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CellProfiler 4: Improvements in Speed, Utility and Usability

Abstract

Background

Imaging data contains a substantial amount of information which can be difficult to evaluate by
eye. With the expansion of high throughput microscopy methodologies producing increasingly large
datasets, automated and objective analysis of the resulting images is essential to effectively extract
biological information from this data. CellProfiler is a free, open source image analysis program which
enables researchers to generate modular pipelines with which to process microscopy images into

interpretable measurements.

Results

Herein we describe CellProfiler 4, a new version of this software with expanded functionality.
Based on user feedback, we have made several user interface refinements to improve the usability of
the software. We introduced new modules to expand the capabilities of the software. We also evaluated
performance and made targeted optimizations to reduce the time and cost associated with running

common large-scale analysis pipelines.

Conclusions

CellProfiler 4 provides significantly improved performance in complex workflows compared to
previous versions. This release will ensure that researchers will have continued access to CellProfiler’s

powerful computational tools in the coming years.
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Background

Microscopy can be used to capture images which contain a wealth of information that can
inform biomedical research. Image analysis software can allow scientists to obtain quantitative
measurements from images that are otherwise difficult to capture via subjective observation. The
increasing use of automated microscopy now allows researchers to capture images of samples treated
with many thousands of individual compounds or genetic perturbations. Scientists increasingly image
cells in 3D or across time series; this expanding bulk of raw data necessitates automated processing and
analysis. Such analysis is best achieved through using software to perform automated detection of cells

or organisms and extract quantitative metrics which objectively describe the specimens.

Many microscopes are now sold with accompanying proprietary analysis packages, such as
MetaMorph (Molecular Devices), Elements (Nikon), Zen (Zeiss) and Harmony (Perkin ElImer). These
ecosystems are powerful but can lack the flexibility to work with data from other manufacturers’
equipment. Cost of these proprietary solutions can also limit accessibility, and their closed-source
nature can obscure exactly how scientists’ data is being analyzed. Free, open-source software
packa(1)ges such as Imagel, CellProfiler, QuPath, llastik and many others have therefore become
popular analysis tools used by researchers. Image) is the most widely-used package and excels in
performing analysis of single images, assisted by a vast array of community-developed plugins (1).
Numerous smaller packages are tooled towards specific types of data: for example, QuPath is a popular
program geared specifically towards pathology applications (2), while llastik delivers an interactive

machine learning framework to assist users in segmenting images (3).

In 2005 we introduced CellProfiler, an open-source image analysis program which allows users
without specific training to automate their image analysis by using modular processing pipelines (4).

CellProfiler has been widely adopted by the community, and is currently referenced more than 2000
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times per year. Built-in modules provide a diverse array of algorithms for analyzing images, which can be
further extended through the use of community-developed plugins. In an independent analysis of 15
free image analysis tools CellProfiler scored highly in both usability and functionality (5). Our previous
release, CellProfiler 3, introduced support for analysis of 3D images to further expand the tool’s
applications (6). However, some popular features from CellProfiler 2 could not be brought forward into

that release and certain modules struggled to operate efficiently in 3D pipelines.

Implementation

CellProfiler was originally written in MATLAB, but in 2010 was rewritten in Python 2, which
reached its official end-of-life in 2020. In order to ensure ongoing compatibility with future operating
systems we ported the software to the Python 3 language to create CellProfiler 4. This provided the
opportunity for a broader restructuring of the software’s code to improve performance, reliability and

utility. CellProfiler 4 is available for download at cellprofiler.org.

As part of the migration to Python 3, we split the CellProfiler source code into two packages:
cellprofiler and cellprofiler-core. The new cellprofiler-core package contains all the critical functionality
needed to execute CellProfiler pipelines, whereas the cellprofiler repository now primarily contains the
user interface code and built-in modules. The core package has been developed to introduce a stable
APl which will allow users to access CellProfiler’s functionality as a Python package within popular

environments such as Jupyter (7) and for future integration with other packages and software suites.

User interface refinements

Guided by feedback from biologists, we have made several improvements to the CellProfiler
user interface with the goal of making the software more accessible and easier to use. The basic 3D
viewer introduced in CellProfiler 3.0 has now been replaced with a more fully-featured viewer which

allows users to inspect any plane in a volume (Figure 1A). We have also expanded the figure contrast
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dialogs to give users more granular control over how images are displayed in both 2D and 3D mode

(Figure 1B). These changes will help users to better visualize and understand their data.

