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Abstract

Despite the accelerating number of uncultivated virus sequences discovered in metagenomics
and their apparent importance for health and disease, the human gut virome and its
interactions with bacteria in the gastrointestinal are not well understood. In addition, a
paucity of whole-virome datasets from subjects with gastrointestinal diseases is preventing a
deeper understanding of the virome’s role in disease and in gastrointestinal ecology as a
whole. By combining a deep-learning based metagenomics binning algorithm with paired
metagenome and metavirome datasets we developed the Phages from Metagenomics Binning
(PHAMB) approach for binning thousands of viral genomes directly from bulk
metagenomics data. Simultaneously our methodology enables clustering of viral genomes
into accurate taxonomic viral populations. We applied this methodology on the Human
Microbiome Project 2 (HMP2) cohort and recovered 6,077 HQ genomes from 1,024 viral
populations and explored viral-host interactions. We show that binning can be
advantageously applied to existing and future metagenomes to illuminate viral ecological

dynamics with other microbiome constituents.

Introduction

The human gut microbiota is tightly connected to human health through its massive
biological ecosystem of bacteria, fungi, and viruses. This ecosystem has been profoundly
investigated for discoveries that can lead to diagnostics and treatments of gastrointestinal
diseases such as inflammatory bowel disease (IBD) and colon cancer as well as type 2
diabetes (T2D)'. In IBD, multiple studies have compiled a list of keystone bacterial species
undergoing microbial shifts between inflamed and non-inflamed tissue sites*® and there are
strong indications that the gut virome plays a role in disease etiology®*®. Now, the influence of
bacteria-infecting viruses, known as bacteriophages, are increasingly studied and their role in
controlling bacterial community dynamics in the context of gastrointestinal pathologies is
slowly being unravelled’. Several studies have presented evidence of temperate Caudovirales
viruses increasing in Crohn's disease (CD) and ulcerative colitis (UC) patients®*'*'2,
However, it has been left unanswered if this phage expansion was due to alterations in

host-bacterial abundance, thus viral-host dynamics remains another unexplored facet of the

gut virome in diseases such as IBD".
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Today, the virome is studied through metagenomics where high-throughput sequencing is
computationally processed to construct genomes of uncultivated viruses de novo. Viral
assembly is a notoriously difficult computational task and known to produce fragmented
assemblies and chimeric contigs'* especially for rare viruses with low and uneven sequence
coverage'>'®. For better viral assemblies, metaviromes are prepared with extra size-filtration
to increase the concentration of viral particles''®. However, identification of viruses without
enrichment from bulk metagenomics, is increasingly utilised and overcomes the
size-filtration step biases while enabling identification of primarily temperate but also lytic
viruses '°. Currently, several approaches for identifying viral sequences in metagenomics data
exist and have helped in supersizing viral databases of uncultivated viral genomes (UViGs)
over the last few years ****. These tools are often based on sequence similarity®, sequence

247212829 " and identification of viral proteins or the lack of cellular ones™*’. A

composition
common denominator for these tools is their per-contig/sequence virus evaluation approach

that is not optimal for addressing fragmented multi-contig virus assemblies.

Therefore, we developed a framework (PHAMB) based on contig binning to discover viral
genome bins directly from bulk metagenomics data (MGX). For this we utilised a recently
developed deep learning algorithm for metagenomic binning (VAMB)?* that is based on
binning the entire dataset of assembled contigs. Altogether, we reconstructed 2,676 viral
populations from bulk metagenomes corresponding up to 36% of the paired metavirome
dataset (MVX), based on two independent datasets with paired MGX and MVX. A key
development in our method is a classifier that can classify non-phage bins from any dataset
with a very low error rate (3%) compared to existing virus prediction tools such as
DeepVirFinder*® (21-65%). Our approach enables identification and reconstruction of viral
genomes directly from metagenomics data at an unprecedented scale with up to 6,077 viral
populations with at least one High-quality (HQ) genome by MIUViG standards' in a single
dataset. In addition, we show an increase of up to 210% of HQ viral genomes extracted by
combining contigs into viral bins. Using this method to extract viruses from the microbial
metagenomes of the HMP2 cohort we are able to delineate both viral and bacterial

community structures. This allowed us to conduct an investigation of viral population
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dynamics in tandem with predicted microbial hosts for instance identifying 123 and 230 viral

populations infecting Faecalibacterium and Bacteroides genomes, respectively.

Results

A framework to bin and assemble viral populations from metagenomics data

To generate the metagenomics bins we used VAMB that has the advantage of both binning
microbial genomes, and grouping bins across samples into subspecies or conspecific clusters.
This has proven useful for investigation of bacterial and archaeal microbiomes, but the
approach has even more potential within viromics where viruses are much less conserved,
more diverse, and harder to identify without universal genetic markers such as those found in
bacterial organisms®'. Clusters of conspecific viral genomes would enable straightforward
identification and tracking of populations across a cohort of samples (Figure 1a). To develop
our framework we used two Illumina shotgun sequencing based datasets with paired
metagenome and metavirome available. The Copenhagen Prospective Studies on Asthma in
Childhood 2010 (COPSAC) dataset consisted of 662 paired samples (** and **) and the
Diabimmune dataset contained 112 paired samples'®. Each of the two data sets included a list
of curated viral species, 10021 and 328 respectively, that we used here as our gold standard
for training and testing our tool. Compared to COPSAC, Diabimmune metaviromes had low
viral enrichment (Supplementary Figure 1), we therefore used the average amino acid
identity (AAI) model of CheckV? to stratify the genomes of the metaviromes into quality
tiers ranging from Complete, High Quality (HQ), Medium Quality (MQ), Low Quality (LQ),

and Non Determined (ND) to establish a comparable viral truth.

