

1 **Clostridium difficile Toxin B activates the NLRP3 inflammasome in human**  
2 **macrophages, demonstrating a novel regulatory mechanism for the Pyrin**  
3 **inflammasome**

4

5 *Short title: Novel regulatory mechanism for Pyrin inflammasome activation in*  
6 *human macrophages*

7

8 Matthew S.J. Mangan<sup>1,2</sup>, Friederike Gorki<sup>1\*</sup>, Karoline Krause<sup>3\*</sup>, Alexander  
9 Heinz<sup>4</sup>, Thomas Ebert<sup>5</sup>, Dieter Jahn<sup>6,7</sup>, Karsten Hiller<sup>4,8</sup>, Veit Hornung<sup>5</sup>, Marcus  
10 Mauer<sup>3</sup>, Florian I. Schmidt<sup>1</sup>, Ralf Gerhard<sup>9</sup>, Eicke Latz<sup>1,2,10,11</sup>

11

12 1. Institute of Innate Immunity, University Hospital Bonn, University of  
13 Bonn, 53127 Bonn, Germany.

14 2. German Center for Neurodegenerative Diseases, 53127, Bonn,  
15 Germany.

16 3. Dermatological Allergology, Allergie-Centrum-Charité, Department of  
17 Dermatology and Allergy, Charité – Universitätsmedizin Berlin, Berlin,  
18 Germany.

19 4. Department of Bioinformatics and Biochemistry, Braunschweig  
20 Integrated Center of Systems Biology (BRICS), Technische Universität  
21 Braunschweig, Braunschweig, Germany.

22 5. Gene Center and Department of Biochemistry, Ludwig-Maximilians-  
23 Universität München, 81377 Munich, Germany.

24 6. Institute for Microbiology, Technische Universität Braunschweig,  
25 Braunschweig, Germany.

26 7. Braunschweig Integrated Center of Systems Biology (BRICS),  
27 Technische Universität Braunschweig, Braunschweig, Germany.

28 8. Computational Biology of Infection Research, Helmholtz Centre for  
29 Infection Research, Braunschweig, Germany.

30 9. Institute of Toxicology, Hannover Medical School, 30625 Hannover,  
31 Germany.

32 10. Department of Infectious Diseases & Immunology, UMass Medical  
33 School, Worcester, MA 01605, USA.

34 11. Centre of Molecular Inflammation Research, Norwegian University of  
35 Science and Technology, 7491 Trondheim, Norway.

37 \* contributed equally

38

39 Correspondence should be addressed to: Eicke Latz (eicke.latz@uni-bonn.de)  
40 or Matthew S.J. Mangan (matthew.mangan@ukbonn.de)

41

42

43

44

45

46

47

48

49

50

51 **Abstract**

52

53 Pyrin is a cytosolic immune sensor that forms an inflammasome when bacterial  
54 virulence factors inhibit RhoA, triggering the release of inflammatory cytokines,  
55 including IL-1 $\beta$ . Gain of function mutations in the MEFV gene encoding Pyrin  
56 cause auto-inflammatory disorders, such as familial Mediterranean fever (FMF)  
57 and Pyrin associated auto-inflammation with Neutrophilic Dermatoses  
58 (PAAND). To precisely define the role of Pyrin in detecting pathogen virulence  
59 factors in relevant human immune cells, we investigated how the Pyrin  
60 inflammasome response was initiated and regulated in monocyte-derived  
61 macrophages (hMDM) compared to human monocytes. Unlike monocytes and  
62 murine macrophages, we determined that hMDM failed to activate Pyrin in  
63 response to known Pyrin activators *Clostridioides difficile* (*C. difficile*) toxins A  
64 or B (TcdA or TcdB). In contrast, TcdB activated the NLRP3 inflammasome in  
65 hMDM. Notably, we ascertained that the Pyrin inflammasome response could  
66 be re-enabled in hMDM by prolonged priming with either LPS or type I or II  
67 interferons, and required an increase in Pyrin expression. These data  
68 demonstrate an unexpected redundancy in detecting these toxins by  
69 inflammasome sensors.

70

71 **Introduction**

72

73 Inflammasome-forming proteins are cytosolic sensors that mediate a post-  
74 translational inflammatory response to pathogens or cell stress. Upon detecting  
75 a stimulus, these sensors oligomerize and recruit the adapter protein ASC,

76 enabling activation of caspase-1. Active caspase-1 then mediates cleavage  
77 and release of pro-inflammatory cytokines including IL-1 $\beta$ , and pro-  
78 inflammatory cell death by cleaving the pore-forming molecule gasdermin D [1].  
79 Notably, rather than relying solely on direct detection of pathogens, some  
80 inflammasome sensors have instead evolved to detect infection or cellular  
81 stress by monitoring disruption of cellular homeostasis [2]. A leading example  
82 of this is the Pyrin inflammasome, encoded by the *MEFV* gene, which is  
83 activated in response to inhibition of RhoA [3]. This small G protein controls  
84 cytoskeletal rearrangement and is essential for immune cell migration and  
85 phagocytosis, amongst other functions [4]. Unsurprisingly, given its role in  
86 fundamental cellular processes, RhoA is a target of numerous bacterial  
87 virulence factors from pathogenic bacteria, including *Clostridium difficile* toxins  
88 A and B (TcdA and TcdB, respectively) [5]. Another prominent sensor of  
89 homeostasis is the NLRP3 inflammasome, which detects a wide range of  
90 events that converge to cause either mitochondrial dysfunction or loss of  
91 osmotic control of the cytosol [6].

92  
93 Due to their high inflammatory potential, inflammasome forming sensors are  
94 strictly regulated by post-translational controls. Under resting conditions, Pyrin  
95 is maintained in an inactivate state by two distinct mechanisms regulated by  
96 RhoA signaling. The most well-characterized of these is phosphorylation of  
97 Pyrin at residues Ser208 and Ser242 by PKN1/2, members of the PKC  
98 superfamily [7–10]. Phosphorylation of Pyrin enables the subsequent binding  
99 of 14-3-3 proteins, which sequesters Pyrin in an inactive state. The second  
100 mechanism regulating Pyrin activation is less well understood, but is defined by

101 a requirement for microtubule dynamics [9]. Pretreatment with colchicine, a  
102 microtubule destabilization agent, inhibits Pyrin activation but does not prevent  
103 dephosphorylation of Pyrin, demonstrating that these two regulatory  
104 mechanisms are mutually exclusive. Interestingly, human and mouse Pyrin  
105 share these regulatory mechanisms, although murine Pyrin does not contain  
106 the C-terminal B30.2 domain due to a frameshift mutation [11].

107

108 Understanding the regulatory mechanisms governing Pyrin is particularly  
109 important as mutations in the *MEFV* gene cause the hereditary auto-  
110 inflammatory disorder, Familial Mediterranean Fever (FMF). FMF is  
111 characterized by recurrent attacks of fever, serositis, abdominal pain and can,  
112 over time, cause secondary AA amyloidosis, leading to kidney failure  
113 [12]. Mutations linked to FMF are mostly amino acid substitutions in the C-  
114 terminal B30.2 domain [13]. Though the function of the B30.2 domain is still  
115 relatively unclear, these mutations are suggested to perturb the colchicine-  
116 dependent regulatory mechanism of Pyrin. This is supported by studies  
117 showing that Pyrin variants containing FMF mutations are resistant to inhibition  
118 by colchicine and that dephosphorylation is sufficient to activate the FMF form  
119 of Pyrin [14,15]. However, as the B30.2 domain has been lost in the mouse, it  
120 is difficult to model this disease. Thus, there is a need for further research into  
121 the effects of these mutations in human cell types to understand how they alter  
122 Pyrin regulation.

123

124 *C. difficile* infection is a leading cause of hospital-associated mortality through  
125 diarrhea triggered by antibiotic therapy-mediated dysbiosis and

126 pseudomembranous colitis. All of these effects are entirely dependent on the  
127 expression of TcdA and TcdB, although TcdB is sufficient to cause disease [16].  
128 Yet, the role of the inflammasome in the immune response to *C. difficile*  
129 infection is controversial. *In vivo* experiments in ASC KO mice examining the  
130 effect of TcdA and TcdB directly, rather than through *C. difficile* infection,  
131 demonstrated that inflammasome activation in response to these toxins  
132 increased tissue damage in an IL-1 $\beta$  dependent manner [17]. However, a  
133 subsequent study demonstrated a role for caspase-1 in controlling *C. difficile*  
134 infection [18]. Experiments in both NLRP3 KO and Pyrin KO mice found that  
135 neither sensor impacted the severity of the disease [18,19]. It is conceivable  
136 that the pathology of the human pathogen *C. difficile* is not fully recapitulated in  
137 the murine model. Therefore, investigations into the inflammasome response  
138 to *C. difficile* in human cells are very important, and have so far included  
139 PBMCs, monocytes, and neutrophils [11].

140  
141 In this study, we assessed the inflammasome response to *C. difficile* and its  
142 toxins, TcdA and TcdB, in a human macrophage model using M-CSF  
143 monocyte-derived macrophages. We discovered that only TcdB triggered an  
144 inflammasome response in these cells and that, in contrast to monocytes, this  
145 was entirely independent of Pyrin and instead occurred through NLRP3.  
146 Furthermore, we found that prolonged exposure to LPS or type-I or -II  
147 interferons was sufficient to reactivate the Pyrin inflammasome by increasing  
148 Pyrin expression. These results demonstrate that Pyrin is held in an inactive  
149 state when monocytes differentiate to macrophages by a hitherto  
150 uncharacterized regulatory mechanism.

151

152 **Results**

153

154 **Inflammasome activation by *C. difficile* in hMDM is dependent on the**  
155 **expression of its toxins and can be blocked by NLRP3 inhibition**

156

157 To investigate whether *C. difficile* or its secreted virulence factors could elicit  
158 an inflammasome response in primary hMDM, we treated the cells with either  
159 conditioned supernatant from *C. difficile* or infected hMDM with the bacteria  
160 directly. As production of TcdA and TcdB is crucial for both *C. difficile*-driven  
161 pathology and the activation of the Pyrin inflammasome, two different strains of  
162 *C. difficile* were used: one proficient for production of both toxins A and B, and  
163 one deficient for both. We also assessed the effect of prior exposure to TLR  
164 ligands on the inflammasome response by priming one hMDM group with LPS  
165 before exposure to the supernatant or bacteria. In addition, we pre-incubated  
166 one group of cells with the potent and highly specific NLRP3 inhibitor CP-  
167 456,773 (also known as CRID3 or MCC950) [20] to determine if the response  
168 was NLRP3 dependent.

169

170 We determined that both *C. difficile* conditioned supernatant and direct infection  
171 induced the release of two inflammasome-dependent cytokines, IL-1 $\beta$  and IL-  
172 18, from hMDM. The cytokine release was entirely toxin-dependent in the cells  
173 treated with the conditioned supernatant (Fig. 1a) and primarily reliant on toxin  
174 expression when the cells were infected directly (Fig. S1a). Notably, IL-18,  
175 which is transcribed independent of TLR stimulation [21], was still secreted

176 exclusively when the cells were pretreated with LPS. The secretion of both  
177 cytokines was inhibited by CP-456,773 [20]. Thus, both the requirement for pre-  
178 priming and sensitivity to CP-456,773 suggested that NLRP3 mediated the  
179 response to *C. difficile* in hMDM.

180

181 **Figure 1. TcdB, but not TcdA, triggers CP-456,773 sensitive IL-1 $\beta$  release**  
182 **in hMDM but not monocytes**

183

184 (A) hMDM incubated with conditioned supernatant from toxin proficient  
185 (TcdA+,TcdB+) or toxin deficient (TcdA-,TcdB-) *C. difficile* for 4h, then the  
186 supernatant assessed for IL-1 $\beta$  and IL-18. (B) LPS primed (10ng/ml, 3h)  
187 monocytes or hMDM were treated with a dose titration of either TcdB or TcdA  
188 for 3h. Supernatants were harvested and assessed for IL-1 $\beta$ . (C) Immunoblot  
189 of lysate from LPS treated (10ng/ml, 3h) monocytes or hMDM probed for either  
190 Pyrin or actin. Representative of 3 independent experiments. (D) LPS primed  
191 (10ng/ml, 3h) monocytes or hMDM were pre-incubated for 15 min with the  
192 vehicle alone, CP-456,773 (2.5  $\mu$ M), VX-765 (40  $\mu$ M) or colchicine (2.5  $\mu$ M)  
193 then stimulated with TcdB (20 ng/ml), Nigericin (8  $\mu$ M) or LFN-PrgI/PA (25  
194 ng/ml) for 2.5h. The supernatant was assessed for IL-1 $\beta$  and LDH activity or  
195 (E) harvested and precipitated and the cells lysed. Both the precipitated  
196 supernatant and cell lysate were analysed by immunoblot for IL-1 $\beta$  and  
197 caspase-1. Mean and SEM shown for three donors or immunoblots  
198 representative of 3 independent experiments.

199

200 **C. difficile toxin B, but not toxin A, mediates NLRP3-dependent**  
201 **inflammasome activation in hMDM**

202

203 We observed that hMDM released IL-1 $\beta$  and IL-18 only in response to the  
204 toxin-proficient bacteria. To determine whether one or both toxins could trigger  
205 an inflammasome response, we incubated the cells with either recombinant  
206 toxin A (TcdA) or toxin B (TcdB). As a control, we incubated monocytes with  
207 both toxins, as they have previously been shown to respond to both in a Pyrin  
208 inflammasome-dependent manner. Monocytes, as predicted, released IL-1 $\beta$  in  
209 response to both TcdA and TcdB (Fig. 1b). Surprisingly, and in contrast to the  
210 monocytes, we found that TcdB, but not TcdA, induced an inflammasome  
211 response in the hMDM (Fig. 1b). Notably, TcdB triggered IL-1 $\beta$  release from  
212 hMDM at concentrations as low as 1 ng/ml. To ensure that the lack of TcdA-  
213 mediated inflammasome activation was not due to a failure of toxin uptake, we  
214 assessed TcdA mediated Rac modification. To do so, we used a previously  
215 described monoclonal antibody that no longer recognizes Rac when its epitope  
216 is modified by the toxin [22]. The antibody was unable to bind to Rac in both  
217 monocytes and hMDM treated with the active forms of TcdB and TcdA, but not  
218 with mutants lacking glucosyltransferase activity, indicating that the cells took  
219 up the toxin (Fig. S1b).

