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Abstract

Wood represents the majority of the biomass on lands, and it constitutes a renewable source of
biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, meaning that
feedstocks must be improved. We investigated the properties of wood that affect bioconversion, as
well as the underlying genetics, to help identify superior biorefinery tree feedstocks. We recorded as
many as 65 wood-related and growth traits in a population of European aspen natural genotypes.
These traits included three growth and field performance traits, 20 traits for wood chemical
composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as
indicators of bioconversion potential. We used statistical modelling to determine which wood traits
best predict bioconversion yield traits. This way, we identified a core set of wood properties that
predict bioprocessing traits. Several of these predictor traits showed high broad-sense heritability,
suggesting potential for genetic improvement of feedstocks. Finally, we performed genome-wide
association study (GWAS) to identify genetic markers for yield traits or for wood traits that predict
yield. GWAS revealed only a few genetic markers for saccharification yield traits, but many more SNPs
were associated with wood chemical composition traits, including predictors traits for saccharification.
Among them, 16 genetic markers associated specifically with lignin chemical composition were
situated in and around two genes which had not previously been associated with lignin. Our approach
allowed linking aspen wood bioprocessing yield to wood properties and the underlying genetics,
including the discovery of two new potential regulator genes for wood chemical composition.
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Introduction

Lignocellulose of vascular plants, mainly in the form of wood, represents the majority of the biomass
on land (Bar-On et al., 2018). This biomass reservoir contains mostly three types of natural polymers:
cellulose, hemicelluloses and lignin, each of which can be converted into precursors for biofuels and
other bioproducts (Percival Zhang, 2013). However, the processes for deconstructing these polymers
into usable units remain costly due to structural and chemical hindrance, a problem known as biomass
recalcitrance (McCann and Carpita, 2015).

Overcoming biomass recalcitrance requires the identification of less recalcitrant feedstocks as
well as knowledge on the biological basis of lignocellulose recalcitrance (Van Acker et al., 2014,
Wilkerson et al., 2014, Escamez et al., 2017, Meng et al., 2017, Yoo et al., 2017, Wang et al., 2020).
Fast growing trees from the Populus genus (poplars, aspens, and hybrids) represent promising
feedstocks (Mola-Yudego et al., 2017) on account of their lignocellulose composition (Sannigrahi et al.,
2010) and of their advanced domestication and cultivation techniques (Dickmann, 2006). Furthermore,
the genomes of numerous Populus species have been sequenced (Tuskan et al., 2006, Ma et al., 2013,
Waullschleger et al., 2013, Yang et al., 2017, Wang et al., 20183, Lin et al., 2018, Liu et al., 2019, Qiu et
al.,, 2019, Hou et al., 2020, Zhang et al., 2020), enabling investigation of the genetics underlying
lignocellulose properties and recalcitrance.

Our knowledge of the genetic basis for plant traits has greatly advanced thanks to genome-
wide association studies (GWAS), which relate variation in traits to variation in the sequence of the
genomes of different individuals, at a single nucleotide resolution (Nordborg and Weigel, 2008, Tuskan
et al., 2019). These variations of nucleotide composition at single loci between the compared
individuals, also known as single nucleotide polymorphisms (SNPs), can represent genetic markers for
guantitative variation in traits, or even reveal involvement of genes into shaping a quantitative trait
(Nordborg and Weigel, 2008, Tuskan et al., 2019).

In a striking example, GWAS of the timing of budset identified a single locus explaining the
majority of local adaptation along a latitudinal gradient in a Swedish population of European aspen
Populus tremula (Wang et al., 2018a). However, individual loci found by GWAS usually explain only a
fraction of the total trait variance, and there is often a large portion of the genetically heritable
variance that remains undetermined by significant associations (Nordborg and Weigel, 2008, Du et al.,
2018). Nevertheless, finding SNPs associated with only a fraction of the variation in traits of interest
could still lead to progress through marker assisted selection (MAS) or genomics assisted selection
(GAS) for beneficial wood properties (Du et al., 2018).

In Populus trichocarpa, GWAS revealed SNPs and genes significantly associated with four wood
chemical composition traits (Guerra et al., 2019). Still in Populus trichocarpa, focusing on a limited part
of the genome consisting of genes expressed in wood, associations were discovered between SNPs
and 16 wood chemical composition and wood structure traits (Porth et al., 2013). Four wood chemical
composition traits were also linked to SNPs by GWAS in Populus nigra (Guerra et al., 2013) and Populus
deltoides (Fahrenkrog et al., 2017). Xie et al. (2018) re-evaluated previous associations in Populus
trichocarpa (Porth et al., 2013, Muchero et al., 2015) by focusing on a chromosome known to harbour
quantitative trait loci (QTL) for lignin composition, resulting in the identification and characterization
of a new transcriptional regulator of lignin biosynthesis. Using multivariate GWAS, whereby traits can
be aggregated into multi-traits for GWAS (Porter and O’Reilly, 2017, Chhetri et al., 2019), 19 SNPs
related to 13 genes were identified in association to wood anatomical properties of a Populus
trichocarpa natural population (Chhetri et al., 2020).

Advances in genome (re)sequencing and statistical methods for finding associations in GWAS
have greatly facilitated these recent findings (Du et al., 2018, Lin et al., 2018). Yet, the emerging picture
of the genetics underlying wood properties and bioconversion potential of Populus remains limited, in
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parts due to our limited capacity to generate precise quantifications of specific traits for entire tree
populations (Du et al., 2018, Tuskan et al., 2019), a problem known as the “phenotyping bottleneck”
(Furbank and Tester, 2011). For example, lignin is composed of different types of monomers which
polymerize together into a heteropolymer (Boerjan et al., 2003). Hence, measuring the total amount
of lignin in wood represents a coarse measure, whereby finer traits such the abundance of the different
types of lignin monomers remain hidden (Tuskan et al., 2019). More numerous and more specific traits
more likely allow identification of significant associations in GWAS (Du et al., 2018, Tuskan et al., 2019).
More precise phenotyping also allows better characterization of the relationships between traits, for
example to identify which wood chemical composition and structure traits determine wood
bioconversion potential (Escamez et al., 2017).

Here, we present large-scale phenotyping efforts, monitoring as many as 65 traits related to
wood properties, tree growth, and wood saccharification in a collection of natural European aspen
genotypes collected across Sweden. Through multivariate analyses and mathematical modelling, we
identified wood chemical composition and structural traits predictive of recalcitrance as well as whole
stem bioconversion potential. Through GWAS, we identified genetic loci linked to wood properties
predictive of bioconversion, including in genes not previously linked to lignocellulose.

