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ABSTRACT

Identity and functions of plant cells are influenced by their precise cellular location within the
plant body. Cellular heterogeneity in growth and differentiation trajectories results in organ
patterning. Therefore, assessing this heterogeneity at molecular scale is a major question in
developmental biology. Single-cell transcriptomics (scRNA-seq) allows to characterize and
guantify gene expression heterogeneity in developing organs at unprecedented resolution.
However, the original physical location of the cell is lost during the scRNA-seq procedure. To
recover the original location of cells is essential to link gene activity with cellular function and
morphology. Here, we reconstruct genome-wide gene expression patterns of individual cells in a
floral meristem by combining single-nuclei RNA-seq with 3D spatial reconstruction. By this, gene
expression differences among meristematic domains giving rise to different tissue and organ
types can be determined. As a proof of principle, the data are used to trace the initiation of
vascular identity within the floral meristem. Our work demonstrates the power of spatially
reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral

meristem 3D gene expression atlas can be accessed at http://threed-flower-

meristem.herokuapp.com

INTRODUCTION

Characterizing gene expression dynamics and heterogeneity at single cell resolution is essential
to understand the molecular mechanisms underlying cellular differentiation in multicellular
organisms. Technologies based on cell dissociation (e.g. Denyer et al. 2019) or nuclei isolation
(e.g. Sunaga-Franze et al. 2021) combined with high-throughput transcriptome sequencing
(scRNA-seq/snRNA-seq) allow to characterize the transcriptomes of hundreds of thousands cells
at single-cell resolution. However, the physical location of these cells is lost during the
experimental process. In plants and other multicellular organisms, cell fate strongly depends on
its precise position within the developing organism (Xu et al. 2021). Therefore, it is essential to
characterize gene expression patterns of each cell in their native physical context to fully

understand the link between gene activity and organ development.
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In recent years, there has been a strong development in the field of spatial transcriptomics (Marx
2021; Waylen et al. 2020). However, to date, only one study in plants has been published using
an early version of the 10x Visium technology with limited cellular resolution (Giacomello et al.
2017). This lack of technological adaptation of spatial transcriptomics to plants may be because
of the difficulties with the enzymatic permeabilization of the cell wall. Single molecule FISH
(smFISH) and other high-resolution FISH experiments are also rarely used in plant studies (e.g.
Duncan et al. 2016; Solanki et al. 2020) due to the endogenous autofluorescence of many plant

cells (Duncan et al. 2016).

Computational inference of spatial locations of cells by mapping scRNA-seq transcriptomes into
a computationally binned representation of the studied structure provides an alternative for
spatial reconstruction of omics data. In an early study, spatial reconstruction was performed by
integrating the expression of nearly 100 reference genes using a mixture model (Stuart et al.
2019). Allowing better resolution, DistMap (Karaiskos et al. 2017) assigns scRNA-seq cells to
individual cells of a computationally generated spatial map containing the expression of ~80
reference genes using Matthews correlation coefficient. Other methods aim to combine scRNA-
seq with high-throughput spatial maps (e.g. MERFISH, Slide-seq) that collect the expression of
thousands of reference genes. They are based on the projection of the scRNA-seq and the spatial
map transcriptomes into a common latent space (SEURAT (Satija et al. 2015), Liger (Welch et al.
2019), Harmony (Korsunsky et al. 2019), gimVI (Lopez et al. 2018), SpaGe (Abdelaal et al. 2020)).
In general, there is a tendency to develop computational methods that require a large number
of reference genes, which limits these tools to organisms with extensive spatial transcriptomics

resources.

In plants, spatio-temporal gene expression patterns are usually established using traditional in
situ hybridization or by confocal microscopy of promoter fusions to fluorescent reporters.
Confocal microscopy has the advantage that it can be used to reconstruct 3D structures by
combining several z-stack images (Vijayan et al. 2021; Hernandez-Lagana et al. 2021; Wolny et al.
2020; Bravo Gonzalez-Blas et al. 2020; Refahi et al. 2021). In addition, combined with live image
microscopy the temporal dynamics of gene expression and morphology development can be

reconstructed (Refahi et al. 2021; Valuchova et al. 2020). In this way, Refahi et al. (2021)
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combined the information on spatio-temporal expression patterns of 28 regulatory genes into
3D reconstructed Arabidopsis flower meristems, ranging from initiation to stage 4 of flower
development. These methods are limited by the low number of genes profiled per experiment,
Therefore, tools to integrate scRNA-seq with expression data of defined, limited sets of 3D
reference gene expression patterns need to be developed for spatial reconstruction single cell

transcriptomes in plants.

Here, we adapted novoSpaRc (Nitzan et al. 2019), a methodology for spatial reconstruction of
single cell RNA-seq data, to generate a 3D single-cell transcriptome atlas of a floral meristem by
integrating single nuclei RNA-seq and a 3D reconstructed flower meristem (Refahi et al. 2021).
NovoSpaRc reconstruction aims to explicitly preserve the transcriptome similarity among closely
located scRNA-seq cells in the spatial map, while maximizing the transcriptome similarity
between the scRNA-seq cells and the cells of the spatial map to which they are assigned. In such
a way, novoSpaRc performance is less affected by the number of reference genes than other
methods, and, in theory, it can also be used without any reference gene (Nitzan et al. 2019).
However, novoSpaRc was developed to make use of spatial 2D continuous reference gene
expression maps, while the 3D expression spatial map of floral meristem generated by Refahi et
al. 2021 is binary. We adapted the methodology for reconstructing single-cell transcriptomes in
3D making use of binary reference gene expression data. By this, we were able to generate an
atlas of gene expression in different meristematic domains and spatially trace the earliest stages
of tissue differentiation within the Arabidopsis flower. In summary, these results provide a primer

for future initiatives to generate plant organ 3D atlases of gene expression.

RESULTS
snRNA-seq of Arabidopsis floral meristems

In order to obtain genome-wide gene expression profiles in the floral meristem at single cell level,
we use a system for synchronized floral induction (pAP1:AP1-GR apl-1 cal-1; (Kaufmann et al.
2010) to maximize the collection of plant material from the desired developmental stage. We
chose to study stage 5 of flower development because of the availability of several —omics
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datasets from this stage (e.g. Pajoro et al. 2014; Wuest et al. 2012; 0’Maoiléidigh et al. 2013),
which are needed to validate the performance of the method. At stage 4-5 (Smyth, Bowman, and
Meyerowitz 1990), the whorled organization of the flower gets established, and homeotic gene
activity defines domains within the meristem that will give rise to different floral organ types,

therefore being an excellent stage to study the initial steps of floral organ specification.