Viral binning is more powerful compared to single-contig approaches

The output of binning metagenomics samples can be hundreds of thousands of bins and we
therefore first developed a Random Forest (RF) model to distinguish viral-like from
bacterial-like genome bins. The RF model takes advantage of the cluster information from
binning and aggregates information across sample-specific bins to form subspecies clusters.
Here, we found that the RF model was able to separate bacterial and viral clusters very

effectively with an Area Under the Curve (AUC) of 0.99 and a Matthews Correlation
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Coefficient (MCC) of 0.98 on the validation set (Figure 1b and Supplementary Table 1).
Compared to single-contig-evaluation methods such as DeepVirFinder, our approach was far
superior as DeepVirFinder only achieved an AUC of 0.85 and MCC of 0.06. This difference
in performance is likely explained by the RF model evaluating on both cluster and bin-level
where one sequence with a low viral score does not lead to a misprediction of the whole bin.
For instance, we achieved an increase of 200 (190%) and 771 (95%) HQ bins recovered for
the Diabimmune and COPSAC datasets compared to using single-contig-evaluation
according to CheckV (Figure 1c-d). In addition, we observed a significantly greater number
of viral hallmark genes per virus when using viral bins in both datasets (Two-sided T-test,
P<0.0005), while the length and viral fraction were largely comparable (Supplementary
Figure 2).

Binning the metagenome identifies viral genomes not identified from the metavirome
When applying our method of binning with VAMB and the RF model we obtained 4,480 and
916 viral bins with a MQ or HQ representative bin across the COPSAC and Diabimmune
datasets, respectively. We then considered all VAMB clusters as ‘viral populations’ and thus
obtained 2,428 and 534 viral populations with at least 1 MQ or better viral bin. After
comparing the viral populations obtained from the metagenomics datasets to the respective
metaviromes we recovered 17-36% of HQ viruses (corresponding to 527 and 2,676
metaviromic viral populations) established in the metaviromes on species (ANI>95) level and
9-28% on strain (ANI>97) level (Figure 2a). The fraction of viruses in the metavirome
recovered in the metagenome was considerably higher than more recent estimates*, which
estimated 8.5-10%. This was interesting since the deeply sequenced metavirome may capture
multiple low abundant viruses typically not found in metagenomes. Additionally, we found
that 46-69% of the HQ metagenome viral populations, corresponding to 124 in Diabimmune
and 839 viral populations in COPSAC, were not found in the metavirome, suggesting that a
significant part of the virome may be lost during viral enrichment or not represented in
induced forms as they are integrated prophages (Figure 2b). However, we also found that
65-83% of the HQ viral populations in the metavirome were not found in the metagenome
data (total 197 in Diabimmune and 2,589 in COPSAC) suggesting the reverse to be true as
well. For a subset of the viruses found in the COPSAC bulk and metavirome, we estimated a

higher mean completeness with viral bins (Two-sided T-test, P=2.2e-16) (Figure 2c).
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Altogether we found that a great proportion of the gut viral populations can be reconstructed
from the metagenomics data and retrieved with even higher completeness compared to the

metavirome counterparts.

Viral bins have low contamination

Lastly, we wanted to investigate the occurrence of technically “misbinned” and
contaminating contigs that could inflate viral genome size and influence evaluation and other
downstream analyses. Based on 1,340 viral bins highly similar to metavirome viruses in
COPSAC (see methods), we found in 83.7% of all cases, every contig in the bin mapped to
the virus (Figure 2d). In total 8.1% of the viral bins contained more than one contig not
mapping to the corresponding metavirome-virus indicating contamination, variation, or
incompleteness. In summary, our combined binning and machine learning approach improves
identification and recovery of viral genomes from metagenomics data and outlines the

possibility of binning fragmented viruses directly from human gut microbiome samples.

Reconstructing the virome of a the HMP2 IBD gut metagenomics cohort

We then applied our method to the HMP2 IBD cohort consisting of 27 healthy controls, 65
CD, and 38 UC patients®. These samples were gathered in a longitudinal approach and
consisted of between 1-26 samples per patient. Importantly, no characterised metaviromics
data is available from this cohort and using our approach we were able to identify bacterial
and viral populations in the cohort and explore their dynamics in IBD using only
metagenomics data. From the cohort we recovered 577 Complete, 6,077 HQ, 9,704 MQ
(Figure 3a), and 122,107 LQ viral bins corresponding to 263 Complete, 1,024 HQ, 2,238
MQ, and 44,017 LQ viral populations. We also observed an increase in genome completeness
for larger viruses/jumbo viruses with a genome size > 200 kbp*® compared to single contig
evaluation (Supplementary Figure 3). In addition, we observed that similar viral length
distributions for viruses recovered as a single contig and as viral bins, both correlated with

CheckV quality tiers (Figure 3b).

Viral population taxonomy is highly consistent
We then investigated the taxonomic consistency of our viral populations and found this to be

very high as the median intra-cluster Average Nucleotide Identity (ANI) for MQ to Complete
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viral clusters was 97.3-99.3% (Supplementary Figure 5). Even in clusters with over 100
sample-specific viral bins the intra-cluster median ANI was consistently high
(median=97.1-98.5%) (Figure 3c¢). Inter-cluster ANI was much lower in the 91.7-92.8%
range closer to genus level. Therefore, our approach was able to identify and cluster near
strain-level viral genomes across samples. For example, in the HMP2 dataset, we identified
50 different viral populations for a total of 916 MQ or better crAss-like viral bins. Here, viral
population 653 corresponded to the prototypic crassphage®” and accounted for 253 of the 916
crAss-like genomes discovered in the HMP2 dataset. We then used all of these 916 bins to
generate a phylogenetic tree based on the large terminase subunit (TerL) and found highly
consistent placement of the viral genomes according to their binned viral population (Figure
3d, Supplementary Figure 6). Viral population 653 formed one monophyletic clade except
for one bin while all the other crAss-like clusters were monophyletic. The division of the
crAss-like genomes into the binned clusters therefore likely represents actual viral diversity.
Taken together, this shows that our reference-free binning produces taxonomically accurate

viral clusters, thus aggregating highly similar viral genomes across samples.

