the activity in Fig. 2B as a function of time at
one point on the cell perimeter (yellow dashed line in Fig. 2A).
These profiles match the previous plots in Fig. 1D. These ky-
mographs closely resemble similar plots of cell protrusions
obtained in experiments [21,40,49].

2.3 Absolute concentration robustness

Per Eqn. 3, the rate at which activity is triggered in an ex-
citable system depends on both the size of the threshold as
well as the size of the noise. Having seen how the threshold af-
fected the firings, we now consider the role of the noise and, in
particular, how absolute concentration robustness (ACR) could
be used to limit these firings. To illustrate the essential features
of ACR, we consider the following toy model [44]. This model
consists of two biochemical species: the target species, M,
whose concentration is to be regulated, and N, which achieves
this regulation. The two species obey the following mass action
reaction scheme (Fig. 3A, top)

M+N % 2N (5a)

NE M (5b)

We assume that the total number of molecules is conserved
(i.e. M+ N = constant = T). Solving for the steady-state

concentrations of the species leads to two possible equilibria:

(M,N) = {(T,O), (g,T— g)}

where the first is unstable and the second stable. Thus, as
long as the initial steady-state avoids the unstable equilibrium,
the steady-state concentration of M is constant. This depends
only on the reaction rates, o and  (Fig. 3B), and not on the
concentration of the binding species. This is in contrast to the
case of regular binding reactions (Fig. 3A, bottom):

M %N (6a)

N ﬁ—'> M (6b)

where the steady-state is given by

! !/
(M',N") = ( /ﬁ T, aT) .
o + ﬁ/ a/ + ﬁ/
Unlike ACR binding, here the steady-state of M is a linear
function of the total concentration (Fig. 3C).

It follows that, in a deterministic setting, the ACR scheme
provides a robust mechanism for maintaining a constant con-
centration of a particular reactant. Our main interest, however,
is in controlling concentration variations. As shown by Ander-
son et al. [45], the ACR scheme enables the system to control
the variance of the target species. In particular, for a large total
number of molecules, the stationary distribution of M assumes
a Poisson distribution with parameter 8 /. The advantage of
a Poisson process is that variance is now equal to the mean:

2
ACR = O, =—.
u ACR =

The same is not necessarily true for normally distributed sys-
tems where the mean and variance are independent parame-
ters. For large means, Poisson fluctuations are small relative
to the mean. Thus, in the case of a Poisson process, if we
have a method to control the mean of the system, we can
automatically put a restriction on the variance. Fig. 3D il-
lustrates the results of a stochastic simulation of the ACR
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Figure 3: Comparison between ACR and regular binding. (A) Schematic of ACR and regular binding with species M, N and their
respective rate constants. My and M(t) are the initial condition and the system output, respectively. (B, C) Steady-state
concentrations of M (M) following stochastic simulations (using SSA) of ACR (B) and regular binding (C) for varying total
number of molecules. (D) Steady-state distributions of M following stochastic simulations of ACR for two different initial
distributions, Mg | ~ .4#7(50,20) and My, ~ .#/(25,10) 4 .47(75,20). Simulations used o = 0.1 and = 0.5.

scheme assuming two different initial distributions, a unimodal
Gaussian distribution given by Mg | ~ .47(50,20) (gray) and
a bimodal distribution given by the sum of two Gaussians:
Moo ~ A7(25,10) + .4#°(75,20) (blue). In both cases, the
steady-state distribution converges to a Poisson distribution
with mean and variance ~ f8/a = 5. In this way, the ACR
scheme grants robust control over both the mean and fluctua-
tion level of the process.

2.4 Stochastic simulations

Although, in this paper, we have described all systems us-
ing reactions and their corresponding differential equations, all
our simulations are, in fact, based on a stochastic description
of the systems. This requires that reactions be described by
propensity functions. Descriptions of the propensity functions
for all simulations and the corresponding parameters are listed
in Table 1.