220

221 Given the disparity in inflammasome response between monocytes and hMDM,  
222 we assessed whether Pyrin was differentially expressed in the two cell types.  
223 Pyrin levels were comparable in hMDM and monocytes (Fig. 1c), indicating that  
224 Pyrin expression was not limiting.

225

226 To further investigate the TcdB-mediated inflammasome response, we pre-  
227 incubated LPS primed hMDM or monocytes with inhibitors against NLRP3 (CP-  
228 456,773), Pyrin (colchicine) or caspase-1 (VX-765) and then treated the cells  
229 with TcdB. As specificity controls, we used Nigericin, a potassium ionophore  
230 that activates NLRP3, as well as the NLRC4 activator needletox. The latter  
231 contains the *Salmonella typhimurium* T3SS needle protein PrgI fused to the N-  
232 terminus of anthrax lethal factor, which is delivered to the cytosol by anthrax  
233 protective antigen (PA). In hMDM, we determined that both TcdB dependent  
234 IL-1 $\beta$  secretion and LDH release as a measure of pyroptosis were inhibited by  
235 CP-456,773 but not colchicine. This provides further evidence that TcdB is  
236 activating NLRP3 rather than Pyrin in these cells (Fig. 1d). In contrast, and as  
237 demonstrated previously, the response to TcdB in monocytes was not inhibited  
238 by CP-456,773 but was inhibited by colchicine, indicating a dependence on  
239 Pyrin (Fig. 1d). To ensure that the observed IL-1 $\beta$  release was accompanied  
240 by caspase-1 activation, we also assessed the cleavage of IL-1 $\beta$  and caspase-  
241 1. In agreement with the IL-1 $\beta$  and LDH release results, we found that TcdB-  
242 mediated IL-1 $\beta$  and caspase-1 cleavage were CP-456,773 sensitive in hMDM,  
243 but not in monocytes (Fig. 1e). We also monitored the actin cytoskeleton after  
244 treatment by TcdB by staining the cells with Phalloidin. As predicted, TcdB  
245 disrupted the actin cytoskeleton similarly in both cell types (Fig. S1c).

246

247 **The inflammasome response to TcdB in human macrophage cell lines is**  
248 **entirely dependent on NLRP3**

249

250 Our results thus far demonstrated that NLRP3 is the responding inflammasome  
251 sensor to TcdB in hMDM, but relied solely on compound-based inhibition.  
252 Therefore, we used genetically modified human macrophage cell lines to  
253 determine whether NLRP3 or Pyrin mediates the inflammasome response to  
254 TcdB. Initially, we sought a model cell line that had a robust inflammasome  
255 response to TcdB. We investigated whether the BLaER1 cell line, a recently  
256 established monocyte/macrophage cell line [23], would similarly respond to  
257 TcdB to the hMDM. We found that WT BLaER1 cells released IL-1 $\beta$  in response  
258 to treatment with TcdB, as well as activating caspase-1 as measured by a  
259 caspase-1 activity assay (Fig. 2a). These data demonstrate that TcdB activates  
260 an inflammasome response in BLaER1 similar to hMDM.

261

262 **Figure 2. NLRP3, not Pyrin, is the responding inflammasome sensor to**  
263 **TcdB in human macrophages**

264

265 (A) Differentiated WT BLaER1 cells were primed with LPS (100 ng/ml, 3h), pre-  
266 incubated with either CP-456,773 (2.5  $\mu$ M, 15 min), then activated with Nigericin  
267 (8  $\mu$ M), TcdB (20ng/ml) or with LFN-PrgI/PA (25 ng/ml each) for 2h. IL-1 $\beta$  and  
268 caspase-1 activity were assessed from the harvested supernatants. (B) ASC-  
269 BFP transduced WT BLaER1 cells treated as in (A). Cells were then fixed and  
270 the number of ASC specks quantified by microscopy. (C) NLRP3 expression in  
271 differentiated BLaER1 cells (+/- 100ng/ml LPS 3h) was assessed by  
272 immunoblot. (D) Differentiated Casapse-4, NLRP3 double deficient BLaER1  
273 cells reconstituted with either NLRP3, the NLRP3 walker A/B mutant (NLRP3  
274 WAB) or the vector control treated as in (A) and the supernatants assessed for

275 IL-1 $\beta$  or TNF $\alpha$ . Mean and SD of three technical replicates shown,  
276 representative of 3 independent experiments. (E) Immunoblot of Pyrin  
277 expression in differentiated BLaER1 cells. Representative of 3 independent  
278 experiments. (F) Differentiated Pyrin deficient BLaER1 cells reconstituted with  
279 either Pyrin or the vector control treated as in (A) and the supernatants  
280 assessed for IL-1 $\beta$  or TNF $\alpha$ . Mean and SD of three technical replicates shown,  
281 representative of 3 independent experiments. (G) LPS primed WT THP-1s or  
282 the listed KOs were activated with inflammasome activators for either 1.5h  
283 (Nigericin, LFN-PrgI/PA) or for 8h (TcdB). Supernatants were assessed for IL-  
284 1 $\beta$ . Where used, CP-456,773 (2.5  $\mu$ M) and VX-765 (40  $\mu$ M) were pre-incubated  
285 with the cells for 15 min prior to addition of the inflammasome activators. Mean  
286 and SEM of 3 independent experiments shown.

287

288 We next used the BLaER1 cell line to determine the propensity of TcdB to  
289 trigger ASC speck formation, another hallmark of inflammasome activation.  
290 Accordingly, we generated a BLaER1 cell line overexpressing ASC-mCherry  
291 and stimulated it with either TcdB or Nigericin in the presence or absence of  
292 CP-456,773. This experiment was also performed in the presence of the  
293 caspase-1 inhibitor VX-765 to prevent cell death of inflammasome-activated  
294 cells. Following stimulation, the cells were fixed, and the number of ASC specks  
295 was quantified by microscopy, followed by normalization to the number of nuclei  
296 in each image. Consistent with our other data, we found that TcdB and Nigericin  
297 also caused CP456,773-sensitive ASC speck formation in these cells (Fig. 2b).

298

299 To determine the sensor responsible for the TcdB mediated inflammasome  
300 response, we used either NLRP3 or Pyrin knock-out BLaER1 cells. As the  
301 NLRP3 KO cells we used were on a caspase-4 KO background, we first  
302 ensured that caspase-4 played no role in the response. Accordingly, we tested  
303 the inflammasome response to TcdB in the caspase-4 KO BLaER1 cells, but  
304 found no difference in IL-1 $\beta$  secretion, demonstrating caspase-4 was not  
305 required for the response to TcdB (Fig. S2a). The NLRP3, caspase-4 double  
306 KO cells were then reconstituted with either NLRP3, the inactive Walker A/B  
307 NLRP3 mutant, or a vector alone control. NLRP3 expression was confirmed by  
308 immunoblot (Fig. 2c). As previously, we primed these cells with LPS, incubated  
309 them with either TcdB, Nigericin or needletox, and assessed IL-1 $\beta$  release to  
310 the supernatant. In agreement with our findings in hMDM, only the cells  
311 reconstituted with active NLRP3, but not the walker A/B mutant, were able to  
312 respond to TcdB and Nigericin (Fig. 2d). In contrast, all cell lines responded  
313 equally to the NLRC4 trigger needletox (Fig. 2d) and secreted similar levels of  
314 TNFa in response to LPS (Fig. 2d). These results confirm that the TcdB-  
315 mediated inflammasome response was dependent on the expression of active  
316 NLRP3.

317  
318 To confirm that Pyrin was not required for the TcdB-driven inflammasome  
319 response, we reconstituted Pyrin KO BLaER1 cells with either Pyrin or vector  
320 control, and confirmed expression levels by immunoblot (Fig. 2e). We found the  
321 inflammasome response to TcdB was unaffected by the absence of Pyrin,  
322 indicating that Pyrin does not play a role in the inflammasome response to TcdB

323 in these cells (Fig. 2f). Similarly, Pyrin expression did not affect the  
324 inflammasome response to Nigericin or needletox (Fig. 2f).

325

326 BLaER1 cells can readily secrete IL-1 $\beta$  in response to TLR4 stimulation by LPS  
327 alone. To rule out that LPS contamination of the TcdB was responsible for the  
328 observed IL-1 $\beta$  release, we stimulated the cells with TcdB or Nigericin following  
329 pre-incubation of the cells with TAK-242, a TLR4 inhibitor. TAK-242 did not  
330 block TcdB-mediated IL-1 $\beta$  release (Fig. S2b), but TAK-242 completely  
331 abolished LPS mediated TNFa secretion when applied before LPS stimulation  
332 (Fig. S2c), demonstrating that NLRP3 mediated activation by TcdB is not due  
333 to LPS contamination or TLR4 activation.

334

335 Having established the requirement for NLRP3 in response to TcdB in the  
336 BLaER1 cell line, we sought to determine if this was true in the other commonly  
337 used human macrophage cell line, THP-1. We first titrated TcdB on PMA  
338 differentiated THP-1 cells and found that it required both a higher concentration  
339 of TcdB (2ug/ml) to trigger IL-1 $\beta$  release as well as a longer incubation time  
340 (8h). Having established this we tested several THP-1 CRISPR knock-out cell  
341 lines to determine the requirements for TcdB-mediated inflammasome  
342 activation. PMA-differentiated WT THP-1 cells or THP-1 cells deficient in ASC,  
343 caspase-1, NLRP3 or Pyrin were primed with LPS (200 ng/ml, 3h), then  
344 incubated with TcdB, Nigericin and needletox. WT cells were also pre-  
345 incubated with CP-456,773 to determine if it had the same effect as ablation of  
346 NLRP3. Echoing our previous data, the TcdB-triggered inflammasome  
347 response in THP-1 cells was CP-456,773-sensitive and NLRP3-dependent

348 (Fig. 2g). As anticipated, this response also required ASC and caspase-1, but  
349 not Pyrin. Nigericin similarly was NLRP3-dependent, while the NLRC4 trigger  
350 only required ASC and caspase-1, demonstrating the effect of NLRP3 ablation  
351 was specific (Fig. 2g). Furthermore, the different KO lines secreted similar  
352 amounts of TNF $\alpha$  in response to LPS (Supp. Fig 2d). Collectively, these results  
353 show an absolute requirement for NLRP3, but not Pyrin, in the TcdB-mediated  
354 inflammasome response in human THP-1 cells.

355

356 Having established that TcdB activates NLRP3, but not Pyrin, we next  
357 determined whether NLRP3 activation required the activity of the TcdB  
358 glucosyltransferase domain (GTD) against Rho, as found for Pyrin. Thus, we  
359 incubated LPS-primed hMDM with TcdB or a variant of TcdB containing  
360 inactivating mutations in the glucosyltransferase domain, D286N and D288N  
361 (TcdB NXN), which does not inactivate Rho, Rac or Cdc42. We determined that  
362 both TcdB and TcdB NXN induced IL-1 $\beta$  release (Supp. fig. 2e). Interestingly,  
363 the NXN variant of TcdB was a more proficient inflammasome activator than  
364 the WT toxin, suggesting that the activity of the GTD domain opposes TcdB-  
365 mediated NLRP3 activation. This demonstrates that in contrast to Pyrin  
366 activation, GTD activity, and subsequent Rho inhibition are not required for the  
367 TcdB mediated inflammasome response in hMDM.

368

369 **TcdA and TcdB elicit an NLRP3-independent inflammasome response in**  
370 **BMDM and peritoneal macrophages**

371

372 The observation that neither TcdB nor TcdA could activate Pyrin in hMDM was  
373 unexpected. To test if this was specific to human cells, we next analyzed toxin-  
374 dependent inflammasome responses in differentiated macrophages from bone  
375 marrow (BMDM) as well as isolated peritoneal macrophages (PM) from either  
376 WT or NLRP3 KO mice. We stimulated them with either TcdA or TcdB, using  
377 Nigericin and poly(dA:dT) transfection as specificity controls for NLRP3 and  
378 AIM2, respectively.

379

380 We determined that TcdA and TcdB triggered IL-1 $\beta$  secretion in BMDM from  
381 both WT and NLRP3 KO cells, indicating that the response was NLRP3  
382 independent (Fig. 3a). This was also true in peritoneal macrophages, which  
383 showed little difference in toxin-mediated IL-1 $\beta$  secretion between WT and  
384 NLRP3 KO cells (Fig. 3b). In contrast, the inflammasome response to Nigericin  
385 was ablated entirely in the NLRP3 KO. At the same time, there was no  
386 difference in IL-1 $\beta$  release in response to transfected dA:dT and no difference  
387 in TNFa secretion in response to LPS. We also assessed IL-1 $\beta$  and caspase-1  
388 cleavage in WT and NLRP3 KO BMDM following LPS priming and stimulation  
389 with TcdB, Nigericin or dA:dT. Similarly, we found no differences between the  
390 two genotypes when stimulated with TcdB or the specificity control dA:dT, while  
391 Nigericin mediated IL-1 $\beta$  and caspase-1 cleavage were ablated in the NLRP3  
392 KO (Fig. 3c).

393

394 **Figure 3. Pyrin is the responding sensor to TcdB in murine macrophages**  
395

396 WT and NLRP3 deficient BMDM (A) or peritoneal macrophages (PM) (B) were  
397 primed with LPS (200 ng/ml, 3h), then activated with Nigericin and TcdB for 2h  
398 or dA:dT for 4h. (C) IL-1 $\beta$  and caspase-1 immunoblot of precipitated  
399 supernatant or cell lysate from WT and NLRP3 deficient BMDM treated as in  
400 (A). (D) IL-1 $\beta$  and caspase-1 immunoblot of precipitated supernatant or cell  
401 lysate from LPS primed WT BMDM either untreated or pretreated with CP-  
402 456,773 (2.5  $\mu$ M, 30 mins), then stimulated as in (A). Mean and SEM of 3  
403 independent experiments shown, immunoblots are representative of 3  
404 independent experiments.

