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Prenatal alcohol exposure disrupts
hippocampal sharp-wave ripple-associated
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Prenatal alcohol exposure (PAE) is among the most common
developmental insults to the nervous system and is character-
ized by memory disruption. There is a pressing need to identify
physiological alterations that help explain this memory impair-
ment. Hippocampal sharp-wave ripples (SPW-Rs) are a com-
pelling candidate for this purpose as they are the electrophysio-
logical signatures of memory consolidation. We report that rats
exposed to moderate prenatal alcohol display abnormalities re-
stricted to SPW-R episodes that manifest as decreased recruit-
ment of CA1 pyramidal cells and interneurons to SPW-R events,
altered excitation during SPW-Rs, and decreased cell assembly
activation rate. These differences observed at the single neuron
and the population level may limit the ability of memory trace
reactivation during SPW-Rs through the disruption of the in-
trinsic structure of cell sequences. Together, our results suggest
that alterations in hippocampal SPW-R spike dynamics may un-
derlie alcohol exposure-related memory deficits.
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Introduction

The dual-stage hypothesis for learning suggests that new as-
sociations are first stored within a network of hippocampal
(HPC) synapses and are then propagated throughout the brain
during high-frequency oscillatory bursts known as sharp-
wave ripples (SPW-Rs) (1-3). The “sharp-wave,” is a large
amplitude excitatory wave prominent in the local field poten-
tials of HPC subregion stratum radiatum, and the “ripple”
is a high-frequency oscillation (80-250Hz) that rides atop
the sharp-wave driven by synchronous firing among a large
population of excitatory and inhibitory HPC neuronal ensem-
bles. These events occur during moments of rest or sleep and
are largely made up of pyramidal cells, including place cells,
which fire in repeated sequences (4). This ensemble activity
is generally known as reactivation, as firing sequences from
active states are recapitulated during SPW-Rs and sometimes
replay spatially coherent paths. Importantly, precise pyra-
midal cell-interneuron interactions have been found to sup-
port SPW-R generation as the silencing of pyramidal cells or
activation of parvalbumin or somatostatin interneurons sup-
pressed SPW-Rs (5). The HPC transmits this unique signal to
the neocortex via the subiculum and retrospenial cortex (6—

8). Together, this coordination is considered the underlying
mechanism of memory consolidation via the strengthening
of neuronal ensembles (9), as attempts to disrupt SPW-Rs
have been shown to disrupt learning and memory (10-13).
Likewise, Ferndndez-Ruiz et al. (14) found that spatial mem-
ory on an alternation task can be enhanced by optogeneti-
cally prolonging the duration of SPW-Rs. They concluded
that this enhancement was likely due to the increased recruit-
ment of new and diverse neurons to replay sequences during
each SPW-R event. Correspondingly, the SPW-R associated
spike dynamics during SPW-Rs are critical for the processes
underlying learning and memory.

There is a large body of evidence that suggests that moder-
ate amounts of alcohol exposure during fetal development
(blood alcohol concentration 7-120 mg/dL) will negatively
affect learning & memory via the disruption of synaptic and
cellular networks (15-24). While the features of HPC CA3
sharp-waves are altered in-vitro slice preparations following
a first human equivalent trimester ethanol exposure (25), how
moderate PAE effects in-vivo SPW-Rs has yet to be explored.
There is much evidence to suggest that PAE might alter SPW-
Rs and replay. First, because moderate PAE during the first
and second human equivalent trimester impairs spatial mem-
ory acquisition and retention (19, 21-23, 26, 27), the un-
derlying mechanism of memory consolidation may be dis-
rupted. Secondly, moderate PAE reduces the number of HPC
fast-spiking parvalbumin™ GABAergic interneurons (28) and
disrupts HPC NMDA receptor-dependent long-term poten-
tiation (29) indicating excitatory and inhibitory signaling is
impaired. Broadly, PAE has been found to negatively affect
GABAergic interneuron migration in multiple brain regions
(discussed in (30)) which disrupts the balance between in-
hibitory/excitatory synaptic inputs later in life (31, 32). Be-
cause SPW-Rs are supported by excitatory-inhibitory interac-
tions (5), it might be expected that SPW-Rs would be altered
following PAE. Lastly, functional NMDA-receptors are nec-
essary for the formation of hippocampal sequences, largely
composed of place cells, that replay spatial trajectories (33).
The disruption of NMDA receptors (29) and place cell stabil-
ity (17) observed following PAE may negatively impact the
replay of spatial trajectories.

To explore how moderate PAE affects HPC SPW-Rs and re-
play, we recorded local field potential (LFP) and single units
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from hippocampal subregions CA1 and CA3 from 9 control
and 8 PAE adult rats over several epochs as they rested on a
holding pedestal, made laps on a linear track, and explored
an open field (see Methods for details). SPW-R and replay
events were detected while rats rested on the pedestal and
while they paused to collect rewards during the two tasks, as
SPW-Rs are most abundant during sleep or quiet wakefulness
(34). Recordings were taken from hippocampal subregions
CAl & CA3, as SPW-Rs can be detected throughout the hip-
pocampus (35, 36).

Results

Features of sharp-wave ripples. To assess if PAE affected
an inherent oscillatory aspect of SPW-R events, we mea-
sured the duration, frequency, amplitude, and SPW-R rate
from CA1 & CA3 SPW-Rs. Data from all epoch types
(pedestal, linear track, cylinder) were included as groups
spent a similar amount of time in each epoch (ps > 0.332)
Fig. S1 and had similar numbers of unique epochs y?(6, N =
1197) = 1.65,p = 0.95. As well, groups had a similar num-
ber of individual recording sessions (control: 172, PAE: 208
x2(1,N = 380) = 3.41,p = 0.06). Because SPW-R duration
is related to memory performance (14), we first measured
the duration of each SPW-R event. Example SPW-Rs are
shown in Fig. 1A-D. While all SPW-R features tested in CA1
were not significantly different between groups (ps > 0.33,
Fig. 1E-H), CA3 SPW-Rs from PAE rats had shorter dura-
tions (23ms median difference) compared with control CA3
SPW-Rs (b= —0.19,SE = 0.04,p = 0.00212, Fig. 11). Like-
wise, the fraction of CA3 long duration SPW-Rs (> 100ms),
which are indicative of diverse underling cell sequences (14),
was decreased in the PAE group (Control 60%, PAE 44%,
b= —0.57,SFE = 0.17,p = 0.00089). However, other fea-
tures of CA3 SPW-Rs such as SPW-R frequency, SPW-R am-
plitude, and SPW-R rate were not different between groups
(ps> 0.11, Fig. 1J-L). While the mechanisms that govern
the duration of CA1 SPW-Rs seem unaffected by PAE, CA3
SPW-Rs are specifically affected.

