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Abstract 

Gene set based phenotype enrichment analysis (detecting phenotypic terms that emerge as significant 

in a set of genes) can improve the rate of genetic diagnoses amongst other research purposes. To 

facilitate diverse phenotype analysis, we developed PhenoExam, a freely available R package for tool 

developers and a web interface for users, which performs: (1) phenotype and disease enrichment 

analysis on a gene set;  (2) measures statistically significant phenotype similarities between gene sets 

and (3) detects significant differential phenotypes or disease terms across different databases. 

PhenoExam achieves these tasks by integrating databases or resources such as the HPO, MGD, 

CRISPRbrain, CTD, ClinGen, CGI, OrphaNET, UniProt, PsyGeNET, and Genomics England Panel 

App. PhenoExam accepts both human and mouse genes as input. We developed PhenoExam to assist a 

variety of users, including clinicians, computational biologists and geneticists. It can be used to support 

the validation of new gene-to-disease discoveries, and in the detection of differential phenotypes 

between two gene sets (a phenotype linked to one of the gene set but no to the other) that are useful for 

differential diagnosis and  to improve genetic panels. We validated PhenoExam performance through 

simulations and its application to real cases. We demonstrate that PhenoExam is effective in 

distinguishing gene sets or Mendelian diseases with very similar phenotypes through projecting the 

disease-causing genes into their annotation-based phenotypic spaces. We also tested the tool with early 

onset Parkinson’s disease and dystonia genes, to show phenotype-level similarities but also potentially 

interesting differences. More specifically, we used PhenoExam to validate computationally predicted 

new genes potentially associated with epilepsy. Therefore, PhenoExam effectively discovers links 

between phenotypic terms across annotation databases through effective integration. The R package is 

available at https://github.com/alexcis95/PhenoExam and the Web tool is accessible at 

https://snca.atica.um.es/PhenoExamWeb/. 
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Introduction 

One of the main aims of clinical genetics research is to discover new gene-disease 

associations [1-6].  A disease is commonly diagnosed through the identification of a set of 

symptoms and signs associated with a particular and recognized clinical phenotype [8-10]. 

While some phenotypes are due to the impact of environmental factors, if a disease is inherited 

then the genetic variation within the individual also explains the phenotype at least partially 

[11]. Here, we introduce PhenoExam, a software tool to assist in the identification of new gene-

phenotype associations. PhenoExam focuses on genetic diseases, harnessing all available gene-

phenotype annotation resources to provide a comprehensive gene set and differential gene set 

annotation approach.  

Over the last decade, we have seen attempts to  standardize our knowledge of genetic 

diseases by  formally linking genes to phenotypes using standard terminology, as exemplified 

by The Human Phenotype Ontology (HPO) [12] and The Mouse Genome Database (MGD) 

[13]. HPO is a standardized set of human phenotypic terms that are organized hierarchically 

with a directed acyclic graph and have been used to annotate all clinical entries in the Online 

Mendelian Inheritance in Man database (OMIM). OMIM [14] is a continuously updated 

catalog of human genes, genetic diseases and traits, with a particular focus on the molecular 

relationship between genetic and phenotypic variation. On the other hand, MGD is the 

manually curated consensus representation of genotype to phenotype information including 

detailed information about genes and gene products. It is the authoritative source for biological 

reference data sets related to mouse genes, gene functions, phenotypes, and mouse models of 

human disease. MGD has more terms and detailed phenotypic information than HPO because 

scientists can perform a wider set of experiments on mice. These features increase our 

knowledge and can help to prioritize novel gene-phenotype relationships in humans. Beyond 

phenotype databases, PhenoExam also includes gene-disease association databases, namely 

UniProt [15], The Comparative Toxicogenomics Database (CTD) [16], Orphanet [17], The 

Clinical Genome Resource (ClinGen) [18], The Genomics England PanelApp [19], The Cancer 

Genome Interpreter (CGI) [20] and PsyGeNET [21]. It also includes CRISPRbrain [22], the 

first genome-wide CRISPR interference and CRISPR activation screen in human neurons so 

we may study the potential association of phenotypic terms to specific functions of these genes 

in human neurons. 