We performed single nuclei RNA-seq (snRNA-seq), where nuclei were collected by fluorescence-
activated DAPI-stained nuclei sorting (FANS), and snRNA-seq datasets were created using the 10x
Chromium system. In this way, Cell Ranger v3.1.0 identified 7,716 single nuclei transcriptomes
with a median of 1,110 genes expressed per nucleus. The low number of reads mapping to
mitochondria genes (<5%) indicates a low organelle contamination (Sup Fig 1). Fig 1A shows that
snRNA-seq is able to recapitulate (R=0.88) the expression profile of bulk RNA-seq data obtained
from the same stage and tissue type. Analysis of the data using Seurat v3.2.3 identified 12 main
clusters and the marker genes defining these clusters (Sup Table 1). To annotate the clusters, we
identified the top 20 marker genes specific for each cluster and we plotted the expression of
these marker genes in publically available bulk RNA-seq datasets of different tissues and floral
stages (Fig 1D, and Sup Fig 2). In addition, we calculated the average expression of known floral

meristem marker genes in the 12 snRNA-seq clusters (Fig 1C).
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Figure 1. Single-nucleus RNA-sequencing of Arabidopsis floral meristems. A) Reproducibility (R=
0.88) of the gene expression estimated from computationally pooling all nuclei from our snRNA-
seq compared to bulk-RNA-seq of stage 5 flower meristem (average of 3 biological replicates). B)
UMAP plot and clustering snRNA-seq analysis of Arabidopsis floral meristems obtained by Seurat
analysis. C) Average expression of known floral markers on the identified snRNA-seq clusters. D)
Average expression of the top 20 marker genes for each snRNA-seq cluster (y-axis) on domain-
specific shoot apical meristem bulk RNA-seq datasets profiled by (Tian et al. 2019) (x-axis). See

Sup. Figure 2 for expression profiles in other plant domains/stages.

We were able to recover the main tissue types present in the meristem, including different
epidermal as well as vascular tissue types. The four epidermis clusters (0, 9, 10 and 11) show
specific expression of MERISTEM LAYER 1 (ATML1) (Sessions, Weigel, and Yanofsky 1999) and
PROTODERMAL FACTOR 1/2 (PDF1/2) (Abe et al. 2003) (Sup Table 1, Sup Fig 3). Clusters 0 and 9
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are distinguished by the expression of individual marker genes such as TRIPTYCHON (TRY) (Pesch
and Hulskamp 2011), TRICHOMELESS1 (TCL1) (Wang et al. 2007), and genes involved in wax
composition which indicates epidermal cells that will develop trichomes (cluster 0) or not (cluster
9). Cluster 10 and 11 represent dividing epidermal cells, marked by the expression of genes
coding for histones which is characteristic of the S-phase and genes involved in cell division (Sup

Table 1, Sup Fig 3).

Clusters 1, 8 and 12 can be classified as vasculature (Fig. 1D). More specifically, cluster 1
corresponds to vascular stem cells, as marked by cambium (Sup Fig 2C) expressing markers genes
such as PHLOEM INTERCALATED WITH XYLEM (PXY) and SMAX1-LIKE 5 (SMXL5) (Shi et al. 2021)
(Sup Fig 3). Cluster 12 contains cells that are associated with phloem, containing the marker
genes ALTERED PHLOEM DEVELOPMENT (APL) (Shi et al. 2021; Bonke et al. 2003) (Sup Fig 3).
Cluster 8 is enriched for vascular xylem parenchyma genes, for example CYTOCHROME P450,
FAMILY 708 (CYP708A3) (Shi et al. 2021) (Sup Fig 3), and shows signatures of cell expansion and
cellulose biosynthesis. It should be noted that in this dataset, no mature xylem vessels or phloem

sieve elements can be expected, because these structures lack a nucleus.

The analysis of marker genes of cluster 2 shows an enrichment on genes involved in starch
catabolic process as well as genes expressed in the cortex such as CHALLAH (CHAL) (Uchida et
al. 2012; Sup Fig 3) and JACKDAW (JKD) (Hassan, Scheres, and Blilou 2010), which indicates that
cluster 2 represents cortex . Cluster 4 represents the floral meristem, containing specific markers
such as APETALA3 (AP3) (Jack, Brockman, and Meyerowitz 1992), REPRODUCTIVE MERISTEM 34
(REM34) (Mantegazza et al. 2014) (Sup Fig. 3). Cluster 7 corresponds to cells that differentiate
into mesophyll, e.g. in sepals or pedicel, and it shows specific expression of marker genes such as
LIPOXYGENASE 2 (LOX2) (Jensen, Raventos, and Mundy 2002) (Sup Fig 3) and REDUCED
CHLOROPLAST COVERAGE (REC1) (Larkin et al. 2016).

Clusters 3, 5, 6, 10, and 11 denote dividing cells (Sup Fig 3). Cluster 3 is a cluster showing enriched
expression of several cell-cycle associated genes. Cluster 5 shows specific activation of many
histone genes whose activity is associated with the S-phase of the cell cycle, as well as some

genes involved in cell proliferation and cell growth (e.g. AINTEGUMENTA (Mizukami and Fischer


https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450319; this version posted July 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2000)). Cluster 6 is enriched in cell cycle markers, in particular CELL DIVISION CYCLE 20.2
(CDC20.2) which accumulates in the nucleus from prophase until cytokinesis (Yang, Wightman,
and Meyerowitz 2017). Cluster 10 and 11 are epidermal cells in different cell cycle phases as

described before.

One of the major drawbacks of this unsupervised clustering approach is that it identifies groups
of cells depending on their transcriptome variance, and therefore it may miss cell types of
biological interest without sufficient biological variance in the system. For example, we were not
able to distinguish clusters representing individual floral whorls, likely because the transcriptome
variance between tissue types such as epidermis and vasculature is much greater than between
different whorls, at least at this stage of development. In addition, the correspondence of each
cell cluster to a particular homogeneous physiological cell type is not guaranteed. For example,
cluster 1 represents vascular (pro)cambium, but close inspection of this cluster (Sup Fig 3) reveals
specific expression of PXY (marker of proximal cambium) and SMXL5 (marker of distal cambium)
in separate regions of the cluster. This provides additional justification for the development of a
method to map the snRNA-seq transcriptomes to a physical representation of the plant
tissue/organ at study. In the next sections, we describe how we map snRNA-seq data to a spatial
expression map of the floral meristem that will enable the selection of the group of cells-of-

interest (e.g. floral whorls).