CA1 cell recruitment to SPW-Rs is reduced following
PAE. Hippocampal neurons fire synchronously during SPW-
Rs (37, 38), and longer-duration SPW-Rs were previously
found to recruit a greater number of diverse hippocampal
neurons (14). The diverse neurons that participate during
long-duration SPW-Rs are thought to take part in ongoing
neuronal sequences that assist in tasks that require higher
memory demands. Because SPW-Rs from PAE rats were
shorter, we sought to determine if neuronal recruitment dur-
ing SPW-Rs was also affected. Because the disruption of in-
terneurons has been found to reduce SPW-R duration (39),
we investigated pyramidal cell and interneuron firing during
SPW-R events.

We first classified pyramidal cells and interneurons using
physiological characteristics such as waveform duration and
autocorrelograms (Fig. S2 A-C). Proportions of CAl &
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CA3 pyramidal cells were slightly lower in the PAE group
(weighted mean proportions over sessions, CAl control:
69%, CA1 PAE: 58%, CA3 control: 75%, CA3 PAE: 60%,
Fig. S2 D-E). However, these proportions were not sig-
nificantly different between groups (ps > 0.061). To as-
sess intrinsic firing properties of putative pyramidal cells
and interneurons, we compared average firing rate, burst-
ing propensity, and coefficient of variation II (CV2) (a mea-
sure of spike regularity (40)) between groups. No differences
were identified for pyramidal and interneurons for either CA1
nor CA3 between groups in average firing rate (ps > 0.30),
bursting propensity (ps > 0.114), or CV2 (ps > 0.193). To-
gether, these findings indicate that intrinsic properties on a
single unit level are preserved following PAE.

Next, we investigated the relationship between neuronal spik-
ing and SPW-Rs (Fig. 2) as individual units display strong
recruitment into SPW-R events (41). Because CA3 SPW-
Rs from PAE rats were shorter, it follows that there would
be less diversity in the neurons participating in each SPW-
R. To first investigate this, we assessed the relationship be-
tween the neuron’s within SPW-R rank order and baseline
firing rate. Similar to previous work (14), the average rank
order of a neuron’s within-SPW-R sequence was negatively
associated with that neuron’s baseline firing rate (Fig. 2B)
indicated that lower firing neurons are more likely to be re-
cruited in the later portions of the sequence. CAl pyrami-
dal cells and interneurons and CA3 pyramidal cells from
the PAE group had a weaker relationship between SPW-R
rank order and baseline firing rate (CAl pyramidal cells:
b=4.23,SE = 0.65,p = 1.86e — 10, CAl interneurons:
b=5.55,SE = 1.01,p = 6.93e — 08, CA3 pyramidal cells
b=1.26,SF = 0.60,p = 0.0368). This finding may reflect a
disruption in the intrinsic structure of SPW-R sequences.

Next, we made peri-SPW-R rate plots for each cell and found
that for a large proportion of cells, neuronal firing in CAl
& CA3 was time-locked to SPW-Rs with the greatest mod-
ulation observed in control CA1 pyramidal cells (Fig. 2C).
Interestingly, fewer PAE CA1 pyramidal cells (PAE 22% vs.
control 69% weighted average, b = —2.16,SE = 0.46,p =
2.61e — 06) & interneurons (PAE 18% vs. control 37%
weighted average, b= —1.81,SE = 0.68,p = 0.00792) were
significantly modulated with SPW-Rs (Fig. 2D), while the
proportions of SPW-R modulated CA3 units was not sig-
nificantly different between groups (ps > 0.23). As well,
we examined the modulation strength of each unit, defined
as the absolute mean value of the z-scored center 3 bins of
each peri-SPW-R tuning curve, and found decreased modu-
lation strength of PAE CA1 interneurons (b = —1.15,SF =
0.29,p = 0.0006) and pyramidal cells (b = —2.13,SE =
0.37,p = 4.72e — 06). Consistent with the number of modu-
lated units, no significant differences in modulation strength
were found in CA3 (ps > 0.54).

Providing further evidence that PAE CAl pyramidal cells
and interneurons displayed decreased recruitment to SPW-
Rs, we assessed participation at the single unit and popu-
lation level (Fig. 3). The participation probability of indi-

Harvey etal. | PAE ripple dynamics


https://doi.org/10.1101/2021.06.29.450435
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.29.450435; this version posted July 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
— Control CA1
N
- 20
E 300
>
[&]
g 200 I 10
5
&
2 100
- W\[\M\MM\/WAMMMNN\NWWM
C
< Control CA3
T 300 v"' - 75
g 50
g 200
5
= 25
® 100
I JWMM/“‘\’\’V\(\[\/\AN\/\NW/\M
r T T T 1
-0.15 -0.075 0.0 0.075 0.15
time (sec)
E
1.0
y n.s.
G
g 0.5 200 -
(]
100 =
0.0
0.0 03 0.7 1.0 70 133 197 260
Event duration Event freq. (Hz)
(sec)
I J K
1.0 1.0
=0.00212
G
g 0.5 032-%% 0.5 00 -
[
0.03 - 100 -
0.0 0oL - 0.0

0.0 03 0.7 1.0

Event duration
(sec)

133 197 260
Event freq. (Hz)

G

PAE CAl

300

200

apnjtubeN

100

PAE CA3

300 |
- 10
200 l
5
100

apnjtubey

-0.15

-0.075 0.0

time (sec)

CA1 Control I
H -

/ 31.62 -
é é ”
5.62 -

0.075 0.15

0 13

Event amp.
(zscore)

27 40 0.0 02 03 05

Event Rate (Hz)

CA3 Control .
PAE

0 13 27 40 0.0 02 03 0.5
Event amp. Event Rate (Hz)
(zscore)

Figure 1. SPW-R examples and group comparisons. (A) Top: Shows a SPW-R example from control CA1. The white trace shows the wide-band (0-1250 Hz) signal which
is superimposed on a time by frequency spectrogram. Bottom: Shows the band-pass filtered (80-250Hz) signal with a red shading that indicates the onset and offset of the
SPW-R. (B-D) same as A but shows examples from PAE CA1, Control CA3, & PAE CA3. (E-L) Shows a comparison of SPW-R features between groups and HPC subregions.
Each empirical cumulative density function (ecdf) represents data from a single rat. Inside each ecdf plot contains a standard box plot to highlight the group comparisons.

