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Prenatal alcohol exposure (PAE) is among the most common

developmental insults to the nervous system and is character-

ized by memory disruption. There is a pressing need to identify

physiological alterations that help explain this memory impair-

ment. Hippocampal sharp-wave ripples (SPW-Rs) are a com-

pelling candidate for this purpose as they are the electrophysio-

logical signatures of memory consolidation. We report that rats

exposed to moderate prenatal alcohol display abnormalities re-

stricted to SPW-R episodes that manifest as decreased recruit-

ment of CA1 pyramidal cells and interneurons to SPW-R events,

altered excitation during SPW-Rs, and decreased cell assembly

activation rate. These differences observed at the single neuron

and the population level may limit the ability of memory trace

reactivation during SPW-Rs through the disruption of the in-

trinsic structure of cell sequences. Together, our results suggest

that alterations in hippocampal SPW-R spike dynamics may un-

derlie alcohol exposure-related memory deficits.
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Introduction

The dual-stage hypothesis for learning suggests that new as-

sociations are first stored within a network of hippocampal

(HPC) synapses and are then propagated throughout the brain

during high-frequency oscillatory bursts known as sharp-

wave ripples (SPW-Rs) (1–3). The “sharp-wave,” is a large

amplitude excitatory wave prominent in the local field poten-

tials of HPC subregion stratum radiatum, and the “ripple”

is a high-frequency oscillation (80–250Hz) that rides atop

the sharp-wave driven by synchronous firing among a large

population of excitatory and inhibitory HPC neuronal ensem-

bles. These events occur during moments of rest or sleep and

are largely made up of pyramidal cells, including place cells,

which fire in repeated sequences (4). This ensemble activity

is generally known as reactivation, as firing sequences from

active states are recapitulated during SPW-Rs and sometimes

replay spatially coherent paths. Importantly, precise pyra-

midal cell-interneuron interactions have been found to sup-

port SPW-R generation as the silencing of pyramidal cells or

activation of parvalbumin or somatostatin interneurons sup-

pressed SPW-Rs (5). The HPC transmits this unique signal to

the neocortex via the subiculum and retrospenial cortex (6–

8). Together, this coordination is considered the underlying

mechanism of memory consolidation via the strengthening

of neuronal ensembles (9), as attempts to disrupt SPW-Rs

have been shown to disrupt learning and memory (10–13).

Likewise, Fernández-Ruiz et al. (14) found that spatial mem-

ory on an alternation task can be enhanced by optogeneti-

cally prolonging the duration of SPW-Rs. They concluded

that this enhancement was likely due to the increased recruit-

ment of new and diverse neurons to replay sequences during

each SPW-R event. Correspondingly, the SPW-R associated

spike dynamics during SPW-Rs are critical for the processes

underlying learning and memory.

There is a large body of evidence that suggests that moder-

ate amounts of alcohol exposure during fetal development

(blood alcohol concentration 7-120 mg/dL) will negatively

affect learning & memory via the disruption of synaptic and

cellular networks (15–24). While the features of HPC CA3

sharp-waves are altered in-vitro slice preparations following

a first human equivalent trimester ethanol exposure (25), how

moderate PAE effects in-vivo SPW-Rs has yet to be explored.

There is much evidence to suggest that PAE might alter SPW-

Rs and replay. First, because moderate PAE during the first

and second human equivalent trimester impairs spatial mem-

ory acquisition and retention (19, 21–23, 26, 27), the un-

derlying mechanism of memory consolidation may be dis-

rupted. Secondly, moderate PAE reduces the number of HPC

fast-spiking parvalbumin+ GABAergic interneurons (28) and

disrupts HPC NMDA receptor-dependent long-term poten-

tiation (29) indicating excitatory and inhibitory signaling is

impaired. Broadly, PAE has been found to negatively affect

GABAergic interneuron migration in multiple brain regions

(discussed in (30)) which disrupts the balance between in-

hibitory/excitatory synaptic inputs later in life (31, 32). Be-

cause SPW-Rs are supported by excitatory-inhibitory interac-

tions (5), it might be expected that SPW-Rs would be altered

following PAE. Lastly, functional NMDA-receptors are nec-

essary for the formation of hippocampal sequences, largely

composed of place cells, that replay spatial trajectories (33).

The disruption of NMDA receptors (29) and place cell stabil-

ity (17) observed following PAE may negatively impact the

replay of spatial trajectories.

To explore how moderate PAE affects HPC SPW-Rs and re-

play, we recorded local field potential (LFP) and single units

Harvey et al. | bioRχiv | June 30, 2021 | 1–18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.29.450435doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450435
http://creativecommons.org/licenses/by-nc-nd/4.0/


from hippocampal subregions CA1 and CA3 from 9 control

and 8 PAE adult rats over several epochs as they rested on a

holding pedestal, made laps on a linear track, and explored

an open field (see Methods for details). SPW-R and replay

events were detected while rats rested on the pedestal and

while they paused to collect rewards during the two tasks, as

SPW-Rs are most abundant during sleep or quiet wakefulness

(34). Recordings were taken from hippocampal subregions

CA1 & CA3, as SPW-Rs can be detected throughout the hip-

pocampus (35, 36).

Results

Features of sharp-wave ripples. To assess if PAE affected

an inherent oscillatory aspect of SPW-R events, we mea-

sured the duration, frequency, amplitude, and SPW-R rate

from CA1 & CA3 SPW-Rs. Data from all epoch types

(pedestal, linear track, cylinder) were included as groups

spent a similar amount of time in each epoch (ps ≥ 0.332)

Fig. S1 and had similar numbers of unique epochs χ2(6,N =
1197) = 1.65,p = 0.95. As well, groups had a similar num-

ber of individual recording sessions (control: 172, PAE: 208

χ2(1,N = 380) = 3.41,p = 0.06). Because SPW-R duration

is related to memory performance (14), we first measured

the duration of each SPW-R event. Example SPW-Rs are

shown in Fig. 1A-D. While all SPW-R features tested in CA1

were not significantly different between groups (ps ≥ 0.33,

Fig. 1E-H), CA3 SPW-Rs from PAE rats had shorter dura-

tions (23ms median difference) compared with control CA3

SPW-Rs (b = −0.19,SE = 0.04,p = 0.00212, Fig. 1I). Like-

wise, the fraction of CA3 long duration SPW-Rs (≥ 100ms),

which are indicative of diverse underling cell sequences (14),

was decreased in the PAE group (Control 60%, PAE 44%,

b = −0.57,SE = 0.17,p = 0.00089). However, other fea-

tures of CA3 SPW-Rs such as SPW-R frequency, SPW-R am-

plitude, and SPW-R rate were not different between groups

(ps≥ 0.11, Fig. 1J-L). While the mechanisms that govern

the duration of CA1 SPW-Rs seem unaffected by PAE, CA3

SPW-Rs are specifically affected.

