

1 LI-Seq: A Cost-Effective, Low Input DNA method for Whole Genome Library Preparation

2

3 Authors: Teia M. Schweizer^{1*}, Matthew G. DeSaix¹, Kristen C. Ruegg¹

4

5 * Corresponding Author: Teia.Schweizer@gmail.com

6 ¹ Department of Biology, Colorado State University, Fort Collins, CO, 80525

7 **Summary**

8 1. Samples from species of high conservation concern are often low in total genomic DNA.

9 Whole Genome Sequencing (WGS) can provide many insights that can be used to aid in

10 species conservation, but current methods for working with low quality and low input

11 samples can be cost prohibitive for population level genomic analyses. Thus, there is an

12 urgent need for a cost-effective method of preparing WGS libraries from low input DNA

13 samples.

14 2. To bridge the gap between sampling techniques commonly used in conservation

15 genetics that yield low quality and low input DNA and the powerful tool of WGS, we

16 developed LI-Seq, a more efficient method that successfully produces libraries from low

17 quality DNA with as low input as 0.48 ng of DNA, with an average final library size of 300-

18 500 base pairs.

19 3. Sequencing results suggest no difference in sequencing quality or coverage between low

20 quality, low input and high quality, high input starting material using our protocol. We

21 conclude that our new method will facilitate high-throughput WGS on low quality, low
22 input samples, thus expanding the power of genomic tools beyond traditional high
23 quality samples.

24 **Keywords:** whole genome sequencing, low input DNA, low quality DNA, conservation genomics,
25 cost-effective, population genetics

26 **Introduction**

27 The field of genomics began developing in the 1990s with whole genome shotgun sequencing of
28 bacteria (Weissenbach 2016) and has advanced rapidly with the improvement of High-
29 Throughput Sequencing (HTS) techniques (Goodwin et al 2016). The ability to sequence whole
30 genomes with relative ease has opened new research avenues and made it possible to estimate
31 fundamental population genetic parameters with increasing precision in both model and non-
32 model organisms (Allendorf, Hohenloe, and Luikart 2010; Ouborg et al 2010). Of particular
33 relevance to ecologists and conservation biologists, HTS has made it possible to investigate
34 previously challenging topics such as the genetic basis of local adaptation, patterns of
35 inbreeding across the genome, and how species adapt to changing climate conditions (Kohn et
36 al 2006; Ruegg et al 2018; Allendorf, Hohenloe, and Luikart 2010; Ouborg et al 2010). As a
37 result, genomic tools are revolutionizing the fields of ecology, evolution, and conservation
38 biology.

39

40 Despite the proliferation of HTS methods for model organisms (Ekblom and Galindo 2011), there
41 remain a number of technical and financial limitations to the widespread use of genomic
42 approaches in situations where the amount of input DNA maybe limited and costs are a
43 concern. While the cost of sequencing has dramatically decreased in the last two decades
44 (Goodwin et al 2016), it is often still prohibitively high for use in population-level studies where
45 hundreds or thousands of individuals must be sequenced (Fuentes-Pardo and Ruzzante 2017).
46 Methods modified from commercially available whole genome sequencing (WGS) library
47 preparation kits offer low coverage options at a fraction of the cost per individual, making them
48 suitable for population genetics studies (Therkildsen and Palumbi 2017; Kryazhimskiy et al 2014;
49 Baym et al 2015). However, these methods still typically require high quality and high input DNA
50 and are not optimized to efficiently amplify smaller target library sizes. Such high quality and
51 quantity DNA can be difficult to attain when working with threatened, endangered, or cryptic
52 species, where ethical and logistical challenges are often prohibitive (Kohn et al 2006; Ouborg et
53 al 2010). However, samples that yield low quality and quantity DNA have previously found
54 limited use in whole genome studies unless potentially cost-prohibitive library preparation kits
55 or methods are employed (Taylor et al 2020). Given the immense potential benefits of analyzing
56 whole genomes for effective wildlife conservation and management efforts (Funk et al 2012;
57 Ryder 2005; Russello et al 2015), there is an urgent need for a cost-effective method of
58 preparing WGS libraries from low quality and quantity DNA samples.
59

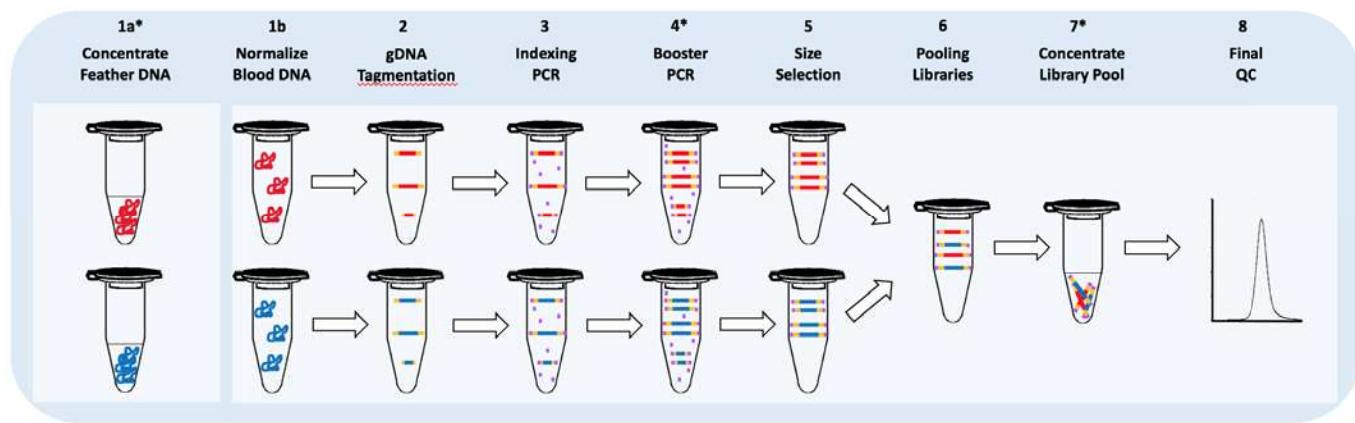
60 Low quality and quantity samples are often a hallmark of noninvasive or minimally invasive
61 sampling techniques. Noninvasive genetic sampling methods first gained recognition in 1992
62 when DNA was successfully extracted from passively-collected hair for a genetic study of an
63 endangered bear species (Taberlet and Bouvet 1992). Since then, noninvasive genetic sampling
64 has been successfully used in genetic studies across myriad taxonomic groups (Stenglein et al
65 2010; Valiere et al 2003; Roques et al 2014; Regnaut et al 2006). Noninvasive sampling
66 encompasses samples such as saliva, hair, feces, or feathers, collected without capturing,
67 handling, or otherwise disturbing the study organism (Waits et al 2005). Minimally invasive
68 sampling entails capturing or handling a study organism with minimal invasion or tissue
69 collection (e.g. feather pulls and buccal swabs) (Carroll et al 2017). In recent years, noninvasive
70 and minimally invasive sampling methods have gained popularity, especially for use in
71 monitoring threatened and endangered species (Lukacs and Burnham 2005; Fuentes-Pardo and
72 Ruzzante 2017). However, noninvasively or minimally invasively collected samples typically yield
73 lower concentrations of DNA which can limit their use in whole genome studies unless
74 expensive library preparation kits or library preparation methods are employed (Taylor et al
75 2020). Given the immense potential benefits of analyzing whole genomes for effective wildlife
76 conservation and management efforts (Funk et al 2012; Ryder 2005; Russello et al 2015), there
77 is an urgent need for a cost-effective method of preparing WGS libraries from noninvasively or
78 minimally invasively collected samples.