(E-H) Data from CA1. (I-L) Data from CAS3.

vidual units was significantly reduced in PAE CA1 interneu-
rons (b= —0.69,SE = 0.33,p = 0.037) & pyramidal cells
(b=—-0.51,SF = 0.24,p = 0.034) while no significant dif-
ferences were found in CA3 units (ps > 0.15) (Fig. 3C). As
the participation probability is positively related to the aver-
age firing rate (Fig. S3A), we examined average firing rate to
rule out the possibility that the observed decrease in partici-
pation was simply due to lower firing rates of PAE units. As
discussed above, average firing rates were not significantly
different between groups (ps > 0.30) (Fig. S3B). At the pop-
ulation level, we examined the fraction of units that were re-
cruited for each SPW-R and found a smaller population of
CAl interneurons (b = —0.82,SFE = 0.37,p = 0.0268) and
pyramidal cells (b= —0.68,SE = 0.18,p = 0.000198) which
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participated in each ripple in the PAE group no significant
differences in CA3 populations (ps > 0.141 (Fig. 3B). Ad-
ditionally, we examined SPW-R phase-locking, as neurons
prefer to spike in specific SPW-R phases (41). We found that
a greater proportion of PAE CAl interneurons were phase-
locked to a particular ripple phase (b =1.65,SE =0.51,p=
0.00111), however proportions from CA1l pyramidal cells
and interneurons and pyramidal cells from CA3 were not
significantly different (ps > 0.52, Fig. S4). Together, there
is sufficient evidence to conclude that, following PAE, in-
terneurons and pyramidal cells from HPC CALl are not be-
ing recruited into SPW-R events as strongly as units from the
control group. However, because CA1 interneurons show a
greater proportion of phase-locking, there could be compen-
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Figure 2. Temporal dynamics of individual units during SPW-Rs. (A) Example LFP trace centered around a SPW-R and neuron sequence below color-coded by cell type.

Shaded segment of time represents SPW-R onset and offset.

(B) Relationship between the average firing rate and the mean rank order in SPW-Rs.

(£100ms) Z-scored firing rate plots for all putative pyramidal cells & interneurons. Top: average (with 95% confidence intervals) firing rate curves per group, region, and
cell type shows a strong modulation of control cells to SPW-Rs. Bottom: All neurons organized by the time lag that maximized the firing rate of each unit. (D) Proportion
of SPW-R modulated units. Group differences in proportions of classified units were compared with generalized linear models using rat and recording session as nesting
factors. As such, data here is represented as a single point per recording session with the size of the point representative of the number of units recorded in that session.
Weighted group averages are shown as purple lines over the scatted points. (E) Comparison of modulation strength between groups and HPC subregions. Each empirical
cumulative density function (ecdf) represents data from a single rat. Inside each ecdf plot contains a standard box plot.
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Figure 3. SPW-R participation. (A) Visualization of the participation analysis for a single recording session which produced the distributions compared in B and in C. The
number of rows represents the number of neurons, and the black squares indicate whether the neuron fired at least one spike during a given SPW-R (columns). The right
and bottom margins represent the participation probability for each neuron and the fraction of cells participating in a SPW-R respectively. Darker colors indicate a higher
probability. (B) Distribution of the fraction of recorded neurons participating in each ripple calculated as the number of neurons that fired at least 1 spike during a SPW-R
divided by the number of neurons recorded. (C) Participation probability. Group comparison of participation probability calculated as the number of SPW-Rs in which a unit

fired at least 1 spike divided by the number of SPW-Rs that occurred in the session.

satory mechanisms involved.

Excitation and inhibition during SPW-Rs. Because of the
decreased pyramidal cell and interneuron recruitment into
SPW-R events, we next sought to characterize the roles of
excitation and inhibition in local circuits during SPW-Rs
through the quantification of pyramidal and interneuron pop-
ulation activity. Because SPW-Rs are supported by precise
pyramidal cell-interneuron or excitation-inhibition dynamics
(5, 39, 42-48), we hypothesized that the relative contribution
of putative pyramidal cells and putative interneurons during
SPW-Rs will be altered in moderate PAE.

To explore this hypothesis, we assessed the ongoing popu-
lation activity of putative pyramidal cells and interneurons
during SPW-Rs (Fig. 4A) as pyramidal cells are the primary
excitatory, and interneurons are the primary inhibitory cell
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type in the mammalian brain. Similar to single units, pyrami-
dal cell and interneuron population activity increased during
SPW-Rs, which allowed the comparison of their relative con-
tribution to each SPW-R event. We found that the control
group’s CA1 SPW-Rs were more dominated by pyramidal
cell activity whereas the relative contribution of pyramidal
cell-interneurons to PAE CA1 SPW-Rs was more balanced
(b=-71.30,SE =0.51,p = 0.0119, Fig. 4B). This finding
is supported by investigating the within SPW-Rs peak pop-
ulation strength of pyramidal cells (Fig. 4C) and interneu-
rons (Fig. 4D). Population activity of pyramidal cells dur-
ing CA1 SPW-Rs was significantly higher in the control
group (b= —0.11,SE = 0.03,p = 0.00363), while interneu-
ron population activity was not significantly different be-
tween the groups (p = 0.875). Consistent with our previous
finding of decreased CA1 pyramidal cell and interneuron re-
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Figure 4. The relative contribution of excitatory and inhibitory signals during SPW-Rs. (A) Example demonstrating population activity over time and its association to SPW-Rs
and spiking activity. Top: raw LFP with shading to denote SPW-R epochs. Middle: concurrent population activity from pyramidal cells (pyr) and interneurons (int). Bottom:
Raster plot of individual units color coded by their cell classification. (B) Comparison of the within-ripple pyramidal-interneuron peak difference (pyramidal population activity
peak subtracted by interneuron population activity peak for each SPW-R epoch). Note that the control group’s scores are larger indicating that, in the control group, pyramidal
cell activity was larger relative to inhibitory activity during SPW-Rs, whereas pyramidal and interneuron activity was more similar in the PAE group. (C) Comparison of the
within ripple pyramidal peak activity (peak value of population activity within each SPW-R epoch). Note that scores from the PAE group as significantly decreased. (D)
Comparison of the within ripple interneuron peak activity (peak value of population activity within each SPW-R epoch). (E-G) Same comparisons as B-D, but for CA3. Note

that comparisons within CA3 were not significantly different.

cruitment into SPW-Rs, pyramidal cell-interneuron dynam-
ics in CA3 were unaffected across these features (Fig. 4E-G,
ps > 0.0573). Together, these findings suggest that CA1 net-
work activity is less biased towards excitation during SPW-
Rs in rats with PAE. This decreased excitation may explain
the previously discussed CA1 specific reductions in cell re-
cruitment.

Hippocampal spatial replay is unaffected by PAE. Be-
cause the CA1 unit activity during SPW-Rs is decreased in
rats with PAE, it was thought that the replay of spatial con-
tent during SPW-R events would likely be altered. To in-
vestigate hippocampal replay, we used a Bayesian approach

6 | bioRxiv

(49) where we constructed average firing rate-maps for each
recorded neuron to estimate the probability distribution of the
animal’s position on the linear track over time during SPW-R
events (50, 51). In order to be confident in our estimation of
spatial information during replay events, we first confirmed
that the quality of decoding was not significantly different
between groups (ps > 0.125, median decoding error: CAl
control 6.12 cm, CA1 PAE 5.51 cm; CA3 control 10.90 cm,
CA3 PAE 7.88 cm). To maximize the number of detected
replay events, we investigated epochs of increased multi-unit
synchronous activity (MUA) (50).