Materials and Methods
Plant material

The Swedish Aspen (SwAsp) collection consists of previously gathered Populus tremula aspen natural
genotypes from 12 locations across Sweden (Luquez et al., 2008). These aspen genotypes had been
clonally propagated from root cuttings, and then grown in a randomized block experiment in two
plantations in southern (Ekebo, 55.9 °N) and northern (Sévar, 63.4 °N) Sweden, with originally at least
four to five biological replicates per genotype, of which three to five were successfully established
(Luguez et al., 2008, Wang et al., 2018a).

After ten years of growth in the Ekebo garden, tree height and diameter at breast height (DBH)
were measured (Dataset S1), and wood samples were collected (Fig. S1). 79 cm above ground, a 1 cm
thick section of the stem was collected, and the south-western facing quarter of the stem section was
aliquoted for wood chemical composition analyses. In addition, 90 cm above ground, another piece of
stem was harvested for analysis of wood anatomical and structural properties.

Wood chemical composition analyses

The wood quarters selected for compositional analyses were manually de-barked and cut into roughly
match-size wood pieces and freeze-dried (CoolSafe Pro 110-4, LaboGene A/S, Denmark). These wood
pieces were homogenized by coarse milling (Retsch ZM200 centrifugal mill, Retsch GmbH, Germany),
and sieved (Retsch AS200) into two different particle size fractions. The fraction of particle size
between 0.1 mm and 0.5 mm was aliquoted for subsequent saccharification experiments (see below),
while the fraction of particle size under 0.1 mm was aliquoted for pyrolysis coupled with gas
chromatography followed by mass spectrometry analysis (pyrolysis-GC/MS) and monosaccharide
composition analysis.

Total carbohydrate content, lignin content, lignin composition, and content of other phenolics
were determined by pyrolysis coupled with gas chromatography followed by mass spectrometry
analysis (pyrolysis-GC/MS) as previously described (Gerber et al., 2016). Briefly, 40 pg - 80 pg of fine
wood homogenized powder was loaded into an autosampler (PY-2020iD and AS-1020E, Frontier Labs,
Japan), allowing a sub-sample (~1 pg) into the pyrolizer of the GC/MS apparatus (Agilent,
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7890A/5975C, Agilent Technologies AB, Sweden). Following pyrolysis, the samples were separated
along a DB-5MS capillary column (30 m x 0.25 mm i.d., 0.25-um-film thickness; J&W, Agilent
Technologies), and scanned by the mass spectrometer along the m/z range 35 — 250. The GC/MS data
was processed as previously described (Gerber et al., 2012). To make the samples comparable with
one another, each peak’s area was normalized to the total peak area considering all peaks, set as 100%,
in each sample.

Cell wall monosaccharides were quantified following the trimethylsilyl (TMS) derivatization
method as described previously (Gandla et al., 2015). Briefly, fine wood powder was washed with
HEPES buffer (4 mM, pH 7.5) containing 80% ethanol, as well as methanol:chloroform 1:1 (v:v) and
acetone to generate alcohol insoluble residues (AIRs), which were then dried. To avoid contamination
with glucose from potential starch reserves, the AIRs were treated with 1 unit per AIR mg of type | a-
amylase (Roche 10102814001, Roche GmbH, Germany). The de-starched AIRs were methanolysed
using 2 M HCl/MeOH at 85 °C for 24 h, and inositol was also methanolysed to serve as internal
standard. Following repeated washes with methanol, the AIRs and inositol standards were silylated
using Tri-sil reagent (3-3039, SUPELCO, Sigma-Aldrich GmbH, Germany) at 80 °C for 20 min. The solvent
was evaporated under a stream of nitrogen and pellets were dissolved in 1 ml hexane and filtered
through glass wool. The filtrates were evaporated until only 200 ul remained, of which 0.5 pl were
analysed by GC/MS (7890A/5975C; Agilent Technologies AB, Sweden) according to Sweeley et al.
(1966).

Saccharification assays

Saccharification assays without or with acid pretreatment of the woody biomass were performed
following a previously established methodology (Gandla et al., 2015). In short, 50 mg of dry wood
powder (moisture analysis performed using an HG63 moisture analyser, Mettler-Toledo, USA) with
particle size between 0.1 mm and 0.5 mm were pretreated with 1% (w/w) sulphuric acid during 10 min
at 165 °C in a single-mode microwave system (Initiator Exp, Biotage, Sweden), or remained untreated.
The pretreated samples were centrifuged to allow separation of the solid fraction from the
pretreatment liquid. The solid fraction was washed with ultrapure water and sodium citrate buffer (50
mM, pH 5.2). The washed pretreated solid fraction as well as the untreated samples were
enzymatically hydrolysed 72 h at 45 °C under agitation, using 25 mg of a 1:1 (w/w) mixture of the liquid
enzyme preparations Celluclast 1.5 L (measured CMCase activity of 480 units per gram of liquid enzyme
preparation, following Ghose, 1987) and Novozym 188 (measured B-glucosidase activity of 15 units
per gram liquid enzyme preparation, following Mielenz (2009)) (Sigma-Aldrich). Sodium citrate buffer
(50 mM, pH 5.5) was added to reach 1 g of final reaction mixture. During enzymatic saccharification,
samples were collected at 2 h and 72 h. Glucose production rates were determined at 2 h using an
Accu-Chek ®Aviva glucometer (Roche Diagnostics Scandinavia AB, Sweden) by calibration with
different concentrations of glucose standard solution. Monosaccharide (arabinose, galactose, glucose,
xylose and mannose) yields in pretreatment liquids and enzymatic hydrolysates collected at 72 h were
determined using a high-performance anion-exchange chromatography (HPAEC) system equipped
with pulsed amperometric detection (lon Chromatography System ICS-5000, Dionex, USA) according
to a previously described procedure (Wang et al., 2018b)

Anatomical and structural characterisation
As previously described (Lundqvist et al., 2010, Escamez et al., 2017), anatomical and structural

features were determined on parallelepipedal wood pieces across the stem diameter using SilviScan
(CSIRO, Australia). The wood sample strips were mounted on computer controlled motorised stages
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and scanned for information on wood property variations along a stem radius. Characterisation was
performed on three separate units representing different measurement methods: (i) a cell scanner
with a video microscope for measurement of the numbers and sizes of fibres and vessels, (ii) a density
scanner recording X-ray absorption images for measuring wood density, and (iii) a diffraction scanner
recording X-ray diffraction images for measuring the microfibril angle.