Reconstructing gene expression by snRNA-seq and microscopy image integration.

We used novoSpaRc (Nitzan et al. 2019) to integrate snRNA-seq data and a published 3D
reconstructed Arabidopsis stage 4 floral meristem (“spatial map”) that has information on the
expression pattern of 28 genes (“reference genes”) (Refahi et al. 2021). To adapt novoSpaRc to
map single nuclei transcriptomes to the 3D floral meristem map with binary expression of the

reference genes, we implemented three main modifications:

1) Filtering: snRNA-seq was performed on the with ‘cauliflower-like’ meristem plant material,
which may contain cells from regions (e.g. short pedicels and stems) that were not present in our
spatial map. Therefore, we set up a filtering procedure to eliminate snRNA-seq transcriptomes
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that were too dis-similar to the transcriptomes of the spatial map (see Material and Methods for

details).

2) Genes used for calculating snRNA-seq transcriptome distances: The original novoSpaRc
pipeline calculates the distance between snRNA-seq transcriptomes using a set of genes selected
depending on their variability across the snRNA-seq transcriptome (highly variable genes).
Because in our dataset these highly variable genes were not enriched among the known flower
marker genes, we also used the top 100 genes with the highest expression correlation with the
reference genes, which included very well-known floral regulator genes, to calculate this

distance.

3) Distance used to calculate dissimilarity between spatial map and snRNA-seq transcriptomes:
The original novoSpaRc pipeline calculates distances between transcriptomes from the spatial
map and snRNA-seq data using the Euclidean distance. Because our spatial map data is binary,
we also employed two other distances commonly used for binary data: Hamming and Jaccard

distances.

Subsequently, we studied the performance of these modifications by calculating the area under
the receiver operating characteristic (AUROC) for predicting the expression of each reference
gene when this gene was removed from the spatial map during the data integration step. Sup.
Figure 4 shows the general good performance (AUROC) of our method for each gene and
parameter combination tested. Three genes, HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6),
AUXIN RESPONSE TRANSCRIPTION FACTOR 3 (ARF3, ETTIN) and CLAVATA3 (CLV3), had very low
performance independently of the parameters used (see next paragraph for an explanation).
Therefore, we calculated the overall performance of the method as the average AUROC of all
genes except AHP6, ETTIN, CLV3 and WUSCHEL (WUS). WUS was excluded due to the low number
of cells (n=8) where it was expressed in the spatial map. In general, modifications improved the
performance of the original novoSpaRc pipeline (Sup Fig 5). In particular, using the Jaccard
distance had a positive impact on the performance of the method in this particular dataset (Sup

Fig. 5). In our hands, other datasets show different optimal parameter settings, but filtering
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always improves the performance. For visual comparison, Figure 2 shows the reconstructed
expression of representative genes when our modifications are applied or not. In particular,
APETALA3 (AP3) and SEPALATA3 (SEP3) are the genes showing the biggest differences (see also
Sup Fig 4). For the final prediction, modifications and the parameter values which maximized the
average AUROC were used to reconstruct gene expression using the whole spatial map dataset

(see Material and Methods).
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Figure 2. Examples of reconstructed expression patterns for representative genes in Arabidopsis
floral meristem. Top row shows the reference expression obtained from the reference spatial map.
Second and third row is the reconstructed expression using the parameters that maximize the
average AUROC when the gene to be predicted is removed from the data integration step and the
original novoSpaRc pipeline (second row) or our modified pipeline (third row) is used. Bottom row
is the final reconstructed expression using all the spatial map data. To facilitate visual

comparison, we standardized the expression of each gene to have mean 0 and variance 1. The

expression of other genes can be visualized at http://threed-flower-meristem.herokuapp.com
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As mentioned before, three genes (ETTIN, AHP6 and CLV3) had low performance (AUROC close
to 0.5) for any set of parameter values used when these genes were removed from the spatial
map during the data integration step. We hypothesized that this is because cells expressing these
genes are not expressing any of the other reference genes used, and therefore, these cells cannot
be correctly mapped. We measured this expression-dependency as the maximum Spearman
correlation value of a particular gene against any other gene from the reference list in the snRNA-
seq data. We call this value the Predicted Estimation Performance (PEP) for a particular gene.
Indeed, there is a strong correlation between the performance of the method (AUROC) and PEP
for each gene (Sup Fig 6A), which indicates that we can use it as a predictor of the performance
of the method for each particular gene. As we sequentially eliminate genes from the spatial map
prior to gene expression reconstruction, starting with the highest correlated reference gene, and
therefore decreasing the PEP value of that reconstructed gene, we see a drop in the performance
(AUROC) (Sup Fig 6B). However, when we sequentially eliminate reference genes starting with

the lowest correlated reference gene, there is no evident decrease of performance (Sup Fig 6C).

Based on Sup Fig 6A, we chose a PEP threshold of 0.13 to decide which genes (n=1,306) we
consider to have a reliable expression prediction. We obtained this threshold as the point in Sup
Fig 6A where the AUCROC starts to be bigger than 0.5. As the PEP value is estimated without
using the spatial map, it can be used to select a set of reference genes for future experiments in
order to maximize the number of correctly predicted genes. The number of genes with high PEP
values (n=1,306 for PEP>0.13) is mainly influenced by the number of reference genes in the
spatial map. Therefore, when using a higher number of reference genes higher PEP values are

obtained per gene (Sup Fig 7).

To validate the predictions of spatial gene activity in the floral meristem, we analyzed expression
patterns of a set of genes by reporter gene analysis in planta (Fig 3). In brief, promoter-GFP
fusions were stably expressed in A. thaliana and stage 4-5 floral meristems were analyzed using
confocal laser scanning microscopy. As expected, in vivo expression patterns highly correlated
with reconstructed expression patterns of genes used as reference genes (ETTIN; SHOOT
MERISTEMLESS, STM and MERISTEM LAYER 1, ATML1) as well as genes with high PEP scores, e.g.

AT1G62500 (CO2, PEP = 0.17), while there was lower overlap with reconstructed expression
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patterns of genes with low PEP scores, such as SHORT ROOT (SHR, PEP = 0.15), and PIN-FORMED
1 (PIN1, PEP =0.14). In general, the prediction broadly recovered the cells and tissues that show
activities of the genes, but some gene expression patterns were more restricted in the reporter
gene analyses (e.g. SHR, PIN1). This could be explained by the limited set of reference genes that
was used for the prediction, but also by the possibility that the reporter gene constructs do not

contain all regulatory elements needed for correct spatial expression of the genes.