The metagenomic virome is personal and highly stable in healthy subjects

Several metavirome studies have reported the presence of stable, prevalent, and abundant
viruses in the human gut’**. We found that the gut virome in the HMP2 cohort*® was highly
personal and stable over time in nonIBD subjects, which was reflected by the lower
Bray-Curtis dissimilarity between samples from nonIBD subjects compared to UC (T-test,
P=0.015, CI=-0.01;-0.13) and CD subjects (T-test, P=0.017, CI =-0.12;-0.01) (Figure 4a-b).
In addition, the dysbiotic samples, as defined by Price et al. (2019)**, could be clearly
separated with a principal component analysis (PCoA), where the virome explained 4.2% and
3.4% of variation (Figure 4c¢). This was confirmed with a permanova-test on viral (P<10-3,
R*=1.6%) and bacterial abundance profiles (P<10-3, R*=3.0%) and shows dysbiosis affecting
both the virome and bacteriome. Alpha-diversity metrics supported this as Shannon Diversity
(SD) was higher in nonIBD subjects compared to both UC and CD (T-test, P=4.80e-06 and
P=2.74¢-09) while dysbiosis affected every patient group resulting in a significantly reduced
SD. In accordance, viral richness was lower in UC (T-test, P=<2e-16, CI=-12.40;-19.80 ) and
CD (T-test, P=<2e-16, CI=-12.91;-19.50) patients and further exaggerated in dysbiotic

samples (Figure 4d+e). These viral alpha-diversity trends were also observed in the
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bacteriome, suggesting that the viruses follow the expansion or depletion of their bacterial
host during dysbiosis (Supplementary Figure 8). Indeed, we identified 250 likely temperate
viruses out of 348 differentially abundant viruses that expanded with increasing dysbiosis
(linear-mixed effect model, adj. P < 0.005, FDR-corrected). This observation acknowledges
earlier results showing an increase in temperate viruses in UC and CD®"'. Further analysis on
the longitudinal abundance profiles of virus and predicted bacterial host reaffirmed the

synchronised expansion theory (Supplementary Figure 9).

Viral-host interactions can be explored from viral populations and MAGs

A unique feature of performing the analysis on metagenomics data is that both the bacterial
and viral populations are binned simultaneously. Therefore, we are able to estimate
abundance of both the viral and bacterial compartment of the microbiome and explore the
viral host range in silico using the MAGs. In total from the HMP2 dataset, we obtained 3,130
and 3,819 Near Complete (NC) and Medium Quality (MQ) MAGs*. Based on MAG-derived
CRISPR spacers we found spacer-hits to 464 (45.3%) to viral populations with at least one
HQ representative. To further expand our viral-host prediction we conducted an all-vs-all
alignment search between the MAGs and viral populations for prophage signatures. Then by
combining the CRISPR spacer and prophage search we connected 93.6%, 74.4%, 82.5%, and
65.0% of MAGs from Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria phylum,
respectively, with at least 1 virus (Supplementary Figure 10). We estimated host-prediction
purities to be 94.5% and 75.6% on species rank for the CRISPR-spacer and prophage
signature (Supplementary Figure 11B). Therefore, we confirmed that most gut phages have
a primarily narrow host-range*. MAGs belonging to the genera Faecalibacterium and
Bacteroides seemed to be viral hotspots since 99.7% to 98.7% could be associated with a HQ
viral bin, corresponding to 123 and 230 distinct viral populations, respectively (Figure
S5a+b). For instance, in abundant commensals like Bacteroides vulgatus (cluster 216) we
observed consistent prophage signals over time for multiple viruses across several samples
(Figure Sc¢). Interestingly, because the host range of crAss phages are not well understood we
investigated CRISPR spacer hits to the MAGs in our databases. Even though we could
host-annotate an overall of 45.3% of all HQ viral populations to a MAG, none of the 916

crAss-like bins could be associated with any of the 3,306 Bacteroidetes bins in our dataset,
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which suggests that crAss-like phages are not frequently targeted by CRISPR spacers

extracted from Bacteroidetes CRISPR-Cas systems.

The binned viral populations are enriched in proteins found in temperate phages
Another topic of interest was viral-host complementarity, in particular what functions
bacteriophages could provide to the host and how the viral proteome differs with respect to
host taxonomy. Using our map of viral-host connections and through characterization of viral
protein sequences we ranked protein annotations stratified by their predicted host genera.
Overall, the proteins were highly enriched for annotations related to viral structural proteins
such as baseplate, portal, capsid, head, tail/tail-fibre, and tail tape measure but also viral
integrase enzymes and Lambda-repressor proteins (Supplementary Table 4). For instance,
Lambda-repressor proteins were found in up to ~60% of all viruses infecting
Faecalibacterium suggesting that our dataset is enriched with temperate phages (Figure 6a).
Interestingly, we also identified virally encoded proteins domains, which are known to
function as viral entry receptors*', to be enriched within a group of viral populations infecting
Bacteroides and Alistipes such as the TonB plug and TonB dependent receptor domains
(PF07715 and PF00593, Fisher's exact test, adj. P <0.005, FDR-corrected) and an outer
membrane efflux protein also known as TolC (PF02321, Fisher's.exact, adj. P <0.005,
FDR-corrected) (Supplementary Table 5). Furthermore, the TonB domains also encode an
established immunodominant epitope* suggesting that viral populations carry immunogenic
entry receptors when expressed by their host. Finally, Reverse Transcriptase (RT, PF00078)
proteins were also highly detected, in agreement with recent results*' and shared by all viral

populations irrespective of the predicted host (Supplementary Figure 12A).