405

406 Given that we rely on CP-456,773 to determine the role of NLRP3 in response  
407 to TcdB in human primary macrophages, we also investigated whether, despite  
408 the lack of NLRP3 dependence, CP-456,773 could affect the response in  
409 BMDM. Therefore, WT BMDM were primed with LPS pre-incubated in the  
410 presence or absence of CP-456,773 and then incubated with TcdB, Nigericin  
411 and dA:dT. However, as with the NLRP3 KO cells, CP-456,773 did not affect  
412 TcdB- or dA:dT-mediated IL-1 $\beta$  or caspase-1 cleavage but completely inhibited  
413 Nigericin-mediated cleavage of both (Fig. 3d). Therefore, the TcdB-mediated  
414 inflammasome response in murine macrophages is both NLRP3-independent  
415 and insensitive to CP-456,773. Collectively these results show that the  
416 inflammasome response to both TcdA and TcdB in murine macrophages is  
417 independent of NLRP3 and likely depends on Pyrin.

418

419 **Prolonged incubation with LPS or type I and II interferons increases Pyrin**  
420 **expression in hMDM**

421

422 It was surprising that, in contrast to monocytes, neither TcdA nor TcdB triggered  
423 a Pyrin inflammasome response in hMDM. Thus, we next investigated whether  
424 inflammatory conditions increased the expression of inflammatory signaling  
425 molecules and thus potentially enable their activation. Pro-inflammatory  
426 signaling molecules activating either the NF- $\kappa$ B or IRF transcription factors have  
427 been demonstrated to increase Pyrin expression in PBMCs [24]. To determine  
428 whether either of these pathways could increase Pyrin expression in hMDM,  
429 we treated the cells with LPS, Pam3CS4K, TNF $\alpha$ , IFN- $\beta$  and IFN- $\gamma$ , as well as  
430 IL-4 and IL-10 for 5 or 18 hours and assessed Pyrin expression by immunoblot.  
431 Notably, only LPS increased Pyrin expression after 5h, while LPS, IFN- $\beta$  and  
432 IFN- $\gamma$  but not TNF $\alpha$ , IL-1 $\beta$  or Pam3CS4K increased expression after 18h (Fig.  
433 4a). Thus, only stimuli that signal through IRF family transcription factors  
434 triggered an increase in Pyrin expression. To ensure that these molecules were  
435 functional in our system, we assessed the expression of IL-1 $\beta$ , a target of NF-  
436  $\kappa$ B, in response to LPS and Pam3CS4K. We determined that both were able to  
437 increase IL-1 $\beta$  expression (Fig. 4a), demonstrating that they were functional but  
438 unable to cause an increase in Pyrin expression.

439

440 **Figure 4. LPS type I and type II interferon increase Pyrin expression and**  
441 **enable Pyrin activation in human macrophages**

442

443 (A) Pyrin and IL-1 $\beta$  expression in hMDM treated with either IFN- $\gamma$  (200 U/ml),  
444 LPS (10ng/ml), TNF $\alpha$  (50ng/ml), IL-10 (100ng/ml), IFN- $\beta$  (5000 U/ml), IL-4  
445 (1000U/ml) or Pam3Cys4K (20ng/ml) for either 5 or 18h. Representative of 3

446 independent experiments. (B) Pyrin (MEFV) or IL-1 $\beta$  transcript from hMDM  
447 treated LPS (10ng/ml) or Pam3Cys4K (20ng/ml) for 12h. Mean and SEM the  
448 fold change of three experimental replicates shown.

449

450 Previous studies had shown that the Pyrin promoter contains an IRSE element  
451 that can be activated by both TRIF and IFN signaling [24], suggesting the  
452 increase in Pyrin expression observed can be due to increased transcription.  
453 We investigated this by stimulating the cells with either LPS or Pam3 for 12h,  
454 then assessing mRNA copy number for Pyrin by qPCR, using IL-1 $\beta$  as a control.  
455 We observed that LPS, but not Pam3CS4K, caused an increase in *MEFV*  
456 transcript compared to the untreated cells (Fig. 4b). In contrast, both LPS and  
457 Pam3CS4K increased IL-1 $\beta$  transcription, demonstrating that the increase in  
458 *MEFV* transcript was specific to LPS (Fig. 4b). It is, therefore, likely that the  
459 increase in Pyrin expression is driven by increased gene transcription.

460

## 461 **LPS and interferons prime activation of the Pyrin inflammasome in hMDM**

462

463 We tested whether increased Pyrin expression would be sufficient to enable  
464 Pyrin inflammasome activation. Accordingly, we primed hMDM with LPS for  
465 either 3 or 18 hours, pre-incubated them with DMSO, CP-456,773, VX-765 or  
466 colchicine, and then treated them with TcdA or Nigericin. As we had observed  
467 previously, TcdA did not trigger an inflammasome response after 3h of LPS  
468 priming (Fig. 5a). In contrast, after 18 h, TcdA triggered robust secretion of IL-  
469 1 $\beta$  that was sensitive to colchicine, and thus dependent on Pyrin (Fig. 5a). By  
470 comparison, Nigericin mediated CP-456,773-sensitive IL-1 $\beta$  release after both

471 3 and 18 hours of LPS priming but was not affected by colchicine (Fig. 5a).  
472 Similarly, priming the cells for 18h, but not 3h, with IFN- $\beta$  was sufficient to  
473 trigger Pyrin-dependent IL-18 secretion, demonstrating that it could also prime  
474 a Pyrin response (Fig. 5b).

475

476 **Figure 5. Increased Pyrin expression is necessary and sufficient for Pyrin**  
477 **reactivation in human macrophages**

478

479 (A) LPS primed (10ng/ml, 3 or 18h) hMDM were pre-incubated with compounds  
480 as noted previously, then stimulated with either TcdA (200 ng/ml) or Nigericin  
481 (8  $\mu$ M) for 2.5h. The supernatant was harvested and assessed for IL-1 $\beta$   
482 release. (B) IFN- $\beta$  (5000U/ml, 3 or 18h) primed hMDM with either for 3h or 18h  
483 were pre-incubated with compounds as before then stimulated with TcdB (20  
484 ng/ml) for 2.5h. The supernatant was harvested and assessed for IL-18 release.  
485 (C) hMDM primed with either LPS (10ng/ml) or Pam3Cys4K (20ng/ml) for 3h or  
486 18h were treated as in (B). The supernatant was harvested and assessed for  
487 IL-1 $\beta$  release. (D) hMDM were transfected with siRNA targeting Pyrin mRNA  
488 (#59, #60) or the scrambled control and assessed for Pyrin expression by  
489 immunoblot or stimulated a previously following primed with LPS (10ng/ml) for  
490 18h. (E) Expression of Pyrin in hMDM incubated with pepinhTRIF or the  
491 scrambled control peptide (25 $\mu$ g/ml, 5h), then treated with LPS (10ng/ml, 18h).  
492 Representative of 3 donors. IL-1 $\beta$  secretion from cell pretreated with  
493 pepinhTRIF or the scrambled control peptide (25 $\mu$ g/ml) in response to LPS  
494 priming (10ng/ml, 18h) followed by stimulation with either TcdA (200ng/ml) or  
495 nigericin (8 $\mu$ M) for 2.5h. (F) LPS primed (100ng/ml, 3h) differentiated Casapse-

496 4, NLRP3 double deficient BLaER1 cells reconstituted with either Pyrin or the  
497 vector control were incubated with Nigericin (8 $\mu$ M) TcdB (20ng/ml) or LFN-PrgI  
498 in the presence of protective antigen (PA) (25ng/ml) for 2.5h in the presence or  
499 absence of CP-456,773 (2.5 $\mu$ M, 15 min incubation). Supernatants were  
500 assessed for IL-1 $\beta$ . For (A)-(E) Mean and SEM of 3-4 experimental replicates  
501 shown. For (F) Mean and SD of three technical replicates shown,  
502 representative of 3 independent experiments.

503

504 We next sought to determine whether restoration of the Pyrin inflammasome  
505 response was specific to a stimulus that increased Pyrin expression. We thus  
506 compared the ability of TcdB to activate Pyrin in hMDM primed with Pam3CS4K  
507 to those primed with LPS. As done previously, hMDM were pre-incubated with  
508 different inhibitors to determine the responding inflammasome sensor. TcdB  
509 triggered CP-456,773-dependent inflammasome activation after three hours of  
510 priming with either LPS or Pam3CS4K (Fig. 5c). Comparative stimulation after  
511 18 hours of priming led to a Pyrin-dependent response in the LPS primed cells,  
512 while the Pam3CS4K-primed cells failed to activate any inflammasome  
513 response (Fig. 5c), demonstrating that increased Pyrin expression is linked to  
514 Pyrin reactivation.

515

## 516 **Increased Pyrin expression is necessary for the Pyrin response in hMDM**

517

518 To determine whether the increase in Pyrin expression was a requirement for  
519 Pyrin activation, we transfected hMDM with two distinct siRNA against Pyrin or  
520 a scrambled control 24h before priming with LPS. Notably, both Pyrin targeting

521 siRNAs effectively prevented the LPS mediated increase in Pyrin expression.  
522 Still, they did not reduce it further than the untreated control, while the  
523 scrambled control had no effect (Fig. 5d). siRNA transfected hMDM were  
524 primed with LPS for 18h and then stimulated with TcdA or Nigericin. We  
525 observed that the two Pyrin siRNAs, but not the scrambled control, prevented  
526 TcdA-mediated IL-1 $\beta$  release. In contrast, neither of the Pyrin-targeting siRNAs,  
527 nor the control siRNA, affected Nigericin-mediated inflammasome activation  
528 (Fig. 5d), establishing decreasing Pyrin expression is sufficient to inhibit Pyrin  
529 activation specifically.

530

531 As Pyrin expression increased after treatment with LPS or interferons, but not  
532 Pam3Cys4K or TNF $\alpha$ , we hypothesised that the increase in LPS-dependent  
533 Pyrin expression likely required the TRIF signaling pathway. We tested our  
534 hypothesis by investigating whether blocking TLR4-mediated TRIF signaling  
535 prevents the LPS-dependent increase in Pyrin expression and restores the  
536 Pyrin inflammasome response. To this end, we pretreated hMDM with  
537 pepinhTRIF, a peptide that prevents the interaction of TRIF with its downstream  
538 interaction partners. We then incubated these cells with LPS for 18h before  
539 assessing Pyrin expression and activation. We found that treatment with  
540 pepinhTRIF, but not a control peptide, reduced LPS mediated Pyrin expression  
541 (Fig. 5e). We then stimulated the cells with either TcdA or Nigericin. We found  
542 that only the TcdA-mediated inflammasome response was inhibited by  
543 pretreatment with the pepinhTRIF, whereas the Nigericin-mediated IL-1 $\beta$   
544 secretion was unaffected (Fig. 5e). These results demonstrate that the LPS-

545 stimulated increase in Pyrin expression is TRIF-mediated, and blocking this is  
546 sufficient to prevent Pyrin activation in these cells.

547

548 Given that increased Pyrin expression is necessary for Pyrin reactivation in  
549 hMDM, we next sought to determine whether Pyrin overexpression alone would  
550 enable a Pyrin inflammasome response. For this experiment we used the  
551 caspase-4, NLRP3 KO BLaER1 cells, which otherwise do not mount an  
552 inflammasome response to TcdB. We overexpressed Pyrin in the caspase-4,  
553 NLRP3 KO BLaER1 cells using reconstitution with a vector alone as a control.  
554 We then primed these cells with LPS and stimulated them with TcdB, Nigericin  
555 or needletox. Markedly, TcdB mediated an inflammasome response in the  
556 Pyrin-reconstituted cells, but not in cells transduced with the vector alone  
557 Notably, this was not inhibited by CP-456,773 (Fig. 5f). In contrast, Pyrin  
558 reconstitution had no effect on either NLRP3 or NLRC4 activation (Fig. 5f). This  
559 differed from our earlier observations where TcdB triggered an NLRP3  
560 dependent inflammasome response in Pyrin KO BLaER1 cells overexpressing  
561 Pyrin. However, in this experiment we did not determine whether Pyrin  
562 overexpression in the Pyrin KO BLaER1 cells resulted in NLRP3 independent  
563 IL-1 $\beta$  secretion in response to TcdB. Furthermore, when NLRP3 is present, the  
564 NLRP3 inflammasome response to TcdB might predominate in BLaER1. These  
565 results demonstrate that an increasing Pyrin expression is sufficient to enable  
566 Pyrin inflammasome response, and regulation of Pyrin expression is the  
567 primary factor controlling Pyrin inflammasome activation in hMDM.

568

569 **Dephosphorylation of Pyrin is insufficient for activation in hMDM**

570

571 Pyrin does not form an inflammasome in response to TcdA or TcdB in hMDM  
572 in the absence of a priming stimulus. This suggests that the toxin cannot  
573 disengage one or both of the two known inhibitory mechanisms controlling  
574 Pyrin: either dephosphorylation of the S204 and S242 residues, or the less well  
575 characterized mechanism related to the B30.2 domain. To determine the  
576 involvement of phosphorylation in regulating Pyrin activation in hMDM we  
577 tested whether TcdB mediated dephosphorylated of Pyrin at serine 242 after  
578 priming with LPS for 3h or 18h. Notably, we found that Pyrin was  
579 dephosphorylated after treatment with TcdB regardless of the length of LPS  
580 priming, demonstrating that this is unlikely to be the mechanism preventing  
581 Pyrin activation (Fig. 6).

582

583 **Figure 6. The B30.2 domain regulates Pyrin activation in human**  
584 **macrophages, and is disrupted by FMF mutations**

585

586 (A) LPS primed (10ng/ml, 3h or 18h) hMDM were treated with TcdB (5 ng/ml,  
587 1h), then lysed and assessed for phosphorylation of Pyrin (S242), Pyrin or actin  
588 by immunoblot. Representative of 3 independent experiments.