A ETTIN (PEP=1) B STM (PEP = 1.00) C ATML1 (PEP = 1.00)

Figure 3: Validation of reconstructed gene expression patterns with reporter gene assays. Upper
part in A-F shows the predicted expression of ETTIN, STM, ATML1, CO2, SHR and PIN1 from the
top and cross section view of stage 4 flower meristems. Titles include gene symbol and PEP score
for the predicted 3D expression profile. The lower part in A-F shows the GFP expression pattern
(green) for plant lines under the control of the respective promoter, as detected by confocal laser
scanning microscopy in A. thaliana stage 4 flower meristems. Confocal images show the flower
meristem from the top (left) as well as different orthogonal sections (right). Cell walls were

stained using propidium iodide (red). Scale bars indicate 20 um.
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Gene expression reconstruction of floral meristem domains.

Next, we evaluated the performance of spatial expression reconstruction to study quantitative
gene expression in particular domains that give rise to the different organ types in the flower. In
Arabidopsis flower development, the identities of different organ types are determined by floral
homeotic transcription factors. In particular, sepals are specified by the activity of APETALA1
(AP1), petals are defined by the combination of AP1 and APETALA3 (AP3), stamens are specified
by AP3 and AGAMOUS (AG), and the carpels is determined by AG activity.

We estimated the expression of a gene in the AP3- and AG- domains of the 3D reconstructed
meristem, as the average expression of that gene in the cells which had a positive expression of
AP3 or AG reference genes, respectively. To validate these results we generated sorted nuclei
RNA-seq (FANS-RNA-seq) from floral meristems expressing nuclear targeting fusion protein (NTF)
(Deal and Henikoff 2011) in AP3 vs. AG expression domains. The GFP-containing NTF protein was
transcribed under the control of AP3 promoter (pAP3::NTF) and the second intron of AG
(PAGI::NTF) in the floral induction system (pAP1:AP1-GR ap1-1 cal-1; Kaufmann et al. 2010). The
expression patterns of pAP3::NTF and pAGi::NTF were visualized by confocal microscopy (Sup Fig
8), and the nuclei of AP3- or AG-expression domains were sorted based on the positive GFP signal

in FANS.

Transcriptomes retrieved from the spatially reconstructed AP3 and AG domains in the floral
meristem showed a high correlation with the domain-specific bulk RNA-seq expression (Rho=0.89
for AP3- and Rho=0.88 for AG- domain when using genes with a PEP higher than 0.13). This was
close to the correlation obtained among the bulk RNA-seq biological replicates (Rho=0.95 for AP3
and Rho=0.93 for AG) when using the same set of genes (Fig. 4) which indicates a very good
performance of the method. Even more interesting, the reconstructed expression was able to
recover the log, fold-change gene expression between both domains (Sup Fig 9A, Rho=0.37)
when using genes with a PEP higher than 0.13 (n=1,306). In particular, the obtained correlation
was very close to the correlation of the log, fold-change gene expression obtained from the bulk
RNA-seq biological replicates when using the same set of genes (Rho=0.47, Sup Fig 9C). This

indicates that spatially reconstructed transcriptomes are able to predict domain-specific
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differential gene expression. The correlation between gene expression prediction and domain-
specific bulk RNA-seq increases with increasing PEP scores (Sup Fig 9B), which is in agreement

with the notion of the PEP score being an indicator of the quality for the predicted 3D expression.
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Figure 4. Prediction of AP3 and AG domain gene expression. Scatterplot showing the gene
expression for AP3 (A) and AG (B) domain predicted by our method (y-axis) and observed by our
FANS bulk RNA-seq data (x-axis) when using genes with PEP value>0.13 (n=1,306). Bottom row
shows the scatterplot for the gene expression of both biological FANS bulk RNA-seq replicates for
AP3 (C) and AG (D).
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In this way, we detected a large number of genes with specific expression (Sup Table 2) in the
different floral whorls as determined by the (combined) expression of AP1 (sepal), AP3-AP1
(petal), AP3-AG (stamen) and AG (carpel). For example, we predict a higher expression of
APETALAZ2 in the sepal domain, which is in line with its known role in sepal specification together
with AP1 (Kunst et al. 1989). We predict PETAL LOSS (PTL) expression in the AP1 and AP1-AP3
domain, which is consistent with previous findings that PTL is expressed in sepal margins while
controlling petal development (Brewer et al. 2004). In the other hand, we predict PERIANTHIA to
be strongly induced in the three inner whorls, as expected from the literature (Chuang et al.
1999), while we predicted UNUSUAL FLORAL ORGANS (UFO) to be expressed in the AP3-AG and
AP3-AP1 domain which fits with the observed expression in the petal and stamen whorls (Samach
et al. 1999). This exemplifies the power of the method to identify whorl-specific genes. The
predicted floral whorl-specific expression is significantly related to direct DNA-binding of flower

domain-specific TFs in their regulatory regions (Sup Table 2, Sup Fig 10).

It is worth to note that we could apply a similar methodology directly to the snRNA-seq data (w/o
3D reconstruction), where average domain-specific expression is calculated as the average
expression among the snRNA-seq transcriptomes of nuclei that have a positive expression of AP3,
or AG for each domain respectively. However, the obtained fold-change expression has low
agreement with the domain-specific bulk RNA-seq data (Rho=0.04 pv<0.14, Sup Fig 11) when
using the same genes as before (PEP > 0.13). This indicates that the advantage of integrating the
4,395 transcriptomes of the snRNA-seq data into a physical map of 1,331 cells has the additional
benefits of obtaining a more accurate estimate of gene expression per cell as it is calculated since

it combines the information from several snRNA-seq transcriptomes.