Statistical estimations of genetic parameters

The genetic parameters for each trait were estimated statistically based on measurements on
individual trees for each genotype according to the model:

Yik = L+ bi + ¢j + ejk (Equation 1)

Where Yjj is the observation k in block i for clone j, W is the mean of the trait in this trial, b is the fixed
effect of block i, ¢; is the random effect of clone j (normally and independently distributed with mean
0 and variance V¢; NID[O,V.]), and ejx is the random error term for observation ijk (NID[O,V.]). The
variances V. and V. were estimated for each trait according to the Restricted Maximum Likelihood
(REML) method using the ASREML software (Gilmour et al., 1997). To estimate genetic parameters, we
considered V. = V¢ (the genotypic variance among clones for the trait) and V. = Ve (the environmental
variance for the trait).

For each trait, broad-sense heritability (H?) was estimated by dividing genotypic variance (Vg), by the
total variance of this trait Vr; where Vr = Vg + Ve:

H? = Vs/V1 (Equation 2)

The genotypic coefficient of variation (CVg) for a trait was calculated by dividing the trait’s genotypic
standard deviation v/ Vs by the mean value of the trait’s measurements ( x ), and multiplying the result
by 100:

CVs=+/Vs- 100/ X (Equation 3)

The genetic correlation (rc) between trait 1 with genotypic variance Va1 and trait 2 with genotypic
variance Vg, was calculated by diving the genotypic genetic covariance (coveic2) between these traits
by the square root of the product of the individual genetic variances of these traits:

re = COVGlez/\/—(Vel . Vez) (Equation 4)
Statistical comparisons, multivariate analyses and statistical modelling

Multiple pairwise comparisons were carried by so called protected post-ANOVA Fisher’s LSD tests,
whereby Fisher’s LSD tests for multiple comparisons are only performed if the ANOVA returns p < 0.05,
using Minitab 17 (Cleverbridge AG, Germany). This method has better risk mitigation for both type |
and type Il errors, especially when having between three and ten biological replicates, than other
commonly used tests (Carmer and Swanson, 1973).

Multivariate analyses using all wood traits to predict glucose release by saccharification, or the
estimated total-wood glucose yield from an entire tree trunk (TWG, Escamez et al., 2017), were
performed using Orthogonal Projections to Latent Structures (OPLS) regression (Trygg and Wold,


https://doi.org/10.1101/2021.07.06.450716
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.450716; this version posted July 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

2002), as previously described for a different tree population (Escamez et al., 2017), with 1 + 3
components.

For predicting saccharification traits, or TWG, from only a subset of traits (Dataset S2), we
followed a previously established methodology (Escamez et al., 2017). In short, using the R statistical
software, we attempted predicting each of the selected vyield traits (Dataset S2) with at least 30
different models of three different types, relying on subsets of wood chemical, anatomical and
structural traits. The three types of models consisted in multiple linear regressions, as well as the
machine learning algorithms random forests (Breiman, 2001) and generalized additive models (GAMs,
Hastie and Tibshirani, 1986).

The >90 different models for each trait of interest were assessed for their predictivity by leave-
one-out cross-validation, whereby values for a tree genotype were removed, the model was generated
from all the remaining tree genotypes, and finally the value from the left-out genotype was predicted.
Repeating this operation until every single tree genotype had been left out once allowed measuring
the prediction error across the entire dataset. The ratio of prediction error to the total variation in the
dataset was then expressed as the Q2 value, which can range between 1 (perfect predictions) and
minus infinity, with Q2 > 0.5 being conventionally considered as the threshold for significantly
acceptable prediction accuracy. The most predictive models of each type are presented in Dataset S2,
for each trait of interest.

GWAS

Previous whole genome sequencing of 104 SwAsp clones, followed by high quality re-sequencing of
these trees, resulted in 94 unrelated individual genotype sequences for GWAS (Mahler et al., 2017,
Grimberg et al.,, 2018, Wang et al., 2018a, Mahler et al., 2020). The single nucleotide polymorphism
(SNP) calling was performed as previously described (Wang et al., 2018a). This procedure yielded a
total of 4,425,109 bi-allelic SNPs with minor allele frequency > 5% (Wang et al., 2018a), annotated by
intersection with browser extensible data (BED) file from the genome annotation of the Populus
tremula reference genome (Lin et al., 2018) (available at http://popgenie.org; Sjddin et al., (2009)). For
the purpose of annotations, SNPs were considered as intergenic if they laid further than 2 kbp away
from a gene, while SNPs within 2 kbp of a gene were considered associated with that gene.

Correlations between SNPs and phenotypes were estimated by genome-wide association
study (GWAS). GWAS was performed by considering each of the median of each measured trait for
each genotype as the dependent variable in a linear mixed model regression, using GEMMA (Zhou and
Stephens, 2012, Zhou and Stephens, 2014). Relatedness among individuals, although weak, was
accounted for as a covariate in the linear mixed model, as previously described (Wang et al., 2018a).
In addition, latitude was also included as a covariate as previously described (Wang et al., 2018a). False
discovery rate (FDR) of each association was calculated as the “g-value” using R (Storey et al., 2021)
following the principle of the Benjamini-Hochberg procedure (Storey and Tibshirani, 2003). The effect
size of each SNP (named “beta” in Dataset S3), for each trait, was also estimated as previously
described (Wang et al., 2018a). Dataset S3 presents the 1000 SNPs with the lowest g-value, regardless
of any arbitrary significance threshold, for each trait.

Gene expression analyses

A 2 cm piece from the base of the stem was collected from SwAsp clones grown in vitro in triplicates
for one month. These stem pieces were immediately flash frozen and later ground in liquid nitrogen
with mortar and pestle. From the frozen, ground stem samples, mMRNA were extracted using the Qiagen
RNeasy Plant Kit (Qiagen GmbH, Germany). Genomic DNA was removed using the kit’s optional “on
column” DNase treatment, followed by a second DNase treatment as a first step in the subsequent
cDNA synthesis procedure of the QuantiTect Reverse Transcription Kit (Qiagen).
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gPCR reactions were run using LightCycler 480 SYBR Green 1 Master (Roche) according to the
manufacturer’s instructions. Samples were loaded in a 96-well gPCR plate (Roche) as technical
duplicates. The qPCR reactions were run and scored using a LightCycler 480 thermal cycler (Roche)
over 45 cycles (initial denaturation at 98°C for 3 min, cycling: denaturation at 95°C for 5 s, annealing at
55°C for 10 s, elongation at 72°C for 30 s; melting curve from 45°C to 95°C with acquisitions every 1°C).
To detect the transcript of the Populus tremula gene Potra000716g05617 (Potra-pTAC13), we used the
following (5’-3’) primers: forward-CTGGCCCTCTTGTGAGTAGC, reverse-CACAGTTGCCTTCCCAGTTT. To
normalize the detected transcript amounts to reference genes (Livak and Schmittgen, 2001), we chose
the ubiquitin biosynthetic gene Potral68132g27340 and the ribosomal protein 50s encoding gene
Potra001573g13026, with the following primers: 50S_forward-CAAAGCCTTCAAAGCCCAAG,
50S_reverse-GCACTTACGAAGACGCAATG, ubiquitin-forward-GTTGATTTTTGCTGGGAAGC, ubiquitin-
reverse-GATCTTGGCCTTCACGTTGT. The transcript levels of both reference genes were combined by
geometric mean to increase robustness of this internal control (Vandesompele et al., 2002).