Apart from being a general-purpose tool for phenotype-based gene sets annotation, 

PhenoExam can also help in the diagnosis of genetic diseases. Currently fewer than half of 
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patients with suspected Mendelian disorders (genetic diseases primarily resulting due to 

alterations in one gene) receive a molecular diagnosis [23]. Diseases with a genetic basis are 

usually diagnosed by looking for causal mutations in a panel of genes specifically associated 

with the disease. Gathering all phenotypes associated with the genes in a panel delivers a 

general phenotype-level description beyond the disease under study. To improve the accuracy 

of genetic diagnosis, we need methods to appropriately evaluate the gene level phenotypic 

similarity between candidate diseases. Moreover, the identification of differential phenotypes 

between diseases can also help towards more precise diagnostics. The identification of 

exclusive and/or shared phenotypes between gene panels can demonstrate common 

pathophysiology [24] but it can also help to create genetic links between diseases through their 

gene sets [25-26]. We can find numerous methods based on measuring disease-based 

phenotypic similarities by comparing sets of HPO terms e.g., Phenomizer [27], HPOSim [28], 

and PhenoSimWeb [29], Table 1 offers a detailed comparison amongst all tools. We also have 

modPhEA [30], an online resource for phenotype enrichment analysis. modPheEA helps with 

the gene-based phenotype enrichment analysis but just focused on one phenotype database at 

a time and without considering conditional analyses (two gene sets). 

 

Table 1. Comparison of PhenoExam and other similar tools. <X= means the tool provides the 

function and <-= means the tool does not. <*= means the similarity scores are between 

phenotype terms and not between gene sets as does PhenoExam. 

  

 

Phenomizer obtains the phenotype semantic similarity between sets of phenotypes based on 

the HPO ontology but does not rely on the use of the genes implicated in each phenotype. 

HPOSim is an R package that implements widely used ontology-based semantic similarity 

measurements to quantify phenotype similarities, and phenotype-level enrichment analysis 

using a hypergeometric test and the NOA method [31]. PhenoSimWeb is an online tool for 

measuring and visualizing phenotype similarities using HPO, uses a path-constrained 

Information Content-based measurement in three steps and exploits the PageRank algorithm 

[32]. Nevertheless, these tools did not take some important concepts into consideration. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450324doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PhenoExam contributes to the field with new features. These include the ability to detect 

differential phenotypes between pairs of gene sets: phenotypes that are significant within one 

gene set only, useful for detecting featured phenotypic terms between gene sets to distinguish 

better between similar diseases. It also combines phenotype and disease terms. This is 

important to link phenotypes to specific diseases. Finally, it tries to make the interpretation of 

the results of the phenotypic analysis easier by using simple scores to rank significant terms as 

well as summary messages and interactive graphs. We also found a knowledge management 

platform integrating and standardizing data about disease-associated genes from multiple 

sources called DisGeNET [33]. While being similar to PhenoExam in finding gene-disease 

associations, DisGeNET does not, however, offer facilities for gene-based phenotype 

enrichment analysis or for detecting phenotypic similarities between pairs of gene sets.  

PhenoExam uses as the basic substrate for gene-phenotype and gene-disease associations a 

number of configurable databases both in human and mouse that the user can tailor and adapt 

depending on the type of analysis to be performed.  In PhenoExam, the phenotypic similarity 

between two groups of genes is performed by assessing the statistical significance of the 

Phenotypic Overlap Ratio (POR) between those (i.e. the number of common enriched 

phenotypes between the gene sets) (See methods Phenotype scores calculation).  

We developed PhenoExam intending to support a variety of target users, mainly 

clinicians, computational biologists and geneticists. PhenoExam can help clinicians with 

finding phenotypes which are exclusive to diseases amongst a set of possible genetic disease 

candidates whose diagnosis is based on gene sequencing panels (Case 1). PhenoExam is also 

useful for geneticists as it can be used to improve their in-house-maintained gene panels but 

also to more accurately select genes involved in specific genetic studies (Case 2). Finally, 

computational biologists can use PhenoExam to discover new information about gene sets of 

interest thanks to the integration of multiple phenotype and disease databases and to compare 

phenotypes between known genes associated with a disease and the validation of 

computationally predicted disease genes (Case 2).  
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Design and implementation 

Database Integration 

The set of analyses performed by PhenoExam is based on manually curated phenotypes 

language like HPO, gene-disease ones as OMIM but also screening-based databases like 