589

590 **Discussion**

591

592 Pyrin responds to virulence factors and endogenous molecules that inhibit the  
593 RhoA signaling pathway. Gain of function mutants in the MEFV gene cause  
594 multiple genetic autoinflammatory disorders [11]. Understanding Pyrin

595 regulation, particularly in the context of different human cell types, is therefore  
596 critical to understand how auto-inflammation-associated mutations may disrupt  
597 these mechanisms. In this study, we investigated the inflammasome response  
598 to the disease-causing *C. difficile* toxins TcdA and TcdB in hMDM. We found  
599 that under steady state conditions, and in spite of expressing similar levels of  
600 Pyrin to monocytes, hMDM do not mount a Pyrin inflammasome response.  
601 Notably, Pyrin activation could be re-established in these cells by further  
602 increasing in Pyrin expression through prolonged priming with either LPS or  
603 type I or II interferon. Surprisingly, in the absence of Pyrin activation, TcdB  
604 instead activated NLRP3 in these cells, thus demonstrating a redundancy in the  
605 inflammasome system to detect this toxin. TcdB similarly triggered NLRP3  
606 activation in both human macrophage cell lines we tested, BLaER1 and THP1,  
607 rather than Pyrin. Notably, unlike Pyrin activation, NLRP3 activation by TcdB  
608 did not require the enzymatic activity of the toxin, demonstrating that it activates  
609 Pyrin and NLRP3 through two distinct pathways. These findings are in contrast  
610 to monocytes, which responded to both toxins in a Pyrin inflammasome  
611 dependent manner, as has been shown previously [3]. This demonstrates a cell  
612 type specific divergence in the inflammasome response to TcdB.

613  
614 The results of our study demonstrate that regulatory mechanisms governing  
615 Pyrin activation in hMDM prevent Pyrin activation unless the cell has been  
616 exposed to a prior pro-inflammatory stimulus. Notably, in the case of Pyrin,  
617 licensing required prolonged stimulation with LPS or interferons, but not other  
618 inflammatory stimuli including TNF $\alpha$ . This contrasts with the data from a  
619 previous study in PBMCs, where TNF $\alpha$  and Pam3CS4K stimulation also

620 increased Pyrin expression [24]. Increased expression of Pyrin was necessary  
621 to prime a Pyrin dependent inflammasome response in hMDM, as preventing  
622 increased Pyrin expression after these stimulation with LPS was sufficient to  
623 inhibited Pyrin activation. Furthermore, overexpression of Pyrin in BLaER1 cells  
624 was sufficient to enable a Pyrin response. These results suggest that, similar  
625 to the NLRP3 and AIM2 inflammasomes, control of Pyrin expression through  
626 inflammatory signals regulates Pyrin activation. Although the promoter region  
627 of the MEFV gene contains elements that are recognized by either interferon  
628 driven transcription factors or by NF- $\kappa$ B [24], increased Pyrin expression was  
629 specific to activation of the TRIF/interferon pathway. This suggests that Pyrin is  
630 specifically reactivated in hMDM by pathways associated with cell host defense  
631 and gram-negative bacteria and may be important in the response to these  
632 pathogens. An example of this is an increase in Pyrin expression seen in  
633 response to *Francisella novicida* infection, where, unlike in mice, Pyrin is the  
634 responding sensor to *F. novicida* in hMDM [25]. This also has implications for  
635 Pyrin associated auto-inflammatory conditions, where, compared to NLRP3  
636 driven auto-inflammatory conditions, IL-1 $\beta$  blocking therapy is only somewhat  
637 successful in preventing disease [26]. Our data suggests that interferon  
638 signaling could also play a role in triggering auto-inflammation in these patients,  
639 as well as DAMPs released after tissue injury that stimulate TLR4. Further  
640 research is needed to understand the contribution of these sensors to Pyrin  
641 based auto-inflammatory conditions to determine if blocking these priming  
642 signals helps to control these diseases.

643

644 Notably, we found Pyrin expression was comparable between hMDM and  
645 monocytes under unstimulated conditions, indicating that the additional  
646 regulatory steps in hMDM are post-translational. The most well characterized  
647 of these is the phosphorylation of Pyrin. However, in spite of failing to trigger  
648 formation of a Pyrin inflammasome, TcdB still caused dephosphorylation of the  
649 S242 residue, demonstrating that this is not the mechanism preventing Pyrin  
650 activation. An alternative mechanism controlling Pyrin activation could be the  
651 control mechanism related to the colchicine sensitive requirement for Pyrin  
652 activation, which requires the B30.2 domain [15]. Supporting this is the finding  
653 that, unlike in human macrophages, TcdA and TcdB activate Pyrin in murine  
654 macrophages, where a frame shift mutation has removed the B30.2 domain.  
655 Another option would include the protein proline serine threonine phosphatase-  
656 interacting protein 1 (PSTPIP1), which binds to Pyrin and facilitates its  
657 oligomerisation and inflammasome formation [27]. However, further  
658 investigations into how this control mechanism functions are required to gain  
659 further information into whether this is indeed the control mechanism in  
660 macrophages.

661  
662 These findings demonstrate yet another point of divergence between human  
663 monocytes and macrophages, as Pyrin is inactive in these cells. These  
664 observations join a growing list of differences in inflammasome activation  
665 between these cell types, which also differ in their responses to LPS, which  
666 activates NLRP3 in monocytes without a need for a second stimulus, as well as  
667 dsDNA, which triggers a STING- and NLRP3-dependent inflammasome  
668 response in monocytes rather than activating AIM2 [23,28]. That Pyrin is active

669 in monocytes is unsurprising, as they are migratory cells that rely on actin  
670 rearrangement to reach sites of infection where they contribute to the immune  
671 response and clearing the pathogen. Therefore, inhibition of migration  
672 represents a disruption of a basic function of these cells. This is consistent with  
673 Pyrin activation in neutrophils, another migratory immune cell type. Conversely,  
674 our results demonstrate that Pyrin is unable to respond in hMDM, even though  
675 inactivation of Rho will also impact the immune response and viral clearance.  
676 This suggests a requirement for more nuanced control of Pyrin activation in  
677 hMDM, which may be a requirement to limit Pyrin driven auto-inflammation.  
678 Limiting the Pyrin response to situations requiring pre-exposure to pro-  
679 inflammatory molecules such as LPS or interferons may be necessary to  
680 ensure that Pyrin is not aberrantly activated by endogenous molecules such as  
681 bile acids [29], which may be present in tissues but not in the circulation [30].  
682 How widespread this mechanism is will be elucidated by research focusing on  
683 Pyrin regulation in other cell types. Notably, the regulation of Pyrin observed in  
684 human macrophages was not evident in murine macrophages, which, similar  
685 to human monocytes, responded to TcdA and TcdB in a Pyrin-dependent  
686 manner. However, murine Pyrin lacks the B30.2 domain, and so may have lost  
687 the regulatory mechanism preventing Pyrin activation in hMDM. This  
688 demonstrates a further divergence in inflammasome responses between the  
689 two species, in addition to NLRC4 activation and NLRP3 responses [31,32].  
690  
691 It was interesting to note that Pyrin activation was restricted in the hMDM in  
692 spite of similar basal Pyrin expression to monocytes. The expression observed  
693 was most likely due to M-CSF, which increases Pyrin expression in

694 monocytes/macrophages [33]. However, it is unclear why Pyrin is present but  
695 stringently regulated. One possible explanation for this is that Pyrin has  
696 additional roles in the cell aside from forming an inflammasome. It has been  
697 suggested previously that Pyrin operates as a specialized adapter for  
698 autophagic machinery [34]. This capacity it associates with autophagic  
699 adapters ULK1 and Beclin1 to target NLRP3 and caspase-1 for autophagic  
700 degradation. Further investigation would be required to understand how M-CSF  
701 driven Pyrin expression controls this phenomenon.

702

703 Our results have potential implications for FMF pathogenesis. Whilst defining  
704 which mutations can cause FMF is still an area of ongoing research, the most  
705 well characterized FMF-causing mutations occur in the B30.2 domain [35]. If  
706 indeed the mechanism holding Pyrin inactive requires the less well  
707 characterized mechanism involving the B30.2 domain, our data suggest that  
708 this control mechanism will be disrupted by these mutations. Further research  
709 investigating the effect of FMF mutations on regulation of Pyrin in macrophage  
710 will elucidate whether these mutations indeed alter this regulation.

711

712 Our findings have implications for the pathogenesis of *C. difficile* infection. TcdB  
713 triggered either a Pyrin- or NLRP3-dependent inflammasome response  
714 depending on the cell type, while TcdA did not trigger an inflammasome  
715 response in macrophages. This redundancy is quite intriguing, and suggests  
716 that inflammasome-mediated detection of TcdB is important in the response to  
717 the bacteria. Given that strains of *C. difficile* exist that express only one of TcdA  
718 or TcdB, as well as both [36], it is also possible that disease severity alters

719 depending on whether the bacteria express TcdB, as early NLRP3 activation in  
720 the macrophages prior to systemic penetration by the toxin may dictate the  
721 speed of the immune response or conversely enhance tissue damage .  
722 Furthermore, the detection mechanism for each sensor has different  
723 requirements, as Pyrin detects the activity of the glycosyltransferase domain  
724 through RhoA inactivation, whilst NLRP3 mediated TcdB detection is  
725 independent of glycosyltransferase activity. Furthermore, our data demonstrate  
726 that Pyrin activation is differentially regulated in human and mouse, and so the  
727 inflammasome response to this infection may differ from what has been shown  
728 in mouse models. Further studies in a model more closely related to humans,  
729 such as pigs, is needed to determine the role of inflammasomes in *C.difficile*  
730 infection, and determine whether the current inflammasome inhibitors being  
731 developed represent new treatments to prevent *C. difficile*-associated  
732 pathology or pose an increased risk of *C. difficile* infection.

733

## 734 **Materials and methods**

735

### 736 Ethics statement

737 Ethics for the use of human material was obtained according to protocols  
738 accepted by the institutional review board at the University Clinic Bonn; local  
739 ethics votes Lfd. Nr. 075/14). No consent was taken as all donors were  
740 anonymous.

741

### 742 Reagents

743 LPS (Eb-ultrapure, 0111:B4), Pam3CS4K, pepinhTRIF and TAK-242 were  
744 obtained from InvivoGen, Nigericin was obtained from Invitrogen and *Bacillus*  
745 *anthracis* protective antigen was obtained from List Biological Laboratories.  
746 Colchicine was obtained from Sigma, and VX-765 was obtained from  
747 Sellekchem. DRAQ5 was purchased from eBioscience. TNF $\alpha$ , IFN- $\beta$ , IFN- $\gamma$ , M-  
748 CSF, IL-3, IL-4 and IL-10 were purchased from Immunotools. TcdA and TcdB  
749 from *C. difficile* strain VPI10463 were recombinantly produced and supplied by  
750 Prof. Ralf Gerhard [37]. Both toxins are identical to TcdA and TcdB from strain  
751 cdi630, which was used for infection assay. The HTRF kits for human IL-1 $\beta$  and  
752 TNF $\alpha$  were obtained from Cisbio, the ELISA kit for human and mouse IL-1 $\beta$   
753 was obtained from R&D Systems. Both were used according to the  
754 manufacturer's instructions. For the *Clostridioides difficile* supernatant transfer  
755 and co-culture, the following reagents were used: Butyric acid (Sigma-Aldrich:  
756 W222119-1KG-K), Various amino acids (Roth or Sigma), Iron sulfate  
757 heptahydrate (Sigma-Aldrich: 215422-250G), Triton-X 100 (Roth: 3051.2), M-  
758 Per (Sigma-Aldrich: 78501), Protease inhibitor (Sigma-Aldrich: 11836170001).  
759

760 Cells lines and tissue culture

761 The BLaER1 cells and THP-1 cells were maintained in complete RPMI (RPMI  
762 containing 10% heat-inactivated fetal calf serum, 1% Pen/Strep and 1%  
763 GlutaMAX, all obtained from Thermo Fisher). To trans-differentiate the BLaER1  
764 cells to a macrophage-like cells they were resuspended at 1x10<sup>6</sup> cells/ml in  
765 complete RPMI with 10 ng/ml IL-3, 25 U/ml M-CSF and 100 nM  $\beta$ -Estradiol,  
766 and then 100ul was plated in poly-L-lysine (Sigma, P8920) coated 96 well  
767 plates and incubated for 6 days to differentiate the cells. On day 6 the cells

768 were used for experiments. The BLaER1 CRISPR KO cell lines were obtained  
769 from the laboratory of Prof. Veit Hornung and were generated as described in  
770 [23]. THP-1 cells were differentiated in full medium containing 50 ng/mL PMA.  
771 The THP-1 CRISPR KO cells were generated using transduction with  
772 lentiviruses based on pLenti CRISPR v2 [38] using sgRNAs: Caspase- 1-  
773 TACCATGAGACATGAACACC, ASC – GCTGGATGCTCTGTACGGGA,  
774 NLRP3 - CAATCTGAAGAAGCTCTGGT and Pyrin –  
775 TCTGCTGGTCACCTACTATG, followed by selection in 0.75 µg/mL puromycin.  
776 Monoclonal cell lines were generated by limited dilution and verified by Sanger  
777 sequencing and immunblot.

778

779 Primary cell isolation and differentiation

780 Monocytes were purified from buffy coat preparations from healthy donors  
781 (obtained according to protocols accepted by the institutional review board at  
782 the University Clinic Bonn; local ethics votes Lfd. Nr. 075/14). All donors were  
783 anonymous. The buffy coat was mixed in a 2:3 ratio with PBS, layered onto a  
784 ficoll gradient, and centrifuged at 700g for 20 min without brake. The PBMC  
785 layer was extracted from the interface. After washing, it was incubated with  
786 CD14 conjugated magnetic beads (Milltenyi Bioscience) and purified using  
787 MACS columns (Milltenyi Bioscience) as per the manufacturer's protocol. The  
788 cells were then counted and resuspended for direct use or cultured for 3 days  
789 in RPMI containing 50 U/ml M-CSF at  $2 \times 10^6$  cells/ml to generated hMDM. After  
790 the three-day differentiation, hMDM were harvested and plated for experiments,  
791 then left to adhere overnight in RPMI containing 25 U/ml M-CSF.