CA1 cell recruitment to SPW-Rs is reduced following

PAE. Hippocampal neurons fire synchronously during SPW-

Rs (37, 38), and longer-duration SPW-Rs were previously

found to recruit a greater number of diverse hippocampal

neurons (14). The diverse neurons that participate during

long-duration SPW-Rs are thought to take part in ongoing

neuronal sequences that assist in tasks that require higher

memory demands. Because SPW-Rs from PAE rats were

shorter, we sought to determine if neuronal recruitment dur-

ing SPW-Rs was also affected. Because the disruption of in-

terneurons has been found to reduce SPW-R duration (39),

we investigated pyramidal cell and interneuron firing during

SPW-R events.

We first classified pyramidal cells and interneurons using

physiological characteristics such as waveform duration and

autocorrelograms (Fig. S2 A-C). Proportions of CA1 &

CA3 pyramidal cells were slightly lower in the PAE group

(weighted mean proportions over sessions, CA1 control:

69%, CA1 PAE: 58%, CA3 control: 75%, CA3 PAE: 60%,

Fig. S2 D-E). However, these proportions were not sig-

nificantly different between groups (ps ≥ 0.061). To as-

sess intrinsic firing properties of putative pyramidal cells

and interneurons, we compared average firing rate, burst-

ing propensity, and coefficient of variation II (CV2) (a mea-

sure of spike regularity (40)) between groups. No differences

were identified for pyramidal and interneurons for either CA1

nor CA3 between groups in average firing rate (ps ≥ 0.30),

bursting propensity (ps ≥ 0.114), or CV2 (ps ≥ 0.193). To-

gether, these findings indicate that intrinsic properties on a

single unit level are preserved following PAE.

Next, we investigated the relationship between neuronal spik-

ing and SPW-Rs (Fig. 2) as individual units display strong

recruitment into SPW-R events (41). Because CA3 SPW-

Rs from PAE rats were shorter, it follows that there would

be less diversity in the neurons participating in each SPW-

R. To first investigate this, we assessed the relationship be-

tween the neuron’s within SPW-R rank order and baseline

firing rate. Similar to previous work (14), the average rank

order of a neuron’s within-SPW-R sequence was negatively

associated with that neuron’s baseline firing rate (Fig. 2B)

indicated that lower firing neurons are more likely to be re-

cruited in the later portions of the sequence. CA1 pyrami-

dal cells and interneurons and CA3 pyramidal cells from

the PAE group had a weaker relationship between SPW-R

rank order and baseline firing rate (CA1 pyramidal cells:

b = 4.23,SE = 0.65,p = 1.86e − 10, CA1 interneurons:

b = 5.55,SE = 1.01,p = 6.93e − 08, CA3 pyramidal cells

b = 1.26,SE = 0.60,p = 0.0368). This finding may reflect a

disruption in the intrinsic structure of SPW-R sequences.

Next, we made peri-SPW-R rate plots for each cell and found

that for a large proportion of cells, neuronal firing in CA1

& CA3 was time-locked to SPW-Rs with the greatest mod-

ulation observed in control CA1 pyramidal cells (Fig. 2C).

Interestingly, fewer PAE CA1 pyramidal cells (PAE 22% vs.

control 69% weighted average, b = −2.16,SE = 0.46,p =
2.61e − 06) & interneurons (PAE 18% vs. control 37%

weighted average, b = −1.81,SE = 0.68,p = 0.00792) were

significantly modulated with SPW-Rs (Fig. 2D), while the

proportions of SPW-R modulated CA3 units was not sig-

nificantly different between groups (ps ≥ 0.23). As well,

we examined the modulation strength of each unit, defined

as the absolute mean value of the z-scored center 3 bins of

each peri-SPW-R tuning curve, and found decreased modu-

lation strength of PAE CA1 interneurons (b = −1.15,SE =
0.29,p = 0.0006) and pyramidal cells (b = −2.13,SE =
0.37,p = 4.72e − 06). Consistent with the number of modu-

lated units, no significant differences in modulation strength

were found in CA3 (ps ≥ 0.54).

Providing further evidence that PAE CA1 pyramidal cells

and interneurons displayed decreased recruitment to SPW-

Rs, we assessed participation at the single unit and popu-

lation level (Fig. 3). The participation probability of indi-
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Figure 1. SPW-R examples and group comparisons. (A) Top: Shows a SPW-R example from control CA1. The white trace shows the wide-band (0-1250 Hz) signal which

is superimposed on a time by frequency spectrogram. Bottom: Shows the band-pass filtered (80-250Hz) signal with a red shading that indicates the onset and offset of the

SPW-R. (B-D) same as A but shows examples from PAE CA1, Control CA3, & PAE CA3. (E-L) Shows a comparison of SPW-R features between groups and HPC subregions.

Each empirical cumulative density function (ecdf) represents data from a single rat. Inside each ecdf plot contains a standard box plot to highlight the group comparisons.

(E-H) Data from CA1. (I-L) Data from CA3.

vidual units was significantly reduced in PAE CA1 interneu-

rons (b = −0.69,SE = 0.33,p = 0.037) & pyramidal cells

(b = −0.51,SE = 0.24,p = 0.034) while no significant dif-

ferences were found in CA3 units (ps ≥ 0.15) (Fig. 3C). As

the participation probability is positively related to the aver-

age firing rate (Fig. S3A), we examined average firing rate to

rule out the possibility that the observed decrease in partici-

pation was simply due to lower firing rates of PAE units. As

discussed above, average firing rates were not significantly

different between groups (ps ≥ 0.30) (Fig. S3B). At the pop-

ulation level, we examined the fraction of units that were re-

cruited for each SPW-R and found a smaller population of

CA1 interneurons (b = −0.82,SE = 0.37,p = 0.0268) and

pyramidal cells (b = −0.68,SE = 0.18,p = 0.000198) which

participated in each ripple in the PAE group no significant

differences in CA3 populations (ps ≥ 0.141 (Fig. 3B). Ad-

ditionally, we examined SPW-R phase-locking, as neurons

prefer to spike in specific SPW-R phases (41). We found that

a greater proportion of PAE CA1 interneurons were phase-

locked to a particular ripple phase (b = 1.65,SE = 0.51,p =

0.00111), however proportions from CA1 pyramidal cells

and interneurons and pyramidal cells from CA3 were not

significantly different (ps ≥ 0.52, Fig. S4). Together, there

is sufficient evidence to conclude that, following PAE, in-

terneurons and pyramidal cells from HPC CA1 are not be-

ing recruited into SPW-R events as strongly as units from the

control group. However, because CA1 interneurons show a

greater proportion of phase-locking, there could be compen-
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Figure 2. Temporal dynamics of individual units during SPW-Rs. (A) Example LFP trace centered around a SPW-R and neuron sequence below color-coded by cell type.