Diverging from the CAl differences in SPW-R recruitment,
awake replay of spatial trajectories in CAl & CA3 was un-

Harvey etal. | PAE ripple dynamics


https://doi.org/10.1101/2021.06.29.450435
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.29.450435; this version posted July 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
Control CA1 PAE CAl Control CA3 PAE CA3
p=0.41 p=0.50 p=0.39 p=0.34
1153 cm/sec 702 cm/sec 486 cm/sec 766 cm/sec
oot fmo LR
. m! 1 f
v . 1 n 1n
R 1 II
w0 ,
Ve Cw gl ot
nm 1 |"|I,| 111 '.' n o1

mé"
T ] L Y

time bins (20 ms)

Ayiqeqoid papooag

position [cm]

B CA1 Ccontrol .PAE .
1.0 ___, ns.
. ;
o 0.5 20 - ; i
) o
0.0 0= -
0.5 1.0 0 50 100 0 1000 2000 0 20 40
trajectory score trajectory distance (cm) trajectory speed trajectory step size (cm)
(cm/sec)
CA3 control .PAE
F H
1.0 1.0 — 1.0 .
n.S. « n.s. n.s.
Gt / N 1
El
’8 0.5 50 _; é 0.5 1000 - 0.5 20 -
’ 4 d i
00 T T 0 —I OO T IO - Té 00 T I0 - T
0.5 1.0 0 50 100 0 1000 2000 0 20 40
trajectory score trajectory distance (cm) trajectory speed trajectory step size (cm)
(cm/sec)

Figure 5. Similar replay events between groups. (A) Raster plot of spikes during example MUA events sorted by peak tuning curve position (top) and their associated
time-by-position probability derived from Bayesian decoding of position (bottom). Color shows decoded probability from 0 to > 0.1. The summed probability under the fit line
(p) and speed (cm/sec) of event are indicated above the raster plots. (B) Replay trajectory score for control (gray) and PAE (red). (C) Distance of the linear track spanned
by each replay event. (D) Speed in cm/sec of replayed trajectory from starting position to end position for all replay events. (E) Mean spatial step or jump in centimeters for
decoded positions in adjacent temporal bins. (F-I) Same as B-E, but for HPC CA3.

affected by PAE. Specifically, the decoded spatial trajecto- CA1 cell assembly activation rate is diminished by
ries (Fig. 5SA) during MUA events did not significantly differ PAE. While the awake replay of spatial trajectories was un-

in their Bayesian trajectory scores (sum of the probabilities affected by PAE, we sought to investigate sequence activ-
under the line of fit), overall trajectory distance, trajectory ity more broadly as changes observed in single-unit activity
speed, or bin-to-bin spatial step size (ps > 0.089) (Fig. 5B- during SPW-R events may affect the precise organization of
I). As well, the proportion of events demonstrating forward activity across cell networks. To investigate network activ-
and reverse trajectories, relative to the rat’s current position, ity, we used a combination of principal component and in-
was not significantly different between groups (ps > 0.927). dependent component analyses to identify and monitor co-
Finally, the proportions of significant replay events out of all activated groups of neurons often referred to as cell assem-
valid candidate events were found in similar proportions to blies or ensembles (57, 58) (Fig. 6A). Assemblies were iden-
previous studies (50, 52-56) and were not significantly dif- tified using data from an entire recording session and then
ferent between groups in either CA1 nor CA3 (ps > 0.099, investigated during SPW-R epochs. CA1l & CA3 assembly
session mean proportion: CA1 control 15%, CA1 PAE 19%, strengths, measured by their peak activation values during

CA3 control 32%, CA3 PAE 17%). Together, the evidence SPW-R epochs, were not significantly different between the
suggests that PAE does not affect awake hippocampal replay groups (ps > 0.15, Fig. 6B,E). As well, the number of units
of spatial trajectories. with significant contribution to each assembly was not af-
fected by PAE (ps > 0.156). However, the rate at which
CAl assemblies were activated during SPW-R epochs was
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Figure 6. Cell assembly properties. (A) Example demonstrating assembly activity over time and its association to SPW-Rs and spiking activity. Top: filtered LFP with red
triangles to denote SPW-R epochs. Middle: concurrent spiking activity color-coded by their associated assembly. Units not significantly associated with any assembly are
shown in light gray. Bottom: Assembly expression strength for each assembly over time. (B-D) Group comparison of within SPW-R assembly strength, rate, and proportion
of SPW-Rs that contained significant assembly peaks (R > 5) for CA1. (E-G) Same as B-D but for CA3. Each empirical cumulative density function (ecdf) represents data

from a single rat. Inside each ecdf plot contains a standard box plot.

significantly higher in the control group (b = —0.44,SE =
0.14,p = 0.0035, Fig. 6C). Similarly, the proportion of CA1
SPW-Rs that displayed at least one assembly activation was
also higher in the control group (b = —1.07,SE = 0.26,p =
5e — 05, Fig. 6D). Together, the findings suggest that PAE
partially disrupts the ability of CA1 cells to precisely coordi-
nate their firing in a way to support network activity during
SPW-R events, which may in turn interrupt the consolidation
of memories.

Discussion

The central theory behind this study was that SPW-Rs are
vital for memory consolidation through the strengthening of
neuronal ensembles (1-3, 9). Because learning and memory
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are impaired following prenatal alcohol exposure, we sought
to document changes to SPW-R characteristics in a model of
prenatal exposure.

There is a large body of evidence that has identified SPW-
Rs as a critical mechanism in learning and memory (11, 13,
50, 53, 54, 58-66). Neurological disorders that are character-
ized by deficits in learning and memory, such as PAE, may
specifically disrupt the underlying mechanisms that produce
SPW-R events. Our characterization of the SPW-R events is
consistent with this.

Here we report that rats exposed to moderate prenatal alco-
hol display abnormalities restricted to SPW-R episodes that
manifest as decreased CA3 SPW-R durations, decreased re-
cruitment of CA1 pyramidal cells and interneurons to SPW-
Rs, and decreased cell assembly activation rate. Awake hip-
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pocampal replay sequences of spatial trajectories were un-
affected by PAE. Our results suggest that alterations in hip-
pocampal SPW-R associated spike dynamics may underlie
alcohol exposure-related memory deficits.