792

793 Inflammasome stimulation assays

794 Primary monocytes/hMDM: Cells were harvested and seeded the day before  
795 the assay. Before the experiment, the media was removed, and fresh media  
796 with or without a TLR stimulus was added (LPS 10ng/ml, Pam3CS4K 25 ng/ml)  
797 and incubated for 3h. Next, compounds were added and incubated for 15 min  
798 (CP-456,773 2.5 uM, VX-765 40 uM, Colchicine 2.5 uM). Inflammasome  
799 activators were subsequently added and incubated for 2.5h (TcdB 20 ng/ml,  
800 Nigericin 8 uM, Prgl/PA 25 ng/ml, respectively). Plates were centrifuged at 450g  
801 for 5 min, then the supernatant harvested for a cytokine or immunoblot analysis,  
802 and the cells lysed in RIPA buffer were applicable.

803

804 BLaER1 cells: Differentiated BLaER1 cells were seeded in 96 well plates pre-  
805 coated in the poly-L-lysine. Before the experiment, the media was removed and  
806 fresh media with or without LPS (100 ng/ml) and incubated for 3h. Next,  
807 compounds were added and incubated for 15 min (CP-456,773 2.5 uM, VX-765  
808 40 uM, Colchicine 2.5 uM). Inflammasome activators were subsequently added  
809 and incubated for 2.5h (TcdB 20 ng/ml, Nigericin 8 uM, Prgl/PA 25 ng/ml,  
810 respectively). Plates were centrifuged at 450g for 5mins, and then the  
811 supernatant was harvested for cytokine analysis.

812

813 THP1s were seeded in 24 well plates in the presence of 50 ng/mL PMA (2·10<sup>5</sup>  
814 per well). Medium was replaced after 16 h; 24 h after this, cells were primed  
815 with 100 ng/mL LPS for 3h, followed by treatment with 8 uM Nigericin (NLRP3)  
816 or 100 ng/mL PA + 200 ng/mL LFn-Prgl (needletox, NLRC4) for 1.5 h, or 2  
817 µg/mL TcdB for 8h. Supernatants were cleared by centrifugation at 4° C, 1000g

818 for 10 min and IL-1 $\beta$  and TNF $\alpha$  levels were quantified by ELISA. Where  
819 indicated, cells were treated with 2.5  $\mu$ M CP-456,773 (CRID3, MCC950), or 40  
820  $\mu$ M Vx-765 30 min before and during stimulation.

821

822 Sample preparation and immunoblotting

823 The supernatant from primary human monocytes, hMDM, or BMDMs (2x10<sup>6</sup>  
824 cells/well in a 6 well plate) was harvested following inflammasome stimulation  
825 and the cells lysed in RIPA buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1  
826 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholate, cOmplete  
827 protease and PhosSTOP (Roche) inhibitor). First, DNA was disrupted by  
828 sonication, then the lysate equivalent to 2x10<sup>5</sup> cells was mixed at a 1:4 ratio  
829 with 4x LDS buffer containing 10% sample reducing agent (Invitrogen).  
830 Samples were heated at 95°C for 5 minutes and collected by centrifugation  
831 before loading.

832

833 Protein from supernatants was precipitated by adding an equal volume of  
834 methanol and 0.25 volumes of chloroform, centrifuged for 3 min at 13,000g.  
835 Next, the upper phase was discarded, the same volume of methanol of the  
836 previous step was added, and the sample was centrifuged for 3 min at 13,000g.  
837 The pellet was then dried and resuspended in 1x LDS-sample buffer containing  
838 a 10% sample reducing agent (Invitrogen). Samples were heated at 95°C for 5  
839 minutes and collected by centrifugation before loading.

840

841 Proteins were separated by 4–12% SDS-PAGE in precast gels (Novex;  
842 Invitrogen) with MOPS buffer for proteins above 50kDa or MES buffer for

843 proteins below 50kDa (Novex; Invitrogen). Proteins were transferred onto  
844 Immobilon-FL PVDF membranes (Millipore), and nonspecific binding was  
845 blocked with 3% BSA in Tris-buffered saline for 1 h, followed by overnight  
846 incubation with specific primary antibodies in 3% BSA in Tris-buffered saline  
847 with 0.1% Tween-20. For the phosphor-Pyrin immunoblots the transferred  
848 membranes were instead blocked in Tris-buffered saline containing 1% milk  
849 powder.

850

851 Primary antibodies were used as follows: NLRP3 (1:5,000; Cryo-2), human  
852 caspase-1 for lysate analysis (1:1,000; Bally-1), murine caspase-1 (1:1000;  
853 casper-1) from Adipogen, Pyrin (1:1000, MEFV polyclonal 24280-1-AP) from  
854 Proteintech, phospho-Pyrin S241 (1:500; ab200420) from Abcam, human IL-1 $\beta$   
855 (1:1000, AF-201-NA ) and murine IL-1 $\beta$  (1:1000, AF-401-NA ) from R&D  
856 bioscience, Rac (1:1000, clone 102) from BD transduction laboratories, human  
857 caspase-1 for supernatant analysis (1:1000, D57A2), Rac1/2/3 (1:1000, rabbit  
858 polyclonal #2465) from CST, actin (mouse or rabbit, both 1:1,000 dilution) from  
859 LI-COR Biosciences. Membranes were then washed and incubated with the  
860 appropriate secondary antibodies (IRDye 800CW, IRDye 680RD or HRP;  
861 1:25,000 dilution; LI-COR Biosciences). In the case of caspase-1 detection or  
862 Pyrin detection, the membranes were incubated with washed and analyzed with  
863 an Odyssey CLx imaging system (LI-COR Biosciences) and ImageStudio 3  
864 Software (LI-COR Biosciences). For the phosphor-Pyrin immunoblots the  
865 membrane was developed using western lighting plus-ECL and analysed on a  
866 VersaDoc (Biorad).

867

868 Cytokine measurements

869 Cytokines were measured either by ELISA or by HTRF as per the  
870 manufactures' instructions. The kits used for ELISA were the human IL-1 $\beta$   
871 (DY201), human TNF $\alpha$  (DY210), mouse IL-1 $\beta$  (DY401) or mouse TNF $\alpha$   
872 (DY410), all from RnD biosystems. HTRF kits used were human IL-1 $\beta$   
873 (62IL1PEC) or human TNF $\alpha$  (62TNFPEB). All assays were read using a  
874 SpectraMAX i3 (molecular devices) using the additional HTRF cartridge.  
875 Human IL-18 measurements were performed using a cytokine bead array that  
876 was generated in our laboratory. The xMAP antibody coupling kit from Luminex  
877 (40-50016) was used to conjugate the capture IL-18 antibody (D0044-3, MBL)  
878 to the beads. IL-18 was then measured following the standard Luminex protocol  
879 and measured on a Magpix multiplexing unit (Luminex).

880

881 siRNA transfection

882 hMDM were harvested by centrifugation (350g, 5 min) and washed twice in  
883 PBS. The cells were then aliquoted to have  $1.2 \times 10^6$  cells per reaction and  
884 centrifuged again for 2 min at 3000 rpm. The supernatant was discarded, and  
885 the cell pellet resuspended in 10.5  $\mu$ L Buffer R with siRNA at 10nM. 10  $\mu$ L of  
886 reaction mix was loaded into the neon electroporation, and the pipette plugged  
887 into place within the electroporation tube containing 3ml Buffer E. The  
888 electroporation settings were: 1400 V, 20 ms and 2 pulses. Subsequently, the  
889 cells were transferred into 2 mL pre-warmed antibiotic-free RPMI. After  
890 counting, the appropriate number of cells was seeded in 12-well or 96-well  
891 tissue culture plates and incubated for 24 h before experiments.

892

893 Immunofluorescence and microscopy

894 Following treatment were washed once in PBS, then fixed in 2% PFA at 4C  
895 overnight (for BLaER1 ASC speck analysis) or 4% PFA on ice for 30 min. The  
896 cells were then washed twice in PBS containing 20 mM Glycine, then twice in  
897 PBS. To stain for intracellular targets, the cells were then permeabilized in 0.1%  
898 Triton X-100 for 5 min, then blocked in intracellular staining solution (PBS +10%  
899 goat serum, 1% HI-FBS and 0.1% Triton X-100) for 30 mins RT. Next, we used  
900 Alexa-647 conjugated Phalloidin (Invitrogen, A22287) for 30 min RT in an  
901 intracellular staining solution to stain actin. The cells were then washed (3x  
902 5min) and incubated with DAPI (1 $\mu$ g/ml, 10min) before being washed and  
903 imaged. For ASC speck detection, the fixed cells were incubated with DRAQ5  
904 (eBioscience, 65-0880-96) for 5 min (1:2000 dilution), then imaged directly. All  
905 imaging was performed with an Observer.Z1 epifluorescence microscope, 20 $\times$   
906 objective (dry, PlanApochromat, NA 0.8; ZEISS), Axiocam 506 mono, and ZEN  
907 Blue software (ZEISS). Image analysis of all ASC speck experiments was done  
908 using a cell profiler pipeline optimized to detect either ASC specks or nuclei. A  
909 minimum of 6 images was analyzed for each condition in each experiment.

910

911 Retroviral transduction and fluorescent activated cell sorting

912 To produce the virus-containing supernatant  $0.4 \times 10^6$  HEK293T cells were  
913 plated in 2 mL complete DMEM in one well of a 6 well dish. After 16 - 24 h,  
914 HEK293T cells were transfected with retroviral constructs encoding the gene of  
915 interest (2  $\mu$ g per well), the retroviral packaging plasmids gag-pol (1  $\mu$ g well),  
916 and VSV-G (100 ng/well) using GeneJuice transfection reagent (Novagen,  
917 70967). Cells were incubated at 37C, 5% CO2 for approximately 12 h, and then

918 the media was exchanged with RPMI containing 30% HI-FBS, and cells were  
919 incubated for another 34 h. After 36 h, the viral supernatant was collected using  
920 a 10 mL Luer-lock syringe attached to a blunt 18G needle and then filtered  
921 using a 0.45 mm filter unit into a 50 mL falcon. The medium on target cells was  
922 removed, and viral supernatant was added to the cells at a 2:1 ratio with  
923 complete RPMI. 8 µg/ml polybrene was then added to the diluted virus-  
924 containing supernatant. The cells were then centrifuged at 800g for 45 min at  
925 37°C, then harvested and plated in 24 well plates before being incubated for  
926 approximately 24 hr at 37°C, 5% CO<sub>2</sub>. Following incubation, the cells were  
927 collected by centrifugation, and the virus-containing medium was removed and  
928 replaced by complete RPMI. Transduced cells were passaged three times  
929 before frozen stocks were prepared. Cells were sorted for equal expression of  
930 Pyrin, and NLRP3 variants using fluorescence assisted cell sorting on a FACS  
931 Aria cell sorter for equivalent expression of the fluorescent protein used as a  
932 marker of transduction.

933

934 C. difficile co-culture and supernatant generation

935 Experiments were performed with *C. difficile* DSM 28645 and DSM 29688  
936 obtained from the German Collection of Microorganisms and Cell Cultures  
937 (DSMZ, Braunschweig, Germany). Main cultures were cultivated in RPMI 1640,  
938 supplemented 10% FBS, 0.014 mM iron sulfate, 4.16 mM cysteine, 4.33 mM  
939 proline, 1.11 mM valine, 1.12 mM leucine, 0.72 mM isoleucine, 0.22 mM  
940 tryptophane, 0.57 mM methionine and 0.22 mM histidine at 2% O<sub>2</sub>, 5% CO<sub>2</sub>,  
941 37°C, 40-50% humidity using O2 Control InVitro Glove Box (Coy Labs, USA).

942

943 PBMCs were isolated from three different donors and differentiated into hMDM  
944 as described above. Two days before the experiment, cells were seeded in  
945 RPMI medium supplemented with 10% HI-FBS at  $3.3 \times 10^5$  cells per well in 24  
946 well plates and incubated at normoxic conditions at 37°C for 24 h. On the  
947 following day, the cells were placed into a hypoxia chamber (2% O<sub>2</sub>, 5% CO<sub>2</sub>,  
948 37°C, 40-50% humidity) for another 24 h. On the same day, *C. difficile* main  
949 cultures of DSM 28645 (toxin-producing) and DSM 29688 (non-toxigenic) were  
950 inoculated at an OD<sub>600nm</sub> of ~0.01 and incubated for 24 h. On the day of the  
951 experiment the medium was removed, and the cells were washed with 500 µl  
952 PBS. Following, the cells were treated with 375 µl RPMI or 375 µl RPMI  
953 containing 10 ng/ml LPS for 2 h. The OD<sub>600nm</sub> of both *C. difficile* cultures was  
954 determined, and the number of bacterial density was determined using the  
955 following formulation:

956

957 *C. difficile* per ml main culture = 26,445,593 x OD<sub>600nm</sub>

958

959 The cells were centrifuged at 2500g for 10 min. After centrifugation, the  
960 supernatant was passed through a 0.2 µM sterile filter. The pellet was  
961 resuspended in RPMI supplemented with 5 mM butyrate and with lower  
962 concentrations of glycine (reduced to 0.033 mM), cysteine (0 mM), proline (0  
963 mM), isoleucine (0.095 mM), leucine (0.095 mM), methionine (0.026 mM),  
964 serine (0 mM), threonine (0.042 mM) and valine (0.042 mM) and the bacterial  
965 density was adjusted to a multiple of infection (MOI) of 300. The cells were  
966 treated with 375 µl sterile-filtered *C. difficile* supernatant, living *C. difficile* (300  
967 MOI) or RPMI. The cells were additionally treated with 10 ng/ml LPS, 2 µM CP-

968 456,773 or a combination of both. A lysis control was included by the addition  
969 of 0.5% triton-X100 in RPMI. After 3 or 6 hours, the cell supernatant was  
970 collected, centrifuged for 10 min at 2500g and frozen at -80°C. The cells were  
971 washed two times with 750 µl PBS and lysed by the addition of 80 µl M-PER  
972 with cComplete Mini Protease Inhibitor for 5 minutes. The lysed cell suspensions  
973 were collected and stored at -80°C.