Shaded segment of time represents SPW-R onset and offset. (B) Relationship between the average firing rate and the mean rank order in SPW-Rs. (C) Peri-SPW-R

(±100ms) Z-scored firing rate plots for all putative pyramidal cells & interneurons. Top: average (with 95% confidence intervals) firing rate curves per group, region, and

cell type shows a strong modulation of control cells to SPW-Rs. Bottom: All neurons organized by the time lag that maximized the firing rate of each unit. (D) Proportion

of SPW-R modulated units. Group differences in proportions of classified units were compared with generalized linear models using rat and recording session as nesting

factors. As such, data here is represented as a single point per recording session with the size of the point representative of the number of units recorded in that session.

Weighted group averages are shown as purple lines over the scatted points. (E) Comparison of modulation strength between groups and HPC subregions. Each empirical

cumulative density function (ecdf) represents data from a single rat. Inside each ecdf plot contains a standard box plot.

4 | bioRχiv Harvey et al. | PAE ripple dynamics

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.29.450435doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450435
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1

0.0

0.5

1.0

ec
d

f

B ca1 int

0 1

ca1 pyr

0 1

0.0

0.5

1.0

ec
d

f

ca3 int

0 1

ca3 pyr

0 1

0.0

0.5

1.0

ec
d

f

C ca1 int

0 1

ca1 pyr

0 1

0.0

0.5

1.0

ec
d

f

ca3 int

0 1

ca3 pyr

0

1

p=0.026

0

1

p=0.0002

0

1

n.s.

0

1

n.s.

0

1

p=0.037

0

1

p=0.033

0

1

n.s.

0

1

n.s.

fraction of cells

fraction of cells

participation probability

participation probability

≥1 

spk/SPW-R

control

PAE

control

PAE

Figure 3. SPW-R participation. (A) Visualization of the participation analysis for a single recording session which produced the distributions compared in B and in C. The
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divided by the number of neurons recorded. (C) Participation probability. Group comparison of participation probability calculated as the number of SPW-Rs in which a unit

fired at least 1 spike divided by the number of SPW-Rs that occurred in the session.

satory mechanisms involved.

Excitation and inhibition during SPW-Rs. Because of the

decreased pyramidal cell and interneuron recruitment into

SPW-R events, we next sought to characterize the roles of

excitation and inhibition in local circuits during SPW-Rs

through the quantification of pyramidal and interneuron pop-

ulation activity. Because SPW-Rs are supported by precise

pyramidal cell-interneuron or excitation-inhibition dynamics

(5, 39, 42–48), we hypothesized that the relative contribution

of putative pyramidal cells and putative interneurons during

SPW-Rs will be altered in moderate PAE.

To explore this hypothesis, we assessed the ongoing popu-

lation activity of putative pyramidal cells and interneurons

during SPW-Rs (Fig. 4A) as pyramidal cells are the primary

excitatory, and interneurons are the primary inhibitory cell

type in the mammalian brain. Similar to single units, pyrami-

dal cell and interneuron population activity increased during

SPW-Rs, which allowed the comparison of their relative con-

tribution to each SPW-R event. We found that the control

group’s CA1 SPW-Rs were more dominated by pyramidal

cell activity whereas the relative contribution of pyramidal

cell-interneurons to PAE CA1 SPW-Rs was more balanced

(b = −71.30,SE = 0.51,p = 0.0119, Fig. 4B). This finding

is supported by investigating the within SPW-Rs peak pop-

ulation strength of pyramidal cells (Fig. 4C) and interneu-

rons (Fig. 4D). Population activity of pyramidal cells dur-

ing CA1 SPW-Rs was significantly higher in the control

group (b = −0.11,SE = 0.03,p = 0.00363), while interneu-

ron population activity was not significantly different be-

tween the groups (p = 0.875). Consistent with our previous

finding of decreased CA1 pyramidal cell and interneuron re-
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Figure 4. The relative contribution of excitatory and inhibitory signals during SPW-Rs. (A) Example demonstrating population activity over time and its association to SPW-Rs

and spiking activity. Top: raw LFP with shading to denote SPW-R epochs. Middle: concurrent population activity from pyramidal cells (pyr) and interneurons (int). Bottom:

Raster plot of individual units color coded by their cell classification. (B) Comparison of the within-ripple pyramidal-interneuron peak difference (pyramidal population activity

peak subtracted by interneuron population activity peak for each SPW-R epoch). Note that the control group’s scores are larger indicating that, in the control group, pyramidal

cell activity was larger relative to inhibitory activity during SPW-Rs, whereas pyramidal and interneuron activity was more similar in the PAE group. (C) Comparison of the

within ripple pyramidal peak activity (peak value of population activity within each SPW-R epoch). Note that scores from the PAE group as significantly decreased. (D)

Comparison of the within ripple interneuron peak activity (peak value of population activity within each SPW-R epoch). (E-G) Same comparisons as B-D, but for CA3. Note

that comparisons within CA3 were not significantly different.

cruitment into SPW-Rs, pyramidal cell–interneuron dynam-

ics in CA3 were unaffected across these features (Fig. 4E-G,

ps ≥ 0.0573). Together, these findings suggest that CA1 net-

work activity is less biased towards excitation during SPW-

Rs in rats with PAE. This decreased excitation may explain

the previously discussed CA1 specific reductions in cell re-

cruitment.

Hippocampal spatial replay is unaffected by PAE. Be-

cause the CA1 unit activity during SPW-Rs is decreased in

rats with PAE, it was thought that the replay of spatial con-

tent during SPW-R events would likely be altered. To in-

vestigate hippocampal replay, we used a Bayesian approach

(49) where we constructed average firing rate-maps for each

recorded neuron to estimate the probability distribution of the

animal’s position on the linear track over time during SPW-R

events (50, 51). In order to be confident in our estimation of

spatial information during replay events, we first confirmed

that the quality of decoding was not significantly different

between groups (ps ≥ 0.125, median decoding error: CA1

control 6.12 cm, CA1 PAE 5.51 cm; CA3 control 10.90 cm,

CA3 PAE 7.88 cm). To maximize the number of detected

replay events, we investigated epochs of increased multi-unit

synchronous activity (MUA) (50).