Results

Natural variation in 65 aspen stem growth, wood, and biorefinery traits. The 113 SwAsp genotypes
were grown in replicates (originally, at least four clones per genotype) outdoors, in randomized blocks
(Luguez et al., 2008). After ten years, we measured their stem height and diameter, and we analysed
their wood’s chemical composition (20 traits), wood structural and anatomical properties (17 traits),
as well as the recovery of monosaccharides from wood saccharification without or after harsh acidic
pretreatment (25 traits), amounting to a set of 64 traits (Fig. 1a; Dataset S1). Finally, we estimated
total-wood glucose yield (TWG; Escamez et al.,, 2017; Fig.1a; Dataset S1). While glucose release
provides information about biomass recalcitrance to saccharification, TWG provides a proxy for overall
tree performance (Escamez et al., 2017).

All 65 traits showed variation between genotypes (Fig. 1a; Dataset S1), allowing to
investigate both the correlations between different wood properties as well as the genetic causes for
their variation. The variation in traits could not be explained by the geographical origin of the aspen
genotypes (Fig. 1b), thus ruling out potential bias due to original sampling (when the collection was
assembled, Luquez et al., 2008).

Prediction of yield from wood traits. To better characterize the basis for wood recalcitrance to
bioprocessing, and the wood properties underlying yield, we performed multivariate analyses and
statistical modelling of glucose release from saccharification, as well as TWG.

First, we employed orthogonal projections to latent structures (OPLS; Trygg and Wold,
2002) that consider all traits simultaneously, to get an overview of the relationships between wood
properties and glucose release or TWG (Fig. S2a,b). A high proportion of the variation in glucose release
(Fig. S2a) or TWG (Fig. S2b) could be explained (R2 = 0,56 and 0,52, respectively). However, leave-one-
out cross validation revealed that neither glucose release nor TWG could be accurately predicted (Q2
= 0,17 and 0,29, respectively) when using the entire set of wood chemical composition, anatomy and
structure traits. This result suggested that, rather than the entire set of wood traits, only a subset of
wood traits was responsible for most of the variation in glucose release and TWG.
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Figure 1. The SwAsp natural
variants display a range of wood
properties and saccharification
yield independently of population
structure.

(a) Measurements of 65 traits related
to tree growth, wood chemical
composition, wood anatomy and
structure, and sugar yield from
saccharification of woody biomass
from 113 natural aspen variants
collected across Sweden and grown
for 10 years in a common garden.
Each dot represents the median
scaled and centered measurement of
a trait for one genotype (z-
transformation  across the tree
population for each trait), revealing
wide variation for each trait. Colored
labels around the plot indicate
categories of traits  (chemical
composition, structure and anatomy,
saccharification and growth), showing
that all categories displayed variation
to similar extents.

(b) Principal Component Analysis
(PCA) showing that the SwAsp
genotypes differ from each other (left)
based on their wood properties and
saccharification (right). Colors on the
PCA scatter plot (left) indicate location
of origin (all trees come from one of 12
locations in Sweden). Dots on the
coefficients scatter plot (right) indicate
traits, while their colors indicate which
trait category they belong to (as in (a)).
(c) Scatter plot showing the correlation
between the observed glucose release
after pretreatment for the SwAsp trees
(x-axis), and the corresponding
prediction (y-axis) based on wood
properties using a linear statistical
model. R2 indicates the variance
explained, while Q2 reflects the
predictive accuracy of the model from
leave-one-out cross validation.

(d) Scatter plot showing the correlation
between the observed TWG for the
SwAsp trees (x-axis), and the
predicted TWG (y-axis) based on
wood properties wusing a newly
developed statistical model (SwAsp
model; this study). R2 indicates the
variance explained, while Q2 reflects
the predictive accuracy of the model
from leave-one-out cross validation.

Glucose release can be predicted by as few as three wood chemical composition traits. Next, to
identify the smallest possible set of wood traits necessary to predict TWG and glucose release with
significant accuracy (Q2 = 0.5), we compared linear models and the more complex machine learning
algorithms Generalized Additive Models (GAMs; Hastie and Tibshirani, 1986, Wood, 2006) and Random
Forests (Breiman, 2001). For either glucose release or TWG, we generated at least 30 models of each
type, and selected the model from each type showing the best prediction accuracy (Dataset S2).
Linear modelling appeared sufficient to predict glucose release with significant accuracy (Fig.
1c; Dataset S2). Interestingly, predictions of glucose release (Q2 = 0.89) relied only on three traits
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(Table 1; Dataset S2): G-lignin content, rhamnose content, and 4-O-methyl glucuronic acid content, all
of which are related to the chemical composition of the wood, rather than to wood anatomy and
structure.

Table 1: Parameters of the linear model predicting glucose released after pretreatment

Trait predicting glucose released in enzymatic Coefficient/weight of the trait in the linear
hydrolysate after pretreatment model predicting glucose release
G-lignin content (G) -0.007
Rhamnose content (Rha) -0.035
4-0O-methyl glucuronic acid (4-O-MeGIcA) -0.011
Intercept 0.533

A set of 22 chemical and structural traits predicts TWG. TWG is a composite trait combining glucose
release, stem height, stem diameter and wood density, meaning that predicting individually these four
components of TWG is required to better predict and interpret TWG (Escamez et al., 2017). We
generated models (Dataset S2) that could accurately predict glucose release (Q2 = 0.89, see linear
model above), wood density (Q2 = 0.96, GAM), stem height (Q2 = 0.69, GAM), and stem diameter (Q2
= 0.65, Random Forest), leading to a composite model predicting TWG from 22 traits (Q2 = 0.5; Table
2; Dataset S2).