974

975 Caspase-1 activity assay

976 The caspase-1 activity assay was performed using the Caspase-Glo 1  
977 inflammasome assay from Promega (G9951) as per the manufactures  
978 instructions. Briefly, cell-free supernatant from inflammasome stimulated cells  
979 was mixed with equal amounts for reconstituted caspase-1 reagent and the  
980 Luminescence signal read on a SpectraMAX i3 (molecular devices) at 30, 60  
981 and 90 min post mixing.

982

983 qPCR

984 qPCR quantifications were performed essentially as previously described [39]  
985 with the following changes: 500 ng of RNA was used for the RT-PCR and the  
986 qPCR was performed using QuantStudio 6 PCR System (Thermo Fisher  
987 Scientific). The primer sequences were as follows: Hprt, forward 5'-  
988 TCAGGCAGTATAATCCAAAGATGGT-3' and reverse 5'-  
989 AGTCTGGCTTATATCCAACACTTCG-3'; MEFV, forward 5'-  
990 GGAAGGCCACCAGACACGG-3' and reverse 5'-  
991 GTGCCAGAAACTGCCTCGG-3'.

992

993 **Acknowledgements**

994 We thank C.C. Kolbe for setting up and optimising the IL-18 Cytokine Bead  
995 Array assay, H. Tatge for purification of the different *C.difficile* toxins as well  
996 as both the Microscopy Core Facility and Flow Cytometry Core Facility at the  
997 University of Bonn for providing help, service and devices funded by the  
998 Deutsche Forschungsgemeinschaft (DFG – German Research Foundation) –  
999 Projektnummer 13123509. This work was funded by the Deutsche  
1000 Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID  
1001 369799452 (TRR237) (E.L.), Project-ID 414786233 (SFB1403) (E.L.), Project-  
1002 ID 432325352 (SFB1454) (E.L.), DFG (GE1017/5-1) (R.G) and Germany's  
1003 Excellence Strategy – ImmunoSensation2 – Project-ID 390873048  
1004 (EXC2151) (E.L.), The work was also supported by the Helmholtz-  
1005 Gemeinschaft, Zukunftsthema 'Immunology and Inflammation' (ZT-0027)  
1006 (E.L.) and the German-Israeli Foundation for Scientific Research and  
1007 Development, Grant No: 1085 (V.H.) This project was partially funded by the  
1008 Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK),  
1009 Niedersächsisches Vorab [grant number ZN3380] (K.H.)

1010

1011 **References**

1012

1013 1. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation:  
1014 toward a better understanding of complex mechanisms. *Cell Discov.* 2020;6:  
1015 36. doi:10.1038/s41421-020-0167-x

1016 2. Liston A, Masters SL. Homeostasis-altering molecular processes as  
1017 mechanisms of inflammasome activation. *Nat Rev Immunol.* 2017;17: 208–  
1018 214. doi:10.1038/nri.2016.151

1019 3. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of  
1020 bacterial modifications of Rho GTPases by the Pyrin inflammasome. *Nature*.  
1021 2014;513: 237–241. doi:10.1038/nature13449

1022 4. Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. *Nat*  
1023 *Rev Mol Cell Bio*. 2016;17: 496–510. doi:10.1038/nrm.2016.67

1024 5. Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling  
1025 cascades to promote invasion and proliferation within their host. *Small*  
1026 *Gtpases*. 2014;5: e983863. doi:10.4161/sgtp.28209

1027 6. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E.  
1028 Targeting the NLRP3 inflammasome in inflammatory diseases. *Nat Rev Drug*  
1029 *Discov*. 2018;17: 588–606. doi:10.1038/nrd.2018.97

1030 7. Akula MK, Shi M, Jiang Z, Foster CE, Miao D, Li AS, et al. Control of the  
1031 innate immune response by the mevalonate pathway. *Nat Immunol*. 2016;17:  
1032 922–929. doi:10.1038/ni.3487

1033 8. Masters SL, Lagou V, Jérú I, Baker PJ, Eyck LV, Parry DA, et al. Familial  
1034 autoinflammation with neutrophilic dermatosis reveals a regulatory  
1035 mechanism of pyrin activation. *Sci Transl Med*. 2016;8: 332ra45-332ra45.  
1036 doi:10.1126/scitranslmed.aaf1471

1037 9. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and  
1038 microtubule dynamics control Pyrin inflammasome activation. *Proc National*  
1039 *Acad Sci*. 2016;113: E4857–E4866. doi:10.1073/pnas.1601700113

1040 10. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation  
1041 and RhoA signaling in the autoinflammatory diseases FMF and HIDS. *Nat*  
1042 *Immunol*. 2016;17: 914–921. doi:10.1038/ni.3457

1043 11. Heilig R, Broz P. Function and mechanism of the pyrin inflammasome. *Eur*  
1044 *J Immunol*. 2018;48: 230–238. doi:10.1002/eji.201746947

1045 12. Rigante D, Manna R. FAMILIAL MEDITERRANEAN FEVER:  
1046 ASSESSING THE OVERALL CLINICAL IMPACT AND FORMULATING  
1047 TREATMENT PLANS. *Mediterr J Hematology Infect Dis*. 2019;11: e2019027–  
1048 e2019027. doi:10.4084/mjhid.2019.027

1049 13. Torre-Minguela C de, Castillo PM del, Pelegrín P. The NLRP3 and Pyrin  
1050 Inflammasomes: Implications in the Pathophysiology of Autoinflammatory  
1051 Diseases. *Front Immunol*. 2017;8: 43. doi:10.3389/fimmu.2017.00043

1052 14. Magnotti F, Lefevre L, Benezech S, Malsot T, Waeckel L, Martin A, et al.  
1053 Pyrin dephosphorylation is sufficient to trigger inflammasome activation in  
1054 familial Mediterranean fever patients. *Embo Mol Med*. 2019;11: e10547.  
1055 doi:10.15252/emmm.201910547

1056 15. Gorp HV, Saavedra PHV, Vasconcelos NM de, Opdenbosch NV, Walle  
1057 LV, Matusiak M, et al. Familial Mediterranean fever mutations lift the  
1058 obligatory requirement for microtubules in Pyrin inflammasome activation.  
1059 *Proc National Acad Sci.* 2016;113: 14384–14389.  
1060 doi:10.1073/pnas.1613156113

1061 16. Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna  
1062 T, et al. Toxin B is essential for virulence of *Clostridium difficile*. *Nature.*  
1063 2009;458: 1176–1179. doi:10.1038/nature07822

1064 17. Ng J, Hirota SA, Gross O, Li Y, Ulke-Lemee A, Potentier MS, et al.  
1065 *Clostridium difficile* Toxin-Induced Inflammation and Intestinal Injury Are  
1066 Mediated by the Inflammasome. *Gastroenterology.* 2010;139: 542-552.e3.  
1067 doi:10.1053/j.gastro.2010.04.005

1068 18. Liu Y-H, Chang Y-C, Chen L-K, Su P-A, Ko W-C, Tsai Y-S, et al. The  
1069 ATP-P2X7 Signaling Axis Is an Essential Sentinel for Intracellular *Clostridium*  
1070 *difficile* Pathogen-Induced Inflammasome Activation. *Front Cell Infect Mi.*  
1071 2018;8: 84. doi:10.3389/fcimb.2018.00084

1072 19. Saavedra PHV, Huang L, Ghazavi F, Kourula S, Berghe TV, Takahashi N,  
1073 et al. Apoptosis of intestinal epithelial cells restricts *Clostridium difficile*  
1074 infection in a model of pseudomembranous colitis. *Nat Commun.* 2018;9:  
1075 4846. doi:10.1038/s41467-018-07386-5

1076 20. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra  
1077 MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the  
1078 treatment of inflammatory diseases. *Nat Med.* 2015;21: 248–255.  
1079 doi:10.1038/nm.3806

1080 21. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18  
1081 Binding Protein. *Front Immunol.* 2013;4: 289. doi:10.3389/fimmu.2013.00289

1082 22. Genth H, Huelsenbeck J, Hartmann B, Hofmann F, Just I, Gerhard R.  
1083 Cellular stability of Rho-GTPases glucosylated by *Clostridium difficile* toxin B.  
1084 *Febs Lett.* 2006;580: 3565–3569. doi:10.1016/j.febslet.2006.04.100

1085 23. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F,  
1086 et al. Human Monocytes Engage an Alternative Inflammasome Pathway.  
1087 *Immunity.* 2016;44: 833–846. doi:10.1016/j.immuni.2016.01.012

1088 24. Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, et al. The  
1089 gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte  
1090 development and is regulated in response to inflammatory mediators. *Blood.*  
1091 2000;95: 3223–3231. doi:10.1182/blood.v95.10.3223

1092 25. Gavrilin MA, Mitra S, Seshadri S, Nateri J, Berhe F, Hall MW, et al. Pyrin  
1093 Critical to Macrophage IL-1 $\beta$  Response to Francisella Challenge. *J Immunol.*  
1094 2009;182: 7982–7989. doi:10.4049/jimmunol.0803073

1095 26. Hentgen V, Vinit C, Fayand A, Georgin-Lavialle S. The Use of  
1096 Interleukine-1 Inhibitors in Familial Mediterranean Fever Patients: A Narrative  
1097 Review. *Front Immunol.* 2020;11: 971. doi:10.3389/fimmu.2020.00971

1098 27. Yu J-W, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, et  
1099 al. Pyrin Activates the ASC Pyroptosome in Response to Engagement by  
1100 Autoinflammatory PSTPIP1 Mutants. *Mol Cell.* 2007;28: 214–227.  
1101 doi:10.1016/j.molcel.2007.08.029

1102 28. Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al.  
1103 The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell  
1104 Death Program Upstream of NLRP3. *Cell.* 2017;171: 1110-1124.e18.  
1105 doi:10.1016/j.cell.2017.09.039

1106 29. Alimov I, Menon S, Cochran N, Maher R, Wang Q, Alford J, et al. Bile acid  
1107 analogues are activators of pyrin inflammasome. *J Biol Chem.* 2019;294:  
1108 3359–3366. doi:10.1074/jbc.ra118.005103

1109 30. Chiang JYL. Comprehensive Physiology. *Compr Physiol.* 2013;3: 1191–  
1110 1212. doi:10.1002/cphy.c120023

1111 31. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular  
1112 activation and regulation to therapeutics. *Nat Rev Immunol.* 2019;19: 477–  
1113 489. doi:10.1038/s41577-019-0165-0

1114 32. Yang J, Zhao Y, Shi J, Shao F. Human NAIP and mouse NAIP1 recognize  
1115 bacterial type III secretion needle protein for inflammasome activation. *Proc  
1116 National Acad Sci.* 2013;110: 14408–14413. doi:10.1073/pnas.1306376110

1117 33. Seshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD. Pyrin Levels  
1118 in Human Monocytes and Monocyte-Derived Macrophages Regulate IL-1 $\beta$   
1119 Processing and Release. *J Immunol.* 2007;179: 1274–1281.  
1120 doi:10.4049/jimmunol.179.2.1274

1121 34. Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, et al.  
1122 TRIM-mediated precision autophagy targets cytoplasmic regulators of innate  
1123 immunity. *J Cell Biol.* 2015;210: 973–989. doi:10.1083/jcb.201503023

1124 35. Touitou I. The spectrum of Familial Mediterranean Fever (FMF) mutations.  
1125 *Eur J Hum Genet.* 2001;9: 473–483. doi:10.1038/sj.ejhg.5200658

1126 36. Aktories K, Schwan C, Jank T. Clostridium difficile Toxin Biology. *Annu  
1127 Rev Microbiol.* 2016;71: 1–27. doi:10.1146/annurev-micro-090816-093458

1128 37. Burger S, Tatge H, Hofmann F, Gent H, Just I, Gerhard R. Expression of  
1129 recombinant Clostridium difficile toxin A using the *Bacillus megaterium*  
1130 system. *Biochem Bioph Res Co.* 2003;307: 584–588. doi:10.1016/s0006-  
1131 291x(03)01234-8

1132 38. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide  
1133 libraries for CRISPR screening. *Nat Methods*. 2014;11: 783–784.  
1134 doi:10.1038/nmeth.3047

1135 39. Nardo DD, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, et al. High-  
1136 density lipoprotein mediates anti-inflammatory reprogramming of  
1137 macrophages via the transcriptional regulator ATF3. *Nat Immunol*. 2014;15:  
1138 152–160. doi:10.1038/ni.2784

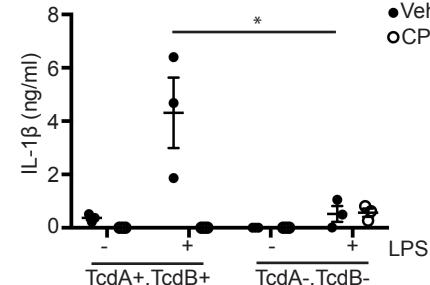
1139  
1140 **Supp figure 1.**

1141

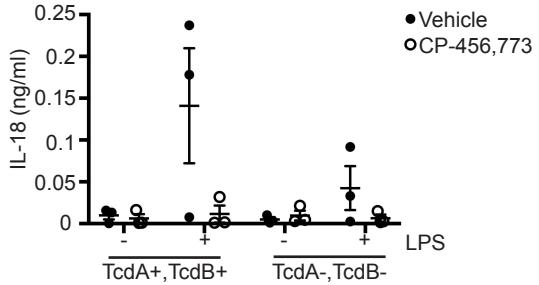
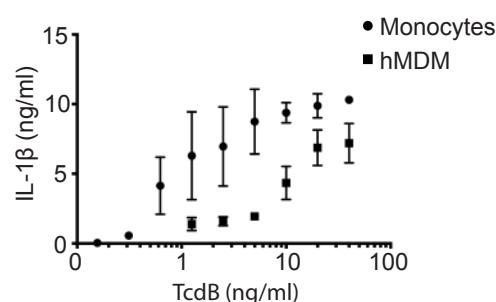
1142 (A) hMDM were incubated with either toxin proficient (TcdA+,TcdB+) or toxin  
1143 deficient (TcdA-,TcdB-) *C. difficile* (MOI 100:1) for 6h, then the supernatant  
1144 assessed for IL-1b and IL-18. Mean and SEM of three experimental replicates  
1145 shown. (B) Rac glucosylation status in either monocytes or hMDM following  
1146 treatment with the listed toxins (NXN variants - lack glucosyltransferase  
1147 activity). Representative of 3 experiments. (C) Actin staining following  
1148 incubation of monocytes or macrophages with or without LPS and TcdB.  
1149 Treated cells were fixed and stained with Phalloidin 647 to detect actin (red) or  
1150 with DAPI to detect nuclei (blue). Images are representative from 3 separate  
1151 donors.