Exploring the dark matter metavirome

Finally, we investigated the part of the RF predicted bins that did not resemble any of the
known genomes, i.e. metagenomics “dark-matter”. These were defined as populations
without at least one HQ or MQ viral bin. Such populations therefore represent a part of the
microbiome that are not classified as bacterial, archaeal and not alike known viral genomes.
Since dark-matter populations were numerous (97.6% of all RF predicted VAMB clusters) we
suspected many of these to be fragmented viruses or unknown viruses. Dark-matter

populations larger than 10 kbp with at least 1 viral hallmark gene displayed lower viral
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prediction scores compared to HQ-MQ viral bins, while bins targeted by CRISPR-spacers
displayed a significantly higher prediction score (T-test, CI=0.05:0.067, P = 2.2e-16), thus we
annotated these as “viral-like” (Figure 6b, Supplementary Figure 13). When stratifying
read abundance on these groups (HQ-MQ, viral-like, dark-matter) we found them to explain
on average 2.77%, 2.04%, and 17.7% of total read abundance across samples, respectively
(Figure 6c¢). Furthermore, we found that 5% HQ and 3.7% viral-like populations were
detected in at least 40% of the patients across disease states. For instance, HQ viral
populations cluster 653 were observed in 41% of the cohort, respectively (Figure 6d).
Simultaneously, viral-like population 1338 was observed in 98% of individuals but displayed
a low similarity to any reference genome (Figure 6e). Evidently, a significant portion of the
sequenced microbiome remains dark-matter while HQ viruses identified in this study only

accounts for a small fraction of the sequenced space.

Discussion

Because of the current challenges facing the viral assembly process, which results in partial

1416 "the viral domain of life has traditionally been

and fragmented viral genome recovery
notoriously difficult to study. Metavirome datasets have been crucial for identifying a broad
scope of viruses, in particular virulent ones. However, the paucity and difficulties in creating
metavirome datasets combined with the fact that bulk metagenomes are produced in
abundance, calls for more methods to efficiently extract the viromes found therein. Here we

present an improved framework for exploring metavirome directly from bulk metagenomics

datasets.

Using our map of viral and bacterial connections we wanted to associate and study the human
gut virome in sync with highly abundant gut bacteria such as Bacteroides and
Faecalibacterium. Several of these genera represent not only highly abundant gut
commensals but also hotspots for viruses as we have shown by connecting 230 and 123 viral
populations to Bacteroides and Faecalibacterium, respectively. In agreement with other
results'?, we found that F. prausnitzii genomes are rich in prophages and were able to

annotate one for 99.7% of the bacterial bins in HMP2. In the HMP2 cohort we identified 250
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likely temperate Caudovirales viruses expanding in a synchronised manner with bacterial

11 'However, more work is needed to outline the

hosts following increasing gut dysbiosis
intricate virus-host dynamics that can explain the degree of viral influence on bacterial
perturbations observed in IBD related to dysbiosis such as “piggyback” or kill the winner

dynamics® with carefully calculated correlations*.

Based on the viral proteomes it is clear that a majority of HQ viruses extracted in the bulk
metagenomes are likely temperate as we have found integrase proteins in 46% of the viral
populations and Lambda-repressor proteins in 60% of viruses infecting Faecalibacterium
bacteria. This adds to the expectation that the non-enriched viromes can be biased toward
viruses that infect the dominant host cells in the sample'’. Interestingly, we found examples
of viruses encoding proteins with immunodominant epitopes such as the TonB plug domain
(PF07715) and TonB-dependent beta-barrel (PF00593)* in hundreds of viral proteomes
extracted from viruses infecting members of Bacteroidetes such as Bacteroides and Alistipes.
A recent study has shown that common structural phage proteins such as tail length tape
measure protein (TMP) also harbour immunodominant epitopes with influence on
anti-tumour immunity*. It is therefore interesting to investigate the extent to which viral
organisms can influence the human host-microbiota immune balance through horizontal

transfer and expression of immunogenic proteins.

Metavirome studies have until now been the primary source for exploring viral diversity in
microbiomes. Now, viral populations are increasingly uncovered in bulk metagenomes. Our
approach allowed precise clustering of both viral and bacterial populations in three cohorts
that enabled direct investigation into viral-host interactions and discovery of new diversity.
We believe that future studies can greatly leverage this approach to conduct virome analysis

and investigate the viral influence of the intricate microbiome ecosystem that governs human

health.
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Figure 1. A framework to bin and assemble viral populations from metagenomics data.
a) [llustration of workflow to explore viruses from binned metagenomes. First the RF model
was trained on binned metagenomes; bacterial bins were identified using reference database
tools and viruses were identified using assembled viruses from paired metaviromes. Viral and
bacterial labelled bins were used as input for training and evaluating the RF model. Bins from
any metagenome can be parsed through the RF model to extract a space of putative viral bins
that are further validated for HQ viruses using dedicated tools like CheckV. Binned MAGs
and viruses can then be associated in a host assignment step. Host-viral dynamics can be
explored in longitudinal datasets to establish temperate phages and the contribution of viruses
to Host pangenomes b) AUC performance curves for the Random Forest model and using de
novo viral prediction method for annotating viral bins. Predictions were produced based on

bins annotated as either Viral or Bacterial. ¢) The number of viral genomes recovered from
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bulk metagenomes, counted at three different levels of completeness in Diabimmune or
COPSAC cohorts, evaluated as either single-contigs or viral bins from bulk metagenomes.
Evaluation of genome completeness was determined using CheckV here shown for MQ
>=50% , HQ >=90%, Complete =100%). Closed genomes are annotated as “Complete” based
on direct terminal repeats or inverted terminal repeats. d) The percentage-increase of viral
genomes found in Diabimmune or COPSAC cohorts using our approach relative to
single-contig evaluation. The increase is coloured at three different levels of completeness
determined using CheckV, corresponding to the ones used in (c). Abbreviations: MAGs =
Metagenome-assembled genomes, HQ: High-quality, MQ: Medium-quality. AUC: Area

under curve.