CRISPRBrain, amongst many others (see table 2 for a complete list, description, and potential 

use). PhenoExam can perform a variety of analyses (Figure 1). The integration of these 

different databases is possible thanks to a well-established standardization process of genes and 

phenotypes used by PhenoExam. This includes using the HGCN Gene Nomenclature 

Committee (HGCN) gene naming system as the common way of identifying all human genes, 

and the definition of a new annotation term within each annotation database to indicate the 

HGCN genes that do not have any phenotype term associated in the database of interest. The 

list of HGCN genes was obtained from  [34] https://www.genenames.org/download/statistics-

and-files/. The HPO gene-phenotype association list was obtained from 

https://archive.monarchinitiative.org/latest/tsv/gene_associations/. The new no-phenotype 

association (HPO:XXX No HPO phenotype) was added to HPO for all protein coding genes 

with no known association to phenotype. For MGD, MP terms from orthologous genes to 

humans were obtained from http://www.informatics.jax.org/downloads/reports/index.html#go, 

and the relationship between  human genes - mouse genes - mouse phenotype were collected 

using the files (MGI_PhenoGenoMP.rpt, HMD_HumanPhenotype.rpt, 

VOC_MammalianPhenotype.rpt). A new no- phenotype association (MP:XXX No phenotype) 

was created and all the protein coding genes without a relation to phenotype were linked to this 

term. For CRISPRBrain, the gene-phenotype relationships were obtained from 

https://crisprbrain.org/simple-screen/. For the generation of this database, the phenotypes were 

codified in three classes for each CRISPR analysis: association to the phenotype (Positive-Hit 

and Negative-Hit genes in CRISPRBrain), positive association (Positive-Hit genes in 

CRISPRBrain) and negative association (Negative-Hit genes in CRISPRBrain). This was 

accomplished according to the Hit-Class label in CRISPRbrain (Positive-Hit, Negative-Hit). 

The non-relationship phenotype (CRB:XXX No phenotype was created and all the protein 

coding genes that were not related to any phenotype were related to this term. We integrate into 

PhenoExam only the information from curated databases (UniProt, CTD, Orphanet, ClinGen, 

The Genomics England PanelApp, CGI and PsyGeNET). Then the non-relationship disease 

term (CXXX No diseases associated) was created and all the protein coding genes that were 
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not related to any disease were related to this term. After standardization process, the current 

release (v1.0) of PhenoExam contains, 659634 gene-phenotype associations, involving 20209 

genes, 18159 different phenotypes and 9348 different diseases (see details in Table 2). 

 

 

Figure 1. Schematic representation of PhenoExam integrated databases and offered analyses. 

We can use PhenoExam with human or mouse genes. PhenoExam annotation databases include 

HPO, MGI, CRISPRBrain, CTD, ClinGen, OrphaNET, UniProtm PsyGeNET, CGI and 

Genomics England. The tool offers a variety of analyses. Given a gene set of interest, G, the 

user can evaluate its enrichment for phenotypes and disease in all or a subset of the offered 

databases. Given two gene sets, G and G’, the user can evaluate whether the phenotype terms 

enriched in G are also enriched in G’ when G and G’ do not overlap e.g., G’ was predicted 

from G, with the Conditional Enrichment Analysis. If G and G’ show some gene overlap, the 

user can assess whether the gene sets show any differential phenotypes through the Differential 

Phenotype Analysis.  
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Table 2. Databases usable through PhenoExam and size of each in terms of genes, phenotypes 

and associations. Numbers reported are final, after preprocessing and unification of gene names 

across databases.  

 

Phenotype scores calculation 

Phenotype Enrichment Analysis on a gene set G 

PhenoExam obtains a list of statistically significant enriched phenotypes in a given set 

of gene G within a phenotype/disease database annotation of reference D. In order to calculate 

whether a gene set G shows enrichment in a given phenotypic term p belonging to D, let g be 

the number of genes in G associated with p. Let also gdb be the number of genes associated 

with p and GDB the total number of genes in the database, we model the enrichment probability 

with a hypergeometric distribution such that: 

 

 

 

 

 