79

80 Although low cost methods for WGS exist (Therkildsen and Palumbi 2017; Kryazhimskiy et al
81 2014; Baym et al 2015), they still require a prohibitively large amount of high quality input DNA
82 (2.5 ng) for many conservation applications. More specifically, further analysis of these methods
83 reveals that much of the DNA is wasted during the library preparation step due to the fact that
84 the average fragment size produced from these methods is 1kb, but the average fragment size
85 needed for many common sequencing platforms, such as Illumina, is 300-500 base pairs. Thus,
86 DNA above 500 base pairs is often removed prior to sequencing. To bridge the gap between
87 sampling techniques commonly used in conservation genetics that yield low quality DNA and
88 the powerful tool of WGS, we developed a more efficient method that successfully produces
89 libraries from low quality DNA with as low input as 0.48 ng of DNA, with an average final library
90 size of 300-500 base pairs.

91
92 We demonstrate the utility of our method for producing high quality sequencing data at a
93 fraction of the cost of traditional library preparation methods using DNA extracted from a single
94 flight feather calamus, or quill, of a small (8-9 grams) passerine bird, the American Redstart
95 (*Setophaga ruticilla*). We compare the sequence data from our low input DNA library (from
96 feather) to those generated from a high input library (from blood) and demonstrate that our
97 method produces comparable sequence quality for both low and high input DNA sources. These
98 results have important implications for conservation genomics research seeking to maximize
99 efficient sequencing from low input DNA samples.

100 **Materials and Methods**


101 Library Preparation for Sequencing

102 We identified three key parameters in other methods (i.e. Therkildsen and Palumbi 2017) that
103 we could optimize in order to target the ideal fragment distribution and avoid loss of critical
104 DNA when working with low input DNA samples. The three key parameters modified herein
105 were: (1) the ratio of tagmentation transposome (which cleaves DNA and adds an adapter for
106 indices) to input DNA quantity, (2) the duration of tagmentation incubation, and (3) the duration
107 of the indexing PCR elongation time.

108

109 In order to compare sequencing quality from high and low input and quality DNA libraries and
110 assess the efficiency of our method, we extracted DNA from 50 high DNA quantity and quality
111 bird blood samples and 50 low DNA quantity and quality feather calamus tips of the American
112 Redstart. For blood, DNA was extracted from between 50-100 μ L of whole blood stored in
113 Queen's Lysis Buffer (~80 μ L of whole blood plus 300 μ L of buffer), using Qiagen DNEasy Blood
114 and Tissue Kit and eluted into 100 μ L of provided AE buffer. For extractions from feathers, like
115 other low-quality samples, maximizing DNA yield is critical. Therefore, we followed the Qiagen
116 protocol but with the following modifications. To each sample, we added 10 μ L of 1 M
117 Dithiothreitol (DTT) to the initial lysis step to aid in breaking down disulfide bonds found in the
118 keratin of feathers. Flowthrough after the first filtration step when lysate was transferred to the
119 spin column was pipetted back onto the filter for a second centrifugation. Prior to the final
120 elution step, AE buffer was placed in an incubator at 56 °C. During the final elution step, AE

121 buffer was left to incubate on the filter for five minutes instead of two. We eluted feather
122 extractions into 400 μ L (two rounds of 200 μ L elutions through the spin column as
123 recommended by Qiagen protocol for maximum yield). Prior to proceeding with library prep, we
124 concentrated feather DNA extractions using a 1:1 ratio of Serapure beads (Faircloth and Glenn
125 2014) from 400 μ L to 15 μ L and eluted into 10mM Tris-Hcl (Figure 1, step 1a).

126
127 **Figure 1.** Lab workflow diagram for LI-Seq method. Steps 1 through 8 follow full protocol (see
128 Supplements). Steps with * after number denote steps where modifications to typical WGS
129 library preparation methods were implemented. Low input samples start with step 1a and high
130 input samples start with step 1b.
131

132 To ensure that final library concentrations will be similar across samples, we quantified each
133 DNA extraction using a Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and normalized each
134 sample to a concentration of 0.48 ng/ μ L- 4.5 ng/ μ L, with a target of 2.5 ng/ μ L (Figure 1, step 1a
135 and 1b). To fragment the DNA and “tag” it with Nextera adapters, we added 2.50 μ L of TD
136 Buffer and 0.5 μ L of TDE1 Enzyme (Illumina) to 1 μ L of normalized DNA and incubated the
137 samples in a thermocycler at 55 °C for 20 minutes (Figure 1, step 2).