Other changes make it easier to develop and configure pipelines. We added an interface to
visualize which modules produce inputs needed by, or use outputs from, a module of interest, which will
aid in modifying complex pipelines (Figure 1C). We also revised the interface for selecting multiple
images for analysis within a module, replacing dropdown menus with a checklist in which multiple
images can be selected quickly and efficiently (Figure 1D). Furthermore, a new search filter in the “Add
module” popup allows users to more easily find desired modules by module name rather than by

category (Figure 1E).

We also restored some features which were previously lost in the migration from CellProfiler 2
to CellProfiler 3. Most notably, we rebuilt the Workspace Viewer, where users construct a customized
view of their data and can stay focused on a specific region of interest as the pipeline is modified (Figure
1F), making it much simpler to monitor and refine segmentation of problematic regions of an image. In
addition, new icons in the Test Mode pipeline interface provide a stronger visual indication of which
module is currently about to be executed, and provide the ability to return to and execute earlier
modules in the pipeline. This replicates and replaces the functionality of the slider widget from

CellProfiler 2, which could not be carried forward into CellProfiler 3 but was popular with users.

New and restored features

In CellProfiler 4 we introduced several new analysis features and settings. A common workflow
issue we identified was that analysts often segment highly variable objects in multiple stages (such as
segmenting and masking out bright objects to aid segmentation of similar-but-dimmer objects), but
previous versions could not simply treat resulting segmentations as a single object set when performing

and exporting measurements. To resolve this we added the CombineObjects module to allow users to
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merge sets of objects which have been defined separately. A key issue when designing this module was
how to handle objects that would overlap if the sets were merged, therefore we built several strategies
detailed in Figure 2. The resulting merged set can then be carried forward throughout the pipeline

without the need to merge measurement tables outside of CellProfiler.

Many users were disappointed with the loss of the Runimage) module (8) in CellProfiler 2.2; we
have now replaced it with the new RunlmageJMacro module. The new module allows a user to export
images from CellProfiler into a temporary directory, execute a custom Imagel macro on that directory
and then automatically import resulting processed images back into CellProfiler. In practice this will
allow users to access Imagel functions and plugins within a CellProfiler pipeline, greatly expanding its
interoperability. Unlike its predecessor, the RunimageJMacro module relies on the user’s copy of Image)
rather than a built-in copy. This allows users to take advantage of any new Imagel upgrades and
simultaneously poses less danger to CellProfiler’s stability because releases between the two softwares

need not be kept in sync.

We also upgraded several existing modules. We rewrote the Threshold module to allow all pre-
existing threshold strategies to be used in ‘adaptive” mode, giving users more options in images with
highly-variable background. We have also added the Sauvola local thresholding method as an alternative
adaptive strategy (9). Previous versions of CellProfiler 2 shipped a version of the Otsu thresholding
method that log-transformed the data before applying the threshold; this assisted in the thresholding of
dim images, but led users to question why our Otsu values did not match those from other libraries such
as scikit-image (10). This inconsistent behavior could be confusing to users, so we began the process of
updating that implementation in CellProfiler 3 and completed it in CellProfiler 4. We added a dedicated
setting to log transform image data during application of any thresholding method. These new options

will assist users in segmenting challenging images.
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New Measurements

We overhauled some measurement modules in CellProfiler 4. We redesigned
MeasureObjectSizeShape to record additional measurements now available in scikit-image, including
bounding box locations, image moments and inertia tensors, producing up to 60 new shape
measurements per object. We anticipate that these new features may be of particular value for training
machine learning models, which play an increasingly important role in performing object classification
on large data sets. In addition to new features, several of the previously 2D-exclusive measurements,
such as Euler Number and Solidity, are now also available when working with 3D images. Together these
expanded measurements provide researchers with even more metrics with which to investigate cellular

phenotypes.

