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Abstract

Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging
biomarker for brain health; however, the underlying neural features have remained unclear.
We combined ensembles of convolutional neural networks with Layer-wise Relevance
Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic
resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models
estimated age accurately based on single and multiple modalities, regionally restricted and
whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates
capture aging at both small and large-scale changes, revealing gross enlargements of
ventricles and subarachnoid spaces, as well as white matter lesions, and atrophies that
appear throughout the brain. Divergence from expected aging reflected cardiovascular risk
factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our
study demonstrates how superior deep learning models detect brain-aging in healthy and at-

risk individuals throughout adulthood.
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1. Introduction

With the advent of large-scale magnetic resonance imaging (MRI) studies (e.g., UK Biobank,
Sudlow et al. 2015; LIFE, Loeffler et al. 2015), the estimation of brain age (BA), and its contrast
to the chronological age of a person (diverging BA, DBA), have become an increasingly
predictive imaging marker for brain health. Higher DBA relates to accelerated cognitive
decline, pathologies such as Alzheimer Disease (AD), hypertension and type 2 diabetes, as
well as other lifestyle-related cardiovascular risk factors (Franke and Gaser 2019; Dadi et al.
2020). However, underlying alterations of neural structures reflecting the relationship between
BA and such factors are not well known. BA has been linearly estimated on predefined
neuroimaging outcomes (e.g., cortical thickness maps Liem et al. 2017). Yet, feature
extraction and preprocessing could lead to overconfidence w.r.t., or to the dismissal of, neural
properties that can be relevant to BA. In contrast, deep learning (DL) models, specifically
convolutional neural networks (CNNs; LeCun et al. 1989; Ji et al. 2013) are trained on raw
data and provide more precise BA estimates (Cole et al. 2017; Cole and Franke 2017).
Particularly on large MRI datasets CNNs converge to a minimal mean absolute error (MAE)
of 2.14 years (Peng et al. 2021; see also Jonsson et al. 2019; Feng et al. 2020; Kolbeinsson
et al. 2020; Dinsdale et al. 2021; Levakov et al. 2020; Bashyam et al. 2020). Despite these
advantages, their complex architectures restrict straightforward interpretations of which image
features drive their estimates, known as the black-box problem (Samek et al. 2019; Samek et
al. 2021). Several methods have been proposed to open the black-box (Samek et al. 2021),
such as perturbation and gradient techniques (Baehrens et al. 2010, Simonyan et al. 2014;
Zeiler and Fergus 2014; Sundararajan et al. 2017; Zintgraf et al. 2017; Smilkov et al. 2017),
which also have been applied for BA predictions (Levakov et al. 2020). While many of these
methods highlight input areas or intermediate feature maps that are relevant for the prediction,
they do not indicate whether this information increases or decreases the predictor output. For
the continuous case of BA estimates this means that neither the pace of aging processes (i.e.,

DBA), nor the state of their progression (BA) can be inferred from computed saliency maps.
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Conversely, the Layer-wise Relevance Propagation algorithm (LRP) highlights relevant areas
in the input (image) that both favor and dismiss corresponding output decisions (Bach et al.
2015; Montavon et al. 2018; Lapuschkin et al. 2019). LRP has been successfully used with
DL in MRI-based classification tasks (Béhle et al. 2019; Eitel et al. 2019; Thomas et al. 2019).
However, the biological alterations that underlie aging are continuous in nature, which raises

more challenges for both the DL model, and, consequently, its interpretation.

Here, we therefore aimed to provide a novel, openly available analysis pipeline extrapolating
from a proof-of-concept simulation study to the implementation of superior CNNs on multi-
modal MRI with the explanation algorithm LRP. Specifically, we asked which neurostructural
features drive individual predictions and whether BA truly captures biological aging processes.
On a group level we explored, how DBA is modulated by cardiovascular risk factors, and how
this relationship manifests in distinct neural features. Based on previous findings, we
hypothesized that BA relies on grey matter atrophy which include (pre)frontal and
mesiotemporal cortex and cerebellum, and that risk factors such as obesity, hypertension and
type 2 diabetes correlate with higher DBA, reflected in augmented vascular pathologies such
as higher white matter lesion load. Importantly, opening the black box of DL image analysis is
expected to reveal novel features of MRI-based neuronal properties that contribute to BA

estimates, and thus advance our knowledge of brain health in aging.