138

139 To amplify the tagmented DNA and add Nextera indexing adapters for sequencing, we pipetted
140 1 μ L of each index primer into the appropriate well of tagmented DNA until all samples had a
141 unique pair of dual indexes. We then added 6.0 μ L of Kapa Hifi Hotstart Mix (KMM; Kapa
142 Biosystems) before running in a thermocycler as follows: held at 72° for 3 minutes, held at 98°
143 for 2 minutes and 45 seconds, cycled 8 times through 98° for 15 seconds, then 62° for 30
144 seconds, then 72° for 30 seconds, held at 72° for 1 minute, and then held at 4° until removed
145 from thermocycler (Figure 1, step 3). As per the Therkildsen and Palmubi (2017) method, this
146 indexing PCR had more cycles than the original Illumina protocol and was broken into two
147 stages (Indexing PCR and “Reconditioning PCR,” which was renamed Booster PCR in this
148 method). Additional cycles were added in the Therkildsen and Palumbi (2017) method because
149 the tagmented DNA was not purified prior to Indexing PCR, making the PCR reaction less
150 efficient. To further amplify, or “boost,” copies of indexed DNA without using additional Nextera
151 indices, we added 7.6 μ L of KMM, 4.4 μ L of ultrapure water, and 1.6 μ L each of a custom 10uM
152 primer pair (P1=AATGATACGGCGACCACCGA; P2=CAAGCAGAAGACGGCATACGA) to each library.
153 We ran the samples in a thermocycler as follows: held 95° for 5 minutes, cycle 4 times through
154 98° for 20 seconds, then 62° for 20 seconds, then 72° for 2 minutes, hold at 72° for 2 minutes,
155 and then held at 4° until removed from the thermocycler (Figure 1, step 4).
156
157 To purify the PCR product and remove undesirable fragments, we followed standard Ampure
158 bead protocol (Beckman Coulter) using a 0.7:1 bead to DNA ratio which will remove below
159 approximately 320 bp and eluted into 30 μ L of 10mM Tris-Hcl (Figure 1, step 5). In order to

160 avoid overrepresentation of one individual during whole genome resequencing, we then
161 quantified using a Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and pooled an equal
162 number of copies of each sample into a 1.5 mL tube (Figure 1, step 6). Finally, in order to
163 increase the final concentration of the pooled libraries and increase sequencing efficiency, we
164 then followed the standard Ampure double-sided size selection protocol, using a 0.63:1 bead to
165 DNA ratio to remove large fragments and a 0.73:1 bead to DNA ratio to remove small
166 fragments, and eluted into 30 μ L of 10mM Tris-HCl (Figure 1, step 7). After the pooled library
167 has been concentrated and double size selected (either with or without the optional
168 reconditioning PCR), we perform final quality control (QC) with Qubit quantification and
169 Tapestation 2200 fragment distribution analysis (Agilent) (Figure 1, step 8).

170
171 To address issues of overamplification, also called 'PCR bubble,' we encountered while using
172 Therkildsen and Palumbi's original method (2017) with our low input DNA, we added an
173 optional 'reconditioning PCR' step which provides additional reagents, especially primers, so
174 that the PCR product does not anneal to itself (Thompson et al 2002). To recondition a final
175 pooled library with overamplification, we added 12 μ L of pooled, size selected library and added
176 7.6 μ L of KMM, 1.6 μ L of 10uM P1 (AATGATAACGGCGACCACCGA), 1.6 μ L of 10uM P2
177 (CAAGCAGAAGACGGCATACGA), and 4.4 μ L of ultrapure water. We then ran it in a thermocycler
178 as follows: held 95° for 5 minutes, cycled once through 98° for 20 seconds, then 62° for 20
179 seconds, then 72° for 2 minutes, held at 72° for 2 minutes, and then held at 4° until removed
180 from the thermocycler. Next, we used Ampure beads to clean up and performed an additional

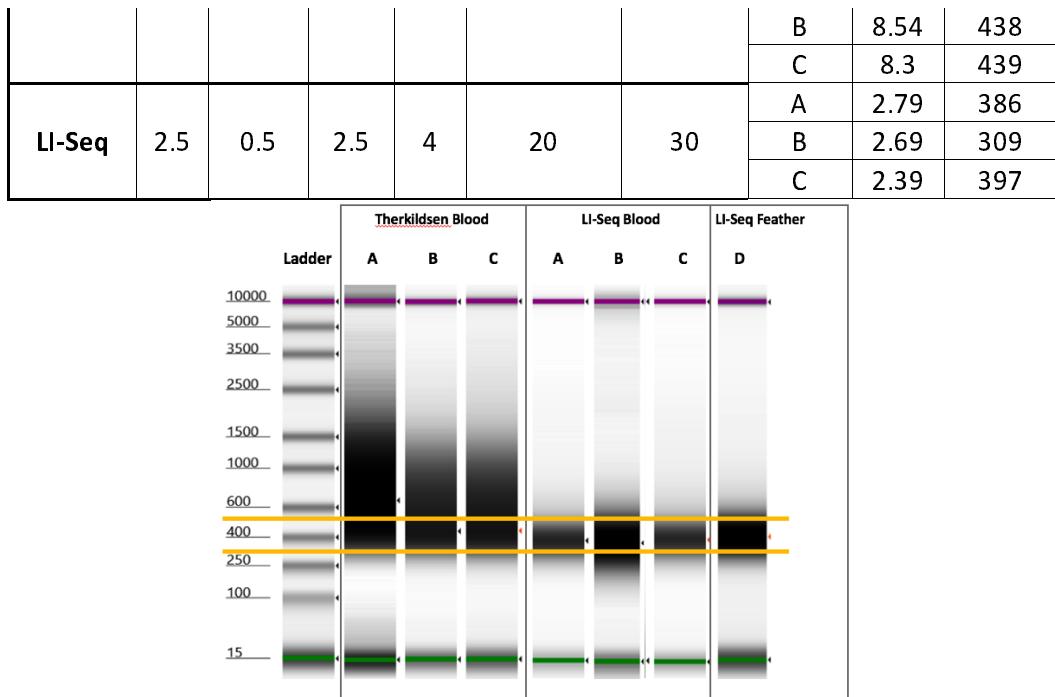
181 double size selection and bead cleanup before quantifying and running the library through a
182 Tapestation 2200 fragment distribution analyzer (Agilent) for final quality control. This
183 reconditioning PCR is optional and may not be required for all library preparations.