Results

Performance improvements

A key focus in producing CellProfiler 4 has been improving performance of the software and
addressing common issues encountered by users. We revised our build packaging process to more
reliably bundle CellProfiler’s Java dependencies so that additional software and system configuration is
no longer required to use the program. In doing so we also optimized the program’s startup sequence,
which provided a substantial improvement in the time taken to initialize the software (Figure 3A).
Another critical area of focus for improvement has been in file loading (input/output, or I/0 operations).
Combined improvements in Python’s underlying directory scanning functions and optimizations to
CellProfiler’s image loading procedures have dramatically reduced the time needed to add large folders

of images to the file list. This is particularly noticeable when using networked storage.

In our performance testing of an example analysis pipeline, overall performance was similar to

CellProfiler 3 (Figure 3B). However, executing this pipeline in Test Mode was inhibited by unnecessary
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user interface updates between running individual modules. Optimizing the Ul updates sent during test

mode reduced the time taken to run an image set in this mode (Figure 3C).

Running more complex analysis workflows such as 3D segmentation and the commonly used
Cell Painting assay (11) was time-consuming in CellProfiler 3. We therefore aimed to identify and refine

modules which displayed long execution times in these scenarios.

Optimizations across all modules produced a 50% performance improvement when running 3D
pipelines such as the 3D monolayer tutorial dataset (Figure 3D) (12). Within 3D workflows we had
identified the MedianFilter module as being particularly slow to process. By switching to the new
scipy.ndimage filter implementation we were able to substantially reduce the time taken to process

each image (Figure 4A).

Another key target was the MeasureTexture module, which exhibited long run times when
performing per-object measurements. Analysis revealed that this was caused by per-object functions
processing full-size masked arrays for each object to be measured. To improve performance we adjusted
these functions to produce and process arrays cropped down to the particular region of interest for each
object. In our testing this reduced the time taken to analyze each image from minutes down to seconds,

without any change in the resulting measurements (Figure 4B).

Major gains were also made in measurement of the Costes Colocalization Coefficient in the
MeasureColocalization module. This statistic requires the calculation of Costes’ automatic threshold,
which is generated by thresholding the two images to be compared and then serially reducing the
thresholding value until the Pearson R correlation between the two thresholded images drops below a
value of 0. Our original implementation would reduce the candidate value in images scaled 0-1 by 1/255
at each step, which was inappropriate for 16-bit images containing 65,536 grey levels rather than the

256 present in 8 bit images. Testing 65,536 candidate thresholds in 16-bit images would be excessively
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slow, so we introduced optional alternative implementations of the Costes automated thresholding
method to resolve this inefficiency. Our first optimization maintained the canonical strategy of
evaluating every possible threshold, but only measured the Pearson R correlation of the thresholded
images if the new value produced a different total number of thresholded pixels than the previous
value. We termed this “accurate” mode, but in images with large numbers of unique pixel values
performance was unacceptably slow. We therefore introduced “fast” mode to the module, in which the
candidate threshold is decreased in larger steps if the previous Pearson R value was substantially higher
than 0. This improved performance when working with 8-bit images (Figure 5A), but was still inefficient
with 16-bit images (Figure 5B). We subsequently devised an alternative implementation, dubbed
“faster” mode, in which a weighted bisection search algorithm is used to consecutively narrow a window
of possible target thresholds. By reducing the candidate window by 1/6 each cycle, we were able to
calculate identical thresholds to the “accurate” method in seconds rather than hours. This opens up the
ability to perform efficient Costes Colocalization calculations on 16-bit images (Figure 5B). In theory
these accelerated methods could ‘overshoot’ the target threshold by a small margin in rare instances,
but in our testing they consistently produced identical results to the “accurate” implementation.
Nonetheless we have made all three strategies (“accurate”, “fast” and “faster”) available within the
module settings. Other colocalization methods did not suffer from the same degree of performance
issues, but additionally updating them to newer implementations reduced the time taken for the

module to process without Costes features enabled (Figure 4C).

Together, these improvements will substantially reduce the computational time and power
necessary to process images, particularly when working with large, complex data sets. This will have the
added benefits of reducing resource costs for researchers, making large-scale analysis with CellProfiler
more affordable and accessible. The reduction in analysis time will also reduce the environmental

impact of running such pipelines.
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Performance in common workflows

To examine the impact of our changes on performance on a large heterogeneous workflow, we
compared the performance of CellProfiler 3 to CellProfiler 4 when running the Cell Painting assay
protocol (11). This workflow is typically performed on large datasets in a cluster environment, so we
selected a sample of 48 image sets from a published dataset and measured processing times on a single
machine. Execution times were captured for each module across three independent runs of this dataset.
The sum of these timings represents the total workload executed by each module, excluding file I/0
operations. These measurements revealed a 10-fold reduction in total CPU time required to analyze

each image (Figure 6A).