https://doi.org/10.1101/2021.07.07.451412
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451412; this version posted July 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a b
ANI>97 ANI>95 ANI>90
0.60 = ﬁ,‘;’,’,”’g'f}:,i,y 0.60 0.60 COPSAC Diabimmune
B Medium Quality 90 Complete
0.50 Low Quality 0.50 0.50 80 =Higne)ualily
Al @ Medium Quality
S 70
B 040 0.40 0.40 S 60
o Q
8 ] 50
°E’ 0.30 0.30 0.30 g 40
£ 5 30 -
£ 020 0.20 0.20 2 59 I
10
0.10 ‘ 0.10 ' 0.10 0 -
R\ Ry 3 < <+ Ry 3 o
0.00 0.00 0.00 RN SR N SR
(;F\Q 00\\ &\;\Q 00\\ Q'PQ @‘\ {\_\0 (\0\\
Y‘O \)°® o_,‘?g \\,'\@ 6\9 \)(\0 N C?+ ~ <& ~ 0+ <&
K & ‘2 <& R & A\ <~ -
& N 9 S N
& o &
(o Q Q
c d
100
75 900
13
13
[0 %]
c c
g 5 600
S 50 [
£ >
8
300
25
0 -_—__ — —
0 1 2 3 4 5 6 7 8 9 +10
Additional contigs in MGX bin compared to MVX virus
0
MGX MVX

Figure 2. Binning the metagenome identifies viral genomes not identified from the
metavirome. a) The fraction of metavirome viruses in COPSAC and Diabimmune coloured
at different levels of completeness or all together determined with CheckV, identified in
VAMB bins from bulk metagenomics of the same cohorts. We defined a metavirome virus to
be recovered if the aligned fraction was at least 75% and ANI was either >90,>95,>97.5 to a
VAMB bin based on FastANI. b) The percentage of viral populations, at different levels of
completeness determined with CheckV, identified in both metaviromes (MVX) and bulk
metagenomics (MGX) or unique to either dataset. Shared populations are identified with a
minimum sequence coverage of 75% and ANI above 95%. (1) MGX in MVX: % of Viral
populations found in MGX also found in MVX. (2) MGX not in MVX: % of Viral
populations unique to MGX i.e. not found in MVX. (3) MVX in MGX: % of Viral
populations found in MVX also found in MGX. (4) MVX not in MGX: % of Viral


https://doi.org/10.1101/2021.07.07.451412
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451412; this version posted July 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

populations unique to MVX i.e. not found in MGX. ¢) Viral genome completeness estimated
for 2,646 viruses found both in metaviromes and bulk metagenomics sharing the same nearest
reference in the CheckV database. d) The number of contigs in Viral bins from bulk
metagenomics that do not align to the closest viral reference in the metavirome. In the
majority of viral bins all contigs align to the nearest reference. ANI: Average nucleotide

identity %.
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Figure 3. Reconstructing the virome of a human gut metagenomics cohort. a) The
number of viral genomes with 3 different levels of completeness in HMP2, evaluated as
either single-contigs or viral-bins from bulk metagenomes. Evaluation of genome
completeness was determined using CheckV here shown for Medium-quality >=50% (MQ) ,
High-quality >=90% (HQ), Complete =100%. Closed genomes are annotated as “Complete”
based on the presence of either DTR or ITR. b) The sequence length distribution in kbp of
viral genomes at 4 different levels of completeness in HMP2, evaluated as either
single-contigs or viral-bins from bulk metagenomes. Shown for Low-quality <50%, MQ
>=50% , HQ >=90% or Complete =100%. Closed genomes are annotated as “Complete”
based on the presence of either DTR or ITR. ¢) Median ANI based on pairwise ANI genome
measurements between bins within the same VAMB cluster. Median ANI is consistently
above 97.5 in small VAMB clusters with 0-25 bins and in larger VAMB clusters with
300-400 bins. d) Cladogram of an unrooted phylogenetic tree with crAss-like bins based on
the large terminase subunit protein (TerL). Five different VAMB clusters have been coloured

and illustrate high monophyletic relationships. The phylogenetic tree was constructed using
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IQtree using the substitution model VT+F+G4. ANI: Average nucleotide identity %. DTR:

Direct terminal repeats. ITR: Inverted terminal repeats. Kbp: Kilo base pairs.
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Figure 4. The metagenomics estimated virome is personal and highly stable in healthy
controls. a) Longitudinal virome compositions for 3 non-IBD (green bar), 3 UC (yellow bar)
and 3 CD (red bar) diagnosed subjects. Each panel represents a subject where the virome
composition is organised according to the total relative abundance according to the
taxonomic viral family, where “NA” populations are coloured grey. b) Dissimilarity boxplots
based on Bray Curtis distance (BC) function between samples from different subjects (first
panel inter-patient-distance) and between samples from the same subject (second panel
intra-patient-distance). The BC distances are shown for samples from non-IBD, UC and CD
diagnosed subjects. Furthermore, BC distances are coloured according to dysbiosis (blue) or
not (green). ¢) Principal component analysis (PCoA) of Bray-curtis distance matrix calculated
from the viral abundance matrix in HMP2. Each point is coloured according to diagnosed
dysbiosis as in b. d) Shannon-diversity estimates of metagenomics derived viral populations
and coloured according to dysbiosis as in b. €) Per sample viral population richness based on
the number of viral populations detected (abundance > 0) in the samples. Coloured according

to dysbiosis as in (b). non-IBD: healthy control, UC: Ulcerative colitis, CD: Crohn’s disease.
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Figure 5. Viral-host interactions can be explored from viral populations and MAGs. a)
Bacterial MAGs and viral relations. Each MAG was connected to the viral bins using either
sequence alignment of virus to MAG (green), CRISPR spacer alignment (orange) or both
(blue). The right panel shows the percentage of MAGs, grouped by genera, that was
annotated with the virus via alignment og CRISPR spacer. b) The number of distinct viral
populations associated with a MAG genera based on either of the following: sequence
alignment of virus to a MAG within the given genera, CRISPR spacer alignment or both. ¢)
Viral association to all MAGs of VAMB cluster 216 (Bacteroides vulgatus) in the HMP2
dataset. For instance, viral population 502 was associated with the B. vulgatus across the vast

majority of samples where B. vulgatus was present.
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Figure 6. Viral proteins and the dark matter meta-virome. a) The percentage of HQ
viruses, associated with four bacterial host genera; Alistipes, Bacteroides, Faecalibacterium
and Roseburia, which encode top-20 prevalent PFAM domains. b) Virsorter2 viral prediction
scores for all viral bins with at least one viral hallmark gene. Completeness was estimated
using CheckV and the bins were grouped as (1) HQMQ-ref when completeness >=50% or
High-quality >=90%, (2) bins with less than 50% completeness were annotated as
Dark-matter, and (3) dark-matter bins with confident CRISPR-spacers against a bacterial host
were annotated as Viral-like. ¢) The distribution of sample RPM of bacterial MAGs,
HQMQ-ref viral populations, Dark-matter and Viral-like populations as defined in (b). The
majority of sample reads were mapped to MAGs but on average 17.7% of all reads mapped
to Dark-matter bins. d) The abundance in RPKM of rare and highly prevalent viruses with a
HQ genome in HMP2. Each point represents a viral population coloured according to viral
taxonomic family. The progenitor crassphage is indicated as cluster 653. (e) As in (d) but
with Viral-like populations like cluster 1338 showing that many are low abundant, but highly

prevalent. Abbreviations: RPM: Read per million. RPKM: Read per kilobase million.
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Methods

Datasets

The Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC) dataset
consisted of 662 paired samples obtained at age 1 year from an unselected childhood cohort
(** *). The Diabimmune dataset contained 112 paired samples from controls and type 1
diabetes patients. The Human Microbiome Project 2 cohort consisting of 1317 metagenomic

samples were downloaded from https://ibdmdb.org/tunnel/public/summary.html.

Processing of metagenomics and metaviromics datasets
Metagenomic samples of infants en route T1D recruited to the Diabimmune study were

downloaded from https://pubs.broadinstitute.org/diabimmune (October 2019). Metagenomic

samples were quality-controlled and trimmed for adaptors using kneaddata
(https://github.com/biobakery/kneaddata) and trimmomatic (v.0.36)* settings:
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:100. Each metagenomic sample was assembled

individually using metaspades (v. 3.9.0)*" using the parameters ‘--meta, -k 21,33,55,77,99
and filtered for contigs with minimum length of 2,000 base pairs. Mapping of reads to contigs
was done using minimap2 (v.2.6)* using ‘-N 50’ and filtered with samtools (v.1.9)* using
-F 3584°. Contig abundances were calculated using jgi summarize bam contig_depths from
MetaBAT?2 (v.2.10.2)*. Metagenomic bins were defined using VAMB (v. 3.1)*° to cluster the
metagenomic contigs into putative MAGs and viruses. Initially, the contents of all bins were
searched for viral proteins with hmmsearch (v. 3.2.1)*' against VOGdb (v. 95)
(https://vogdb.csb.univie.ac.at/). The presence of bacterial hallmark genes were determined
using both CheckM (v.1.1.2)’* and hmmsearch against the miComplete bacterial marker
HMM database (v.1.1.1)%. A viral-score of each contig was computed using DeepVirFinder
(DVF v.1.0)*®. We initially assessed the metaviromes of the COPSAC and Diabimmune
datasets using ViromeQC>* and found 5.1 and 0.21 times viral enrichment of the two datasets,

respectively (Supplementary Figure 1).
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Training the Random Forest to predict viral bins

First we established an initial viral truth set in the metagenomic assembly for the random
forest classification. For each metagenomics bin we computed the fraction of contigs
mapping to a set of non-redundant viral sequences (Gold standard) using blastn (v. 2.8.1)”
with a minimum sequence identity of 95% and query coverage of 50%. Gold standard viral
contigs of the paired metaviromics datasets were provided by the authors of the Diabimmune
and COPSAC studies. Metagenomic bins with >= 95% of contigs matching with the above
criteria were annotated as Viral bins for training and validation. For annotating bacterial bins,
MAGs were identified using CheckM (v.1.1.2). MAGs with a completeness score of 10% or
above and contamination <= 30% were added to the training and validations set labelled as
bacteria. For training we used COPSAC and validated using the Diabimmune dataset. Thus
the model was trained to distinguish confidently labelled bacterial and viral bins produced by
VAMB, this provided a RF model highly effective at removing non-viral bins and providing a
highly enriched candidate set of viral bins that could be further evaluated using dedicated
validation tools. In the RF-model we included features such as bin-size, the number of
distinct bacterial hallmark genes, the number of different PVOGs in a bin divided by the
number of contigs in the bin, viral-prediction DVF score (median DVF score for a bin)
defined by DeepVirFinder. The Random Forest model was implemented in Python using
RandomForestClassifier (sklearn v. 0.20.1) with 300 estimators and using the square root of
the number of features as the number of max features. The model was trained on the
COPSAC dataset using 40% of observations for training and 60% for validation.
Subsequently ROC/AUC, recall and precision was calculated using the Diabimmune
recovered viruses as an evaluation set. The performance of DVF was assessed on contig-level

by predicting contigs with p-value < 0.05 and score > 0.5 as viral else bacterial.