184
185 Using the above method, we prepared two WGS libraries from American Redstart (*Setophaga*
186 *ruticilla*) samples for low (2x) coverage sequencing. One library was prepared with 50 unique
187 blood samples of normalized DNA concentrations between 1.18 - 4.78 ng/uL. The other library
188 was prepared with 50 unique feather samples, extracted from a single feather calamus, with
189 starting DNA concentrations of 0.48 - 5.7 ng/uL. Both libraries had one cycle of reconditioning
190 PCR performed on the final library. Libraries were each sequenced on one full 2 x 150 bp PE
191 (paired end) HiSeq 4000 lane (Illumina).

192
193 Bioinformatic Analysis and Quality Checking
194
195 We trimmed the sequence data to remove potential PCR artifacts using the program FastUniq
196 version 0.11.9 (Xu et al 2012). PCR duplicates need to be removed in order to ensure high-
197 quality sequence data in downstream processes such as creating scaffolds in whole-genome
198 sequencing. We mapped reads to an assembled genome of the yellow warbler (*Setophaga*
199 *petechia*; Bay et al 2018), using the Burrows-Wheeler Aligner software version 0.7.17 (Li and
200 Durbin 2010). The resulting SAM files were sorted, converted to BAM files, and then indexed
201 using samtools version 1.9 (Li et al 2009). Depth of sequencing coverage at every read position

202 was calculated using the depth function in samtools (Li et al 2009). The quality of the BAM files
203 for the two different libraries was assessed by comparing the average read depth by individual
204 as well as the average read depth by scaffold. We quantified the GC content of 100 base pair
205 windows in the BAM files from the two libraries using CollectGcBiasMetrics function in Picard
206 version 2.23.1 (Broad Institute 2019). We determined the proportion of reads that passed
207 quality filters for the two libraries using CollectWgsMetrics in Picard (Broad Institute 2019).
208 Two-tailed t-tests were used to compare the quality diagnostics for the different libraries and
209 were implemented in R version 3.6.2 (R Core Team 2019).

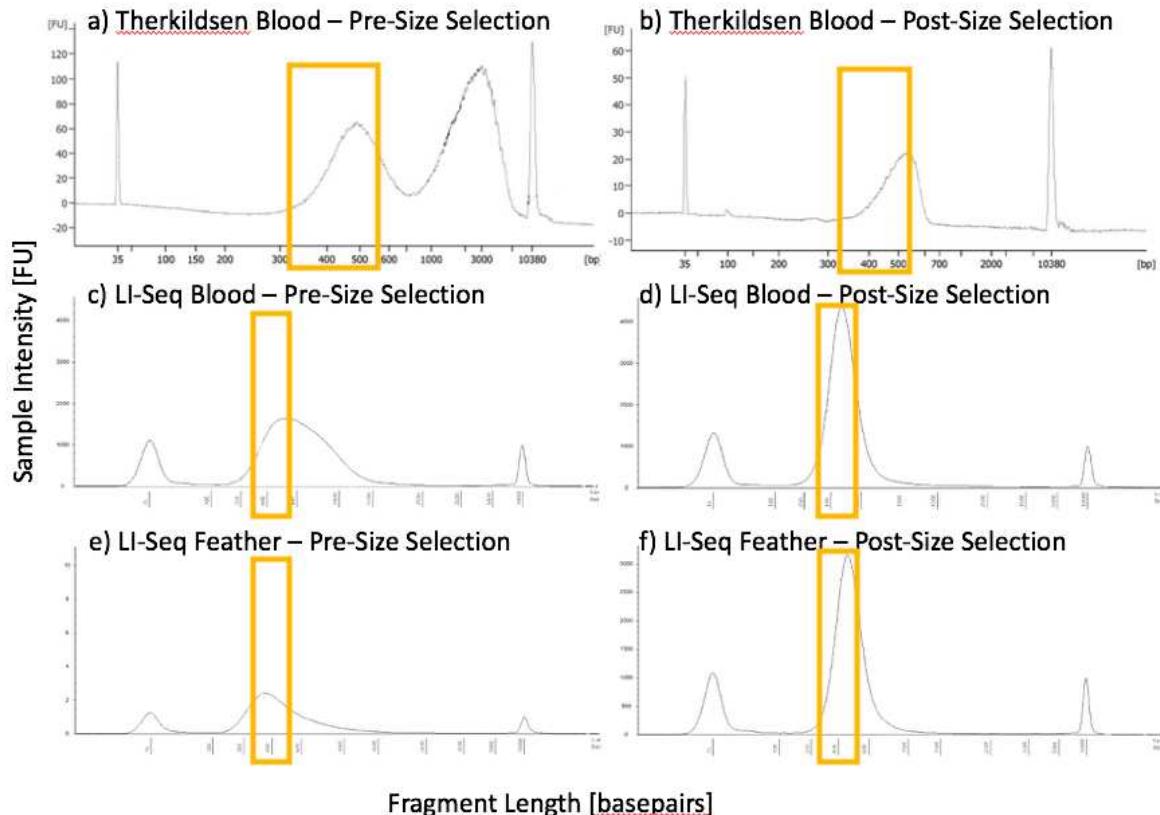
210 **Results**


211 Library Preparation for Sequencing

212 A comparison between libraries prepared using the method of Therkildsen and Palumbi (2017)
213 and our modified method revealed that doubling the ratio of tagmentation enzyme to DNA,
214 increasing the tagmentation time to 20 minutes, and decreasing the indexing PCR elongation
215 time to 30 seconds resulted in maximization of fragments in the target distribution (Table 1;
216 Figure 2).