� � = � =  ����   ��� − ��� � − �   ��� �   

Source Genes Phenotypes Diseases Assocs Summary 

HGCN 19197 - - - All protein coding genes 

HPO 19248 7861 - 186290 Human gene-phenotype associations 

MGD 17900 10243 - 242313 Mouse gene-phenotype associations 

CRISPRBrain 19275 55 - 43481 Cell screen gene-phenotype 
associations 

ClinGen 19198 - 420 19851 Human gene-disease associations 

Genomics 
England 

19230 - 5538 24336 Human gene-disease associations 

CTD 19636 - 6843 58660 Human gene-disease associations 

CGI 19198 - 177 20361 Human gene-disease (cancer) 
associations 

UniProt 19204 - 3868 21101 Human gene-disease associations 

Orphanet 19262 - 3183 2228 Human gene-disease (rare) 
associations 

PsyGeNET 19248 - 82 20952 Human gene-disease associations 

ALL 20209 18159 9348 544022 PhenoExam tool 
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Any phenotype with p < 0.05 will be enriched in the G gene set. We compute this probability 

for each phenotypic term ph associated with 1 gene or more in G, and use these probabilities 

as p-values. PhenoExamWeb reports the raw and Bonferroni adjusted p.values. 

 

Phenotypic Overlap Ratio score 

PhenoExam´s approach to measuring the similarity between two gene sets G and G´, 

within an annotation database D, is based on a score called the Phenotypic Overlap Ratio 

(POR). Let Gp be the number of significantly enriched terms in D for genes in G, and 

analogously for G’p. The POR is the Jaccard index on the agreement between the subsets of 

significant phenotypes: 

 

 

 

POR (G,G’) takes values in [0,1], resulting in 0 when no phenotype is shared and 1 when the 

sets share all phenotypes. 

 

Statistically significant Phenotypic Overlap Ratio 

PhenoExam assess whether the POR between gene sets G and G’ is statistically 

significant by means of randomization. We will have two modalities of the POR, depending on 

whether G and G’ share genes or, on the contrary, they are disjunct (e.g., G’ was predicted from 

G).  When G and G’ are thought to share genes,  POR (G,G’) is compared with POR (G,R) and 

with POR (G’,R’), where R has the same size as G and R’ the same as G’. Genes in both R and 

R’ are chosen randomly within the whole set of protein coding genes. We repeat this process 

for m random gene sets  �1, �2, . . . , ��  and  �′
1, �′

2, . . . , �′�  to obtain an empirical p-value 

with the proportion of random gene sets whose POR is greater than the observed one. On the 

other hand, when G’ is obtained by using G as input of the generation process, we say G’ is 

conditioned to G. Therefore, the significance test of the POR(G, G’) is reduced now to obtain 

an empirical p-value based on the proportion of times a randomized POR(G,R), with R any of  �1, �2, . . . , ��  all with the same size of G while keeping G constant, shows higher values 

than the observed POR(G, G’). 
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Relaxed Phenotypic Overlap Ratio 

The POR only considers phenotypes that were assessed as statistically significant. 

Sometimes, it may be of interest to relax this restriction to incorporate all phenotype/disease 

terms associated with G. In this case, the score is called Relaxed Phenotypic Overlap Ratio 

(RPOR). It is calculated in a similar way to the POR but with all phenotypes, whether these are 

enriched or not. In the same way, as with the POR, we can determine whether the RPOR is 

statistically significant by using randomization. 

 

Phenotype relevance association analysis for gene sets  

Once it has been determined that two sets of G and G' genes share some enrichment of 

phenotypic terms, and focusing only on the shared terms, we can measure the correlation of the 

number of genes of each phenotypic term as measured in G and G’ by a linear regression model 

and report the R2 as the strength of this correlation together with the association p-value. Higher 

values of R2 would suggest a linear association between importance of phenotypic terms in G 

and importance of the same genes in G’. 

 

Generation of the web interface 

We have developed PhenoExamWeb, a web based tool for performing phenotypic 

analyses using R. PhenoExamWeb shiny app is accessible at 

https://snca.atica.um.es/PhenoExamWeb/. R and shiny R package [35] were used for front-end 

scripting of the web interface. R script was used for back-end execution and analysis with the 

development environment of R version 3.6.3. The R package is available at 

https://github.com/alexcis95/PhenoExam.  