For these stochastic simulations, we adopted two methods.
First, for homogeneous systems, we used Gillespie’s stochas-
tic simulation algorithm (SSA) [54]. Briefly, in the SSA, at
each time point in the simulation, two random numbers are
used to find the identity of the next reaction and the time at
which it is to takes place. In the limit, the distribution obtained
from these SSA simulations exactly recreates the probability
distribution of the chemical master equation that describes the
system. Second, for spatially heterogeneous systems, we used
the reaction-diffusion master equation (RDME). Here, the spa-
tial volume is discretized into smaller voxels. Within each
subvolume, the reactions are assumed to follow the statistics
of a well-stirred system. Additionally, diffusion is modeled as
a first-order reaction transferring molecules from one voxel to
another one. To implement the RDME, we used the software
package URDME [55], which allows for unstructured lattices
and uses the Next Sub-volume Method [56] to simulate the
system. For our spatiotemporal simulations, we assumed a
one-dimensional cell perimeter of length 30 um with periodic
boundary conditions (roughly equivalent to the perimeter of a
circular cell of radius 5 um). The domain was subdivided into
601 equally-sized voxels.

3 Main Results

3.1 Controlling the firing frequency of the excitable
system through ACR

As argued above, membrane protrusions are initiated by
the firings of an excitable network, and the frequency of these
events is controlled by the size of the noise relative to that of
the threshold. The results of Section 2.3 suggest that this noise
could be regulated through the inclusion of an ACR mecha-
nism in the excitable network. For directed migration, we want
to inhibit protrusions at the rear of the cell (i.e. away from
the chemoattractant source). Thus, we are primarily interested
in regions where the concentration of “back” (B) molecules
is high. Thus, we couple the ACR scheme to the excitable
network Eqn. 2 through state B. In particular, we posit the exis-
tence of a controlling variable Bacr that binds to B according
to the ACR scheme:

B +Bacr — 2Bacr (7a)

Back 5 B (7b)

Thus, Eqn. 2b becomes:

dB
rrialaie (b2 +b3F)B + (B — aB)Bacr
where Bacr obeys:
dB
(;CR = —(B — aB)Bacr-

Note, that from the latter, in the steady-state B = /o which
forces the concentration of F to:
blszg b]OC*bgB

BB b3
In particular, note that this is independent of the parameters in
Eqn. 2a and Eqn. 2c.

To explore the effect of this scheme on the firings of the
excitable system, we used spatial simulations, shown in Fig. 4.
For the first half of the simulation, the system followed the
dynamics of the regular F, B, R system. Thereafter, the
ACR scheme was turned on by the incorporation of the Bacr
molecule. The kymographs of the F and B molecules show
how the concentrations of both molecules decreased upon the
incorporation of ACR, reaching a steady state after approx-
imately 200 time steps (Fig. 4A). Once at steady-state, the

F:
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Table 1: Parameters used in the stochastic simulations.

Stoich. Vector Parameter
No. Reaction Propensity E E I ' F B R Banr 1‘{;;‘:‘ Units'
. F>o a;[F] 0 0 0 0 -1 0 0 0 a 1 7!
2 Fho a[F][R] o 0o 0o 0 -1 0 0 0 a 37 [uMT]"!
RR
3. o BF # 0 0 0 0 +1 0 0 0 ap 120 uMT
RR a3[B][B—1]+1
. RR = a3 +a3([E*]-[I"]) a3 1 T!
@ a; 444 uMm!
2 4. @ =F as 0 0 0 0 +1 0 0 0 as 54 x1073T!
5. @ —B by 0 0 0 0 0 +1 0 0 b 041 pMT!
6. B -9 by[B] 0 0 0 0 0 -1 0 0 b 3 x1073 17!
7. B Lo b3[BI[F] 0 0 0 0 0 -1 0 0 by 444 [uMT]"!
8. R > o a1[R] 0 0 0 0 0 0 -1 0 ¢ 004 T
9. o LR [F] 0 0 0 0 0 0 +1 0 ¢ 28 T!
10. E E° K [E] -1 41 0 0 0 0 0 0 k29 x1078T!
11. ESE k[E[S] —1 41 0 0 0 0 0 0 k11 x1073[uMT]™
3 12 EE=SE K[E*1[E"-1] +1 -1 0 0 0 0 0 0 ki 31 x1073[uMT]
8 53oaior k(D] 0 0 -1 +1 0 0 0 0 ki 87 x10°T"!
4. 151 ks[I[S] 0 0 -1 +1 0 0 0 0 ks 33 x1074uMT]"
15. T' =1 ke[T°][1"-1] 0 0 +1 -1 0 0 0 0 ke 9.3 x10~*[uMT]™!
* BI(B
16. B+Back ~-52Back W 0 0 0 0 0 -1 0  +1 4 27 x102uM
2
~ d 135 uM
< a 1 [pMTI!
E* L di B[B] -1
17. B B 0 0 0 0 0 1 0 -1 20 T
ACR — hiE + B
Unit S E E I I' F B R Byx o
FT = time in A.U. Additional parameters:
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ACR controller completely suppressed firings. Additionally,
as shown in Fig. 4B, the variance of the B molecule was also
suppressed.