1152

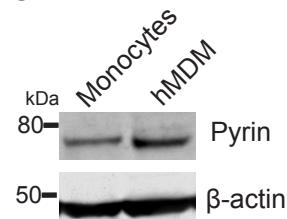
1153 **Supp figure 2.**


1154

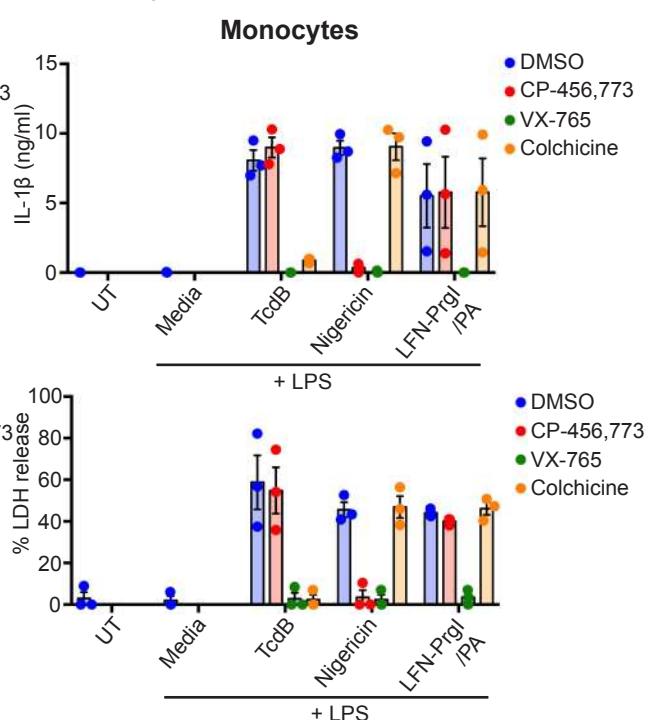
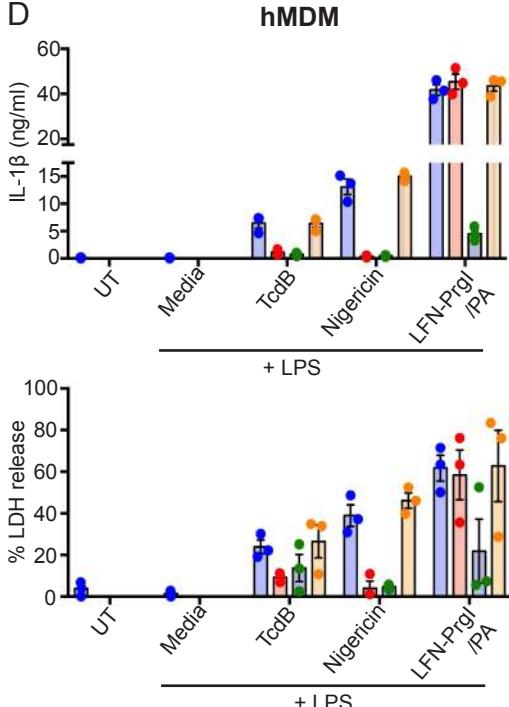
1155 A) Differentiated Casapse-4 deficient BLaER1 cells were stimulated as in Fig  
1156 2A. IL-1 $\beta$  was assessed from the harvested supernatants. (B) LPS-primed  
1157 differentiated WT BLaER1 cells were pre-incubated with TAK242 (2uM, 30 min)  
1158 then activated with TcdB (20ng/ml) or Nigericin (8uM) for 2h. Harvested  
1159 supernatant was assessed for IL-1 $\beta$ . (C) Differentiated WT BLaER1 cells were



1160 pre-incubated with TAK242 then stimulated with LPS for 4h. TNFa was  
1161 assessed from the supernatant. (D) TNFa was measured for THP-1 cells from  
1162 Fig. 2G. Mean and SEM shown for three independent experiments. (E) LPS  
1163 primed (10ng/ml, 3h) human macrophages were treated either TcdB or the  
1164 TcdB NXN mutant lacking glucosyltrasferase activity (20ng/ml, 2.5h).  
1165 Supernatant was harvested and assessed for IL-1 $\beta$ . For A-C the mean and SD  
1166 of three technical replicates shown, representative of 3 independent  
1167 experiments. For D and E. the mean and SEM shown for three independent  
1168 experiments.

1169


A

**C. difficile conditioned supernatant**



B



C



D



E

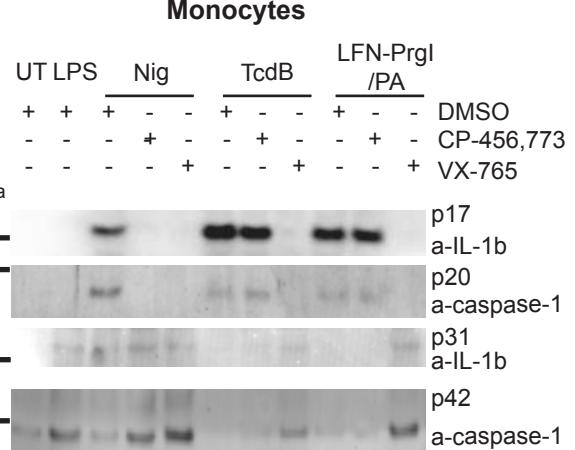
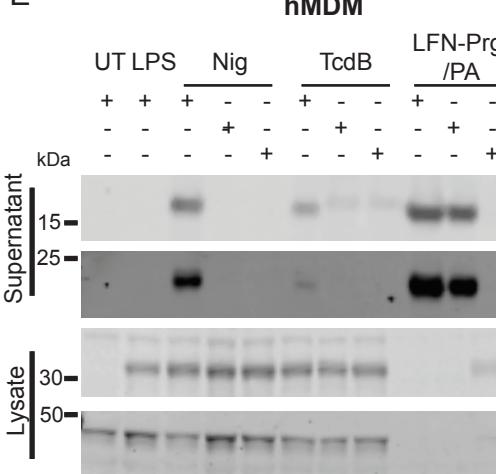
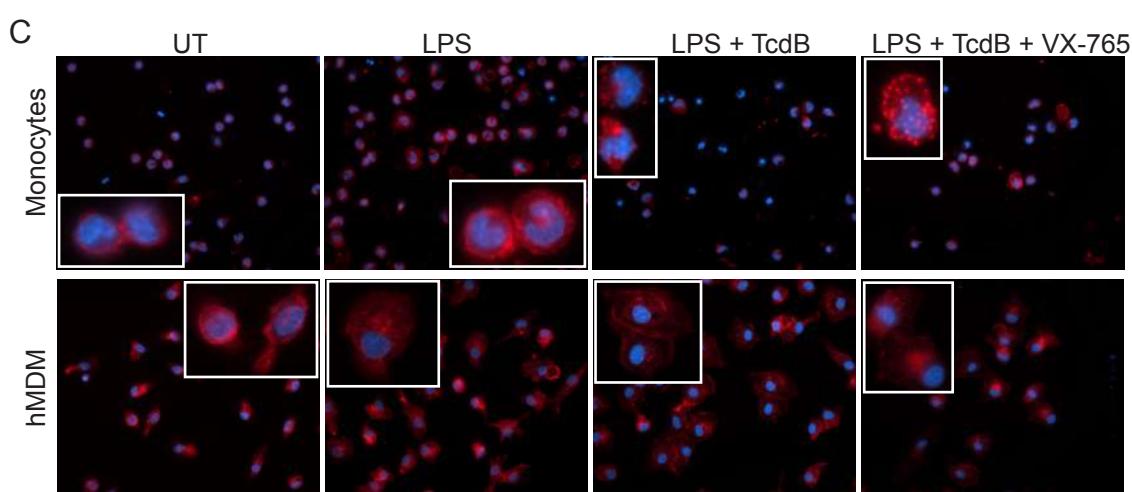
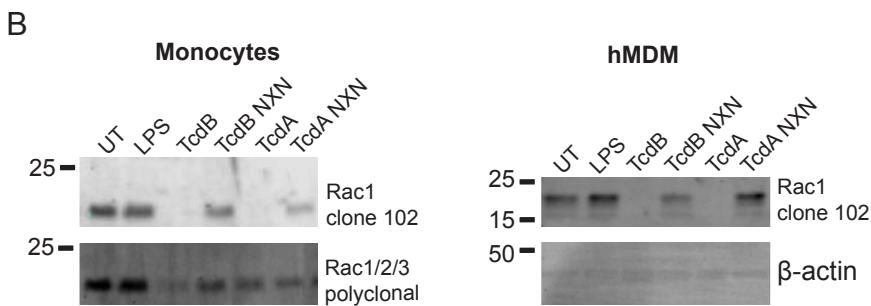
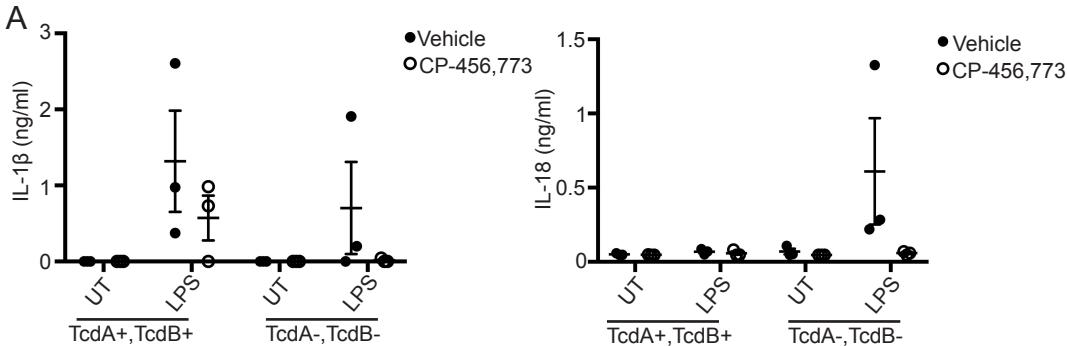