In summary, the presented data demonstrates that our method can be used to create a genome-
wide 3D gene expression atlas of a plant organ, and to correctly predict gene expression and gene
fold change expression of particular morphological regions that was not possible with the snRNA-

seq data alone.
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The origin of vascular cell identity in the floral meristem

Spatial reconstruction of transcriptomics data can be used to pinpoint the spatial location of cells
characterized with a particular transcriptome signature (e.g. snRNA-seq cell clusters, ploidy levels
(Bhosale et al. 2018), vascular cells (Shi et al. 2021)) by using an expression similarity-based
method. For example, the initial establishment of vascular stem cell identity in the apical
meristems is not well known (Sanchez, Nehlin, and Greb 2012). The transcriptomes of vascular
tissues in inflorescence stems have been characterized by FANS bulk RNA-seq (Shi et al. 2021),
including SMXL5 (distal cambium) and PXY (proximal cambium). Therefore, assuming that the
vascular tissues have similar transcriptomes in the inflorescence stem and in the floral meristems,
we could predict the location of vascular stem cells on the reconstructed 3D meristem even when
they cannot be distinguished anatomically. We indeed obtained a distinct distribution pattern of
vascular stem cells (Sup Fig 11), where the cambium (PXY and SMXL5) localizes in the cell layers
adjacent and just below the floral meristem with a radial disposition. Confocal imaging confirmed
that PXY and SMXL5 expression is initiated in cells just adjacent/below the apical meristem, but
in a specific subset of cells (Sup Fig 12). This discrepancy could be due to the low number of
reference genes used, which may not allow to have the needed resolution. Once these cells have
been located, their transcriptome can be estimated as explained before, obtaining a good
correlation (Rho=0.34-0.42; Sup Fig 13) when compared with the FANS bulk RNA-seq data. This
information can be used in future work to characterize the molecular control and regulatory

networks of initiation of vascular identity in the floral meristem.

NovoSpaRc outputs the probability of each snRNA-seq transcriptome as corresponding to a
particular cell in the spatial map. Therefore, we can map the location of the identified snRNA-seq

clusters (https://threed-flower-meristem.herokuapp.com) and visualize their physical location.

In particular, cluster 1-(pro)cambium shows the same location adjacent/below the apical

meristem as the one estimated by transcriptome similarity.

In summary, this shows the potential to integrate different features (e.g. cells differentiating to
vascular tissues) into a common spatial map which can be used to associate with the spatial

expression profiles.
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DISCUSSION

The identity and function of plant cells is strongly influenced by their precise location within the
plant body (Xu et al. 2021). Therefore, to understand plant development at the molecular level,
it is important not only to characterize the molecular status and dynamics of each individual cell
but also to know their physical location in the plant. As stated in the introduction, spatial
genomics in plants have been limited to profile only a limited number of genes per experiment.
Here, we provide a proof of concept for a methodology to overcome this limitation by combining
scRNA-seq/snRNA-seq with a 3D microscope-based reconstructed floral meristem. In this way,
we are able to reconstruct the spatial expression of a large number of genes (>1,000) in their
native spatial context. Moreover, we were able to quantitatively estimate the expression of these
genes in particular morphological regions of the floral meristem. Future work should develop
more dedicated statistical methods to test for gene expression differences on the 3D
reconstructed structure. One possibility is to apply a re-sampling approach to the snRNA-seq
data. We envision that by independently mapping multiple subsamples of the snRNA-seq data to
the reference map, we will be able to estimate the variance of the gene expression which is

needed to test for differential gene expression in different (groups of) cells.

The number of high-quality genes predicted is heavily dependent on the number and identity of
genes present in the reference spatial map. Thus, we provide a PEP score that can be used to
estimate the performance of the predicted expression for each gene, even before having
generated the reference spatial map. In this way, this score can be used to select the minimum
set of reference genes needed to obtain a good prediction of the spatial expression of a desired
group of genes. Hence, this score helps in planning the design of a spatial genomics experiment

whose data will be used as a spatial reference to predict the spatial expression of a set of genes.

This methodology has the potential to be applied to other types of -omics experiments. For
example, we are already applying it to map scATAC-seq experiments into the 3D reconstructed
floral meristem (data not shown). This offers the additional benefit to be able to integrate

multiple single cells -omics data in their natural physical context. Indeed, an important problem
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is how to integrate multiple single cell -omics experiments (e.g. scRNA-seq and scATAC-seq data).
The typical approach (Stuart et al. 2019) is to find anchors between genes and ATAC-seq regions
that allow us to link the cells profiled independently in both types of experiments. We envision
that independently mapping the scRNA-seq data and the scATAC-seq to a common spatial map
will be an alternative way to integrate both types of experiments. In addition, we have shown
that we can map transcriptional signatures of particular features (e.g. cells differentiating to
vascular tissues) to the reconstructed spatial map, allowing to annotate or integrate additional

experiments/data in the spatial map.

Furthermore, time-series scRNA-seq datasets could also be tackled with this approach. For
example, when live imaging has been used to reconstruct the spatial map at different time points
and cell segmentation and lineage tracking have been used to infer cell lineage in the spatial map
(e.g. Refahi et al. 2021), the inferred cell lineage can be used to link the cells at different time
points. Alternatively, when the plant structure at the different time points considered has similar
morphology, the scRNA-seq data could be mapped to the spatial map of one particular time
point. Otherwise, computational alignment of the spatial maps at each time-point will be

required.

In summary, these results provide a primer for future initiatives to generate plant organ 3D
atlases and for studies aiming to understand single cell -omics studies with respect to plant

morphology and development.

MATERIALS AND METHODS
Plant material

pAP1:AP1-GR apl-1 cal-1 plants were grown at 22 °C under long-day conditions (16 h light, 8 h
dark) on soil. After plants bolted and reached the height of 2 cm to 5 cm, they were induced daily
by applying the DEX-induction solution (2 uM Dexamethasone and 0.00016% Silwet L-77) to their
main inflorescences. Around 20 inflorescences were collected and snap-frozen in liquid nitrogen

on the fourth day after the first induction.
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Nuclei isolation

Inflorescences were gently crushed to pieces in liquid nitrogen using a mortar and a pestle and
then transferred to a gentleMACS M tube. After liquid nitrogen evaporated totally, 5 ml of Honda
buffer (2.5% Ficoll 400, 5% Dextran T40, 0.4 M sucrose, 10 mM MgCl,, 1 uM DTT, 0.5% Triton X-
100, 1 tablet/50 ml cOmplete Protease Inhibitor Cocktail, 0.4 U/ul RiboLock, 25 mM Tris-HCI, pH
7.4) was added to the tube. Nuclei were released at 4 °C by homogenizing the tissue on a
gentleMACS Dissociator with a running program as described previously (Sunaga-Franze et al.
2021). The resulting homogenate was filtered through a 70 um strainer, and another 5ml Honda
buffer was applied onto the filter to collect the remaining nuclei. Nuclei were then pelleted by
centrifugation at 1000 g for 6 min at 4 °C and then resuspended gently in 500 ul Honda buffer.
The nuclei suspension was filtered again through a 30 um strainer, diluted by adding 500 pl PBS
buffer, and stained with 2 uM DAPIl. Ambion RNase Inhibitor and SUPERaseln RNase Inhibitor
were added to a final concentration of 0.4 U/ul and 0.2 U/ul, respectively. 200,000 events of
single nuclei were selected on DAPI signals by a BD FACS Aria Fusion into a 1.5-ml tube with
landing buffer (15 pl 4% BSA in PBS with 80 U Ambion RNase Inhibitor and 80 U SUPERaseln
RNase Inhibitor). Sorted nuclei were counted in Neubauer counting chambers under a Leica DMi8

fluorescent microscope.