2. Materials and methods

2.1. Data acquisition

The LIFE Adult study (Loeffler et al. 2015), a population-based cohort study, encompasses
dense clinical screenings of more than 10,000 participants coming from the area of Leipzig,
Germany. Among others, the screening included measures of height, weight, blood pressure,
blood-based biomarkers, cognitive performance and questionnaire batteries on mental health,

and lifestyle (for more details see: Loeffler et al. 2015).
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2.1.1.  Study sample and exclusion criteria
Of the more than 10,000 subjects of the LIFE Adult study, 2637 participants underwent a 1-

hour MRI recording session at baseline. Of those participants with MR-scans, 621 participants
were excluded mainly due to pathologies, leaving 2016 subjects for further analysis (age range
18-82 years, meanage = 57.32, medianage = 63.0; Niemae = 946; see Fig. 2 and Fig. A3 in
Appendix D). Partially overlapping exclusion criteria were previous strokes (n=54), excessive
brain lesions rated by trained medical staff (n=114), including white matter (WM) lesions rated
with a Fazekas (Fazekas et al. 1987) score of 3 (n=44), radiological diagnosis of brain tumor
(n=22), diagnosis of multiple sclerosis (n=5), epilepsy (n=27), cancer treatment in the last 12
months (n=109), centrally active medication (n=275), cognitive impairments indicated by a
MMSE score < 26 (n=80), and poor quality MRIs (failing a visually quality check, e.g.,

regarding motion artefacts, n=41).

2.1.2. MRl data

MRI data was acquired in a 1-hour recording session using a 32-channel head coil in a 3T
Siemens Verio scanner. Various MRI sequences were applied (see Loeffler et al., 2015). For
this study, we trained models on three MRI sequences used in clinical settings: i) structural
T1-weighted images were taken with an MP-RAGE sequence (1 mm isotropic voxels, 176
slices, TR=2300 ms, TE=2.98 ms, TI=900 ms, field of view 256 x 240 x 176 mm?, sagittal
orientation) which is often used to quantify cerebrospinal fluid, white and gray matter among
others. ii) Fluid-attenuated inversion recovery images (FLAIR) were acquired (1 mm isotropic
voxels, 192 slices, TR=5000 ms, TE=395 ms, TI=1800 ms, field of view 250 x 250 x 192 mm?,
sagittal orientation). FLAIR is highly sensitive towards lesions in the WM, which are known to
accumulate with age (Tang et al. 1997; Ge et al. 2002; Beck et al. 2021). Lastly, iii)
susceptibility-weighted magnitude images (SWI) are used to detect iron-deposits in the basal-
ganglia (Pfefferbaum et al. 2009; Bekiesinska-Figatowska et al. 2013), which could be linked

to neurodegeneration and cognitive decline (Haller et al. 2010; Du et al. 2018; Thomas et al.
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2020), and are used to discover brain hemorrhages. SWIs were recorded with a T2*-weighted
pulse sequence (0.8 x 0.7 x 2.0 mm non-isotropic voxels, 64 slices, TR=28 ms, TE=20 ms,

field of view 230 x 173 x 128 mm?3, sagittal orientation).

2.2. MRI preprocessing

MRIs of the three sequences (T1, FLAIR, SWI) were saved in three processing stages: raw,
freesurfer volume (recon-all, FreeSurfer 5.3.0; Fischl 2012), and MNI stage (MNI152; Fonov
etal. 2011, 2mm; via ANTs 2.2, Tustison et al. 2020). In the freesurfer volume stage, FLAIR
and SWI images were linear registered (linear interpolation; ANTs 2.2) to the corresponding
space of the T1-weighted images (‘brain.finalsurf.mgz’), which were subject to various
intensity normalization steps and a skull stripping procedure, which are all part of the
preprocessing steps in FreeSurfer (for more details see the Appendix A). For memory and
processing efficiency, all images in all stages were pruned, i.e., their background was
maximally removed, while keeping the same volume shape in the respective stage and, for
raw images, respective sequence across all participants. These minimally-sized volumes were
constrained to have a 2-voxel margin around the full brain of the largest brain in the whole
dataset in the respective stage and sequence. Moreover, the image data of each subject was
compressed by clipping upper intensity values to 383 (255 + 50%), which affected an
insignificant number of voxels (< 0.001%), and subsequently, by re-normalizing the data
between 0-255 (i.e., into 28 discrete intensity values per voxel). The re-normalized images
were then processed as memory efficient arrays of single-byte, unsigned integers (here: uint8

type numpy 1.18.1 arrays; Harris et al. 2020).

2.3. Prediction model architecture (MRI data)

Ensembles have been shown to predict more accurately and reduce model biases (Dietterich
2000), also in the domain of BA prediction (Jonsson et al. 2019; Couvy-Duchesne et al. 2020;

Dinsdale et al. 2021; Peng et al. 2021, Levakov et al. 2020). The individual predictions of the
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base models were used to train and evaluate a linear head model of the respective sub-
ensemble, leading to a weighted prediction of the whole ensemble. Subsequently, an
additional linear top-head model was trained to aggregate predictions over those sub-

ensembles (see the following paragraphs, and Fig. 1).