Fig. 1



Supp. fig. 1

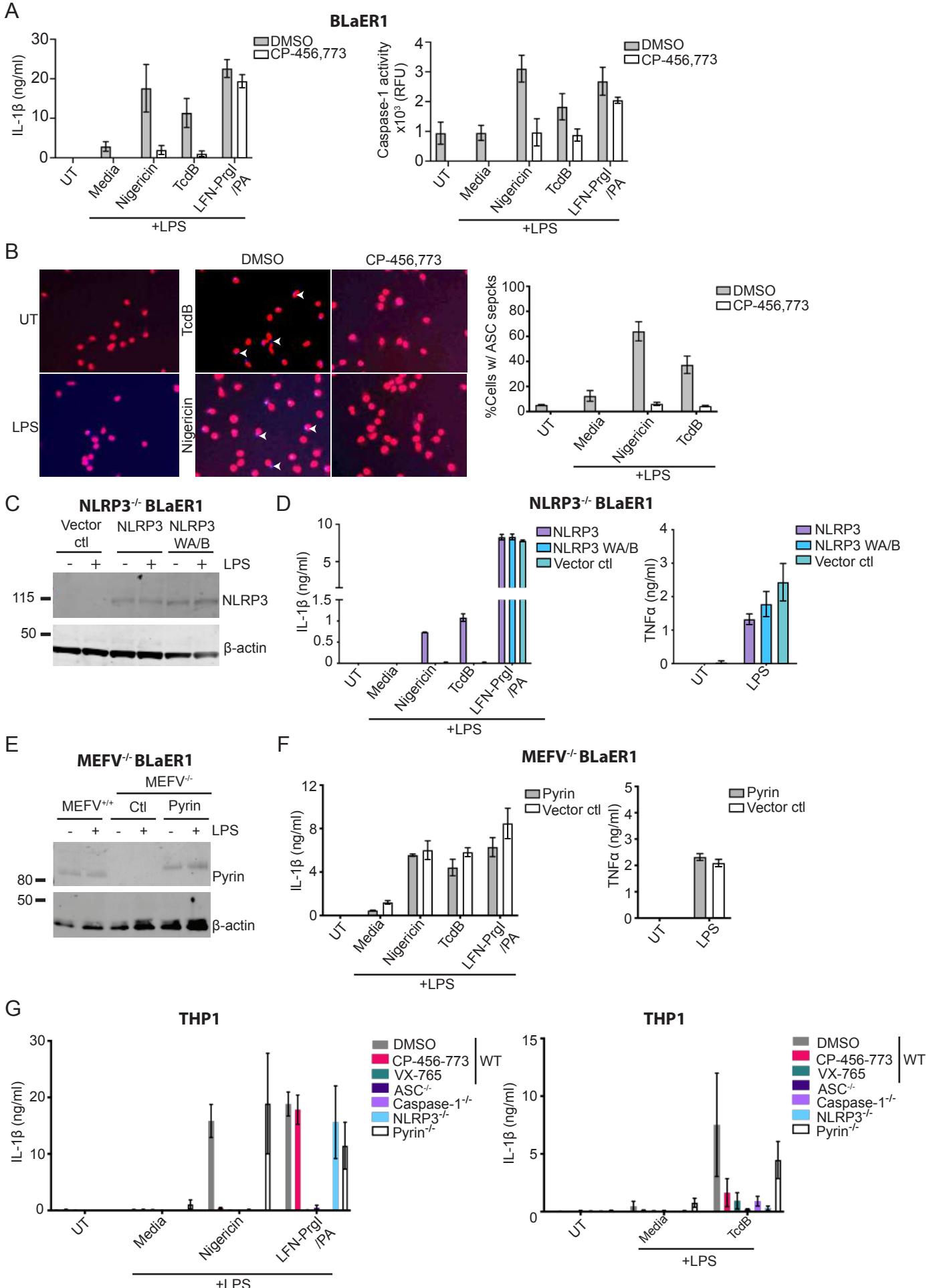
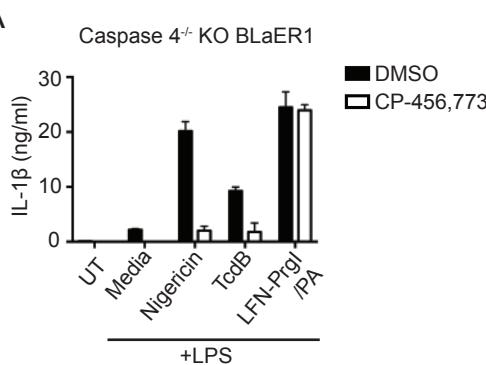
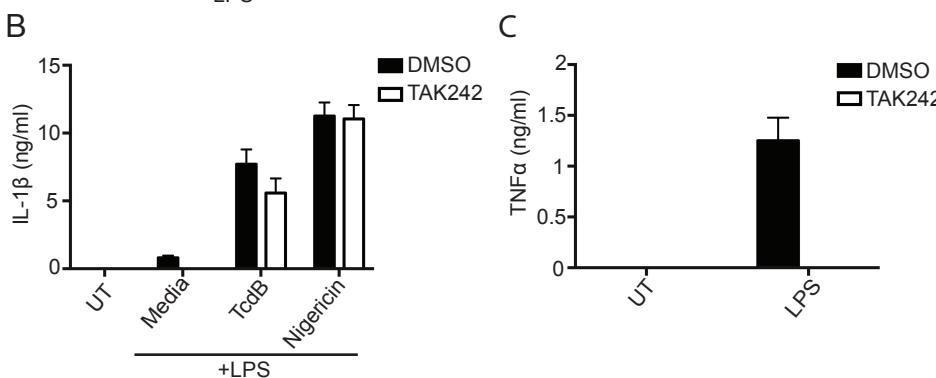
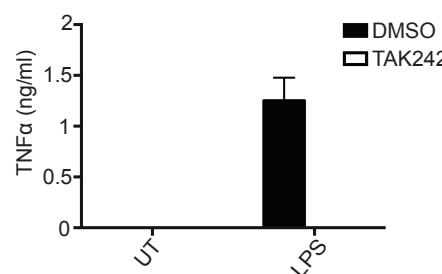
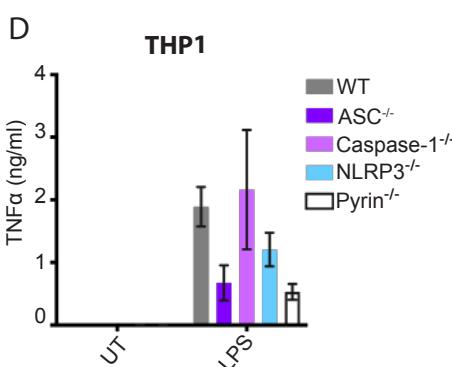
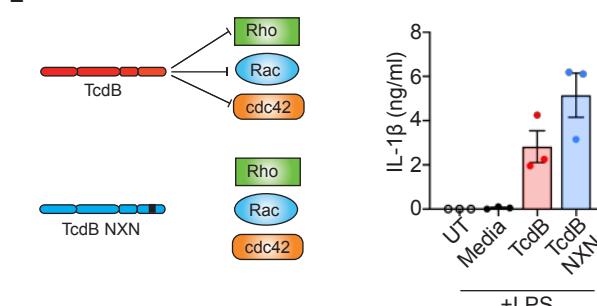
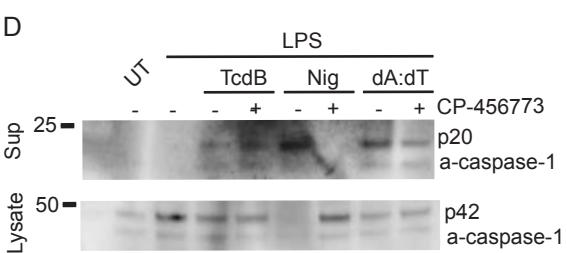
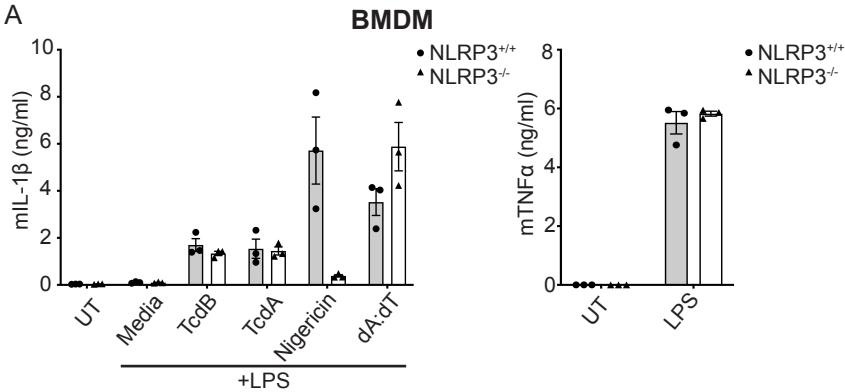
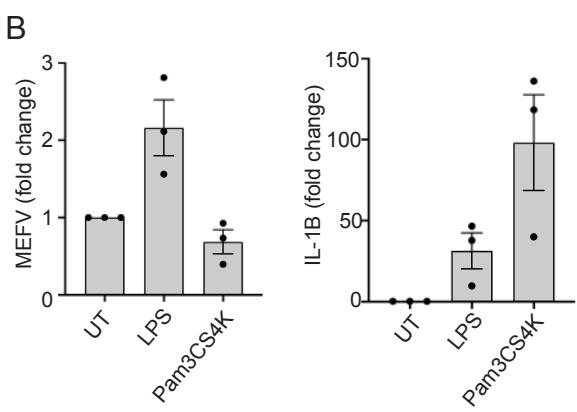
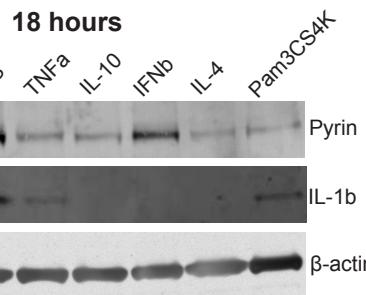
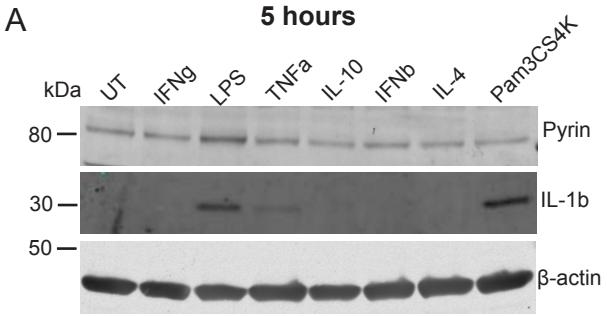













Fig. 2

**A****B****C****D****E****Supp. fig. 2**



**Fig. 3**



**Fig 4**

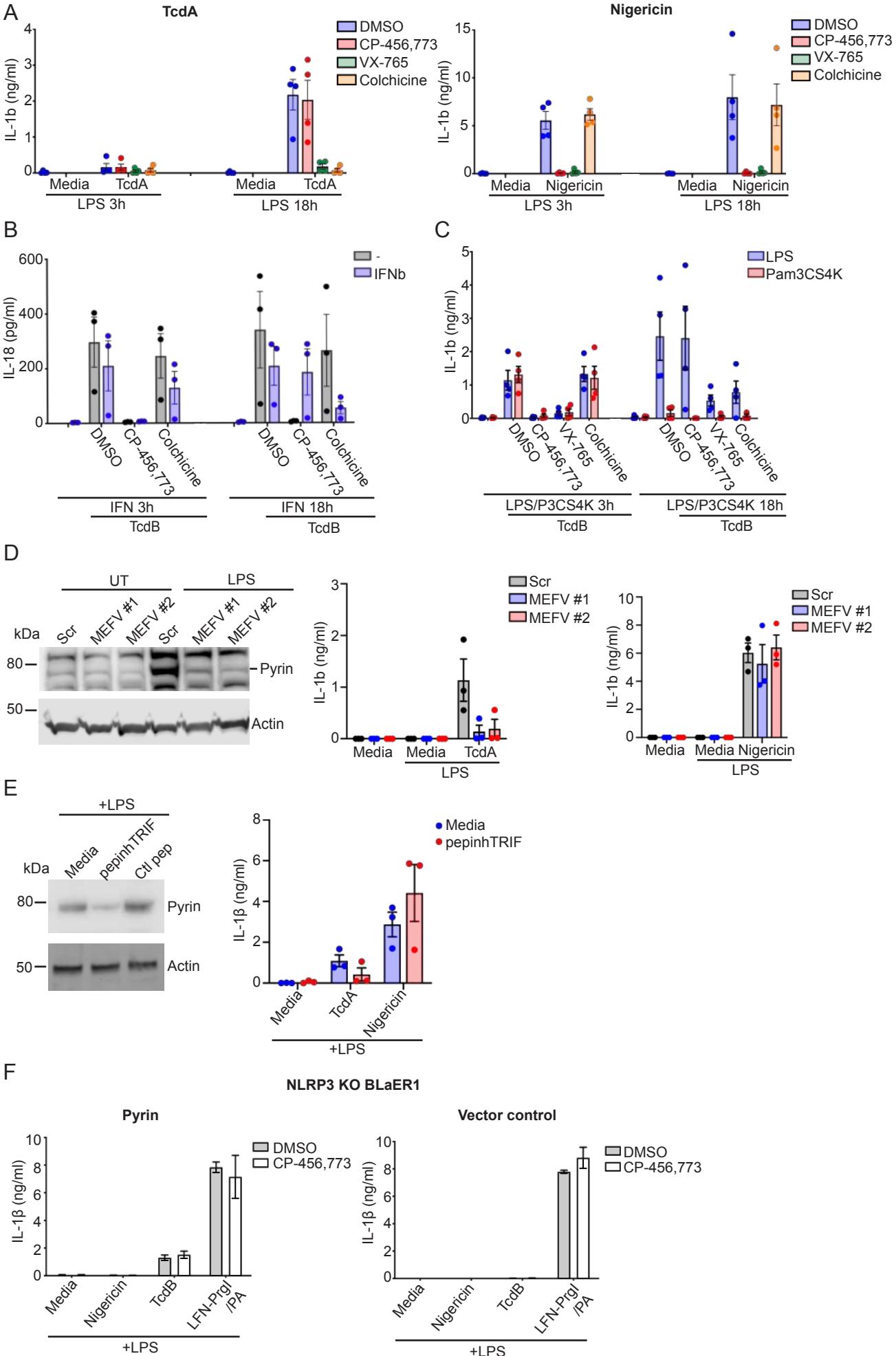



Fig. 5

A

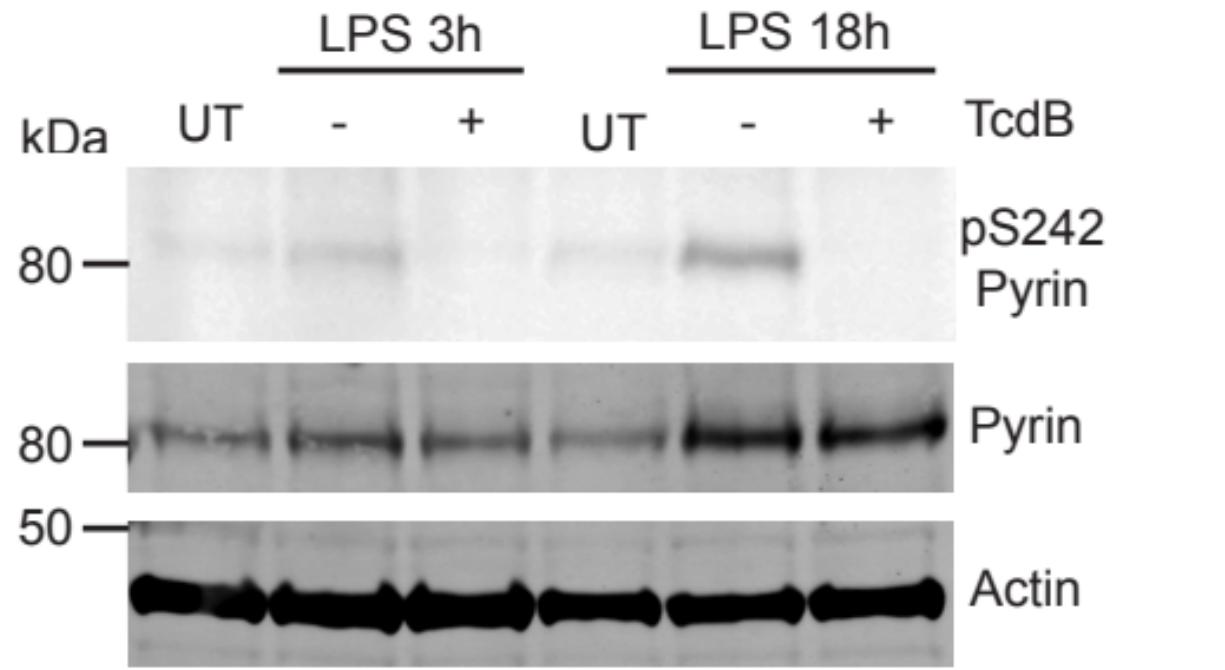



Fig. 6