Preparation of snRNA-seq libraries

Single-nuclei RNA-seq library was prepared from 10,000 freshly-isolated plant nuclei with the
Chromium Single Cell 3’ Reagent Kits v3 according to the manufacturer’s instructions. 14 PCR
cycles were used for cDNA amplification, and 13 PCR cycles were used for final amplification of
the constructed libraries. The average fragment size of the snRNA-seq library was checked with
an Agilent High Sensitivity D1000 ScreenTape, and the concentration was measured with Qubit

1X dsDNA HS Assay Kit. Sequencing was performed on a HiSeq 4000 (lllumina) platform.
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Preparation of domain-specific RNA-seq libraries

Nuclei were from pAP1:AP1-GR apl-1 cal-1 transgenic plants expressing a GFP labeled nuclei
envelope protein driven by tissue-specific promoters (Deal and Henikoff 2011). We used AP3
promoter and AG 2nd intron plus a minimal 35S promoter element as promoters for the
constructs to mark AP3 and AG expressing domains in flowers, respectively. After nuclei isolation,
as described in the previous paragraph, nuclei were sorted into a 1.5-ml tube with 15 pl of 4%
BSA in PBS and 6 ul of RiboLock RNase Inhibitor by a BD FACS Aria Ill. The GFP channel was set
using pAP1:AP1-GR apl-1 cal-1 as a negative control, and then nuclei were selected by gating on
the DAPI peaks under the GFP positive events. After sorting, nuclei were pelleted at 1500 g for
10 min at 4 °C, and the supernatant was then removed. Nuclei were lysed by vortex in 350 ul RLT
buffer with 2-Mercaptoethanol, and RNA was then isolated with Qiagen RNeasy Micro Kit. After
RNA isolation, cDNA synthesis was done with SMART-Seq® v4 Ultra® Low Input RNA Kit following
the manufacturer’s instructions. cDNA was sheared to 200-500 bp size by Covaris AFA system

and constructed with sequencing adaptors by ThruPLEX DNA-Seq Kit.

Confocal imaging

GFP expressing plant lines under the control of the CO2 (AT1G62500), PIN1 (AT1G73590) and SHR
(AT4G37650) promoters were obtained from the Nottingham Arabidopsis Stock Centre (NASC,
UK) as part of the SWELL line seed collection (BREAK line set N2106365), which was previously
described in roots by Marques-Bueno et al. (2016). To generate plant lines driving GFP expression
from the ETT/ARF3 (AT2G33860) promoter, we inserted a 3 kb long promoter fragment into the
pK7GW-INTACT_AT vector (Ron et al., 2014) using gateway cloning. Similarly, the 6.1 kb promoter
of STM (AT1G62360) and the 5 kb promoter of ATML1 (AT4G21750) were introduced into the
pK7GW-INTACT_AT vector. A. thaliana Col-0 wild type plants were transformed by floral dip
method (Clough and Bent, 1998). Plant lines expressing HISTONE 4 (H4)-coupled GFP under the
control of the PXY (AT5G61480) and the SMXL5 (AT5G57130) promoters (PXY:H4-GFP/SMXL5:H4-
GFP) were previously described in Shi et al. 2021. For GFP expression analysis, plants were grown

on soil at 22 °C and 16/8 h light/dark cycles using daylight led lights (200 umol-m-2-s-1).
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GFP expression was detected by confocal laser scanning microscopy using the Zeiss LSM 800
confocal microscope equipped with a Plan-Apochromat 20x/0.8 M27 or a C-Apochromat 40x/1.2
W Korr objective. GFP was excited at a wavelength of 488 nm with an argon laser, while emission
was filtered by a 410-532 nm band pass filter. Propidium iodide (Sigma-Aldrich) was used to stain
cell walls. It was excited at a wavelength of 305 nm and detected in a range of 595-617 nm. Z-
stack images were median corrected and merged to orthogonal projections using the ZEN

imaging software (Zeiss).

snRNA-seq data analysis

Fastq files were processed with CellRanger v3.1.0 with default parameter values and using the
Araportll gene annotation (Cheng et al. 2017), obtaining 7,716 nuclei transcriptomes as a read
count matrix. Genes encoded in the organelles were removed. Next, read count normalization
and clustering were done with the R package Seurat v3.2.3 (Stuart et al. 2019). In particular,
nuclei transcriptomes with less than 1,000 expressed were removed and SCT-normalization was
applied within the SEURAT package setting the parameter variable.features.n to 3,000 and other
parameters to default values. Next, the optimal number of PCAs was chosen to be the first 9
principal components by plotting the standard deviations of the principal components using the
RunPCA and ElbowPlot functions. UMAP dimensionality reduction was obtained with the
runUMAP function using the parameters values dims = 1:9, reduction = 'pca’, n.neighbors = 50,
min.dist = 0.01, umap.method = "uwot", metric = "cosine". In order to identify clusters in the
UMAP space, we used FindNeighbors and FindClusters functions with parameter values
resolution = 0.04, algorithm = 1 and default values for other parameters. Marker genes for each
cluster were identified with the function FindAlIMarkers and parameter values: only.pos = TRUE,
assay="SCT", slot="scale.data", min.pct = 0.25, logfc.threshold = 0.25. In order to annotate the
identified clusters, the average relative expression of the top 20 cluster marker genes in different
publically available RNA-seq (see bulk RNA-seq analysis) and microarray samples were visualized
in heatmaps in order to help to annotate the clusters. Expression values for GSE28109 (Yadav et

al. 2014) were downloaded directly from GEO omnibus (file:
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GSE28109_averaged_mas5_data.txt). Heatmaps showing the expression of markers genes were
calculated as the average relative expression across all nuclei for each cluster. Relative expression
was calculated as the normalized read count expression of a gene minus the average expression

of this gene across all samples/nuclei considered.