Analysis with PhenoExamWeb 

PhenoExamWeb requires gen symbols, human or mouse, as the input file. Then, we 

need to select the type of analysis: Phenotype Enrichment Analysis (One gene set) or Phenotype 

Comparator (Two gene sets). We also need to specify the database or databases. The workflow 

of PhenoExamWeb is summarized in Figure 2. Users can follow the web tutorial on the website 

(https://snca.atica.um.es/PhenoExamWeb/#section-help) and the R package tutorial on GitHub 

(https://rawcdn.githack.com/alexcis95/PhenoExamWebTutorials/b3d40397e0f41af5ff504623

50fdc81369479810/tutorial.html).    
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Figure 2. PhenoExamWeb shiny app possible workflows. (a) Phenotype Enrichment Analysis: 

requires one gene symbol file as input file, which gene symbol nomenclature (Organism 

nomenclature: Human or Mouse) we use, the phenotype/disease annotation databases to be 

considered and the top number of terms shown in the graph. The results generate an interactive 

table and graph which include phenotypes, genes implicated with each term and p.values as 

output. (b) The Phenotype Comparator requires two gene sets as input together with the gene 

symbol nomenclature (Human or Mouse) used, the annotation databases of interest for the 

analysis and the number of random tests to obtain empirical p-values, the relevant p-value 
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threshold and whether our analysis is a conditional case (i.e. if one gene set was generated after 

a prediction analysis from the other and they are totally different gene sets). Finally, we obtain 

the summary of the analysis with the similarities phenotype scores, the differential phenotypes, 

interactive tables and graphs with phenotypes, genes and p.values as output for detailed 

inspection and result presentation. 

 

Results and discussions 

PhenoExam controls Type I error when used with all phenotype databases 

We assessed PhenoExam for type I error given all phenotype/disease databases 

considered in the task of phenotypic enrichment analysis of gene sets.  Firstly, we evaluated 

the possibility of finding a phenotypic term erroneously enriched, due to random chance, 

amongst all the terms at the database, for gene sets of varying sizes. For such purpose we 

performed simulations of phenotype enrichment analysis for different random gene sets with a 

variable number of protein coding gene sizes (5, 10, 20, 40, 80, 160, 320, 640) tested in all 

annotation databases. Each combination of gene set size and database was simulated 1000 

times, yielding a total of 80000 simulations. A graphical representation of the summary of 

results appears in Figure 3. PhenoExam maintains Type I error under control, see figure 3, (a) 

plot, with a significance level of 0.05 as the number of significant tests is always under 0.05 

ratio. We observed a negative correlation between gene set size and proportion of false positive 

tests, r = -0.453, p = 0.026. We found a different tendency on the Type I error with some disease 

databases, specially Genomics England Panel App (GEL) and Orphanet. With those, 

PhenoExam only controls Type I error when the gene set size is high (greater than 80 for 

Orphanet, 160 for Genomics England).  The rest of databases are usable with a gene set size 

over 40. The main reason is the low average number of disease terms associated with each 

gene, 4.39 for GEL and 7 for Orphanet, in comparison with the average for the rest of disease 

databases, 17.7. We also found, as we expected, a negative correlation between the number of 

genes per random set and the type I error, r = -0.381, p = 0.0038.  For these reasons, we 

recommend prioritizing the selection of the CTD database for disease analyses when we have 

less than 40 genes. Users can find more information about what database they need to use at 

https://snca.atica.um.es/PhenoExamWeb/#section-help   
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Figure 3. False positive rate of phenotype (a) and disease (b) terms enrichment across varying 

gene set sizes (5, 10, 20, 40, 80, 160, 320, 640) per phenotype/disease database. As the 

simulation points out, CRB, HPO, MGD, are perfectly usable for any gene set size, CTD is 

recommended for gen set sizes over 10, PsyGeNET for 20, CGI, ClinGen and Uniprot for 40, 

Orphanet for 80 and GEL for gene set sizes over 160. 