Diverging from the CA1 differences in SPW-R recruitment,

awake replay of spatial trajectories in CA1 & CA3 was un-
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Figure 5. Similar replay events between groups. (A) Raster plot of spikes during example MUA events sorted by peak tuning curve position (top) and their associated

time-by-position probability derived from Bayesian decoding of position (bottom). Color shows decoded probability from 0 to ≥ 0.1. The summed probability under the fit line

(p) and speed (cm/sec) of event are indicated above the raster plots. (B) Replay trajectory score for control (gray) and PAE (red). (C) Distance of the linear track spanned

by each replay event. (D) Speed in cm/sec of replayed trajectory from starting position to end position for all replay events. (E) Mean spatial step or jump in centimeters for

decoded positions in adjacent temporal bins. (F-I) Same as B-E, but for HPC CA3.

affected by PAE. Specifically, the decoded spatial trajecto-

ries (Fig. 5A) during MUA events did not significantly differ

in their Bayesian trajectory scores (sum of the probabilities

under the line of fit), overall trajectory distance, trajectory

speed, or bin-to-bin spatial step size (ps ≥ 0.089) (Fig. 5B-

I). As well, the proportion of events demonstrating forward

and reverse trajectories, relative to the rat’s current position,

was not significantly different between groups (ps ≥ 0.927).

Finally, the proportions of significant replay events out of all

valid candidate events were found in similar proportions to

previous studies (50, 52–56) and were not significantly dif-

ferent between groups in either CA1 nor CA3 (ps ≥ 0.099,

session mean proportion: CA1 control 15%, CA1 PAE 19%,

CA3 control 32%, CA3 PAE 17%). Together, the evidence

suggests that PAE does not affect awake hippocampal replay

of spatial trajectories.

CA1 cell assembly activation rate is diminished by

PAE. While the awake replay of spatial trajectories was un-

affected by PAE, we sought to investigate sequence activ-

ity more broadly as changes observed in single-unit activity

during SPW-R events may affect the precise organization of

activity across cell networks. To investigate network activ-

ity, we used a combination of principal component and in-

dependent component analyses to identify and monitor co-

activated groups of neurons often referred to as cell assem-

blies or ensembles (57, 58) (Fig. 6A). Assemblies were iden-

tified using data from an entire recording session and then

investigated during SPW-R epochs. CA1 & CA3 assembly

strengths, measured by their peak activation values during

SPW-R epochs, were not significantly different between the

groups (ps ≥ 0.15, Fig. 6B,E). As well, the number of units

with significant contribution to each assembly was not af-

fected by PAE (ps ≥ 0.156). However, the rate at which

CA1 assemblies were activated during SPW-R epochs was
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Figure 6. Cell assembly properties. (A) Example demonstrating assembly activity over time and its association to SPW-Rs and spiking activity. Top: filtered LFP with red
triangles to denote SPW-R epochs. Middle: concurrent spiking activity color-coded by their associated assembly. Units not significantly associated with any assembly are
shown in light gray. Bottom: Assembly expression strength for each assembly over time. (B-D) Group comparison of within SPW-R assembly strength, rate, and proportion
of SPW-Rs that contained significant assembly peaks (R > 5) for CA1. (E-G) Same as B-D but for CA3. Each empirical cumulative density function (ecdf) represents data
from a single rat. Inside each ecdf plot contains a standard box plot.

significantly higher in the control group (b = −0.44,SE =
0.14,p = 0.0035, Fig. 6C). Similarly, the proportion of CA1

SPW-Rs that displayed at least one assembly activation was

also higher in the control group (b = −1.07,SE = 0.26,p =
5e − 05, Fig. 6D). Together, the findings suggest that PAE

partially disrupts the ability of CA1 cells to precisely coordi-

nate their firing in a way to support network activity during

SPW-R events, which may in turn interrupt the consolidation

of memories.

Discussion

The central theory behind this study was that SPW-Rs are

vital for memory consolidation through the strengthening of

neuronal ensembles (1–3, 9). Because learning and memory

are impaired following prenatal alcohol exposure, we sought

to document changes to SPW-R characteristics in a model of

prenatal exposure.

There is a large body of evidence that has identified SPW-

Rs as a critical mechanism in learning and memory (11, 13,

50, 53, 54, 58–66). Neurological disorders that are character-

ized by deficits in learning and memory, such as PAE, may

specifically disrupt the underlying mechanisms that produce

SPW-R events. Our characterization of the SPW-R events is

consistent with this.

Here we report that rats exposed to moderate prenatal alco-

hol display abnormalities restricted to SPW-R episodes that

manifest as decreased CA3 SPW-R durations, decreased re-

cruitment of CA1 pyramidal cells and interneurons to SPW-

Rs, and decreased cell assembly activation rate. Awake hip-
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pocampal replay sequences of spatial trajectories were un-

affected by PAE. Our results suggest that alterations in hip-

pocampal SPW-R associated spike dynamics may underlie

alcohol exposure-related memory deficits.

Many characteristic oscillatory features of HPC SPW-Rs

were similar between groups, such as frequency, amplitude,

and rate. It is only in CA3 we found that SPW-R dura-

tions were slightly shorter following PAE (Fig 1I). Moderate

PAE reduces the number of HPC fast-spiking parvalbumin+

GABAergic interneurons (28) which are critical for sustain-

ing long-duration SPW-Rs (39). Thus, the lack of CA3

GABAergic interneurons in this model may underlie our find-

ing of reduced CA3 SPW-R duration. This finding contrasts

with a previous study by Krawszyk et al. (25) that found

longer sharp-wave durations of CA3 ripples following PAE.

Many reasons exist that may account for this discrepancy,

such as the difference in the timing and dosage of ethanol,

the difference in in-vivo vs. in-vitro SPW-Rs, or differences

between SPW-Rs in rats and mice (16, 67–69).

Although only subtle differences were observed in the os-

cillatory component of SPW-Rs, changes in the underlying

neuronal activity were evident. Specifically, the recruitment

of CA1 pyramidal cells and interneurons to SPW-Rs was re-

duced (Fig 2 & 3). This reduction was observed in the num-

ber of cells that significantly changed their firing (Fig 2D)

as well as the magnitude of firing change during SPW-Rs

(Fig 2E). Because the recruitment of HPC neurons to SPW-

Rs is critical for learning and correct recall in spatial mem-

ory tasks (14), the decrease in recruitment limits the ability

of memory trace reactivation during SPW-Rs. This deficit

may underlie some reported issues with learning and mem-

ory such as the ability to rapidly acquire and retain spatial

information over multiple days (16, 26, 27, 70).