2.3.1. Base model

The base model architecture was a 3D convolutional neural network (3D-CNN; LeCun et al.
1989; Lecun et al. 1998; Ji et al. 2013; Cole et al. 2017), implemented in native Keras 2.3.1
(Chollet 2015). Base models were tested with two intermediate activation functions: i) the
commonly applied rectified linear units (ReLUs), and ii) leaky ReLUs, which promise to
overcome some of the drawbacks of absent gradients in standard ReLUs resulting from the
background of MRlIs, i.e., zero value input during training (Maas et al. 2013). From bottom up,
the network consists of 5 convolutional blocks (ConvB), each starting with a convolutional
layer (niiters , Siz€kemel ), fOllowed by leaky RelLUs (, alpha = 0.2), and a 3D-max pool layer (,
Sizepool = 3%, stride = 23). Then the signal was flattened to a 1-D vector, and during training a
dropout layer (rate = 0.5) was applied. Finally, a fully connected layer (size = 64) with (leaky)
RelLUs propagated the signal to the linear output neuron. The bias at the linear output layer
was set to the target mean of the dataset (i.e., meanae = 57.32), all other biases were
randomly initialized around zero (Keras' default). The network was trained to minimize the
mean squared error (MSE) w.r.t. chronological age, using the ADAM optimizer (learning rate
= 5e*; Kingma and Ba 2015). The data for the base models were split to a training, validation
and test set (8:1:1 ratio). The training process on the training set was monitored on the
validation set. The reported model performances are the results of its evaluation on the test

set, and are given as the mean absolute error (MAE) for better interpretability.
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2.3.2. Model ensembles

Two types of multi-level ensembles (MLENS) were trained (Fig. 1): The first type consists of
3 sub-ensembles for 3 MRI sequences (T1, FLAIR, SWI), respectively. Each sub-ensemble
has 10 base models (BM) that were independently trained on the same training data (whole
brain data in freesurfer volume stage of its respective MRI sequence). Then, a linear head
model (HM) with weight regularization, i.e. ridge regression (alpha = 1.) implemented in scikit-
learn 0.22.1 (Buitinck et al. 2013), was trained on the predictions P of the 10 BMs per sub-
ensemble on the validation set (Pva;, By = Xuain, sub-#m With shape: Nvarx 10; where Ny is the
number of samples in the validation set), and evaluated on the test set (shape of Xiest, sub-Hm
Niest X 10; where Xiest, sub-tm = Prest, Br). The resulting predictions Pres: sub-Hms Of these 3 sub-
ensembles on the test set were then used to train yet another head model on top of the MLENS
in a 5-fold cross-validation (CV; Xcv, wp-Hu = Prest, sub-Hus Of shape Niest X 3) approach to obtain
aggregated predictions across all MRI sequences. Note, only after the training of the whole
MLENS, we evaluated single sub-ensembles, that is, we computed their MAE on the test set.
This was done to compare the information gain between input MRI modalities with respect to
age (see Tab. 1). Hence, using the test set predictions of the independently trained sub-
ensembles for the training and evaluation of the MLENS top head model was still naive about
the corresponding participants’ age in the respective test fold of the CV, and only aimed to

aggregate and weight the different input modalities.

For the second MLENS type, the MRI data (in MNI stage, i.e., MNI152; see Section 2.2.) was
additionally masked in three different brain regions defined by the three complementary
atlases (see Appendix A: Brain atlases). For each combination of region and MRI sequence
(8x3), 5 base models were trained, leading to a total of 45 base models. For each such
combinatorial pair, its base model predictions were first aggregated with a linear head model
(as above). Then, a linear top-head model combined these sub-ensemble predictions on the
test set in the above mentioned 5-fold-cross-validation fashion to receive predictions across

all input feature pairs (Fig. 1).
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Both MLENS types (i, ii) can be conceptualized as neural additive models (Hastie and
Tibshirani 1990; Agarwal et al. 2020), i.e. sub-parts of the ensemble are trained on different

input features.

To receive an age estimate for each subject, the training procedure was run 10 times, such
that each subject lies once in the test set. In each of the runs the MLENS models were re-

initialized.

2.4. Estimation of model uncertainty

Model certainty was measured subject-wise on both model levels, over each sub-ensemble
and across them. That is, on the sub-ensemble level, model (un-)certainty is expressed as the
standard deviation around the mean prediction of all its base models for each subject.
Additionally, 95%-confidence intervals were computed for visual interpretation. Similarly, the
standard deviation across the predictions of all sub-ensembles indicates the overall (un-
)certainty of the MLENS. Note, the latter could also be interpreted as information gain across

input features.