PhenoExam differentiates between gene sets with very similar phenotypes 

We evaluated how accurate PhenoExam is when computing the POR (detecting 

phenotype similarities) between gene sets by comparing genetic forms of epilepsy (261 genes 

from NIMGenetics epilepsy panel) and <artificial= gene sets constructed with variable POR 

with the original epilepsy gene set and additional genes with similar phenotypic connectivity 

not associated to epilepsy. In these additional genes we injected a 5% of noise with genes 

associated with epilepsy phenotypic terms. We performed 1000 simulations for the artificial 

genes sets (261 genes) constructed with different proportions of epilepsy genes between (0-

100%) and different proportions of other genes (0-100%). We calculated the POR significance 

test between the real and the artificial gene sets (Figure 4). PhenoExam is sensitive in detecting 
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differences between gene composition changes (≅1%) in different gene sets, which in this case 

are 3 genes. We observed a positive linear relationship between POR and the proportions of 

epilepsy genes in the artificial gene sets, 0.9674 R2 (P < < 2.2x10-16) (Figure 4a).  We assessed 

that PhenoExam can distinguish well amongst the epilepsy real genes and the artificial gene 

sets constructed with high proportions of epilepsy genes (94-99% epilepsy genes)  that gather 

very similar phenotypes with a t-test in all cases (P < 2.2x10-16) (Figure 4b). 

 

 

 

Figure 4. POR significance test between the real and the artificial gene sets constructed with 

different proportions of epilepsy genes (a) and detailed zoom of POR score between the real 

and the artificial gene sets constructed with different proportions of epilepsy genes (94-99% 

epilepsy genes). (a) We observed a positive linear relationship between POR and the 

proportions of epilepsy genes in the artificial gene sets, 0.9674 R2 (P < 2.2x10-16). (b) 

PhenoExam can distinguish well amongst the epilepsy real gene set and the artificial gene sets 

constructed with high proportions of epilepsy genes (94-99% epilepsy genes)  that gather very 

similar phenotypes with a t-test in all cases (P < 2.2x10-16). 
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Case 1: The analysis between juvenile-onset Parkinson’s disease (PD) and early onset 

dystonia (EOD) reveals they hold phenotype-level similarities but also potentially 

interesting differential phenotypes 

We applied PhenoExam to the detection of differential phenotypes between gene sets 

by comparing two genetic diseases with similar symptoms: juvenile-onset Parkinson’s disease 

(PD) and early-onset dystonia (EOD).  PD and EOD both are movement disorders, PD is caused 

by a degeneration in the basal ganglia and it has predominant symptoms consisting of tremor, 

rigidity, bradykinesia, postural instability and progressive dementia [36]. EOD is a disease 

characterized by involuntary muscle contractions leading to abnormal posturing and 

movements and postures, occurring with or without other neurological symptoms [37]. In our 

case we compared 35 PD genes and 50 EOD genes from Genomics England PanelApp 

(Supplementary file with genes <G1=), with 19 genes in the overlapping set (54.3% of genes 

on PD gene set). We ran a separate phenotype enrichment analysis for PD and EOD, using 

HPO, MGD, CTD and CRISPRBrain databases simultaneously (given the simulation analyses 

performed above, these are the databases recommended by PhenoExam) (Figure 5). We 

obtained an interactive table and graph with the enrichment phenotypes for PD and EOD 

(Supplementary Tables T1PD and T1EOD and Figures FS1PD and FS1EOD). The top two 

most enriched phenotypes, in each input database, for  PD genes were Bradykinesia 

(HP:0002067; P = 2.16x10-60) and Parkinsonism (HP:0001300; P = 2.62x10-51) for HPO, 

Abnormal gait (MP:0001406; P = 3.78x10-13) and Neuron degeneration (MP:0003224; P = 

9.98x10-13) for MGD, Parkinsonism, Juvenile (C0752105; P = 7.49x10-28) and Ramsay Hunt 

Paralysis Syndrome (C0242423; P = 7.49x10-28) for CTD, and no enrichment found for 

CRISPRBrain. All the enrichment terms found are supported by the literature [38-41]. At the 

EOD analysis, we found Dystonia (HP:0001332; P = 3.51x10-42) and Dysarthria (HP:0001260; 

P = 5.38x10-41) for HPO, impaired coordination (MP:0001405; P = 7.4x10-14) and Abnormal 

gait (MP:0001406; P = 3.17x10-10) for MGD, Parkinsonism, Juvenile (C0752105; P = 7.4x10-

13) and Ramsay Hunt Paralysis Syndrome (C0242423; P = 7.4x10-13) for CTD, and again no 

enriched term for CRISPRBrain.  Above mentioned phenotype terms are associated with 

dystonia according to several articles [42-46]. 
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Figure 5. Phenotype Enrichment Analysis in PhenoExam for each gene set. The graph shows 

the 25 most enriched terms for PD genes (a) and for EOD genes (b).  