Because of the decrease in cell recruitment into SPW-R

events, we sought to examine the role of excitation and in-

hibition of local circuits. Consistent with previous studies

examining the HPC and cortical regions following moder-

ate PAE (25, 31, 32), the current study found an excitatory-

inhibitory imbalance in the HPC following PAE. Specifically,

there was decreased CA1 pyramidal cell population activity

relative to interneuron activity during SPW-Rs, indicating a

reduction of local excitation. While we found no difference

in CA3, Krawczyk et al. (25) found an excitatory-inhibitory

imbalance in favor of CA3 excitation following PAE.

This contradiction may be due to their higher ethanol expo-

sure which produced a peak BAC of ∼ 120 mg/dl in contrast

to ours which produced a peak BAC used ∼ 60 mg/dl. Al-

ternatively, the difference may be due to their patch-clamp

paired-pulse approach. Being so, it is important to high-

light the difference in the approach used here compared

to previous work. Previous studies have examined excita-

tory/inhibitory balance during SPW-Rs via the recording of

excitatory and inhibitory postsynaptic currents (EPSCs and

IPSCs) (44, 71), as recording EPSCs and IPSCs is a more

direct measure of excitatory/inhibitory balance. However,

because pyramidal cells are the primary excitatory, and in-

terneurons are the primary inhibitory cell type in the mam-

malian brain, their population activity analyzed here should

constitute an accurate estimation of the relative excitation and

inhibition of local circuits.

Despite alterations to CA1 cell recruitment and imbalance

in local excitation/inhibition dynamics, hippocampal replay

of spatial trajectories was found to not differ following PAE

(Fig 5). However, consistent with prior literature, the minor-

ity (∼ 5−20%) of SPW-Rs contain significant spatial trajec-

tories (50, 52–56). The replay tested here only concerned the

spatial content of SPW-Rs, while the differences in recruit-

ment and assembly activity might reflect non-spatial domains

of replay. The issue of detecting the replay of non-spatial fea-

tures of experience is discussed in Tingley & Peyrache (72).

One would need to include every aspect of the animal’s ex-

perience in a model in order to fully examine what a candi-

date replay event is truly ’replaying.’ For example, Oliva et

al. (73) discovered a subset of SPW-Rs from HPC CA2 that

reactivate and consolidate social memories. As such, while

spatial replay is unaffected by PAE, the replay of other di-

mensions of the animal’s experience might be affected.

We next asked whether co-active assembles of neurons

were similarly reactivated during SPW-Rs following PAE

(Fig 6). While the strength of reactivation was similar be-

tween groups, the rate at which CA1 neurons were reacti-

vated during SPW-Rs was decreased compared with control

CA1 neurons. This decrease suggests that HPC replay might

be incomplete, and aspects supported by computations at this

level, such as learning and memory (11, 13, 50, 53, 54, 58–

66), might be perturbed. The observed effects here may un-

derlie some alcohol exposure-related memory deficits such

as impaired spatial working memory for locations observed

in the Morris water maze (19, 21, 74) or post-acquisition

retention impairments (27). It would be important to test

whether alterations in SPW-R activity can predict memory

performance in a within-study design similar to Jones et al.

(75). Doing so would be a more direct examination of how

the alterations shown here can influence behavioral perfor-

mance.

Here we report robust changes in CA1 but not CA3 at the

single cell level, demonstrated by a decrease in participation

probability and lack of strong firing with SPW-Rs, and at

the population level, demonstrated by the reduced activation

rate during SPW-Rs. These findings are likely an outcome of

changes on the network level as intrinsic cell properties are

preserved following PAE. Instead, these changes may be due

to deficits in local CA1 pyramidal cell-interneuron interac-

tions as evident by a decrease in pyramidal cell population

activity highlighted in Fig4. It is likely that this difference in

excitation and inhibition throughout the CA1 network would

disrupt underlying SPW-R spiking, as SPW-Rs generation

and underlying spiking dynamics are supported by precise

pyramidal cell–interneuron interactions (5, 39, 42–48).

There are several unanswered questions remaining. For in-

stance, recordings were not taken while rats slept. Mem-

ory consolidation via SPW-Rs has been classically described
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to occur during non-REM sleep (discussed in Buzsáki, (4)).

Children and infants with FASD have clinically significant

sleep problems such as fragmented sleep, disordered breath-

ing during sleep, increased sleep anxiety, frequent awaken-

ings, and reduced total sleep time (76–79). These sleep prob-

lems undoubtedly disturb non-REM sleep, which in-turn may

alter the occurrence of SPW-Rs during sleep. It would be a

benefit for future studies to investigate the effects of PAE on

SPW-Rs and related neuronal activity during post-task sleep.

Another open question is how HPC subregions interact dur-

ing SPW-Rs. In this current work, while subregions were

separated, simultaneous layer-specific recordings were not

collected. The use of two-dimensional silicon probe arrays,

such as used by Oliva et al. (35), would allow the simultane-

ous investigation of the propagation of SPW-Rs across HPC

CA1, CA2, CA3, and DG subregions. This added informa-

tion would better inform how the activity spreads through-

out the subregions throughout the generation of a SPW-R,

which would allow us to address hypotheses about the inter-

action between regions. Because there is evidence of altered

long-term potentiation in the entorhinal cortex → dentate

gyrus circuit following PAE (29, 80–88), the dentate gyrus

→ CA3 circuit following postnatal exposure (89), and the

CA3 → CA1 circuit (90–93), it is hypothesized that the pre-

cise sequence of SPW-R propagation throughout the subre-

gions (discussed in detail in Oliva et al. (35)) may be altered

following PAE. For this reason, the decrease in CA3 SPW-

R duration may be due to the lack of CA1 recruitment as

co-recorded CA3 ripples can occur following CA1 SPW-Rs

(35, 94). Likewise, the impact of HPC SPW-Rs on down-

stream regions of CA1 such as the subiculum and retrosple-

nial cortex (6) is likely to be reduced, which indicates that the

ability of the hippocampus to convey neuronal content to the

neocortex during SPW-Rs may be severely limited following

PAE.