Intersection of viruses in MGX and MVX data

In order to identify the number of viruses assembled and binned in the metagenomic (MGX)
datasets we searched the metavirome (MVX) viruses in all-vs-all search and calculated
genome-to-genome average nucleotide identity (ANI) and genome coverage as aligned
fraction (AF). Here we defined species level above 95% ANI and strain-level above 97%
ANI. Overlapping or also described as highly-similar viruses between the paired MGX and
MVX datasets were those fulfilling the ANI>95% & >75% AF criteria. This search was
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conducted using FastANI (v.1.1 ,‘-fragmenlen 500 -minimumfrag 2 -minimum 80% ANI")*
with genome coverage >=50% (bidirectional fragments / total fragments). We note that hits
with less than 80% ANI were not included. We expected that we might be able to find
fragmented/incomplete viruses assembled in the metavirome but were more curious about
near-complete viruses, thus we quality controlled all MVX viruses using CheckV (v0.4.0,
default settings, database v. 0.6)* to achieve a completeness estimate for each. By labelling
the quality of each MV X virus we organised the success of genome recovery into the 4
CheckV levels (Low-quality <= 50% , Medium-quality >=50% , High-quality >=90%,
Complete =100%). Complete = Closed genomes based on direct terminal repeats (DTR),
inverted terminal repeats (ITR). Furthermore, we also quality controlled the putative viruses
assembled and binned in the MGX to ask the reverse question, i.e. to what extent do we find

complete viruses with no similarity to viruses in the MVX.

Completeness of viruses recovered in metavirome and bulk metagenomes

To standardise our viral recovery performance across different datasets, we used the
guidelines on Minimum Information about an Uncultivated Virus Genome (MIUViG)". The
viral completeness of viruses from metaviromics data was assigned using CheckV described
as above. CheckV was used to conduct a benchmark on virus genome completeness by
evaluating single-contig assemblies against the use of viral bins (also described as viral
MAGs). To this end, we based our analysis solely on AAl-model predictions. As the authors
of CheckV note, the programme is not designed by default to accommodate viral MAGs and
may not deal properly with contaminants from bacterial or viral sources”. This became clear
as we observed a majority of HMM-model predicted viruses consisting of sequences with
close to zero percent viral sequence (Supplementary Figure 2). We suspect that this was to
be expected since the HMM-model is designed for single viral assemblies. I.e. the model
cannot deal properly with cases where a viral marker gene is identified in a bin and
contaminating sequences inflate the total bin size to randomly fit into the reference size range
of viruses encoding the same viral marker. Hence to avoid including false-positive viral bins,
we defined a viral population as HQ-ref when at least one bin in the VAMB cluster contained
a HQ evaluation based on AAl-evaluation. All viral bins with a CheckV computed genome
copy number >= 1.25 were removed to control for ‘concatemers’. Finally, viral bins with an

estimated completeness >120% (overcomplete-genomes) were removed as well to control for
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contaminated bins. We found that the frequency of HQ genomes, which according to
MIUVIiG standards'*° were “overcomplete-genomes” (estimated completeness >120%), was
between 7.9-14.2% for the viral bins and 3.8-6.1% for single contig evaluation
(Supplementary Table 2). Hence, the binning approach generates more
overcomplete-genomes, although these can be identified and removed using for instance
CheckV. The remaining populations without a single HQ or MQ bin within their
VAMB-cluster were described as dark-matter. For identifying viruses in ‘dark-matter’
populations, we ran Virsorter2 (v.2.0)*” and considered sequences or bins with a prediction
score >0.75, at least one viral hallmark and a minimum size of 10 kbp as a putative virus. In
this subset of putative viruses we defined “viral-like” dark-matter when they had a

CRISPR-spacer with a bacterial MAG (see ‘Viral host prediction’).

Viral taxonomy and function

While the databases of viral genomes continue to grow, taxonomy is still a challenge for viral
genomes with little similarity to the International Committee on Taxonomy of Viruses
(ICTV) annotated genomes. Viral proteins were predicted using prodigal (v.2.6.3) using
‘-meta’. All proteins were annotated using viral protein specific databases such as VOG
(http://vogdb.org) or viral subsets of TTEMBL used in the tool Demovir
(https://github.com/feargalr/Demovir). Viral taxonomy was assigned to each bin using the
plurality rule described before in Roux et al (ref. *°): (1) taxonomy was assigned to genomes
with at least two PVOG proteins using a majority vote (>=50% else NA) on each taxonomic
rank based on the last common ancestor (LCA) annotation from the PVOG entries. (2) The
CheckV VOGclade taxonomy was transferred if available from the best viral genome match
in the CheckV database. In order to annotate “crAss-like” viruses, predicted proteins were
aligned using blastp (v. 2.8.1)* to the large subunit terminase (Terl) protein and DNA
polymerase (accessions: YP 009052554.1 and YP 009052497.1) of the
progenitor-crassphage using already described cutoffs®. When investigating taxonomic
annotations, considering only MQ-Complete viral bins, the most dominant viral family
annotated was Siphoviridae accounting for 53.5% of the viral bins (Supplementary Figure
4). Furthermore, we could assign Myoviridae 14.57%, Podoviridae 8.59%, Microviridae
8.30%, crAss-like 3.61%, CRESS 2.52%, Herelleviridae 1.37%, and Inoviridae 0.58%.