217

218 **Table 1.** Matrix of the original (Therkildsen) protocol parameters and final Li-Seq parameters,
219 tested with 3 high input samples (blood).

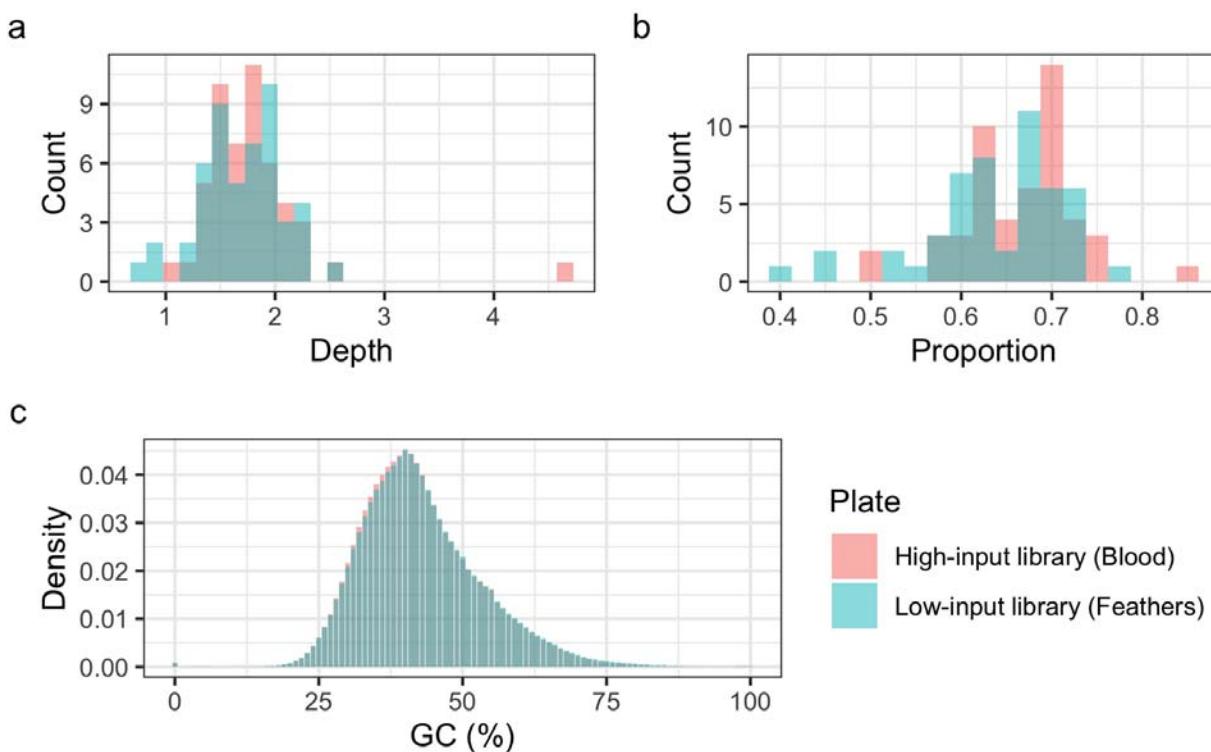

Test Name	total DNA (ng)	enzyme (ul)	buffer (ul)	total rxn vol (ul)	tagmentation time (min)	Index Elongation Time (sec)	Sample Number	Final Conc (ng/ul)	Avg fragment length (bp)
Original	2.5	0.25	1.25	2.5	5	180	A	8	663

220

221 **Figure 2.** Tapestation 2200 gel of Therkildsen protocol conditions and final LI-Seq conditions
222 from Table 1. Yellow bands show preferred fragment range (320-500bp) for HiSeq 4000 as
223 recommended by Novogene. Individuals A, B and C were duplicated between the Therkildsen
224 Blood and LI-Seq Blood, with the conditions described in Table 1. Individual D was feather DNA
225 prepared using only the LI-Seq method.
226

227 Using these modified methods, we successfully prepared two libraries from American Redstart
228 DNA. The library from 50 high input samples (blood) had a final concentration of 12.1 ng/µL, a
229 molarity of 39.3 nM, and an average library size of 466 bp (Figure 3d). The library from 50 low
230 input samples (feathers) had a final concentration of 2.56 ng/µL, a molarity of 8.56 nM, and an
231 average library size of 453 bp (Figure 3f).