Many characteristic oscillatory features of HPC SPW-Rs
were similar between groups, such as frequency, amplitude,
and rate. It is only in CA3 we found that SPW-R dura-
tions were slightly shorter following PAE (Fig 1I). Moderate
PAE reduces the number of HPC fast-spiking parvalbumin™
GABAergic interneurons (28) which are critical for sustain-
ing long-duration SPW-Rs (39). Thus, the lack of CA3
GABAergic interneurons in this model may underlie our find-
ing of reduced CA3 SPW-R duration. This finding contrasts
with a previous study by Krawszyk et al. (25) that found
longer sharp-wave durations of CA3 ripples following PAE.
Many reasons exist that may account for this discrepancy,
such as the difference in the timing and dosage of ethanol,
the difference in in-vivo vs. in-vitro SPW-Rs, or differences
between SPW-Rs in rats and mice (16, 67-69).

Although only subtle differences were observed in the os-
cillatory component of SPW-Rs, changes in the underlying
neuronal activity were evident. Specifically, the recruitment
of CAl pyramidal cells and interneurons to SPW-Rs was re-
duced (Fig 2 & 3). This reduction was observed in the num-
ber of cells that significantly changed their firing (Fig 2D)
as well as the magnitude of firing change during SPW-Rs
(Fig 2E). Because the recruitment of HPC neurons to SPW-
Rs is critical for learning and correct recall in spatial mem-
ory tasks (14), the decrease in recruitment limits the ability
of memory trace reactivation during SPW-Rs. This deficit
may underlie some reported issues with learning and mem-
ory such as the ability to rapidly acquire and retain spatial
information over multiple days (16, 26, 27, 70).

Because of the decrease in cell recruitment into SPW-R
events, we sought to examine the role of excitation and in-
hibition of local circuits. Consistent with previous studies
examining the HPC and cortical regions following moder-
ate PAE (25, 31, 32), the current study found an excitatory-
inhibitory imbalance in the HPC following PAE. Specifically,
there was decreased CA1 pyramidal cell population activity
relative to interneuron activity during SPW-Rs, indicating a
reduction of local excitation. While we found no difference
in CA3, Krawczyk et al. (25) found an excitatory-inhibitory
imbalance in favor of CA3 excitation following PAE.

This contradiction may be due to their higher ethanol expo-
sure which produced a peak BAC of ~ 120 mg/dl in contrast
to ours which produced a peak BAC used ~ 60 mg/dl. Al-
ternatively, the difference may be due to their patch-clamp
paired-pulse approach. Being so, it is important to high-
light the difference in the approach used here compared
to previous work. Previous studies have examined excita-
tory/inhibitory balance during SPW-Rs via the recording of
excitatory and inhibitory postsynaptic currents (EPSCs and
IPSCs) (44, 71), as recording EPSCs and IPSCs is a more
direct measure of excitatory/inhibitory balance. However,
because pyramidal cells are the primary excitatory, and in-
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terneurons are the primary inhibitory cell type in the mam-
malian brain, their population activity analyzed here should
constitute an accurate estimation of the relative excitation and
inhibition of local circuits.

Despite alterations to CAl cell recruitment and imbalance
in local excitation/inhibition dynamics, hippocampal replay
of spatial trajectories was found to not differ following PAE
(Fig 5). However, consistent with prior literature, the minor-
ity (~ 5—20%) of SPW-Rs contain significant spatial trajec-
tories (50, 52-56). The replay tested here only concerned the
spatial content of SPW-Rs, while the differences in recruit-
ment and assembly activity might reflect non-spatial domains
of replay. The issue of detecting the replay of non-spatial fea-
tures of experience is discussed in Tingley & Peyrache (72).
One would need to include every aspect of the animal’s ex-
perience in a model in order to fully examine what a candi-
date replay event is truly 'replaying.” For example, Oliva et
al. (73) discovered a subset of SPW-Rs from HPC CA2 that
reactivate and consolidate social memories. As such, while
spatial replay is unaffected by PAE, the replay of other di-
mensions of the animal’s experience might be affected.

We next asked whether co-active assembles of neurons
were similarly reactivated during SPW-Rs following PAE
(Fig 6). While the strength of reactivation was similar be-
tween groups, the rate at which CA1 neurons were reacti-
vated during SPW-Rs was decreased compared with control
CA1 neurons. This decrease suggests that HPC replay might
be incomplete, and aspects supported by computations at this
level, such as learning and memory (11, 13, 50, 53, 54, 58—
66), might be perturbed. The observed effects here may un-
derlie some alcohol exposure-related memory deficits such
as impaired spatial working memory for locations observed
in the Morris water maze (19, 21, 74) or post-acquisition
retention impairments (27). It would be important to test
whether alterations in SPW-R activity can predict memory
performance in a within-study design similar to Jones et al.
(75). Doing so would be a more direct examination of how
the alterations shown here can influence behavioral perfor-
mance.

Here we report robust changes in CA1 but not CA3 at the
single cell level, demonstrated by a decrease in participation
probability and lack of strong firing with SPW-Rs, and at
the population level, demonstrated by the reduced activation
rate during SPW-Rs. These findings are likely an outcome of
changes on the network level as intrinsic cell properties are
preserved following PAE. Instead, these changes may be due
to deficits in local CA1 pyramidal cell-interneuron interac-
tions as evident by a decrease in pyramidal cell population
activity highlighted in Fig4. It is likely that this difference in
excitation and inhibition throughout the CA1 network would
disrupt underlying SPW-R spiking, as SPW-Rs generation
and underlying spiking dynamics are supported by precise
pyramidal cell-interneuron interactions (5, 39, 42-48).

There are several unanswered questions remaining. For in-
stance, recordings were not taken while rats slept. Mem-
ory consolidation via SPW-Rs has been classically described
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to occur during non-REM sleep (discussed in Buzsaki, (4)).
Children and infants with FASD have clinically significant
sleep problems such as fragmented sleep, disordered breath-
ing during sleep, increased sleep anxiety, frequent awaken-
ings, and reduced total sleep time (76—79). These sleep prob-
lems undoubtedly disturb non-REM sleep, which in-turn may
alter the occurrence of SPW-Rs during sleep. It would be a
benefit for future studies to investigate the effects of PAE on
SPW-Rs and related neuronal activity during post-task sleep.