In a previous study on a population of genetically engineered hybrid aspens (Biolmprove
collection), we had also relied on 22 wood traits to predict TWG (Escamez et al., 2017). This previous
model (Biolmprove model) could predict TWG of the SwAsp collection, but with lower accuracy (Q2 =
0.32; Fig. S3) than the model developed here with the SwAsp wood properties (Q2 = 0.5; Fig. 1d). The
models from both studies shared 11 traits, eight of which had a similar direction of association (positive
or negative) to TWG (Table S1). These traits associated with TWG between two very different
experimental settings (different species, very different growth conditions and age of the trees) could
represent general diagnostic traits for superior biorefinery feedstocks in Populus species.

Predictor traits for bioprocessing yield can be genetically uncoupled. We estimated the broad sense
heritability (H2) of all the measured wood properties, growth traits and saccharification (Table S2).
Some traits, especially linked to xylose content and xylose released by saccharification, showed nearly
no heritability, while traits related to tree growth and wood anatomy showed moderate to high
heritability (H2 > 0.5). Wood chemical composition traits showed variable heritability, which was
generally lower for monosaccharides, such as glucose release predictors rhamnose and 4-O-
methyleglucuonic acid content, and higher for lignin composition traits, especially S-type and G-type
lignin content (Table S2).

The traits predictive of TWG also displayed a wide range of heritability (Table S2). Most of the
predictive traits for TWG were not genetically correlated (Fig. S4), except for obviously related traits
(e.g. vessel major diameter and vessel minor diameter). Hence, these traits could be modulated at the
genetic level independently of one another, allowing the tailoring of genetic improvement of Populus
biorefinery feedstocks.
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Table 2: Traits required by the composite model predicting total-wood glucose yield (TWGT)

Traits predicting TWG Impact of the trait on TWG in the
(traits contributing to either of the models for stem height, stem composite model
diameter, wood density or glucose release after pretreatment)
Proportion of carbohydrates (C) Positive
Proportion of G-lignin (G) Negative
Proportion of S-lignin (S) Positive
Proportion of unidentified phenolics from lignin (P) Negative §
Proportion of total lignin (L) Positive 9|
Arabinose content (Ara) Negative
Rhamnose content (Rha) Negative
Fucose content (Fuc) Negative §
Mannose content (Man) Negative §
4-0-methylglucuronic acid content (4-O-meGlIcA) Negative
Extractable/non-crystalline glucose content (Glc) Positive §
Glucuronic acid content (GIcA) Negative §
Coarseness Positive
Cell wall thickness Positive
Major diameter of vessels (VessMajorDiam) Positive
Minor diameter of vessels (VessMinorDiam) Positive §
Vessel cross-sectional perimeter (VessPerim) Positive
Fraction of the wood area made of fibers (FibFrac) Positive
Fraction of the wood area made of Vessels (VessFrac) Negative §
Number of fibers per wood area unit (FibPop) Positive
Number of vessels per wood area unit (VessPop) Negative §
Ratio of fibers to vessels (FibPerVess) Positive §

TTWG (total-wood glucose yield) estimates the glucose released from saccharification after pretreatment for the
entire wood biomass of a tree (i.e. taking into account tree growth).

¥This trait’s relationship to TWG is non-monotonic (i.e. the direction, positive or negative, is not constant). As a
result, the direction (positive or negative) that is observed for a range of values that encompasses a majority of
the SwAsp genotypes is indicated.

§Traits that were solely used as predictors for stem diameter could not be given a direction of association from
the type of model used (random forest machine learning algorithm). Instead, the direction displayed here for
these traits is the relation from pairwise correlation between the predictor trait and the predicted stem diameter.
AIThis trait’s pairwise correlation to TWG and to the individual traits it predicts is actually negative, but the
machine learning algorithms found that it best contributed to predictions by a positive association (in a context
where it is used along with other variables rather than individually).

Genetic markers are significantly associated with wood traits that predict bioprocessing yield. To
further decipher the genetics underlying wood properties and amenability to bioprocessing, we
performed a genome wide association study (GWAS; Dataset S3). We identified only a limited number
of significant associations between SNPs and traits (Fig. 2a), consistent with generally low effect sizes
of the SNPs (Dataset S3), as well as due to the possible effect of stringent statistical correction for
multiple comparisons. Nevertheless, we could identify SNPs significantly associated with wood traits
(Fig. 2a), especially traits linked to wood chemical composition.

Although fewer saccharification traits than wood properties were significantly associated with
SNPs in the GWAS analyses, we could identify one and three SNPs significantly associated (g-value <
0.05) with glucose released after pretreatment and total hexoses released after pretreatment,
respectively (Fig. 2a; Dataset S3). However, the effect size of these SNPs on the saccharification traits
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(referred to as “beta” in Dataset S3) was in all cases low, meaning that selection of feedstocks based
on these SNPs would only enable limited gain in saccharification yield.

We identified 334 SNPs significantly associated with four wood chemical composition traits
that predict TWG (Table 2; Fig. 2a; Dataset S3). Among them, G-lignin and rhamnose content were also
two of the three traits predicting glucose release after pretreatment (Table 1; Dataset S2). While most
of these SNPs also had low effect sizes on the traits they associated with (Dataset S3), their abundance
provides more promising information for the selection of biorefinery feedstocks based in genetic
information. Such SNPs may also reveal new candidate genes involved in the regulation of wood
chemical composition.

The SNPs significantly associated with saccharification predictor G-lignin fall in and around two
genes. The SNPs significantly associated with G-lignin were particularly interesting because 14 of the
16 significant SNPs were located in the body and the regulatory regions of a single gene,
Potra000716g05617 (Fig. 2b,c, Fig. S5). The two other SNPs significantly associated with G-lignin were
located upstream of the neighbouring gene, Potra000716g05618 (Fig. 2d, Fig. S5). These two genes
therefore represent potential targets for the modulation of G- lignin as well as saccharification yield in
Populus trees.

Both genes encode proteins that have orthologs in other angiosperm plants, including the
potential bioenergy feedstocks Eucalyptus grandis, Salix Purpurea and Medicago truncatula (Fig.
S6A,B). Potra000716g05617 also has orthologs in the early tracheophyte Selaginella moellendorffii, in
the moss Physcomitrella patens and in the early vascular plant Amborella trichopoda, whereas
Potra000716g05618 does not (Fig. S6a,b). This suggests that only Potra000716g05617 is conserved
among land plants, while Potra000716g05618 would have appeared later, during vascular plant
evolution.