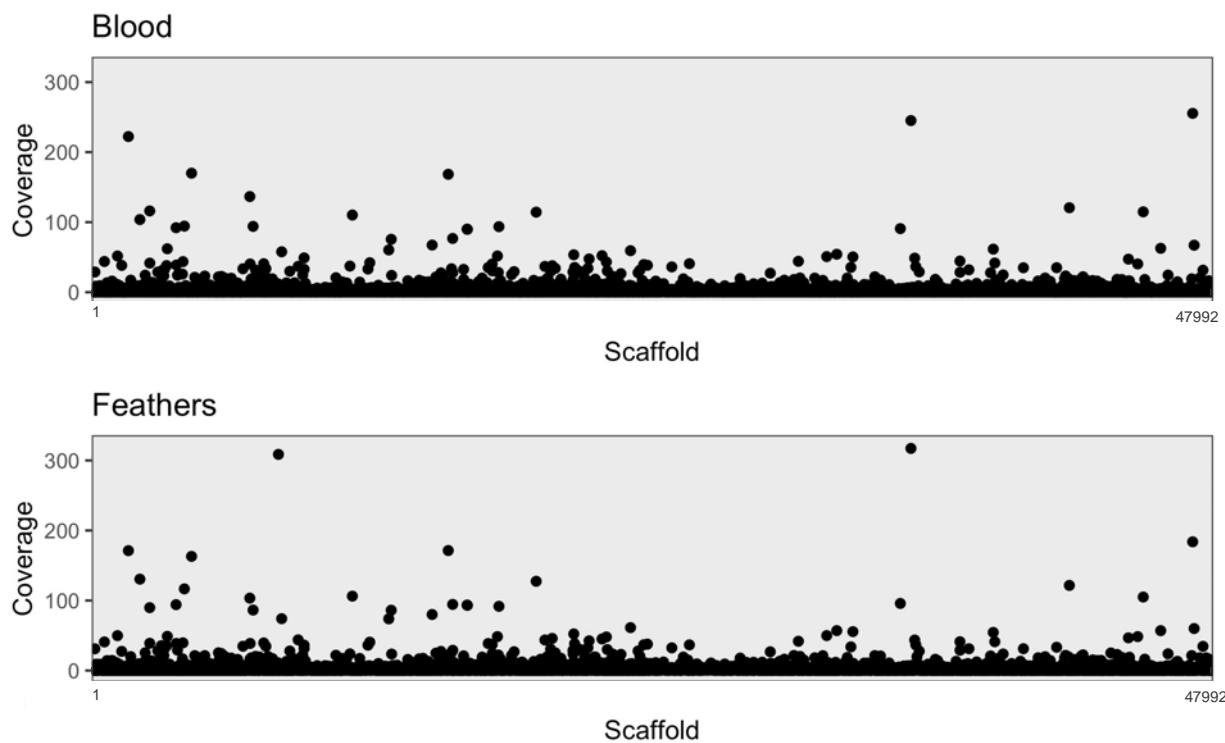
232


233 **Figure 3.** Final library fragment analysis of a library prepared using the original Therkildsen and
234 Palumbi protocol (2017), before (a) and after (b) size selection, run on a Bioanalyzer (Agilent).
235 The second peak of (a) indicated overamplification. The final libraries of the high input (blood)
236 and low input (feather) samples were run on a Tapestation 2200 (Agilent) prior to size selection
237 (high input (c) and low input (e)) and after size selection (high input (d), low input (f)). The x-axis
238 is the size of the DNA fragment in basepairs, and the y-axis is the sample intensity which is
239 correlated with sample concentration. Note the different x- and y-axis scales. Yellow boxes
240 indicate the desired fragment size of ~320 – 500 bps.
241

242 Bioinformatic Analysis and Quality Checking

243 The depths of coverage of the sequence data from the two libraries were not significantly
244 different ($t = 1.06$, $df = 98$, p -value = 0.29), but the high input library had a slightly higher depth
245 (mean 1.79, standard deviation 0.52; Figure 3a) than the low input library (mean 1.70, standard
246 deviation 0.38; Figure 3a). The high input library had individuals that had a slightly higher

247 proportion of the genome with sequence data (mean 0.66, standard deviation 0.06; Figure 3b)
248 than the low input library (mean 0.64, standard deviation 0.08; Figure 3b), but this difference
249 was not statistically significant ($t = 1.85$, $df = 98$, $p\text{-value} = 0.07$). The difference in GC
250 distribution between the two libraries was non-significant (42.9%; $t = 1.94e-14$, $df = 100$, $p\text{-value}$
251 = 1), with the mean GC content of the high input library being 42.7% and 42.9% for the low
252 input library (Figure 4C). The sequence data from these two libraries also had very similar
253 patterns of coverage across the scaffolds in the genome (Figure 5). The similarity in coverage
254 across scaffolds shows that certain genomic regions are not being over- or under-amplified in
255 either of the libraries due to a difference in quality and quantity of input DNA. All BAM quality
256 metrics for the two libraries produced comparable results (Table 2).


257

258

259 **Figure 4.** Both histograms of (a) average depth across the genome by individual and (b)
260 proportion of genome with sequence data by individual overlapped considerably between the
261 two libraries and neither measures were significantly different (depth: $t = 1.06$, $df = 98$, p -value
262 = 0.29; proportion: $t = 1.85$, $df = 98$, p -value = 0.07). GC content was determined for 100 base
263 pair region windows in each individual and then averaged across individuals for each of the two
264 plates. (c) The bins of GC content (ranging from 0 to 100%) were nearly identical for the two
265 libraries ($t = 1.94e-14$, $df = 100$, p -value = 1). Data from the high input library from blood
266 samples are shown in red, the low input feather library in light blue, and the overlapping data in
267 darker blue.

268

269

270 **Figure 5.** Mean coverage by scaffold averaged across all individuals for the two libraries reveal
271 similar patterns in coverage across the genome between the two libraries.

272
273 **Table 2.** BAM quality statistics: the average proportion of reads with adaptors (Adaptors),
274 mapping quality less than 20 (MapQ), marked as duplicates (Duplicate), without a mapped mate
275 pair (Unpaired), quality score less than 20 (BaseQ), and at least 1x (1x) and 5x (5x) coverage
276 after removing low quality reads.

Library	Adaptors	MapQ	Duplicate	Unpaired	BaseQ	1x	5x

High input (Blood)	0	0.110	0	0.001	0.017	0.685	0.049
Low input (Feathers)	0	0.117	0	0.001	0.015	0.657	0.039

277 **Discussion**

278 In conservation genetics, researchers must often work from low quality and low input DNA
279 samples, especially in the case of noninvasive or minimally invasive sampling. These types of
280 samples can be a challenge to use with many genomic techniques, such as WGS, which typically
281 require high input and quality input DNA. Yet, collecting high input samples (like blood and
282 tissue) can present ethical, logistical, and financial roadblocks.