3.2 Local-excitation, global inhibition based directed cell
migration

The spatial simulations of the excitable network of Fig. 2
and Fig. 4 recreated patches of F and R molecules. Along
with the downstream effectors, these patches lead to the for-
mation of protrusions. However, these patches do not show
any preferential direction. Thus, these kymographs represent
the random, undirected movement of cells. To achieve direc-
tional sensing, it is important that an external gradient bias
the location of these firings. In cells, this is achieved through
a mechanism known colloquially as LEGI (local-excitation,
global inhibition) [26].

The basic scheme is represented in Fig. SA. In response to
a chemoattractant signal, S, two species are activated that pro-
vide complementary excitation (E”) and delayed inhibition (I")
to a third species: the response regulator (RR). What allows
this system to interpret chemical gradients is the difference
between the diffusion properties of the different species [57].
Specifically, whereas the excitation molecule and the response
regulator are mostly local, indicative of low diffusivity, the in-
hibition molecule is mostly global because of high diffusivity.
In this study, we implement this system using the following
reactions:

E>.< E3
ddt — (ki +k»S)E — k3E™ (8a)
or* 2 %I

5 = (kg 4 ko S)T — k31 +DTQ2 (8b)
RR = a3g+ a3 (E* — I*) (8c)

The first terms in Eqn. 8a and Eqn. 8b denote the stimulus-
independent activation of E and I. The quadratic term in
Eqn. 8a represents degradation, mimicking the recombination
G-protein heterotrimer components [58,59]. Temporally, the
system takes the form of an incoherent feedforward network.
The dynamics of E*and I*assume that the inhibitor is delayed
relative to the excitation molecule (Fig. 5B, top). Thus, when
the exciter is activated in response to a stimulus, there is a brief
period during which the inhibitor has yet to catch up, resulting
in a rise in RR (Fig. 5B, bottom). As the mean levels of E
and I converge at steady-state, the response regulator returns
to its prestimulus level, ensuring adaptaion to a spatially ho-
mogeneous stimulus [15], as is characteristic of incoherent
feedforward networks.

The LEGI mechanism can be used to stimulate an excitable
network, for example, by making as in Eqn. 2a proportional
to the level of RR. This causes increases in RR levels to lower
the firing threshold of the excitable system. Thus, the transient
pre-adaptation response of the LEGI response regulator, due
to a stimulus, induces global firings of the excitable system.
Eventually, as RR adapts, these firings subside and the sys-
tem returns to its prestimulus state. This is the basis of the

LEGI-biased excitable network that is believed to guide cell
migration [10,26,28].

The plots of Fig. 5B show the behavior of E*, I"and RR
summed over the whole spatial domain. In the spatial simula-
tions, we focused on one randomly-selected voxel, to see more
easily the effect of stochastic fluctuations in the constituents
of LEGI (Fig. 5C). After the adaptation, the fluctuations in
the E*and I"profiles give rise to a noisy response regulator
(Fig. 5C). This noise input from RR contributes to the increased
fluctuations in STEN - resulting in random firings.

Now, we focus on the direction-biasing capability of LEGI.
This capablity arises from the difference in diffusion levels of
the exciter and the inhibitor, as mentioned earlier. As shown in
the kymographs and respective line scans of Fig. 6, we assume
that the cell experiences a chemoattractant gradient resulting in
a spatial bias in the concentration of stimulus S, creating front
and back regions. Fig. 6B shows the effect of the gradient on
the LEGI-STEN system. Over time, RR reaches a state where,
in the region facing the gradient (line scan through “a”), it is
above its basal level, and in regions away from the gradient
(line scan through “b”), it is below (Fig. 6C). Because RR
serves as the input to the excitable network, the elevated level
of RR induces more activity in F in the front of the cell. Con-
sequently, after the chemoattractant was presented, the patches
in the region with the highest level of S (marked “a”) were
enhanced, while those in the regions near it (marked “b”) saw
a decline in overall activity. Far away (position marked “c”)
there was no appreciable change, largely because the inhibitor
had not diffused there. Eventually, as the LEGI system reached
its steady-state, this region too saw diminished activity similar
to that of point “b”. Thus, LEGI created a spatial activity bias
in the cell, which would be reflected as the spatial segrega-
tion or self-organization of biochemical species on the cell
membrane [50, 60].