Another open question is how HPC subregions interact dur-
ing SPW-Rs. In this current work, while subregions were
separated, simultaneous layer-specific recordings were not
collected. The use of two-dimensional silicon probe arrays,
such as used by Oliva et al. (35), would allow the simultane-
ous investigation of the propagation of SPW-Rs across HPC
CAl, CA2, CA3, and DG subregions. This added informa-
tion would better inform how the activity spreads through-
out the subregions throughout the generation of a SPW-R,
which would allow us to address hypotheses about the inter-
action between regions. Because there is evidence of altered
long-term potentiation in the entorhinal cortex — dentate
gyrus circuit following PAE (29, 80-88), the dentate gyrus
— CAZ3 circuit following postnatal exposure (89), and the
CA3 — CAI circuit (90-93), it is hypothesized that the pre-
cise sequence of SPW-R propagation throughout the subre-
gions (discussed in detail in Oliva et al. (35)) may be altered
following PAE. For this reason, the decrease in CA3 SPW-
R duration may be due to the lack of CAl recruitment as
co-recorded CA3 ripples can occur following CA1 SPW-Rs
(35, 94). Likewise, the impact of HPC SPW-Rs on down-
stream regions of CAl such as the subiculum and retrosple-
nial cortex (6) is likely to be reduced, which indicates that the
ability of the hippocampus to convey neuronal content to the
neocortex during SPW-Rs may be severely limited following
PAE.

Conclusions. This study adds to the extensive literature de-
tailing the effects of prenatal alcohol exposure, which is
among the most common developmental insults to the ner-
vous system. It is our hope that this study helps to connect
the many studies separately examining the effects of PAE
on memory performance and synaptic and cellular proper-
ties. To do this, we examined the functional mechanisms
underlying memory consolidation via the phenomena of hip-
pocampal sharp-wave ripples and found robust alterations in
the ripple-associated spike dynamics. These differences may
underlie alcohol exposure-related memory deficits. We are
optimistic that this paradigm may provide a novel testing
platform for future therapeutic interventions.
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Materials and methods

Experimental Model and Subject Details.

Subjects. Subjects were 17 male Long-Evans rats (4—6 months old) obtained from the University of New Mexico Health
Sciences Center Animal Resource Facility. Data from all rats contributed to a previous study (17) where breeding, ethanol
consumption, behavioral training, surgical procedures, and recording procedures are described in detail. All procedures were
approved by the Institutional Animal Care and Use Committee of either the main campus or Health Sciences Center at the
University of New Mexico.

Breeding and voluntary ethanol consumption during gestation. Three to four-month-old female breeders (Harlan Industries,
Indianapolis, IN) were exposed to a voluntary ethanol drinking paradigm described in detail in previous studies (17, 21, 22, 26—
28, 74, 87, 95-99). In brief, female rats were provided 0.066% (w/v) saccharin in water for 4h each day. On days 1—2, the
saccharin water contained 0% ethanol, on days 3—4 saccharin water contained 2.5% ethanol (v/v), and on day 5 and thereafter,
saccharin water contained 5% ethanol. After two weeks of daily ethanol consumption, rats that drank at levels outside one
standard deviation of the entire group mean were removed, and the remaining rats were randomly assigned to either a saccharin
control or 5% ethanol drinking groups.

Female rats were matched with a male breeder rat until pregnancy was verified. Beginning on gestational day 1, the rat dams
were given access to saccharin (Sigma Life Sciences, St. Louis, Missouri) water containing either 0% (v/v) or 5% (v/v) ethanol
(Koptec, King of Prussia, Pennsylvania) for four hours a day. During gestation and including the 4h ethanol/saccharin drinking
period, rats were provided with ad libitum water and rat chow (Teklad global soy protein-free extruded food 2920). The daily
mean ethanol consumption throughout pregnancy was 1.96 & 0.14 g/kg) and did not vary significantly during each of the three
weeks of gestation. Daily ethanol consumption ended at birth. Offspring were aged to 4—6 months of age before behavioral
training and electrophysiological recordings took place.

Behavioral training. Each animal was exposed to each maze for several days. On the linear track, animals were trained to
continuously alternate between the two ends. Stop locations were rewarded with 1/8 piece of a fruit-loop if animals completed
a successful lap without stopping or alternating the incorrect direction. This training continued until 40 laps could be completed
within 15 minutes. For the cylinder, animals were trained to randomly forage for fruit-loop pieces that were semi-randomly
dropped into the environment until all locations were sufficiently sampled. Experimenters were aware of each animal’s group
affiliation (PAE or control) upon initiation of behavioral training.

Method Details.

Recordings. Rats were implanted with either an 8 tetrode bundle or 16 independently moveable tetrodes targeting hippocampal
subregions. Single units and local field potentials were recorded while rats collected food pellets on a linear track (120 cm by
9 cm), open cylinder environment (diameter: 76.5 cm), or resting on a small pedestal. Pedestal rest epochs lasted around 2
minutes on average.

The electrode assembly was connected to a multi-channel impedance matching unity gain preamplifier headstage. The output
was routed to a data acquisition system with 64 digitally programmable differential amplifiers (Neuralynx, Tucson, AZ, USA).
Spike waveforms above a threshold of 30—40 p'V were time-stamped, digitized at 32 kHz, and later imported into MClust
for spike sorting. Continuous wide-band signals from each channel were collected for sessions which were spike sorted with
Kilosort2. The rat’s position was tracked and sampled at 30 Hz by recording the position of light-emitting diodes that were
placed above the head.
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Quantification and Statistical Analysis.

Data analysis. Data analysis was performed by processing position, LFP, and spike data with custom Matlab code https:
//github.com/ryanharveyl/ephys_tools and further processing the data with custom-written Python code. Cus-
tom ripple analyses: https://github.com/ryanharveyl/ripple_analyses. Custom cell assembly and replay
analyses: https://github.com/ryanharveyl/cell_assembly_replay. Many computations were carried out
using NumPy (100). Statistical analysis was performed in R. Data visualization used Matplotlib (101), Seaborn (102), and
Nelpy (103).

Spike sorting. Spike sorting was performed first by using unsupervised methods from klustakwik http://klustakwik.
sourceforge.net/ or Kilosort2 https://github.com/MouseLand/Kilosort2 with manual refinement con-
ducted in MClust https://github.com/adredish/MClust-Spike-Sorting—Toolbox or Phy https://
github.com/cortex—-1lab/phy. The inspection of autocorrelation and cross-correlation functions were used as single
unit identification criteria for both manual refinement methods.

Pyramidal and interneuron classification. Cells were classified into putative pyramidal and interneurons based on their wave-
form duration obtained using a wavelet transform. Waveforms were obtained by first filtering the wideband signal between
600 and 9000 Hz, and then taking a 1ms window relative to the spike timestamp. Waveform duration was estimated using the
inverse of the maximum power associated frequency in its power spectrum; obtained from a wavelet transform (104). Single
units were then split into pyramidal cell and interneurons based on their waveform duration, > 0.5ms and < 0.5ms respectively.
A visualization of this classification is shown in Fig. S2A-C.