 

We wanted to compare PD and EOD gene sets, through the Phenotype Comparator 

analysis in PhenoExamWeb (see figure 6) using HPO, MGD, CTD and CRISPRBrain as the 

databases selected, and a randomization based on 1000 null tests. This comparison yielded 139 

shared significant phenotypic terms (out of 273 unique significant phenotypic terms in both, 

POR=0.509 (P < 0.001). Phenotype relevance association analysis for PD and EOD (i.e. 

whether the shared phenotypes are similar in relevance, i.e. in the number of genes associated 

with them, within each gene set) results in an adjusted R squared of 0.643 (P < 9.23x10-63) 

which suggests that an important portion of the common phenotypes are similar in relevance. 

We actually see they share phenotypic terms such as Tremor (HP:0001337), Bradykinesia 

(HP:0002067), Rigidity (HP:0002063), Dystonia (HP:0001332), Abnormal gait (MP:0001406) 

or Neuron degeneration (MP:0003224) (Supplementary Table T2Share). But we also detect 

differential phenotypes that can be displayed by interactive graphs and tables on the web. For 

example, significant terms exclusive from the PD gene set phenotypes include Astrocytosis 

(MP:0003354; P < 5.17x10-12), Substantia nigra gliosis (HP:0011960; P < 4.15x10-11), 

Neuronal loss in central nervous system (HP:0002529; P < 3.74x10-6), Orthostatic hypotension 

due to autonomic dysfunction (HP:0004926; P < 9.96x10-6) and Lewy Body Disease 

(C0752347; P < 1.11x10-3) (Supplementary Table T3PDdiff). Above mentioned phenotype 

terms are associated more or only with PD according to several articles [47-52].  The same 

analysis identified Writer's cramp (HP:0002356; P < 1.37x10-9) as exclusive to EOD and this 

refers to a type of focal dystonia [53]. We  also found Hypoplasia of the corpus callosum 
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(HP:0002079; P < 3.56x10-5), a controversial and not widely studied phenotype in dystonia 

[54-55] and Acanthocytosis (HP:0001927; P < 2.76x10-3) a term normally  associated with 

chorea‐acanthocytosis, other disease with dystonia’s similar symptoms [56]. Microcephaly 

(HP:0000252; P < 4.17x10-4) is associated with dystonia and several genes such as KMT2B 

[57-58]. We also found Intellectual disability, mild (HP:0001256; P < 4.68x10-3),  Dystonia, 

Primary (C0752203; P < 3.26x10-7) and Hyperactive deep tendon reflexes (HP:0006801; P < 

4.31x10-2) that is associated with Paroxysmal dyskinesia (PxD) [59] (Supplementary Table 

T3EODdiff).  

 

 

Figure 6. Phenotype Comparator analysis view. We selected PD genes as gene set 1, EOD 

genes as gene set 2, HPO, MGD, CRISPRBrain and CTD databases and 1000 random tests. 

We obtained as output interactive tables with the shared phenotypes and the differential 

phenotypes, plots, PhenoExam phenotype similarities scores and information. 

 

Case 2: New likely epilepsy genes predicted by G2PML recapitulate phenotype terms of 

known epilepsy genes  

Let us suppose it is possible to discover new Mendelian genes associated with a specific 

disease (congenital epilepsy in this case) by finding non-linear patterns of the genes in that 

panel based on their description through properties based on genomic, transcriptomic and 

genetics of each gene with machine learning techniques. Therefore, in order to discover new 
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genes, we aim at finding very similar genes in terms of those properties (see G2PML paper at 

biorxiv [60]). The question we face is: do those genes predicted to be linked to congenital 

genetic forms of epilepsy recapitulate similar phenotypes to the genes in the panel of origin? 