3.3 Enhanced chemotaxis: combining LEGI and ACR

The biased local-excitation, global inhibition input to the ex-
citable system ensured increased activities towards the source
of chemoattractant. However, occasional unwanted firings at
the back of the cell are also observed which cause undesirable
protrusions. On the other hand, we saw in Section 3.1 that
coupling the ACR scheme to the STEN network could mitigate
excitable behavior. In a chemotaxing cell, this would not be
desirable, as the cell needs to move. However, if we can direct
the effect of ACR in a spatially selective way, this could be
beneficial. We now investigate whether the inclusion of an
absolute concentration robustness module to the LEGI-STEN
system could improve the chemotactic response. In particular,
we propose to use the LEGI mechanism to direct the ACR
control towards the rear of the cell.

As before, we use the back molecule as the target species
for ACR, as this molecule is found preferentially at the back
of the cell. Thus, as in Section 3.1, molecule B would be ren-
dered robustly stable through ACR in both mean and variance.
As B is directly involved in the mutually inhibitory loop of
F, this would consequently allow us to control the firings of
the system. A necessary component still missing, however,
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is a spatial regulator of the binding and unbinding reactions
of ACR, i.e. something to make the parameters o and f3, of
Eqn. 7, spatially dependent. For this purpose, we use the local
signal of the LEGI mechanism, E*. As this signal is found
preferentially at the front of the cell, we use it to inhibit the
two binding reactions of the ACR scheme:

B+Back — 2Back (%)
Bacr % B (9b)

Here, E* L refers to the inhibition of the reaction by the pres-
ence of E*; specifically:

dB . .
S =~ (B'(E") - ' (E")B) Back
where
* dl * d/
"E") = - d B(E)= L

The overall scheme is illustrated in Fig. 7A. Fig. 7B shows
a kymograph of a simulation of the combined LEGI-STEN-
ACR network. For the first part of the simulation, the ACR
mechanism is not active, owing to the low concentration of
S. Upon addition of the chemoattractant (at t = 300), LEGI
responds. Since the activation of E" is fast, the ACR is also
switched on. Because E” is active near the front of the cell, we
see how the action of ACR abrogates activity in the cell owing
to the strict mean and variance control of B - similar to what
we saw earlier. However, unlike the case of Fig. 6B, due to
the spatial regulation of the ACR controller, i.e. owing to the
inhibition of ACR at the front by E” , it is only at the rear that
the firings disappear completely. Fig. 7C illustrates this in time
by plotting line scans of the kymograph at positions “a” and
“b”. While the front of the cell (point “a”) shows an increase in
the number of firings (due to the LEGI mechanism), the back
of the cell (point “b”’) becomes completely quiescent because
of the spatially-regulated ACR mechanism.

The simulations above show a reduction in the activity of
the excitable network. To test the effect of these firings on
the chemotactic efficiency of the cell, we simulated the move-
ment of the cells using a center of mass approximation. To
this end, the activity of the variable R, as a function of the
angle 6 around the perimeter of the cell was translated into a
vector normal to the cell surface. The vector sum was used as
a measure of the net protrusive force (Fig. 8A). This net force
was then appropriately scaled (so that it was in the range of
experimentally observed protrusive pressures 0.5-5 nN/um?)
and then fed into a viscoelastic model of Dictyostelium me-
chanics [53]. In this model, F,, the net force in the x-direction
(the direction of the gradient) alters the center-of-mass position
(CM,) through the following dynamics:

X (ke/Ye)k = (1/¥e +1/%a) Ex + (kC/Tg)an

with a similar equation for the displacement in the y-direction
(CM,). To illustrate the movement generated through this ap-
proximation, in Fig. 8B, we plot the trajectories of 10 cells

migrating randomly in absence of any stimulus. We then sim-
ulated and compared the movement of 100 cells each with
and without the ACR mechanism. While cells relying only
on the LEGI-STEN coupling still moved along the direction
of the chemoattractant source (Fig. 8C, top), the chemotactic
efficiency was signficantly enhanced by the addition of ACR
controller (Fig. 8C, bottom). A comparison of the final position
in the x-direction shows that the ACR controller enabled the
cells to travel further in the direction of needle (Fig. 8D. left),
when compared to the cells without the ACR control. More-
over, the ACR mechanism also restricted their movements in
the vertical direction as can be seen from the difference in the
standard deviation of the final position along the y-direction,
which was 1.45 um for the system without ACR and 0.68 um
with (Fig. 8D, right).

4 Discussion

For efficient chemotaxis, cells must overcome noisy chemi-
cal cues and intrinsic stochastic perturbations to interpret the
chemotactic gradient and direct protrusions in the direction of
the chemotactic cue. There are broadly two ways to enhance
directional migration: increasing the protrusion frequency at
the front of the cell or lowering the frequency at the back of
the cell. Because protrusions are driven by the crossing of
the threshold of the excitable system, lowering the threshold
would have the effect of generating more protrusive activity.
This has been demonstrated experimentally [10]. However,
because of the refractory period of the excitable system, there
is an underlying upper bound to the achievable frequency of
firings. Moreover, lowering the threshold too far leads to a loss
of stability which can cause oscillatory behavior [40] or per-
manently high levels of activity [41], neither of which results
in motile cells.

For this reason, spatial control of the threshold to reduce
the firings at the back of the cell is more promising: a per-
fectly quiescent back ensures that all the protrusive activity is
directed towards the chemoattractant gradient. Cells achieve
this spatial threshold regulation through the LEGI mechanism,
which lowers the threshold at the front and raises it at the
rear [28]. When combined with a synthetic increase of activity,
spatial control of the threshold leads to fan-shaped cells that
migrate 3-4 times faster than wild-type cells [40].

LEGI alone may not be enough to completely eliminate
protrusions away from the source, particularly in shallow gra-
dients. Even if the threshold is high at the back of the cell,
fluctuations may still cause unwanted firings if these are suf-
ficiently large. For this purpose, in this study, we considered
how the efficiency of chemotaxis could be improved through
the inclusion of a mechanism for regulating these fluctuations
of various regulators of the chemotactic response. We saw
that variance control of the stochastic inputs using absolute
concentration robustness limited the number of firings of the
excitable system (Fig. 4), by converting the species concentra-
tion distribution to a Poisson distribution. The variance of a
Poisson process equals the mean, and, thus, this creates tight
control not only over the species mean but also the variance.

This control, however, should only occur at the back of the
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cell. In this study, we not only show that ACR can control
the number of firings of the cell, but also suggest a seamless
method to incorporate ACR selectively at the rear without the
need for an additional external biasing input. That is, by link-
ing the ACR molecule with the excitatory species of LEGI we
achieve back-quiescence simply on the addition of the chemoat-
tractant gradient. Previously [61], we suggested that ACR be
used to increase cell migration capability, but in that study the
ACR controller was added externally without the use of the
LEGI system. In contrast, by combining LEGI and ACR as
we do here, we are proposing a feedforward control scheme
where the chemoattractant gradient itself is sufficient to turn
on ACR at the back of the cell and achieve better chemotaxis.

The controller we propose here has the advantage of being
relatively simple as it relies on much of the existing architecture
of the system. Incorporating this scheme experimentally only
requires that we have a candidate for the excitation element
of the cell and a protein that is inhibited by the local signal.
The Gy subunits, that couple receptor signaling to the down-
stream effectors, are the likely candidates for the LEGI exciter
(E") [15,62,63]. We next need a molecule Bcg that can bind
to the back markers, which include the phospholipids PI1(4,5)P,
and PI(3,4)P, [49], the phosphatase PTEN [64], the novel
protein Callipygian [65] and the actin motor myosin II [66].
PI(4,5)P; is inhibited by the phosphatases that degrade it (for
example, Inp54p [40]), PLC [67] and the kinase PI3K [68]. In-
terestingly, the the activities of PLC and PI3K are upregulated
by the receptor as would be required for the scheme suggested
here. Thus, it is possible that cells may already be making use
of a combined LEGI-STEN-ACR mechanism to direct their
migration.
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