The closest homolog of Potra000716g05617 in Arabidopsis thaliana is AT3G09210 (Fig. S6a),
isolated as part of a protein complex regulating transcription in plastids (plastid transcriptionally active
chormose protein [pTAC]13; Pfalz et al., 2006). Potra000716g05618 is annotated as belonging to the
family of cytochromes P450 (CYPs) monooxygenases that includes several monolignol biosynthetic
genes (Gou et al., 2018), closest to the uncharacterized Arabidopsis CYP76G1/AT3G52970 (Hofer et al.,
2014, Fig. S6b). Therefore, we hereafter refer to the Potra000716g05618 gene as Potra-CYP76G1, and
to the Potra000716g05617 gene as Potra-pTAC13.

Of the 14 significant SNPs in Potra-pTAC13, 13 appeared in perfect linkage disequilibrium (LD),
meaning that they all showed the same allele (marked by asterisks in Fig. 2c): either all being
homozygous for the major allele, or all being heterozygous, within any one clone. Notably, the minor
allele for these SNPs was not found as homozygous in the SwAsp collection. The 14 SNP, situated over
1Kbp upstream of the gene, displayed all three possible allelic variants (homozygous major allele,
homozygous minor allele, or heterozygous), while still showing a rather high association with the 13
other SNPs (LD = 0.87). The two remaining significant SNPs, located upstream of Potra-CYP76G1 (Fig.
2d), showed perfect linkage disequilibrium with the aforementioned 14" SNP (upstream of Potra-
pTAC13, Fig. 2c), and therefore also a high association (LD = 0.87) with the other 13 significant SNPs.
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Figure 2. Genome Wide Association Study (GWAS) reveals Single Nucleotide Polymorphisms (SNPs) significantly
linked to wood properties.

(a) Number of significant associations (g-value < 0.05) and nearly significant as well as significant associations (g-value < 0.10)
between SNPs and the indicated wood traits. SNPs laying in and around (within 2 kb) gene bodies are distinguished from clearly
intergenic SNPs (at least 2 kb from any gene). Abbreviations for trait names are clarified in Dataset S1.

(b) Manhattan plot showing the genomic location of the SNPs associated with G-lignin content (X-axis) as well as the degree of
significance of the association with G-lignin content (Y-axis). Nearly all the SNPs significantly associated with G-lignin content
laid in the same region (arrow), in and around two genes, described in (c) and (d).

(c) Schematic representation of the genomic location of 14 out of the 16 SNPs significantly associated with G-lignin content (red
arrows), all situated in and around the uncharacterized Potra000716g05617 gene. Asterisks indicate SNPs in perfect linkage
disequilibrium with each-other (i.e. SNPs that always show the same combination of major vs minor allele).

(d) Schematic representation of the genomic location of the other two (out of 16) SNPs significantly associated with G-lignin
content (red arrows), both situated upstream of the uncharacterized Potra000716g05618 gene.
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Allelic variation in all significant SNPs correlates with G-lignin, glucose release and TWG. As expected
from the GWAS results linking 16 SNPs and G-lignin, the wood G-lignin content was significantly
different for trees displaying different alleles (Fig. 3a): For the 13 Potra-pTAC13 SNPs in perfect LD,
trees harbouring the homozygous major allele contained ~12% less G-lignin than heterozygous trees.
Similarly, for the 14t Potra-pTAC13 SNP and the two Potra-CYP76G1 SNPs, G-lignin content correlated
negatively with the presence of the major allele.

Consistent with the fact that G-lignin is a negative predictor for glucose release after enzymatic
hydrolysis (Table 1), allelic variation in the 16 significant SNPs correlated with glucose release in the
opposite way as for G-lignin (Fig. 3b). For instance, homozygous trees for the major allele of the 13
SNPs in perfect LD, which correlated with lower G-lignin, showed higher glucose release (Fig. 3b). For
the 14™ Potra-pTAC13 SNP as well as the two SNPs upstream of Potra-CYP76G1, the glucose release
tended to increase with the presence of the major allele variant, although the differences were not
significant (Fig. 3b). The relationship between the G-lignin-associated SNPs and glucose release
seemed specific, as the allelic variation did not correlate with the release of xylose (Fig. 3c), the second
most abundant sugar released from wood by saccharification.

In addition to correlating with G-lignin and glucose release, allelic variation for the 13 Potra-
PTAC13 SNPs in perfect LD correlated significantly with total-wood glucose yield (TWG) such that
presence of the minor allele was associated with a significant increase in TWG (Fig. 3d). The association
between TWG and the 14" Potra-pTAC13 SNP or the two SNPs upstream of Potra-CYP76G1 was less
clear, as heterozygous trees displayed higher TWG than homozygous trees for either the major or
minor allele (Fig. 3d). These observations therefore strongly suggest that only the 13 SNPs in perfect
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LD represent genetic markers for higher yield, in line with the fact that they predict G-lignin, which is
itself a predictor trait for yield.

Variation in Potra-pTAC13 expression correlates with both allelic variation and G-lignin content. To
understand how Potra-pTAC13 may relate to wood G-lignin content and bioprocessing yield, we
investigated the possibility that its variants might result in differential levels of expression. An
alternative hypothesis would be a change in protein sequence, but all the SNPs in the Potra-pTAC13
coding sequence either resulted in silent mutations, except for amino acid 316 (of 360) which
undergoes a conservative substitution (substitution for an amino-acid with similar biochemical
properties, here glycine for the minor allele and serine for the major allele). Hence, a change in gene
expression seems more promising a hypothesis than a change in protein sequence.

To test this hypothesis, we selected a subset of trees from the SwAsp collection that covers
the range of allelic variation as well as a range of G-lignin content. The corresponding trees were
clonally propagated in vitro, and the basal part of three replicates per genotype were harvested for
measuring Potra-pATC13 transcript levels by qPCR, while also analysing G-lignin content from the same
samples by pyrolysis-GC/MS. The expression of Potra-pTAC13 apparently correlated with the presence
of the major allele of the 13 SNPs in perfect linkage disequilibrium (Fig. 4a), although not significantly
(p-value = 0.13). For the 14" SNP, further upstream in the promoter region of Potra-pTAC13,
homozygous genotypes for the major allele showed significantly higher gene expression compared
with the genotypes bearing one or two copies of the minor allele (Fig. 4a). The G-lignin content of these
in-vitro grown trees showed a trend towards a negative correlation (r = -0.28; p-value = 0.15) with the
Potra-pTAC13 transcript levels (Fig. 4b). It is therefore possible that the accumulation of G-lignin is
negatively influenced by the level of Potra-pTAC13 expression.
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Figure 4. Allelic variants of Potra-pTAC13 display differential expression correlated with G-lignin content.