Measures of Intrinsic Firing Characteristics. Measures of intrinsic cell firing included average firing rate, bursting propensity
(105), and coefficient of variation IT (CV2) (40). Average firing rate was calculated by dividing the total number of spikes
over the session duration. Bursting propensity was calculated from a neuron’s autocorrelogram (Fig. S2C) by dividing the peak
value between 2ms — 9ms by the mean value between 40ms — 50ms. This value was then normalized by the peak when the
peak value was greater than the baseline, or normalized by the baseline for peak values less than the baseline. This allowed
values to range from —1 to 1, with higher positive values indicating higher bursting. CV2 was calculated as:

N-1
1 N o — 1)
cve=— $ bl 1
N ; Liy1+1; M

where ¢ is the spike time stamp at index ¢ and N is the total number of spike times. A CV2 of 1 indicates that a spike train is
similar to a sequence of intervals generated by a Poisson process (40).

Sharp-wave ripple detection. Sharp-wave-ripples were detected similar to the methods used in previous studies (106). First,
the local field potential (LFP) was extracted by re-sampling the wide-band signal from 32kHz to 1250Hz. Next, the LFP was
bandpass-filtered (FIR filter: passband: 80-250Hz) (107) and the instantaneous amplitude was then extracted using a Hilbert
transform. The instantaneous amplitude was then smoothed with a Gaussian filter (s.d.= 4ms) and Z-scored. Candidate ripple
events were then detected where the peak amplitude was > 3 s.d. for > 15ms and event edges were defined when the amplitude
extended back to the mean; overlapping events were merged. Candidate events that occurred when the animal was moving (>
4 cm/sec) were then discarded. To remove false-positive SPW-Rs, candidate events were discarded if they co-occurred with
moments of high amplitude (>0.85(r)) intracranially derived electromyography (EMG). Finally, candidate events that did not
co-occur with moments of highly synchronous multi-unit activity were discarded.

Intracranially derived electromyography. Although simultaneous EMG recordings were not taken, EMG from the neck, jaw, and
face muscles was estimated from intracranially recorded LFP by detecting the zero time-lag correlation coefficients between
300—499Hz filtered signals recorded at different sites (108, 109). Important to note, EMG was not estimated for animals
implanted with the 8-tetrode bundle drive design as tetrodes in this design are close together and share similar LFP signals
as a result. Pearson’s correlation coefficients were calculated for each pair of channels across a 25ms sliding window. The
coefficients were then averaged which created an estimated EMG signal sampled at 40Hz. Intracranially derived and direct
EMG recordings have been previously found to be highly correlated (108). Similarly, intracranial EMG is highly correlated
with motion/accelerometer measures and chewing moments (109).

Multi-unit synchronous event detection. Synchronous epochs in multi-unit spiking were detected using a method similar to
previous work (50). Spike times from all simultaneously recorded units were concatenated and binned into 1-ms windows
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and subsequently smoothed with a Gaussian kernel (s.d.= 15 ms). Epochs of synchronous spiking were identified as periods
exceeding 3 s.d. above the mean. The edges of the event were defined as when the multi-unit activity returned to the mean.
Epochs that occurred while the animal was moving (velocity of > 4 cm/sec) were then discarded. Epochs shorter than 15ms
were also discarded.

SPW-R modulation of single units. Putative pyramidal cells and interneurons with at least 100 spikes in a given session were
classified and analyzed according to their SPW-R modulation similar to previously used methods (35). First, cross-correlograms
were constructed for each unit relative to all SPW-Rs detected in a session. For this, spikes were binned in Sms bins with a
£500ms window around each SPW-R. To assess if a unit was significantly modulated by SPW-Rs, spike times were shuffled
400 times to create a null distribution where 95% upper and lower confidence intervals were calculated. Units that crossed either
above or below the confidence intervals for at least a consecutive 20m.s were classified as positively or negatively modulated.
The participation probability of each unit was calculated by the number of times a unit fired at least one spike during a SPW-R
divided by the total number of SPW-Rs detected in a session. As well, the fraction of units participating in each SPW-R was
calculated as the number of units that fired at least one spike divided by the number of recorded units. Participation was only
assessed in individual units that had > 100 spikes and > 50 SPW-Rs in a recording session.

Excitation-inhibition balance. To estimate the relative excitation-inhibition dynamics during SPW-R epochs, we monitored
pyramidal cell and interneuron population activity over time. To do this, we binned spikes from pyramidal cells and interneurons
separately into 10ms bins and smoothed each vector with a Gaussian kernel (s.d. 15ms). These two vectors were Z-scored in
order to normalize the population firing around its baseline. This normalization controlled for instances where a recording
session did not have the same number of pyramidal cells and interneurons and for inherit differences in firing characteristics
between the two populations. Thus, any increases in activity during SPW-Rs were relative to the population’s baseline firing.
This procedure is visualized in Fig. 4A. To assess the relative population activity, we identified the peak values from both
vectors during each SPW-R (within-ripple pyramidal peak $ within-ripple interneuron peak). The within-ripple interneuron
peak value was subtracted from the within-ripple pyramidal peak value for each SPW-R to estimate the relative difference
between excitation-inhibition during SPW-Rs. Values above 0 indicated a bias towards excitation, whereas values below 0
indicated a bias towards inhibition.

Cell assembly analyses. Cell assemblies were identified as previously described (110). Significant co-firing patterns were
detected using an unsupervised statistical method based on independent component analysis (ICA). Spike trains for each neuron
were binned into 25ms time windows and z-score transformed to eliminate biases due to differences in average firing rates.
Next, a principal component analysis was applied to the binned spike matrix (Z). The correlation matrix of Z was given by
C= %Z ZT and eigenvalue decomposition of C was given by:

> Aipgp) =C @)
j=1

where ); is the j th eigenvalue of C' and pj is its corresponding eigenvector. The Marcenko-Pastur law was used to estimate the
number of significant patterns embedded within Z. For a n.X B matrix, an eigenvalue exceeding \,,ax, defined by \,,ax =
(14 /n/B)?, signifies that the pattern given by the corresponding principal component explains more correlation than would
be expected if the neurons were independent of each other (111). The number of eigenvalues exceeding \,,ax was defined
as N4 and therefore represents the minimum number of distinct significant patterns in the data (110, 112). The significant
principal components were then projected back onto the binned spike data

ZproJs =PlionZ 3
Where Psrg v is the nX N4 matrix with the [V 4 principal components as columns.

Independent component analysis (ICA), using the fast ICA algorithm (113), was then applied to the matrix Zpro . That is, an
N4 X N4 unmixing matrix W was found such that the rows of the matrix Y = W7 Zpro s were as independent as possible.
The unmixing matrix W was then used to derive each cell’s weight within each assembly V = PgrgnyW.