283

284 The potential knowledge gained from utilizing WGS and similar genomic tools can provide
285 insights not yet achievable from other methods. WGS can be a powerful tool for management in
286 conservation efforts but, until now, has been challenging and or cost-prohibitive when working
287 with low input, low quality DNA. Here we have described LI-Seq, a method for cost-effective
288 WGS library preparation that can be used for both high quality, high input and low quality, low
289 input samples. Results suggest that, with the modifications described above, one can
290 successfully produce high quality sequence data from DNA with input as low as 0.48 ng, for a
291 fraction of the cost of traditional library preparation methods. More specifically with this
292 method, we were able to prepare approximately 12 libraries for the same price as a single

293 library with a more traditional WGS library preparation kit, thus allowing us to sequence more
294 than an order of magnitude more samples. Overall, the increase in efficiency and cost-
295 effectiveness provided by our method will allow conservation biologists to more broadly apply
296 WGS methods to samples collected with non-invasive or minimally invasive methods.

297

298 Another potential challenge of using low input DNA with WGS methods is biased or incomplete
299 amplification of the genome due to the low number of copies of the entire genome present
300 (Meynert et al 2014). To assess this, we prepared a library from high quality, high input DNA
301 (extracted from blood) in addition to preparing a library from low quality, low input DNA
302 (extracted from feathers) using the same protocol. The final library molarity and fragment
303 distribution was similar with both DNA sources, suggesting that the lower input DNA yielded
304 equally high-quality libraries as high input DNA. In addition to impacting the quality of the final
305 library, low input DNA could result in biased amplification leading to preferential sequencing of
306 certain regions of the genome and result in less equal coverage across the genome than with
307 high input DNA. The observed correspondence in patterns of genome-wide coverage between
308 the libraries is to be expected in the absence of external influences causing biases related to the
309 quality of input DNA (Ekblom, Smeds, and Ellegren 2014). Additionally, we checked for
310 differential GC bias between the two libraries because it can indicate that biases were
311 introduced during library preparation (Sims et al 2014). Our breadth of genome coverage (i.e.
312 proportion of the genome sequenced) of 64% and 66% for the two libraries (high input and low
313 input respectively) is comparable to that of mammalian genomes sequenced at similar depth

314 (Green 2007). This breadth of coverage is suitable for numerous conservation genomic
315 applications (e.g. identifying inbreeding across the genome) and resource efficient considering
316 that approximately 30x coverage depth is required to achieve 95% coverage breadth (Sims et al
317 2014). Overall, our results suggest that when our method is employed, libraries prepared from
318 low input and high input DNA both produce high quality sequence data.

319
320 When applying this protocol to other species and sample types, researchers may want to think
321 about a couple important considerations. First, the genome size of the study organism should
322 be considered. The protocol presented herein is an excellent option for use with organisms with
323 a small genome, as the protocol was optimized using DNA from birds which on average have a
324 genome size of 1.1 Gb. For species with larger genomes, more sequencing is required to achieve
325 the same level of coverage, and therefore may require optimized methods and will have a
326 relatively higher cost as well. Additionally, the ratio of tagmentation enzyme to input DNA may
327 need to be adjusted in order to maintain a similar average fragment size. The tagmentation
328 enzyme is one of the most expensive components of this method, so increasing the amount of
329 enzyme per sample could also increase the per sample cost. Second, when considering
330 combining libraries from low quality, low input and high quality, high input samples into a single
331 sequencing run, researchers may want to take additional steps to ensure equal representation
332 of the libraries. Specifically, performing a double size selection on the individual libraries prior
333 to quantification and pooling can help ensure that the most accurate concentrations are used
334 when pooling individuals for sequencing and, therefore, the most equal sequencing effort per

335 sample will occur (Zamudio et al unpublished). Overall, with the aforementioned modifications
336 taken into account, the method presented here could be applied more broadly to increase the
337 efficiency and cost-effectiveness of WGS across a multitude of taxa.

338

339 Here we present a cost-effective method for producing WGS libraries using low input DNA from
340 minimally-invasively collected samples. Li-seq provides a much-needed tool to bridge the gap
341 between the conservation management applications of WGS data and frequently collected
342 sample types, such as feathers and other non-invasively collected samples. Although a recent
343 method was published that also provided a method for preparing non-invasively collected
344 samples for WGS (Taylor et al 2020), the per sample cost may be prohibitive for use with
345 population-scale studies for conservation efforts. By providing an efficient, cost-effective WGS
346 method for low quantity and quality DNA samples, we hope conservation management efforts
347 will be able to better take advantage of the applications WGS can provide for enhancing
348 management efforts.

349 **Acknowledgements**

350 Thank you to Dr. Nina Therkildsen for sharing her WGS method, Harmony B. Borchardt-Wier for
351 early guidance on trouble-shooting Dr. Therkildsen's protocol, and Dr. Cristian Gruppi for his
352 technical advising. We thank the UC Davis Genome Center for their help with the sequencing.
353 This work was made possible by an NSF CAREER award (008933-00002), an NSF grant Rules of
354 Life grant (007604-00002), and a National Geographic grant (WW-202R-170) to K. Ruegg as well
355 as the Extreme Science and Engineering Discovery Environment (XSEDE) computer cluster,
356 which is supported by National Science Foundation grant ACI-1548562.

357

358 **References**

359 Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation
360 genetics. *Nature reviews genetics*, 11(10), 697-709.
361
362 Baym, M., Kryazhimskiy, S., Lieberman, T. D., Chung, H., Desai, M. M., & Kishony, R. (2015).
363 Inexpensive multiplexed library preparation for megabase-sized genomes. *PLoS one*, 10(5),
364 e0128036.
365
366 Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018).
367 Genomic signals of selection predict climate-driven population declines in a migratory bird.
368 *Science*, 359(6371), 83-86.
369
370 Carroll, E.L., Bruford, M.W., DeWoody, J.A., Leroy, G., Strand, A., Waits, L., & Wang, J. (2018).
371 Genetic and genomic monitoring with minimally invasive sampling methods. *Evolutionary
372 applications*, 11(7), pp.1094-1119.
373
374 Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular
375 ecology of non-model organisms. *Heredity*, 107(1), 1-15.
376
377 Ekblom, R., Smeds, L., & Ellegren, H. (2014). Patterns of sequencing coverage bias revealed by
378 ultra-deep sequencing of vertebrate mitochondria. *BMC genomics*, 15(1), 467.