Finally 6.93% of viruses could not be confidently assigned any viral taxonomy. Similar


https://paperpile.com/c/xvlLd5/R95rX+CIpod
https://paperpile.com/c/xvlLd5/Hw2dm
https://paperpile.com/c/xvlLd5/FYWUZ
https://paperpile.com/c/xvlLd5/CIpod
https://paperpile.com/c/xvlLd5/Ydm4G
https://paperpile.com/c/xvlLd5/9Eigs
https://doi.org/10.1101/2021.07.07.451412
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451412; this version posted July 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

distributions of taxonomic annotations were also observed for Diabmmune and COPSAC

(Supplementary Table 3).

For viral proteomes, we utilised CheckV’s contamination detection workflow to extract
proteins encoded only in viral-regions to avoid host contamination. These viral proteins were
analysed with interproscan (v. 5.36-75.0)% using the following databases: PFAM, TIGRFAM,
GENE3D, SUPERFAMILY and GO-annotation. For each annotated functional domain in
viruses predicted to infect a given host genus enriched proteins were identified using Fisher's
exact test using the function phyper in base R. P-values were adjusted using False discovery
rate (FDR) correction®. Viral reverse transcriptase enzymes were grouped into DGR-clades
by querying each protein sequence against a database of RT DGR clade HMM models while

DGR target genes were identified using the methods and pipeline provided®.

Phylogenetic tree of crAss-like viruses

A phylogenetic tree was constructed for crAss-like viruses identified in the HMP2 dataset
based on proteins annotated as the large terminase subunit protein (the TerL gene). First, viral
bins annotated as “crAss-like” were determined as described above. “crAss-like” proteomes
were aligned to a terminase large subunit protein (accession: YP 009052554.1) and also

against VOGdb hmmsearch (v. 3.2.1, hmmscore >= 30)! against VOGdb (v. 95)

(https://vogdb.csb.univie.ac.at/). The VOG entries corresponding to the terminase large
subunit: VOG00419, VOG00699, VOG00709, VOG00731, VOG00732, VOG01032,
VOG01094, VOGO01180, VOGO01426, were identified using a bash command on a VOGdb
file: “grep -1 terminase vog.annotations.tsv”’. An alignment file was produced for proteins,
annotated as terminase large subunit, using MAFFT (v. 7.453)% and Trimal (v. 1.4.1)** and
converted into a phylogenetic tree using IQtree (v. 1.6.8 -m VT+F+G4 -nt 14 -bb 1000

-bnni)®.

Viral host prediction

Viral genomes were connected to hosts using a combination of CRISPR spacers and sequence
similarity between viruses categorised as HQ-ref and MAGs. CRISPR arrays were mined
from COPSAC and HMP2 MAGs using CrisprCasTyper (v.1.2.3)° with ‘--prodigal meta’

and all spacers were blasted with blastn-short (v. 2.8.1)> against all viral genomes to identify
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protospacers. CRISPR spacer matches with >=95% sequence identity over 95% of spacer
length and maximum 2 mismatches were kept. In order to identify the host of viruses, viral
bins were aligned to MAGs using FastANI (v.1.1, ‘--fragLen 5000 --minFrag 1°)°® and blastn
megablast (v. 2.8.1)> with a minimum ANI >= 90% and sequence identity >= 90,
respectively. We followed the approach described by Nayfach et al. (ref. *°) to calculate
host-prediction consensus and accuracy. The viral host was defined using a plurality rule at
each taxonomic rank based on the lineage of bacteria connected using either CRISPR-spacer
or alignment to the given virus. The cutoffs described above were selected after
benchmarking the alignment approach with FastANI and blastn at various thresholds. We
observed an increased host-prediction consensus and accuracy at the species rank using the
threshold described above with FastANI with ANI >=90% based on at least one 5000 bp
fragment, compared to blastn thresholds described by Nayfach et al. (ref. *°). We evaluated
the agreement of our two host prediction methods and found up to 58% consensus on host
taxonomy on species rank (Supplementary Figure 11A). We further benchmarked
host-prediction purity by calculating the most common host for each viral population
according to (1) CRISPR-spacer and (2) alignment independently.

Viruses were annotated as a temperate virus if (1) the virus was found to be integrated into a
MAG with >=80% query coverage and ANI >=90% or (2) an integrase protein-annotation
could be found in the viral proteome. Integrase proteins were determined searching for
integrase in the InterPro entry description of each interproscan protein annotation (see Viral

taxonomy and function for details).

Differential abundance of viral populations and MAGs

Sample abundance of each viral population was calculated as a mean read per kilobase
million (RPKM) of all contigs with at least 75% coverage belonging to a VAMB cluster.
Differential abundance analysis of all viruses were tested using the Linear mixed-effect
model R-function /mer (Ime4 package v. 1.1-26)%". The model used was ‘Virus ~
dysbiosis_index + diagnosis + sex + (1|Subject)’. Subjects were included as random effects to
account for the correlations in the repeated measures (denoted as (1 | subject)) and the log
transformed relative abundance of each virus was modelled as a function of diagnosis (a

categorical variable with non-IBD as the reference group) and the dysbiosis index (continous
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covariate) while adjusting for subjects age as a continuous covariate and sex as a binary

variable.
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