(a) Relative expression of Potra-pTAC13in a subset of the SwAsp Populus trees in relation to their genotype for the significant
SNPs located in the Potra-pTAC13 gene. The left chart represents the 13 SNPs in perfect linkage disequilibrium, while the right
chart represents the 14" SNP.

Black dots represent individual genotypes. Boxes in the box plots that do not share any letter indicate statistically significant
differences.

(b) G-lignin content in relation to transcript levels of Potra-pTAC13. Red-colored dots represent heterozygous trees for the 13
SNPs in perfect linkage disequilibrium, while black dots represent homozygous trees for the major allele.

Discussion

Wood biomass from fast growing trees represents a promising source of biofuels and other
bioproducts to transition away from petroleum (Percival Zhang, 2013, Ragauskas et al., 2014). The high
cost of deconstructing woody biomass, however, hinders wood refining into biofuels and other
bioproducts (McCann and Carpita, 2015). To overcome this biomass recalcitrance, it is necessary to
understand how wood properties relate to wood recalcitrance (Escamez et al., 2017). Similar to our
previous approach in a population of genetically engineered hybrid aspens (Escamez et al., 2017), we
now report the phenotyping of a population of European aspen natural genotypes for 65 traits related
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to tree growth, wood anatomy and structure, wood cell wall chemical composition, and wood
bioprocessing yield.

Using statistical modelling and machine learning algorithms, we identified a set of wood traits
that could predict glucose yield from saccharification, as well as the estimated total glucose yield from
the entire stem wood of the trees (TWG). Eight of the predictor traits for yield showed similar
association with TWG as found in a previous study in a collection of transgenic hybrid aspens (Escamez
et al.,, 2017; Table S2), despite monitoring different trees grown in very different conditions (two
months in greenhouses in the previous study versus ten years in a plantation in this study). These traits
may therefore represent diagnostic traits for important bioprocessing properties. Interestingly, several
of these diagnostic traits showed rather high heritability (Table S2), while also displaying very limited
genetic correlation with each other (Fig. S2), suggesting that genetic gains could be tailored towards
individual traits based on desired effects.

Identifying the genetics underlying wood properties that foster bioprocessing potential should greatly
help with selecting or creating superior biorefinery feedstocks (Fahrenkrog et al., 2017). While in
theory GWAS is a promising strategy to identify single nucleotide polymorphisms associated with traits
of interest (Tuskan et al.,, 2019), GWAS approaches have often found only few genetic variants
associated with wood properties. Previous attempts to optimize GWAS in tree species have consisted
in data-mining approaches such as reducing the genomic space under investigation to genomic areas
previously associated with wood (Porth et al., 2013), or combining traits into multi-trait phenotypes
that may reveal associations with pleiotropic genes (Chhetri et al., 2019, Chhetri et al., 2020). In this
study, we employ another approach: decomposing complex traits into better defined traits that are
more likely to relate to specific loci within the genome.

We indeed found that finer traits, such as wood cell wall content in a specific monosugar or a
specific sub-type of lignin, were associated with more SNPs than composite traits, such as total lignin
content or sugar release after pretreatment (Fig. 2a). Importantly, while we could only find few
statistically significant associations with important bioprocessing yield, we could find many more
significant associations with cell wall chemical composition traits that predict bioprocessing yield (e.g.
146 SNPs with g-value < 0.05 for rhamnose content, or 16 SNPs for G-lignin). G-lignin content
represents an interesting example because looking specifically at the SNPs significantly associated with
G-lignin showed that most of them also correlated with significant differences in glucose release after
pretreatment and with TWG (Fig. 3b,d), something that the GWAS itself had not revealed. Hence, SNPs
for composite traits can be indirectly identified through breaking down these broadly defined traits
into finer traits that predict them. This approach therefore represents a complement to the direct
search for associations by GWAS.

While we found significant associations with new candidate genes for numerous wood cell wall
compositional traits, we found very few significant associations with known biosynthetic genes for
these cell wall components. This may seem surprising, but such lack of significant association with
known biosynthetic genes has been common in previous GWAS work for wood chemical composition
traits (Guerra et al., 2019).

Statistical significance of an association usually scales with the effect size of the SNP. If a trait
relies on the function of many genes, SNPs associated with that trait tend to have small effect sizes,
and there tends to be fewer significant associations overall. Many genes are known to partake in the
biosynthetic functions for the main wood cell wall chemical components lignin, hemicelluloses, and
cellulose (Goujon et al., 2003, Somerville, 2006, Scheller and Ulvskov, 2010). This reliance on large sets
of genes could in part explain why so few significant SNPs were found within or near known
biosynthetic genes for these important lignocellulose components.
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Alternatively, or in addition, it is possible that some of these biosynthetic pathways currently
undergo selective pressure that would lead to a lower proportion of SNPs in the corresponding genes.
For instance, while the average number of SNPs in and around (2kbp) of genes in the SwAsp population
is 104.5, the average number of SNPs in and around known or suspected lignin biosynthetic genes is
only 82.2, while for hemicelluloses biosynthetic genes it is 104.5, similar to the genome-wide average,
and 150.6 in cellulose biosynthetic genes (Dataset S4). Therefore, the SwAsp population may have
undergone recent selective pressure on the lignin biosynthetic pathway, resulting in fewer SNPs in
known biosynthetic genes.

Even when performing association on a gene space limited to wood-expressed genes, Porth et
al (2013) found mostly associations with SNPs in genes that had not previously been linked to wood
formation. This raises the question of whether the already characterized biosynthetic genes for wood
cell wall components would be so essential that they undergo strong selective pressure in general, and
not just in the SwAsp population, forbidding observation of extensive natural variation. If this were the
case, then GWAS approaches for wood cell wall composition would mostly reveal associations with
genes that, while less essential than core regulators of cell wall biosynthesis, are still significant
contributors to the quantitative changes that can be naturally sustained. These sort of genes, capable
of quantitatively modulating a trait of interest, while not being essential to biological functions of this
trait, might be seen as ideal targets for feedstocks improvements. Indeed, targeting these genes for
selection or genetic engineering would guarantee that the feedstocks would remain adapted to a wide
range of environments, while displaying quantitative improvements in traits facilitating downstream
utilization of the biomass.