To determine the strength of the expressed assemblies, we tracked each assembly pattern v, over time by:

Ry (t) = 2(t)T Pr2(t) @)

where z(t) is a smooth vector-function containing for each neuron its z-scored instantaneous firing-rate and Py, is the matrix
projecting z(t) to the activation-strength of the assembly pattern k at time ¢. To increase the temporal resolution, z(t) was
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obtained by convolving the spike-train of each neuron with a Gaussian kernel (s.d. = w/+/12) and then z-scoring each trace.
w was set to 25ms to match the bin-size used to identify the assembly patterns. Assembly-activations were defined as peaks
exceeding RTyrEes = 5.

Within ripple assembly strength was defined as the median peak activation value of events with R > 5 occurring during SPW-
R epochs. Only sessions with > 25 SPW-R events were considered for assembly analysis in order to assess distribution
parameters.

Detection of awake replay. During pauses in exploration, ensembles of HPC neurons re-express firing sequences corresponding
to the sequence of firing that occurred during recent navigation. These "replay" events co-occur with sharp-wave ripples and
are associated with increased hippocampal-cortical communication (6-8). A Bayesian decoding approach (see (49) for original
method) was used to detect and analyze replay events (see (50, 51, 54, 55, 114, 115) for use cases of this method to investigate
replay).

Spike counts from each multi-unit synchronous event were first binned into 20ms time bin ¢ from N units O; = (01402¢...0N¢)
(500ms time bins were used for active behavior decoding). Then the posterior probability distribution were calculated for each
t over binned positions (3 cm) along the linear track using Bayes’ rule:

Pr (O | xp) Pr (zp)
S Pr(O¢ | 2g) Pr(zg)

Pr(z, | Oy) = )

Where z,, is the center of the p — th position bin. Because we assumed Poisson firing, the prior probability, Pr(O¢|zp, ), for
the firing of each unit n is equal to

N
Ot | xp Ont | :Cpa H T>\np om eXp(*T)‘np) (6)
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where 7 is the duration of time (20 ms) and \,,;, is the mean firing rate of the n —th unit in the p — th position. We assumed
a uniform prior distribution Pr(x,) over the position bins. This implementation of Bayesian decoding was carried out using
tools in the Python package Nelpy (103).

Each replay candidate was considered a significant replay event if the series of decoded positions is more consistent with an
ordered trajectory compared to a surrogate distribution. Linear regression was used to fit a line to the posterior probability
distribution. A Bayesian replay score for a given event was defined as the sum probability mass under the fit line within a
bandwidth (of 21 cm) (50). For each candidate event, we generated 1500 surrogates of the posterior probability distribution
by circularly shifting each column of the posterior probability matrix by a random amount. This type of surrogate generation
was specifically selected as it allows for the inclusion of stationary trajectory events, which have been described previously
(116, 117). A Monte Carlo p-value for each event was obtained from the number of surrogate events with replay scores higher
than the observed score. The threshold for significance was held at 0.05. Replay events were identified from events with at
least 10 active pyramidal cells with a peak firing rate of > 1Hz and a peak to mean firing rate ratio of 1.5. As well, candidate
events with many (> 50%) inactive spike count bins were discarded.

This Bayesian decoding algorithm was also used to estimate the animal’s location during active running (speed > 4 cm/s),
similar to previous studies (50, 118-120).

Recording sessions with poor decoding accuracy of the animal’s position were excluded from the replay analysis. Decoding
accuracy was assessed with a surrogate analysis where the spike times from each unit were circularly shifted by a random
amount. This was done in order to preserve the temporal components of each spike train but randomize the spike times relative
to the position in which they fired. Linear regressions between the real and decoded position of the animals were calculated,
and a Monte Carlo p-value for each recording session was obtained using the R? values from each regression. Only sessions
with a significant Monte Carlo p-value < 0.05 were used to quantify replay.

Statistical Analysis. Statistics were computed using custom software written in R. No data were excluded based on statistical
tests. Using R packages Ime4 (121) and ImerTest (122), linear mixed-effects models were used to assess group differences. The
basic model used was feature ~ group+ (1|rat/session). Normality and Independence of errors were inspected visually
and corrected with an appropriate transform if the errors were skewed. Group differences in proportion were modeled using
generalized linear models with mixed effects and fit using the glmer() function with family = "binomial". The significance
threshold was set at & = 0.05 unless otherwise stated.
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Figure S1. Epoch duration was not significantly different between groups across all epoch types (ps > 0.3322).
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Figure S2. Physiological classification of pyramidal cell and interneurons. (A) Shows duration of the extracellular spike. Spike duration
was estimated using the inverse peak frequency of a wavelet transform of the spike waveform. The distribution spike durations is split
into two classes pyramidal cells (orange) with durations above 0.5ms and interneurons (blue) with durations below 0.5ms. (B) Shows
the spike waveforms from all pyramidal cells and interneurons with the mean trace for each class shown in black. Individual waveforms
have a transparency applied. (C) Shows the mean (black) and standard deviation (shading) spike autocorrelograms from all pyramidal
cells and interneurons. Note that pyramidal cells discharge in bursts, which is visualized by the sharp peaks near the center of the
autocorrelogram, whereas interneurons discharge in a more regular pattern. (D-E) Shows the proportion of cells per session classified
as interneurons and pyramidal per group in HPC subregions CA1 & CA3. Group differences in proportions of classified units were
compared with generalized linear models using rat and recording session as nesting factors. As such, data here is represented as a
single point per recording session with the size of the point representative of the number of units recorded in that session. Weighted
group averages are shown as pink lines over the scatted points. The weights in the weighted average are the number of units in each
session.
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Figure S3. Average firing and SPW-R participation probability. (A) Shows the positive relationship between average firing rates and
SPW-R participation probability between groups, subregions, and cell types. (B) A comparison of average firing rates between groups.
No significant group difference was detected (ps > 0.30).
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Figure S4. Phase dynamics of individual units during SPW-Rs. (A) Peri-SPW-R (+100ms) Z-scored phase plots demonstrating how
individual units are modulated by SPW-R phase. Neurons are organized by the phase that maximized the firing rate of each unit. (B)
Phase polar plots, average waveforms, and autocorrelograms of two control CA1 example cells (top: interneuron, bottom: pyramidal
cell) showing strong phase modulation to SPW-Rs. (C) Proportion plots showing the proportion of SPW-R phase modulated units.
Group differences in proportions of significant SPW-R phase modulated units, accessed with having a Rayleigh p-value below 0.05,
were compared with generalized linear models using rat and recording session as nesting factors. As such, data here is represented as
a single point per recording session with the size of the point representative of the number of units recorded in that session. Weighted
group averages are shown as purple lines over the scatted points. The weights in the weighted average are the number of units in each
session. Group weighted average proportions are listed: CA1 pyramidal: control 34%, PAE 45%; CA1 interneuron: control 15%, PAE
42%; CA3 pyramidal: control 54%, PAE 56%; CA3 interneuron: control 46%, PAE 51%
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