The more supportive the answer points to a phenotype recapitulation, the better the predictions 

made by G2PML. This is an example of what we call a conditional case, comparing phenotypes 

in gene sets G and G’ when they are disjunct and G’ was generated using G as seeds. More 

specifically, G refers to epilepsy genes from an in-house maintained epilepsy panel (261 genes) 

at NIMGenetics. Moreover, G’ is a set of 209 new genes as predicted by G2PML.  

 

We carried out the Phenotype Comparator analysis in PhenoExamWeb with the 

conditional case option marked, gene set 1 was the epilepsy genes, gene set 2 was the new 

likely epilepsy genes predicted by G2PML, HPO, MGD, CRISPRBrain and CTD databases 

selected at the same time and we chose 1000 random tests. We obtained the Pheno Message 

from PhenoExamWeb that they shared 106 significant phenotypic terms (out of 734 unique 

significant phenotypic terms in both), which yields a POR of 0.144 (P < 0.001). Phenotype 

relevance association analysis for epilepsy associated genes and epilepsy predicted genes (i.e. 

whether the shared phenotypes are similar in relevance, i.e. in the number of genes associated 

with them, within each gene set) results in an adjusted R squared of 0.331 (P < 4.35x10-66) 

which suggests that an important portion of the common phenotypes are similar in relevance. 

The p-values were obtained through the randomization of 1000 random gene sets. We also 

obtained a table with the phenotypes shared between gene sets (Supplementary Table T4Share). 

New likely epilepsy genes predicted by G2PML, e.g. DDX3X, KCNH1, TBL1XR1, DLG4 or 

PDE2A,  recapitulate phenotype terms of known epilepsy genes, we actually check they share 

epilepsy significant phenotypic terms such as Seizures (HP:0001250), Global developmental 

delay (HP:0001263), Microcephaly (HP:0000252), abnormal brain morphology 

(MP:0002152), hyperactivity (MP:0001399) and diseases terms without Bonferroni adjust 

Epilepsy (C0014544) and Autistic Disorder (C0004352). Above mentioned phenotype terms 

are associated with epilepsy according to several articles [61-69]. We also provided the number 

of genetic variants from the Epi25 whole-exome sequencing (WES) case-control study of each 

epilepsy gene predicted, we obtained 665 genetic variants in cases and 446 in controls  (OR = 

1.49)(Supplementary Table T5)[70]. 
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Conclusion 

 

We developed PhenoExam, a freely available R package and Web application, which 

performs phenotype enrichment and disease enrichment analysis on gene set G,  measures 

statistically significant phenotype similarities between pairs of gene sets G and G’ and detects 

statistically significant exclusive phenotypes or disease terms, across different databases. 

PhenoExam just required the names of genes in the gene sets as input and which databases to 

test for enrichment. It allows us to switch from the gene space and the phenotype space. 

PhenoExam can identify the statistically significant and differential phenotypes of a gene set 

as we showed with PD, EOD, epilepsy and likely epilepsy predicted genes. We proved with 

simulations that it is useful to distinguish between gene sets or diseases with very similar 

phenotypes through projecting genes into their annotation based phenotypical spaces. With the 

PD and EOD example above, we clearly see they hold phenotype-level similarities but also 

potentially interesting differential phenotypes. The conditional case studied between epilepsy 

associated and epilepsy predicted genes show they hold epilepsy phenotype terms in common, 

which is useful for the validation of computationally epilepsy predicted disease genes. 

Therefore, PhenoExam effectively discovers links between phenotypic terms across annotation 

databases by integrating different annotation databases. All these findings are supported with 

interactive plots (see tutorials at GitHub project) to foster the visualization and interpretation 

of findings. 

 

 

 

 

Key points 

 

● PhenoExam performs phenotypic analysis with gene symbols as input. 

● PhenoExam is an R Package and is an easy to use freely available shiny app. 

● PhenoExam integrates several databases such as HPO, MGD, CRISPRBrain, CTD, 

UniProt, Orphanet, ClinGen, Genomics England, CGI and PsyGeNET. 

● Already tested with different sets of genes to prove the correct running of the tool. 
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Availability and requirements 

Project name: PhenoExam 

Project home page: https://snca.atica.um.es/PhenoExamWeb/  

Source code is available at https://github.com/alexcis95/PhenoExam  

Operating system(s): Windows, Linux, Mac OS  

Programming language: R language  

License: GPL-2|GPL-3 Any restrictions to use by non-academics: none. 
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