Interestingly, all of the 16 SNPs significantly associated with G-lignin content clustered at the same
genomic region (Fig. 2b). All 16 SNPs laid in and around two genes (Fig. 2c,d) that had not been
previously associated with cell walls or lignin. One of these genes, Potra-CYP76G1, encodes for a
cytochrome P450 hydroxylase which is implicated in flavonoid biosynthesis on the basis of sequence
homology, and could therefore be involved in monolignol biosynthesis, or indirectly regulate lignin
biosynthesis, for example by competing with monolignol biosynthesis for substrates such as hydroxyl
groups. The other gene, Potra-pTAC13, is thought to be involved in regulation of transcription in
plastids (Pfalz et al.,, 2006), although other functions cannot be excluded. Even if Potra-pTAC13
functioned solely in plastids, it could still indirectly regulate lignin biosynthesis by modulating the
metabolic flux through the plastidial shikimate pathway (as in Eudes et al., 2015), which ultimately
yields phenylalanine, the amino-acid precursor of monolignols. Future studies will hopefully reveal the
role of these new candidate regulators of lignin chemical composition, especially as allelic variation
associated with at least Potra-pTAC13 also correlates with bioprocessing yield (Fig. 3b,d).

The allelic variants we identified as significantly (g-value < 0.05) associated with G-lignin content, in
and around Potra-pTAC13 as well as upstream of Potra-CYP76G1, all showed significant correlations
with TWG (Fig. 4d), and they could therefore be integrated into a set of genetic markers for superior
biorefinery aspen feedstocks. This is consistent with the fact that G-lignin is a predictor of both TWG
as well as glucose release from saccharification. The other traits that predict glucose release from
saccharification are rhamnose content and 4-O-methyl glucuronic acid content. We identified
significant associations between these traits and up to 668 and 10 SNPs, respectively (considering g-
value < 0.1; Fig. 2a; Dataset S3), or at least 146 SNPs for rhamnose content (considering g-value < 0.05),
which could also be added in a set of genetic markers for the selection of superior feedstocks.
Considering that we had only identified three (g-value < 0.05) to seven (g-value < 0.1) SNPs significantly
associated with glucose release directly (Fig. 2a; Dataset S3), our approach of “indirect” associations
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via predictor traits allowed increasing the number of potential genetic markers for glucose release by
an order of magnitude.
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Supplementary data
Fig. S1: Schematic representation of SwAsp tree harvest and sampling.

Fig. S2: Multivariate analysis of the potential relationships between wood properties and glucose
release or TWG.

Fig. $3: Comparison of the predictions for TWG using the SwAsp model (from this study) and the
formerly developed Biolmprove model (Escamez et al., 2017).

Fig. S4: Heatmap of the genetic correlations between traits.

Fig. $5: Genomic location of the two genes associated with G-lignin content.

Fig. S6: Phylogenetic trees of the Potra-pTAC13 and Potra-CYP76G1 homologs in plants.
Dataset S1: Traits measurements on the SwAsp trees for each genotype.

Dataset S2: Best models of each type (multiple linear regression, GAM, and Random Forest) for 8
biorefinery-yield related trait (saccharification or TWG-related).

Dataset S3: Lists of the top 1000 most significant SNPs for each wood trait (chemistry, anatomy, and
structure) as well as for each saccharification trait.

Dataset S4: SNP frequency for known cellulose, hemicelluloses, and lignin biosynthetic genes.
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Figure S1.
Schematic representation of SwAsp sample harvest.
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Figure S2.

(a) Orthogonal Projection to Latent Structure (OPLS) analysis relating variation in glucose release after pretreatment between genotypes (up) to wood
chemical composition and wood anatomy traits (down). The predictive component separates the lines along the X-axis of the scatter plot, while
separation along the Y-axis is not predictive. The dots on the scatter plot (up) correspond to SwAsp genotypes, while their color indicates the median
glucose release after pretreatment for each genotype. The bars in the bar chart (bottom) indicate the coefficient (“weight”) of each trait in the model.
(b) Orthogonal Projection to Latent Structure (OPLS) analysis relating variation in total-wood glucose yield (TWG) between genotypes (up) to wood
chemical composition and wood anatomy traits (down). The predictive component separates the lines along the X-axis of the scatter plot, while
separation along the Y-axis is not predictive. The dots on the scatter plot (up) correspond to SwAsp genotypes, while their color indicates the median
TWG for each genotype. The bars in the bar chart (bottom) indicate the coefficient (“weight”) of each trait in the model.
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Figure S3.

(a) Scatter plot showing the relatively good correlation between the observed TWG for the SwAsp trees (x-axis), and the predicted TWG (y-
axis) based on wood properties using a previously developed statistical model (Biolmprove model; Escamez et al., 2017). R2 indicates the
variance explained, while Q2 reflects the predictive accuracy of the model from leave-one-out cross validation.

(b) Scatter plot showing the very good correlation between the observed TWG for the SwAsp trees (x-axis), and the predicted TWG (y-axis)
based on wood properties using a newly developed statistical model (SwAsp model; this study). R2 indicates the variance explained, while
Q2 reflects the predictive accuracy of the model from leave-one-out cross validation.
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Fig. S4
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Figure S4: Genetic correlations between traits

Pairwise genetic correlations between traits with hierarchical clustering. Traits clustering together show similar genetic
correlations with other traits, allowing to identify groups (clusters) of traits displaying the same pattern of how they
genetically correlate to other traits. For clustering, the ”Ward method” was used as previously described:
Murtagh, Fionn and Legendre, Pierre (2014). Ward's hierarchical agglomerative clustering method: which algorithms
implement Ward's criterion? Journal of Classification, 31, 274--295. 10.1007/s00357-014-9161-z.

Traits marked by arrows are predictors of total-wood glucose yield.
Clarifications for traits’ names are supplied in Table S2.
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Fig. S5
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Figure S5.

Genome browser view of the genomic region where all the significant SNPs associated with G-lignin fall. 14 out of
the 16 significant SNPs fall in and around the Potra000716g05617/Potra-pTAC13 gene. The two other SNPs lay
closest to the neighboring Potra000716905618/Potra-CYP76G1 gene, in the upstream sequence that may
correspond to the distal part of the gene’s promoter.
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Fig. S6
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Figure S6.

Phylogenetic trees showing that the aspen G-lignin-associated genes (A) Potra000716g05617 and (B)
Potra0007169g05618 have an ortholog in other potential bioenergy feedstocks P. trichocarpa, S. purpurea, E.
grandis and M. truncatula. Potra000716g05617 (but not Potra000716g05618) also has orthologs in more distantly
related land plants such as Embryophyte P. patens, Tracheophyte S. moellendorffii, early Angiosperm A.
trichopoda, and model dycotyledonous Arabidopsis (A. thaliana).
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