Conclusions. This study adds to the extensive literature de-

tailing the effects of prenatal alcohol exposure, which is

among the most common developmental insults to the ner-

vous system. It is our hope that this study helps to connect

the many studies separately examining the effects of PAE

on memory performance and synaptic and cellular proper-

ties. To do this, we examined the functional mechanisms

underlying memory consolidation via the phenomena of hip-

pocampal sharp-wave ripples and found robust alterations in

the ripple-associated spike dynamics. These differences may

underlie alcohol exposure-related memory deficits. We are

optimistic that this paradigm may provide a novel testing

platform for future therapeutic interventions.
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Data and Code Availability. The data-set used for this study is available at OSF: https://doi.org/10.17605/

OSF.IO/PM89Y. Custom code is available at https://github.com/ryanharvey1/ephys_tools,https:

//github.com/ryanharvey1/ripple_analyses, and https://github.com/ryanharvey1/cell_

assembly_replay.

Materials and methods

Experimental Model and Subject Details.

Subjects. Subjects were 17 male Long-Evans rats (4—6 months old) obtained from the University of New Mexico Health

Sciences Center Animal Resource Facility. Data from all rats contributed to a previous study (17) where breeding, ethanol

consumption, behavioral training, surgical procedures, and recording procedures are described in detail. All procedures were

approved by the Institutional Animal Care and Use Committee of either the main campus or Health Sciences Center at the

University of New Mexico.

Breeding and voluntary ethanol consumption during gestation. Three to four-month-old female breeders (Harlan Industries,

Indianapolis, IN) were exposed to a voluntary ethanol drinking paradigm described in detail in previous studies (17, 21, 22, 26–

28, 74, 87, 95–99). In brief, female rats were provided 0.066% (w/v) saccharin in water for 4h each day. On days 1—2, the

saccharin water contained 0% ethanol, on days 3—4 saccharin water contained 2.5% ethanol (v/v), and on day 5 and thereafter,

saccharin water contained 5% ethanol. After two weeks of daily ethanol consumption, rats that drank at levels outside one

standard deviation of the entire group mean were removed, and the remaining rats were randomly assigned to either a saccharin

control or 5% ethanol drinking groups.

Female rats were matched with a male breeder rat until pregnancy was verified. Beginning on gestational day 1, the rat dams

were given access to saccharin (Sigma Life Sciences, St. Louis, Missouri) water containing either 0% (v/v) or 5% (v/v) ethanol

(Koptec, King of Prussia, Pennsylvania) for four hours a day. During gestation and including the 4h ethanol/saccharin drinking

period, rats were provided with ad libitum water and rat chow (Teklad global soy protein-free extruded food 2920). The daily

mean ethanol consumption throughout pregnancy was 1.96 ± 0.14 g/kg) and did not vary significantly during each of the three

weeks of gestation. Daily ethanol consumption ended at birth. Offspring were aged to 4—6 months of age before behavioral

training and electrophysiological recordings took place.

Behavioral training. Each animal was exposed to each maze for several days. On the linear track, animals were trained to

continuously alternate between the two ends. Stop locations were rewarded with 1/8 piece of a fruit-loop if animals completed

a successful lap without stopping or alternating the incorrect direction. This training continued until 40 laps could be completed

within 15 minutes. For the cylinder, animals were trained to randomly forage for fruit-loop pieces that were semi-randomly

dropped into the environment until all locations were sufficiently sampled. Experimenters were aware of each animal’s group

affiliation (PAE or control) upon initiation of behavioral training.

Method Details.

Recordings. Rats were implanted with either an 8 tetrode bundle or 16 independently moveable tetrodes targeting hippocampal

subregions. Single units and local field potentials were recorded while rats collected food pellets on a linear track (120 cm by

9 cm), open cylinder environment (diameter: 76.5 cm), or resting on a small pedestal. Pedestal rest epochs lasted around 2

minutes on average.

The electrode assembly was connected to a multi-channel impedance matching unity gain preamplifier headstage. The output

was routed to a data acquisition system with 64 digitally programmable differential amplifiers (Neuralynx, Tucson, AZ, USA).

Spike waveforms above a threshold of 30–40 µV were time-stamped, digitized at 32 kHz, and later imported into MClust

for spike sorting. Continuous wide-band signals from each channel were collected for sessions which were spike sorted with

Kilosort2. The rat’s position was tracked and sampled at 30 Hz by recording the position of light-emitting diodes that were

placed above the head.
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Quantification and Statistical Analysis.

Data analysis. Data analysis was performed by processing position, LFP, and spike data with custom Matlab code https:

//github.com/ryanharvey1/ephys_tools and further processing the data with custom-written Python code. Cus-

tom ripple analyses: https://github.com/ryanharvey1/ripple_analyses. Custom cell assembly and replay

analyses: https://github.com/ryanharvey1/cell_assembly_replay. Many computations were carried out

using NumPy (100). Statistical analysis was performed in R. Data visualization used Matplotlib (101), Seaborn (102), and

Nelpy (103).

Spike sorting. Spike sorting was performed first by using unsupervised methods from klustakwik http://klustakwik.

sourceforge.net/ or Kilosort2 https://github.com/MouseLand/Kilosort2 with manual refinement con-

ducted in MClust https://github.com/adredish/MClust-Spike-Sorting-Toolbox or Phy https://

github.com/cortex-lab/phy. The inspection of autocorrelation and cross-correlation functions were used as single

unit identification criteria for both manual refinement methods.

Pyramidal and interneuron classification. Cells were classified into putative pyramidal and interneurons based on their wave-

form duration obtained using a wavelet transform. Waveforms were obtained by first filtering the wideband signal between

600 and 9000 Hz, and then taking a 1ms window relative to the spike timestamp. Waveform duration was estimated using the

inverse of the maximum power associated frequency in its power spectrum; obtained from a wavelet transform (104). Single

units were then split into pyramidal cell and interneurons based on their waveform duration, > 0.5ms and < 0.5ms respectively.

A visualization of this classification is shown in Fig. S2A-C.

Measures of Intrinsic Firing Characteristics. Measures of intrinsic cell firing included average firing rate, bursting propensity

(105), and coefficient of variation II (CV2) (40). Average firing rate was calculated by dividing the total number of spikes

over the session duration. Bursting propensity was calculated from a neuron’s autocorrelogram (Fig. S2C) by dividing the peak

value between 2ms − 9ms by the mean value between 40ms − 50ms. This value was then normalized by the peak when the

peak value was greater than the baseline, or normalized by the baseline for peak values less than the baseline. This allowed

values to range from −1 to 1, with higher positive values indicating higher bursting. CV2 was calculated as:

CV 2 =
1

N

N−1
∑

i=1

2|Ii+1 − Ii|
Ii+1 + Ii

(1)

where t is the spike time stamp at index i and N is the total number of spike times. A CV2 of 1 indicates that a spike train is

similar to a sequence of intervals generated by a Poisson process (40).