In keeping with our expectations, the refinements to MeasureTexture contributed the majority
of the performance improvements that we observed (Figure 6B). We also noted small improvements in
the MeasurelmageQuality (Figure 6C), IdentifyPrimaryObjects (Figure 6D), MeasureGranularity (Figure
6E) and MeasureObjectSizeShape (Figure 6F) modules. Other modules in the pipeline exhibited similar

performance in both versions or took negligible time to execute (Figure S1).

Discussion

As the adoption of high content microscopy methods continues to expand there may be several
areas where CellProfiler could be expanded with new functionality. Analysis of tissue sections stands out
as a potential area of improvement. The large file sizes associated with tissue specimens pose a
challenge for image analysis, as system memory typically is not sufficient to load the entire image at
once, a bottleneck which could be avoided by adopting packages such as Dask (13) as a means of
handling such images by loading subsections of an image on-demand. This would expand the utility of

CellProfiler within the digital pathology field.

10
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We also aim to continue adding support for 3D analysis to modules that currently only support
2D workflows. While segmentation is possible in 3D pipelines, additional tools and measurements will
be valuable for laboratories using CellProfiler. Alongside this, further performance improvements will

continue to benefit researchers, particularly when working with large datasets.

The splitting of cellprofiler-core into a standalone package has also laid the groundwork for
producing a stable API for use in other Python-based applications. This will eventually allow users to
modify and execute pipelines from within environments such as Jupyter, which may be of benefit to
researchers looking to automate complex workflows. This API could provide a higher-level interface for
common image processing tasks such as object segmentation, which would simplify the workflow for
analyzing images directly within a Python environment and could serve as a bridge to Python tools
whose GUI is incompatible with CellProfiler’s, such as Napari (14). The current implementation provides
access to all of CellProfiler's important classes and the ability to run pipelines or individual modules. For
future development we would like to introduce a more convenient system for programmatically

generating image sets without the need for the original input modules or CSV files.

In recent years there has been considerable development towards deep learning models which
can perform image segmentation in an automatic manner. Providing access to these algorithms would
be of substantial benefit to CellProfiler’s users, however the need for dedicated hardware and software
to run these models poses a challenge for packaging and distribution. To avoid compatibility issues with
older hardware, as well as to minimise the software dependencies needed to run CellProfiler, our
approach has been to develop independent plugin modules which are distributed separately from the
main CellProfiler program. For CellProfiler 3 we previously released a plugin for NucleAlzer (15), and in
the future we hope to investigate integrations with other popular models such as Cellpose (16) and

Stardist (17).

11
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Conclusions

The migration of CellProfiler to Python 3 will ensure that the software will remain accessible and
maintainable in the coming years. In CellProfiler 4 we have further refined the user interface and
introduced new modules and features to help scientists to develop and execute their analysis
workflows. The targeted performance improvements in this version will substantially reduce

computational costs associated with high throughput image analysis, broadening the potential
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Availability and Requirements

Project name: CellProfiler

Project home page: https://cellprofiler.org/

Operating system(s): Windows, MacQOS, Linux

Programming language: Python 3

Other requirements: Java 1.6+ (JDK 14 bundled with builds)

License: BSD 3-Clause License

Any restrictions to use by non-academics: None

List of Abbreviations

API - Application Programming Interface

CP3 - CellProfiler 3

CP4 - CellProfiler 4

12
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1 I/0 - input/output

2 Declarations

3 Ethics approval and consent to participate

4 Not applicable.

5 Consent to publish

6 Not applicable.

7  Availability of data and materials

8 CellProfiler 4 is open-source software which has been made freely available to the scientific community.
9 Pre-compiled builds for Windows and MacQS, as well as documentation manuals, are available at

10 http://cellprofiler.org. Source code is available at https://github.com/CellProfiler/CellProfiler.