379

380 Faircloth, B. C., & Glenn, T. C. (2014). Protocol: Preparation of an AMPure XP substitute (AKA
381 Serapure). doi: 10.6079/J9MW2F26.

382

383 Fuentes-Pardo, A. P., & Ruzzante, D. E. (2017). Whole-genome sequencing approaches for
384 conservation biology: Advantages, limitations and practical recommendations. *Molecular
385 ecology*, 26(20), 5369-5406.

386

387 Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for
388 delineating conservation units. *Trends in ecology & evolution*, 27(9), 489-496.

389

390 Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-
391 generation sequencing technologies. *Nature Reviews Genetics*, 17(6), 333.

392

393 Green, P. (2007). 2x genomes—Does depth matter?. *Genome research*, 17(11), 1547-1549.

394

395 Kohn, M. H., Murphy, W. J., Ostrander, E. A., & Wayne, R. K. (2006). Genomics and conservation
396 genetics. *Trends in ecology & evolution*, 21(11), 629-637.

397

398 Kryazhimskiy, S., Rice, D. P., Jerison, E. R., & Desai, M. M. (2014). Global epistasis makes
399 adaptation predictable despite sequence-level stochasticity. *Science*, 344(6191), 1519-1522.

400

401 Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler
402 transform. *Bioinformatics*, 26(5), 589-595.

403

404 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & Durbin, R. (2009). The
405 sequence alignment/map format and SAMtools. *Bioinformatics*, 25(16), 2078-2079.

406

407 Lukacs, P. M., & Burnham, K. P. (2005). Review of capture–recapture methods applicable to
408 noninvasive genetic sampling. *Molecular ecology*, 14(13), 3909-3919.

409

410 Meynert, A.M., Ansari, M., FitzPatrick, D.R., & Taylor, M.S. (2014). Variant detection sensitivity
411 and biases in whole genome and exome sequencing. *BMC bioinformatics*, 15(1), pp.1-11.

412

413

414 Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., & Hedrick, P. W. (2010). Conservation
415 genetics in transition to conservation genomics. *Trends in genetics*, 26(4), 177-187.

416

417 R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
418 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

419

420 Regnaut, S., Lucas, F. S., & Fumagalli, L. (2006). DNA degradation in avian faecal samples and
421 feasibility of non-invasive genetic studies of threatened capercaillie populations. *Conservation
422 Genetics*, 7(3), 449-453.

423

424 Roques, S., Furtado, M., Jácomo, A. T., Silveira, L., Sollmann, R., Torres, N. M., ... & Palomares, F.
425 (2014). Monitoring jaguar populations *Panthera onca* with non-invasive genetics: a pilot study in
426 Brazilian ecosystems. *Oryx*, 48(3), 361-369.

427

428 Ruegg, K., Bay, R. A., Anderson, E. C., Saracco, J. F., Harrigan, R. J., Whitfield, M., ... & Smith, T. B.
429 (2018). Ecological genomics predicts climate vulnerability in an endangered southwestern
430 songbird. *Ecology letters*, 21(7), 1085-1096.

431

432 Russello, M. A., Waterhouse, M. D., Etter, P. D., & Johnson, E. A. (2015). From promise to
433 practice: pairing non-invasive sampling with genomics in conservation. *PeerJ*, 3, e1106.

434

435 Ryder, O. A. (2005). Conservation genomics: applying whole genome studies to species
436 conservation efforts. *Cytogenetic and genome research*, 108(1-3), 6-15.

437

438 Sims, D., Sudbery, I., llott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and
439 coverage: key considerations in genomic analyses. *Nature Reviews Genetics*, 15(2), 121-132.

440

441 Stenglein, J. L., Waits, L. P., Ausband, D. E., Zager, P., & Mack, C. M. (2010). Efficient, noninvasive
442 genetic sampling for monitoring reintroduced wolves. *The Journal of Wildlife Management*,
443 74(5), 1050-1058.

444

445 Taberlet, P., & Bouvet, J. (1992). Bear conservation genetics. *Nature*, 358(6383), 197-197.

446

447 Taylor, R., Manseau, M., Request, B., & Wilson, P. (2020). Whole genome sequences from non-
448 invasively collected samples. *Molecular ecology resources*,
449 <https://doi.org/10.22541/au.158809437.78730399>

450

451 Therkildsen, N. O., & Palumbi, S. R. (2017). Practical low-coverage genomewide sequencing of
452 hundreds of individually barcoded samples for population and evolutionary genomics in
453 nonmodel species. *Molecular ecology resources*, 17(2), 194-208.

454

455 Thompson, J. R., Marcelino, L. A., & Polz, M. F. (2002). Heteroduplexes in mixed-template
456 amplifications: formation, consequence and elimination by 'reconditioning PCR'. *Nucleic Acids
457 Research*, 30(9), 2083-2088.

458

459 Valière, N., Fumagalli, L., Gielly, L., Miquel, C., Lequette, B., Poulle, M. L., ... & Taberlet, P. (2003).
460 Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic
461 sampling over a period of 10 years. *Animal Conservation*, 6(1), 83-92.

462
463 Waits, L. P., & Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: a
464 review of applications and recommendations for accurate data collection. *The Journal of Wildlife
465 Management*, 69(4), 1419-1433.
466
467 Weissenbach, J. (2016). The rise of genomics. *Comptes rendus biologies*, 339(7-8), 231-239.
468
469 Xu, H., Luo, X., Qian, J., Pang, X., Song, J., Qian, G., ... & Chen, S. (2012). FastUniq: a fast de novo
470 duplicates removal tool for paired short reads. *PLoS one*, 7(12), e52249.

471 **Author Contributions**

472 TMS and KCR designed the experiments. TMS carried out the experiments. MGD and KCR
473 analyzed data. TMS, MGD, and KCR wrote the manuscript.