Sharp-wave ripple detection. Sharp-wave-ripples were detected similar to the methods used in previous studies (106). First,

the local field potential (LFP) was extracted by re-sampling the wide-band signal from 32kHz to 1250Hz. Next, the LFP was

bandpass-filtered (FIR filter: passband: 80-250Hz) (107) and the instantaneous amplitude was then extracted using a Hilbert

transform. The instantaneous amplitude was then smoothed with a Gaussian filter (s.d.= 4ms) and Z-scored. Candidate ripple

events were then detected where the peak amplitude was > 3 s.d. for ≥ 15ms and event edges were defined when the amplitude

extended back to the mean; overlapping events were merged. Candidate events that occurred when the animal was moving (>
4 cm/sec) were then discarded. To remove false-positive SPW-Rs, candidate events were discarded if they co-occurred with

moments of high amplitude (>0.85(r)) intracranially derived electromyography (EMG). Finally, candidate events that did not

co-occur with moments of highly synchronous multi-unit activity were discarded.

Intracranially derived electromyography. Although simultaneous EMG recordings were not taken, EMG from the neck, jaw, and

face muscles was estimated from intracranially recorded LFP by detecting the zero time-lag correlation coefficients between

300–499Hz filtered signals recorded at different sites (108, 109). Important to note, EMG was not estimated for animals

implanted with the 8-tetrode bundle drive design as tetrodes in this design are close together and share similar LFP signals

as a result. Pearson’s correlation coefficients were calculated for each pair of channels across a 25ms sliding window. The

coefficients were then averaged which created an estimated EMG signal sampled at 40Hz. Intracranially derived and direct

EMG recordings have been previously found to be highly correlated (108). Similarly, intracranial EMG is highly correlated

with motion/accelerometer measures and chewing moments (109).

Multi-unit synchronous event detection. Synchronous epochs in multi-unit spiking were detected using a method similar to

previous work (50). Spike times from all simultaneously recorded units were concatenated and binned into 1-ms windows
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and subsequently smoothed with a Gaussian kernel (s.d.= 15 ms). Epochs of synchronous spiking were identified as periods

exceeding 3 s.d. above the mean. The edges of the event were defined as when the multi-unit activity returned to the mean.

Epochs that occurred while the animal was moving (velocity of > 4 cm/sec) were then discarded. Epochs shorter than 15ms

were also discarded.

SPW-R modulation of single units. Putative pyramidal cells and interneurons with at least 100 spikes in a given session were

classified and analyzed according to their SPW-R modulation similar to previously used methods (35). First, cross-correlograms

were constructed for each unit relative to all SPW-Rs detected in a session. For this, spikes were binned in 5ms bins with a

±500ms window around each SPW-R. To assess if a unit was significantly modulated by SPW-Rs, spike times were shuffled

400 times to create a null distribution where 95% upper and lower confidence intervals were calculated. Units that crossed either

above or below the confidence intervals for at least a consecutive 20ms were classified as positively or negatively modulated.

The participation probability of each unit was calculated by the number of times a unit fired at least one spike during a SPW-R

divided by the total number of SPW-Rs detected in a session. As well, the fraction of units participating in each SPW-R was

calculated as the number of units that fired at least one spike divided by the number of recorded units. Participation was only

assessed in individual units that had ≥ 100 spikes and ≥ 50 SPW-Rs in a recording session.

Excitation-inhibition balance. To estimate the relative excitation-inhibition dynamics during SPW-R epochs, we monitored

pyramidal cell and interneuron population activity over time. To do this, we binned spikes from pyramidal cells and interneurons

separately into 10ms bins and smoothed each vector with a Gaussian kernel (s.d. 15ms). These two vectors were Z-scored in

order to normalize the population firing around its baseline. This normalization controlled for instances where a recording

session did not have the same number of pyramidal cells and interneurons and for inherit differences in firing characteristics

between the two populations. Thus, any increases in activity during SPW-Rs were relative to the population’s baseline firing.

This procedure is visualized in Fig. 4A. To assess the relative population activity, we identified the peak values from both

vectors during each SPW-R (within-ripple pyramidal peak $ within-ripple interneuron peak). The within-ripple interneuron

peak value was subtracted from the within-ripple pyramidal peak value for each SPW-R to estimate the relative difference

between excitation-inhibition during SPW-Rs. Values above 0 indicated a bias towards excitation, whereas values below 0

indicated a bias towards inhibition.

Cell assembly analyses. Cell assemblies were identified as previously described (110). Significant co-firing patterns were

detected using an unsupervised statistical method based on independent component analysis (ICA). Spike trains for each neuron

were binned into 25ms time windows and z-score transformed to eliminate biases due to differences in average firing rates.

Next, a principal component analysis was applied to the binned spike matrix (Z). The correlation matrix of Z was given by

C = 1

n
ZZT and eigenvalue decomposition of C was given by:

n
∑

j=1

λjpjpT
j = C (2)

where λj is the jth eigenvalue of C and pj is its corresponding eigenvector. The Marcenko-Pastur law was used to estimate the

number of significant patterns embedded within Z. For a nXB matrix, an eigenvalue exceeding λmax, defined by λmax =
(1+

√

n/B)2, signifies that the pattern given by the corresponding principal component explains more correlation than would

be expected if the neurons were independent of each other (111). The number of eigenvalues exceeding λmax was defined

as NA and therefore represents the minimum number of distinct significant patterns in the data (110, 112). The significant

principal components were then projected back onto the binned spike data

ZP ROJ = P T
SIGN Z (3)

Where PSIGN is the nXNA matrix with the NA principal components as columns.

Independent component analysis (ICA), using the fast ICA algorithm (113), was then applied to the matrix ZP ROJ . That is, an

NAXNA unmixing matrix W was found such that the rows of the matrix Y = W T ZP ROJ were as independent as possible.

The unmixing matrix W was then used to derive each cell’s weight within each assembly V = PSIGN W .

To determine the strength of the expressed assemblies, we tracked each assembly pattern vk over time by:

Rk(t) = z(t)T Pkz(t) (4)

where z(t) is a smooth vector-function containing for each neuron its z-scored instantaneous firing-rate and Pk is the matrix

projecting z(t) to the activation-strength of the assembly pattern k at time t. To increase the temporal resolution, z(t) was
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obtained by convolving the spike-train of each neuron with a Gaussian kernel (s.d. = w/
√

12) and then z-scoring each trace.

w was set to 25ms to match the bin-size used to identify the assembly patterns. Assembly-activations were defined as peaks

exceeding RT HRES = 5.