11 Benchmarking and visualizations presented in Figures 1C, 1D, 1F, 3A-C, 4B-C, and 5A was performed
12 with the publicly available pipelines and image set

13 “ExampleFly”(https://github.com/CellProfiler/examples/tree/master/ExampleFly) ). Benchmarking and

14  visualizations presented in Figures 1A, 3D, and 4A were performed with the publicly available “3D
15  Monolayer” pipeline and image set which can be accessed at

16  https://github.com/CellProfiler/tutorials/tree/master/3d _monolayer . Cell Painting benchmarking

17  experiments in Figures 5B, 6, and S1 made use of a previously published data set (Plate 37983 from

18  https://bbbc.broadinstitute.org/BBBC0O25) and pipeline (analysis.cppipe from

19 https://github.com/carpenterlab/2016 bray natprot/blob/master/supplementary files/cell painting p

20 ipelines.zip, cited in (11)). The pipeline for this data set was originally written for CellProfiler 2, and so

21 was adjusted to run on CellProfiler 3 and CellProfiler 4 with comparable outputs. These adjusted
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pipelines as well as the sample data and pipeline used to produce Figure 2 are provided in a public

GitHub repository (https://github.com/carpenterlab/2021 Stirling submitted).
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Figure Legends

Figure 1 — User interface refinements in CellProfiler 4. (A) The new 3D viewer window with plane
controls in the top right. (B) Contrast and normalization adjustment popup available with any image
window. (C) Interface displayed when the “trace” command is called on a module. Arrow icons on the
left represent modules which provide data to or use data from the selected module (dot icon). (D)
Selection widget for choosing multiple images for analysis. Images sourced from disabled or missing
modules are highlighted. (E) “Add modules” pane in search mode, the modules list is filtered based on
the text entered into the search box. (F) The Workspace Viewer module displaying a custom overlay of

data from the example pipeline.

Figure 2 — Approaches for combining object sets within the CombineObjects module. Results represent
the output from different methods available within the module. “Merge” will join touching objects and
distribute conflicting regions to the nearest object from the initial set. “Preserve” will add only regions
of objects from the second set which did not overlap with the initial set. “Discard” will only add objects

with no overlap. “Segment” will add both object sets and re-segment disputed regions.

Figure 3 — General performance in CellProfiler 3 vs CellProfiler 4. Results represent independent runs
on a machine running Windows 10, using 1 worker process. (A) Time from launching the CellProfiler
executable to display of the full GUI (n=5). (B) Time taken to run the ExampleFly pipeline in Analysis
Mode (n=3). (C) Time to run the ExampleFly pipeline in Test Mode (n=5). (D) Time to run the 3D

monolayer tutorial pipeline in Analysis Mode (n=3).

Figure 4 — Module-specific performance improvements. Results from individual module testing on a
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machine running Windows 10. (A) Execution time for the MedianFilter module running within the 3D
Monolayer pipeline (n=5). (B) Execution time when running per-object texture measurements on data
from the ExampleFly pipeline (n=5). (C) Execution time when running MeasureColocalization on 8-bit

images from the ExampleFly pipeline {n=5).

Figure 5 — Performance of alternative Costes automated thresholding strategies. Execution times for
the MeasureColocalization module performing 1 pairwise comparison with Costes features enabled,
using each algorithm on (A) 8-bit images from the ExampleFly pipeline (n=6) or (B) 16-bit images from
the example Cell Painting dataset (n=8). On 16-bit images results from CellProfiler 3 are calculated

incorrectly, but shown to illustrate relative performance.

Figure 6 — Performance of selected modules within the Cell Painting assay protocol. Numbers in
brackets within panel titles correspond to modules in Figure S1. (A) Total module execution time
(measured in CPU time) per image set for all modules in the pipeline. (B) Execution time for the
MeasureTexture module per image set. (C) Execution time for the MeasurelmageQuality module per
image set. (D) Execution time for the IdentifyPrimaryObjects module per image set. (E) Execution time
for the MeasureGranularity module per image set. (F) Execution time for the MeasureObjectSizeShape

module per image set.

Figure S1 — Execution times of all modules within the Cell Painting example pipeline. Measured as per-

image CPU time taken for each module in the Cell Painting assay protocol (n=48). 1/0 loading operations

in the Images module are not recorded by these measurements.
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