Bulk RNA-seq analysis

Fastq files from publicly available bulk RNA-seq data were downloaded from Sequence Read

Archive (SRA; https://www.ncbi.nlm.nih.gov/sra). The next analysis was done for each dataset

independently. The analyzed datasets were: PRINA314076 (Klepikova et al. 2016), PRINA471232
(Tian et al. 2019); PRINA595605 (Shi et al. 2021), and the AG- and AP3- domain specific bulk RNA
seq data generated in this project. Fastq files were trimmed from adapters using Trimmomatic
v0.36 (Bolger, Lohse, and Usadel 2014). The reads were then mapped to the TAIR10 Arabidopsis
genome using STAR v2.7.0b (Dobin et al. 2013) with parameter values --alignintronMax 10000 --
outFilterMultimapNmax 1 --outSIfilterReads Unique and other parameters with default values.
featureCounts (Liao, Smyth, and Shi 2014) was used to count the number of mapped reads per
gene (in exon and introns) with default parameters. Next, reads mapping to genes encoded in
the organelles were removed. Only genes with more than 10 reads mapped in at least 2 samples
were considered in the further analyses. Read count data was analyzed with DESeq2 v1.24.0
(Love, Huber, and Anders 2014), in particular normalized expression was calculated with

varianceStabilizingTransformation function using default parameters.

snRNA-seq and spatial gene expression map data integration

snRNA-seq data was processed as described in the previous section, which results in a matrix of
normalized expression values of 6,104 nuclei and 19,718 genes, genes expressed in less than 30
cells were removed (n=2,890) with the exception of WUS and CLV3 which were kept in the
dataset due their biological importance. Data of the spatial map containing positional

coordinates of 1,451 cells, their associated cell growth, cell volume, lineage and expression of 28
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genes for the reconstructed 3D stage 4 floral meristem was downloaded from Refahi et al. 2021.
First, cells (n=52) with expression of none of the 28 reference genes were removed. Next, genes
(n=5) with the same expression in all nuclei or not present in the normalized snRNA-seq dataset
were removed as they are not informative for the data integration procedure. Cells from the
spatial map (n=68) were removed when they had less than 3 reference genes expressed, or when
the combination of genes expressed in one particular cell was present in less than 4 other cells.
This resulted in a spatial map of 1,331 cells and 23 genes. Next, nuclei from the snRNA-seq
datasets not expressing any of the 23 genes considered in the reconstructed meristem were
removed. At this step, the snRNA-seq contained 5,910 nuclei and 16,828 genes. The resulting
snRNA-seq dataset and the reconstructed floral meristem were integrated using NovoSpaRc

v0.4.1 (Nitzan et al. 2019). As described in the main text, 3 modifications were considered:

1) Filtering. When this modification was applied, distances between all the transcriptomes of the
snRNA-seq and the spatial map were calculated. Only the top 50 snRNA-seq transcriptomes with
closest distance to each cell of the spatial map were kept in order to eliminate nuclei that were
not present in the spatial map (e.g. cauline leaves, pedicel...). The final number of snRNA-seq

nuclei depends on the distance used.

2) Genes used for calculating distance among the snRNA-seq transcriptomes. The standard
NovoSpaRc procedure uses the highly variable genes identified by the program to analyze the
snRNA-seq data in order to calculate the distances among the snRNA-seq transcriptomes. We
modified this option to use the top 100 genes with the highest pearson correlation value in the
snRNA-seq space to the 23 genes considered in the spatial map. In our case, this results in 1,709

unique genes.

3) Distance. By default, NovoSpaRc used the Euclidean distance between the snRNA-seq and
spatial map transcriptomes. We also included Jaccard and Hamming distances for binary data.
When these distances were used, the snRNA-seq data was binarized as non-expressed when the
normalized expression of a gene was zero and as expressed when the normalized expression was
bigger than zero. When using the Euclidean distance, we include the optional binarization of the

snRNA-seq expression data.
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The best set of modifications and parameter value sets was chosen as the ones minimizing the
average AUCROC of the genes from the spatial map except AHP6, ETT, WUS and CLV3, we
excluded these 4 genes because their performance was always poor independently of the
parameter values used and/or because the low number of cells where they were expressed in
the spatial map. The final parameter set was using all three proposed modifications, in particular
using the Jaccard distance, and with values for the NovoSpaRc parameters:
num_neighbors_source=2, num_neighbors_target=5, epsilon = 0.05, alpha =.1, max_iter=5000
and tol=1e-9. As output, NovoSpaRc provides a matrix (Gromoth-Wasserstein matrix, GW)
containing the probabilistic assignment of each nucleus from the snRNA-seq to each of the cells
of the spatial map. For numerical reasons (to avoid long decimals), the GW matrix was multiplied

by 10°. It also outputs the predicted expression of each gene considered in the spatial map space.

PEP score calculation

The Spearman correlation coefficient for a particular gene against each reference gene was
calculated in the scRNA-seq data after the filtering step. The highest Spearman correlation

coefficient was chosen as the PEP score for that particular gene.

Localization of the vascular stem cells into the spatial map

FANS RNA-seq data (Shi et al. 2021) was analyzed as explained above. After, the data was log2
transformed, and the expression of each gene was normalized to have mean 0. The same
procedure was applied to the gene expression profiles of the spatial map. Pearson correlation
was calculated between each FANS RNA-seq dataset to transcriptome of each cell of the spatial
map. Only genes (n=1,281) defined as vascular markers in (Shi et al. 2021) were used to calculate

the correlation. P-values were calculated by testing if the correlation was higher than zero.

24


https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450319; this version posted July 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Localization of the snRNA-seq clusters into the spatial map

NovoSpaRc outputs the probability of each snRNA-seq transcriptome as corresponding to a
particular cell in the spatial map (GW matrix). Once obtained, the GW matrix was transformed so
that columns (corresponding to cells in the spatial map) sum to 1. The score of one cell of the
spatial map belonging to a particular cluster was calculated as the sum of the probabilities of all
snRNA-seq transcriptomes of one particular cluster belonging to that particular cell in the spatial

map.
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Sup Figure 1: Summary of main statistics of the snRNA-seq. A) Number of expressed genes
(containing at least one read) per nucleus. B) Number of mapped reads per nucleus. C) Percentage
of reads mapping to the mitochondrial genome. D) Percentage of reads mapping to the

chloroplast genome.
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Sup Figure 2. Average expression of the top 20 marker genes in publically available bulk RNA-seq
datasets. Heatmaps show the expression of the top 20 significant marker genes for each snRNA-
seq cluster in different publically available bulk expression profiles of: several flower organs and
developmental stages (Klepikova et al. 2016) (A), shoot apical meristem domains (Tian et al. 2019)