Within ripple assembly strength was defined as the median peak activation value of events with R > 5 occurring during SPW-

R epochs. Only sessions with ≥ 25 SPW-R events were considered for assembly analysis in order to assess distribution

parameters.

Detection of awake replay. During pauses in exploration, ensembles of HPC neurons re-express firing sequences corresponding

to the sequence of firing that occurred during recent navigation. These "replay" events co-occur with sharp-wave ripples and

are associated with increased hippocampal-cortical communication (6–8). A Bayesian decoding approach (see (49) for original

method) was used to detect and analyze replay events (see (50, 51, 54, 55, 114, 115) for use cases of this method to investigate

replay).

Spike counts from each multi-unit synchronous event were first binned into 20ms time bin t from N units Ot = (o1to2t...oNt)
(500ms time bins were used for active behavior decoding). Then the posterior probability distribution were calculated for each

t over binned positions (3 cm) along the linear track using Bayes’ rule:

Pr(xp | Ot) =
Pr(Ot | xp)Pr(xp)

∑P
q=1

Pr(Ot | xq)Pr(xq)
(5)

Where xp is the center of the p − th position bin. Because we assumed Poisson firing, the prior probability, Pr(Ot|xp,), for

the firing of each unit n is equal to

Pr(Ot | xp) =
N
∏

n=1

Pr(ont | xp,) ∝
N
∏

n=1

(τλnp)ont exp(−τλnp) (6)

where τ is the duration of time (20 ms) and λnp is the mean firing rate of the n − th unit in the p − th position. We assumed

a uniform prior distribution Pr(xp) over the position bins. This implementation of Bayesian decoding was carried out using

tools in the Python package Nelpy (103).

Each replay candidate was considered a significant replay event if the series of decoded positions is more consistent with an

ordered trajectory compared to a surrogate distribution. Linear regression was used to fit a line to the posterior probability

distribution. A Bayesian replay score for a given event was defined as the sum probability mass under the fit line within a

bandwidth (of 21 cm) (50). For each candidate event, we generated 1500 surrogates of the posterior probability distribution

by circularly shifting each column of the posterior probability matrix by a random amount. This type of surrogate generation

was specifically selected as it allows for the inclusion of stationary trajectory events, which have been described previously

(116, 117). A Monte Carlo p-value for each event was obtained from the number of surrogate events with replay scores higher

than the observed score. The threshold for significance was held at 0.05. Replay events were identified from events with at

least 10 active pyramidal cells with a peak firing rate of ≥ 1Hz and a peak to mean firing rate ratio of 1.5. As well, candidate

events with many (> 50%) inactive spike count bins were discarded.

This Bayesian decoding algorithm was also used to estimate the animal’s location during active running (speed > 4 cm/s),

similar to previous studies (50, 118–120).

Recording sessions with poor decoding accuracy of the animal’s position were excluded from the replay analysis. Decoding

accuracy was assessed with a surrogate analysis where the spike times from each unit were circularly shifted by a random

amount. This was done in order to preserve the temporal components of each spike train but randomize the spike times relative

to the position in which they fired. Linear regressions between the real and decoded position of the animals were calculated,

and a Monte Carlo p-value for each recording session was obtained using the R2 values from each regression. Only sessions

with a significant Monte Carlo p-value < 0.05 were used to quantify replay.

Statistical Analysis. Statistics were computed using custom software written in R. No data were excluded based on statistical

tests. Using R packages lme4 (121) and lmerTest (122), linear mixed-effects models were used to assess group differences. The

basic model used was feature ∼ group + (1|rat/session). Normality and Independence of errors were inspected visually

and corrected with an appropriate transform if the errors were skewed. Group differences in proportion were modeled using

generalized linear models with mixed effects and fit using the glmer() function with family = "binomial". The significance

threshold was set at α = 0.05 unless otherwise stated.
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Figure S1. Epoch duration was not significantly different between groups across all epoch types (ps ≥ 0.3322).
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Figure S2. Physiological classification of pyramidal cell and interneurons. (A) Shows duration of the extracellular spike. Spike duration

was estimated using the inverse peak frequency of a wavelet transform of the spike waveform. The distribution spike durations is split

into two classes pyramidal cells (orange) with durations above 0.5ms and interneurons (blue) with durations below 0.5ms. (B) Shows

the spike waveforms from all pyramidal cells and interneurons with the mean trace for each class shown in black. Individual waveforms

have a transparency applied. (C) Shows the mean (black) and standard deviation (shading) spike autocorrelograms from all pyramidal

cells and interneurons. Note that pyramidal cells discharge in bursts, which is visualized by the sharp peaks near the center of the

autocorrelogram, whereas interneurons discharge in a more regular pattern. (D-E) Shows the proportion of cells per session classified

as interneurons and pyramidal per group in HPC subregions CA1 & CA3. Group differences in proportions of classified units were

compared with generalized linear models using rat and recording session as nesting factors. As such, data here is represented as a

single point per recording session with the size of the point representative of the number of units recorded in that session. Weighted

group averages are shown as pink lines over the scatted points. The weights in the weighted average are the number of units in each

session.
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Figure S3. Average firing and SPW-R participation probability. (A) Shows the positive relationship between average firing rates and

SPW-R participation probability between groups, subregions, and cell types. (B) A comparison of average firing rates between groups.

No significant group difference was detected (ps ≥ 0.30).
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Figure S4. Phase dynamics of individual units during SPW-Rs. (A) Peri-SPW-R (±100ms) Z-scored phase plots demonstrating how

individual units are modulated by SPW-R phase. Neurons are organized by the phase that maximized the firing rate of each unit. (B)

Phase polar plots, average waveforms, and autocorrelograms of two control CA1 example cells (top: interneuron, bottom: pyramidal

cell) showing strong phase modulation to SPW-Rs. (C) Proportion plots showing the proportion of SPW-R phase modulated units.

Group differences in proportions of significant SPW-R phase modulated units, accessed with having a Rayleigh p-value below 0.05,

were compared with generalized linear models using rat and recording session as nesting factors. As such, data here is represented as

a single point per recording session with the size of the point representative of the number of units recorded in that session. Weighted

group averages are shown as purple lines over the scatted points. The weights in the weighted average are the number of units in each

session. Group weighted average proportions are listed: CA1 pyramidal: control 34%, PAE 45%; CA1 interneuron: control 15%, PAE

42%; CA3 pyramidal: control 54%, PAE 56%; CA3 interneuron: control 46%, PAE 51%
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