(B), and vascular tissues of inflorescence stems (Shi et al. 2021) (C).
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Sup Fig 3 Expression of selected marker genes of snRNA-seq clusters on the UMAP plot.
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Sup Fig 4. Gene-based performance of the method for gene expression reconstruction. Heatmaps

show the performance (AUROC) for each reference gene when that particular gene was removed

from the spatial map during the data integration step. Four models were tested: A) Filtering out

snRNA-seq nuclei too dissimilar to the spatial map in the transcriptomic space (see Material and

Methods) and using genes with high correlation with the reference genes in order to calculate

transcriptomic distance among snRNA-seq nuclei (see Material and Methods). B) Applying no

filter to the snRNA-seq and using genes with high correlation with the reference genes in order to

calculate transcriptomic distance among snRNA-seq nuclei. C) Filtering out snRNA-seq nuclei too

dissimilar to the spatial map in the transcriptomic space, and using the set of high variable genes

defined by SEURAT to calculate transcriptomic distances between snRNA-seq. D) Applying no filter

to the snRNA-seq data and using the set of high variable genes defined by SEURAT to calculate
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transcriptomic distances between snRNA-seq, this is the original option in novoSpaRc. The number
between parentheses after the gene symbol indicates the number of cells where the particular
gene is expressed in the spatial map. Legend indicates the different parameter values used for

running novoSpaRc.
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Sup Fig 5. Average performance of our method for gene expression reconstruction. Violin plots
show the average AUROC values across all reference genes except ETTIN, AHP6, CLV3 and WUS,
which were excluded because of their consistent low performance or because of the low number
of cells where they are expressed. Four distances were tested: Jaccard (A), Hamming (B), Euclidean
using snRNA-seq continuous expression (C) and Euclidean when the snRNA-seq data was
binarized. For each distance, four models were tested: 1) Filtering out snRNA-seq nuclei too
dissimilar to the spatial map in the transcriptomic space (see Material and Methods) and using
genes with high correlation with the reference genes in order to calculate transcriptomic distance
among snRNA-seq nuclei (mFmH). 2) Applying no filter to the snRNA-seq and using genes with
high correlation with the reference genes in order to calculate transcriptomic distance among
snRNA-seq nuclei (oFmH). 3) Filtering out snRNA-seq nuclei too dissimilar to the spatial map in
the transcriptomic space, and using the set of high variable genes defined by SEURAT to calculate
transcriptomic distances between snRNA-seq (mFoH). 4) Applying no filter to the snRNA-seq data
and using the set of high variable genes defined by SEURAT to calculate transcriptomic distances

between snRNA-seq, this is the original option in novoSpaRc (oFoH).
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Sup Fig 6. Performance of the reconstructed expression depends on PEP. A) Relationship between
PEP and the performance (AUROC) of the gene expression estimation when the estimated gene
was not included in the spatial map. Red line indicates the value 0.13. B) Performance (AUROC)
of the prediction for each gene (grey points) when x genes from the spatial map with highest co-
expression values with the predicted gene were sequentially removed. C) Performance (AUROC)
of the prediction for each gene (grey points) when x genes from the spatial map with lowest co-
expression values with the gene with the gene evaluated are removed. In B and C, the number of
genes (x) removed is shown in the x-axis, and the drop in AUROC is shown in the y-axis; the red
line represents a smoothing function (LOESS) applied to the average relative AUROC. Error bars

indicate standard deviation.
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Sup Fig 8. GFP signals in pAGi::NTF (A) and pAP3::NTF(B) domain specific lines used for FANS.

Scale bars indicate 50 um.
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Sup Fig 9. Prediction of AP3 vs AG domain-specific log2FC expression. A) Scatterplot showing the
predicted change in expression between the AP3 and AG domain predicted by our method (y-axis)
and observed by our bulk FANS RNA-seq data (x-axis) when using genes with PEP>0.13 (n=1,306).
Continuous black line indicates the diagonal line. The associated Spearman correlation is 0.37.
The associated spearman correlation for other values of PEP can be seen in B). Bottom row shows
the scatterplot for the observed change in expression of both biological FANS bulk RNA-seq
replicates for AP3 versus AG. Color in B and C indicates the number of genes predicted at this level

of PEP. Vertical red line indicates the value of 0.13.
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Sup Fig 10. Gene expression distribution in the floral meristem whorls depending on TF binding.
Gene expression was standardized to mean 0 variance 1, after average expression was calculated
for each gene in the different floral whorls. Floral whorls are defined as: carpel: cells expressing
AG but not AP3 neither AP1; stamen: cells expressing AG and AP3 but not AP1, petals: cells
expressing AP3 and AP1 but not AG; sepals: cells expressing AP1 but not AG neither AP3. Four
groups of genes were considered: A) genes with a AG binding in the gene body or the 2 kb regions
around, B) genes with AG and AP3 binding, C) genes with an AP3 binding, D) genes with an AP3
and AP1 binding, E) genes with an AP1 binding and F) genes without any AG, AP3, or AP1 binding.
Note that binding events of several TFs to the same gene does not necessitate that these TFs bind

as part of the same complex, their binding could be independent and occur in different cells.
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Sup. Figure 11. Prediction of AP3 vs AG domain-specific log2 FC expression directly from snRNA-
seq. A) Scatterplot showing the predicted change in expression between the AP3 and AG domains
predicted directly by the snRNA-seq (y-axis) or observed by our bulk RNA-seq data (x-axis) when
using genes with PEP>0.13 (n=1,306). The associated Spearman correlation is 0.04 (pv< 0.14; not
significant). The associated spearman correlation for other values of PEP can be seen in B).

Vertical red line indicates the value of 0.13.
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Sup Fig 12. Localization of the vascular stem cells in the flower meristem. Predicted location of
the vascular stem cells was calculated by the -log10 p-value of the Pearson correlation for
different vascular FANS RNA-seq datasets (PXY: A, and SMXL5: B) to the reconstructed
transcriptomes of each cell of the spatial map. C and D show H4-GFP expression (green) driven by
the PXY and by the SMXL5 promoter, respectively. Images display side views of an inflorescence
(left) and a stage 4 flower (right). For improved visualization of the GFP signal within the pedicel,
the top layers of the Z-stack were removed from the orthogonal projection. Cell walls were stained

using propidium iodide (red). Scale bars indicate 50 um.
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Sup Fig 13. Prediction of vascular domain-specific expression. Scatterplot showing the gene
expression for SMXL5 (A), and PXY (B) domain predicted by our method (y-axis) and observed by
publicly available FANS bulk RNA-seq data (x-axis) when using genes with PEP value>0.13
(n=1,306). Bottom row shows the scatterplot for the gene expression of both biological FANS bulk
RNA-seq replicates for SMXL5 (C), and PXY (D).
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