2.5. Prediction analyzer: Layer-wise Relevance Propagation

learning models, including non-linear deep learning models. To this end, the method
decomposes the prediction f(x) of the model f w.r.t. the input x into relevance scores R. For
deep learning models, this decomposition is computed layer-by-layer down to the input space,
In contrast to gradient-based and occlusion-based explanation methods, LRP is
computationally efficient, since it only needs a single backward sweep. This is particularly
important for large size MRI data. Moreover, LRP does not suffer problems such as shattered

gradients or pathological minima (Montavon et al. 2019; Samek et al. 2021), while it shows
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contrast to standard occlusion-based explanation methods, LRP takes not only local but also
global feature interactions into account that are crucial for the model prediction (however,
there can be occlusion-based methods formulated that overcome this locality issue; see
for explanation methods that LRP performed best across 10 different algorithms.

LRP, which has been mainly employed in classification tasks, can be simply adapted to a
regression problem (Letzgus et al. 2022). Artificial neural networks (ANNs) used for
classification usually have an output neuron for each class label in the employed dataset. LRP
allows tracing the activation of each of these individual output neurons back to the input space
through the network layers following a set of rules that depend on the layer types (for details,
activation of the output neuron of interest (e.g., the neuron representing the ground-truth label,
or the neuron with the highest output representing the model prediction). Information for the
prediction will result in positive relevance scores in the input, while negative scores reflect
information that the model considers as speaking against the respective output label. This

feature of discretizing between positive and negative evidence makes LRP an useful approach

ANNSs for regression problems, mostly have only one output neuron (or more in multivariate
regressions). In our case, adopting LRP for brain-age predictions means applying its algorithm
starting at the single output neuron of the regression model. This is analogous, and
mathematically equivalent to choosing the output neuron representing the ground-truth label
of a given sample in a classification task. Differences are the task-specific objective function,
the bias at the output layer, which we set to the distribution mean, and the accompanying
interpretation of the relevance maps. Setting the output bias to the sample mean entails that

positive relevance values indicate information towards the upper bound of the regression

10
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domain, while negative relevance values indicate the opposite (here: model evidence for a

younger age).

2.5.1. Simulation study on LRP for regression

We created two-dimensional images of tori on black backgrounds at an intensity range
comparable to T1-weighted MRIs that exhibited inner and outer surface atrophies as a linear
function of their age (20-80 years) with a normally distributed variance, to simulate cortical
atrophy and enlargement of cerebrospinal fluid space. Additionally, we simulated that the older
a torus was, the more lesions it accumulated within its body, appearing as image
hyperintensities. In contrast to the atrophies, this accumulation of lesions was non-linearly
increasing with age (i.e., onset of linear increase at age 40), also with a normally distributed
variance. For each torus, the location of atrophies and lesions were known allowing for the
evaluation of the sensitivity of the model represented in the relevance maps (see Section
2.5.2.). For the image details, please see the openly available code
(https.//github.com/SHEscher/XDLreg). We created 2000 tori, with a similar age-distribution
as in the LIFE MRI sample. On this dataset, we then trained a 2D-version of the CNN as
described above. Finally, LRP heatmaps were created on samples of the corresponding test
set similar as described in following section. Since these heatmaps served only a qualitive

analysis, we did not run statistical tests between them as we did for the MRI case.

2.5.2. LRP for the MRI-based multi-level ensembles

LRP was applied on the trained base models in one ensemble of each type (via iINNvestigate
1.08; Alber et al. 2019), using the best-practice, composite rules (Montavon et al. 2019;
Kohlbrenner et al. 2020) of LRP for CNNs (alpha = 1) implemented in iNNvestigate as
"LRPSequentialPresetA". Note that we ran the LRP analysis only on models with ReLU

activation functions, as it is recommended in iNNvestigate.

11
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For the evaluation of the heatmaps, we took the average of the various relevance maps across
base models similar to Levakov et al. (2020). For between-subject analyses, we warped the
subject respective heatmaps to MNI space. Relevance map aggregations within each subject
were performed subsequently. The contribution of individual brain-regions to the model
prediction was evaluated by mapping the LRP heatmaps to the merged brain-atlas, and the
Juelich histological atlas (see Appendix A: Brain atlases). Additionally, we ran significance
tests on the relevance maps with FSL 5.0.8 (randomise function; using 5000 permutations
and threshold-free cluster enhancement, TFCE) to determine brain areas which were
statistically relevant for the BA prediction (Jenkinson et al. 2012). This was done, across all
participants on their absolute aggregated relevance maps (one-sample t-test). Absolute
relevance values were taken, since they reflect meaningful information for a model,
irrespective of the age of a participant’s brain; conversely, relevance values of zero reflect
areas in the image that the model ignored for its age estimates. Contrastive relevance maps
(unpaired two-sample t-test) were computed in a young (age < 40 years) versus elderly (age
260 years) group on their signed aggregated relevance maps. In older adults (age = 50 years),
we analyzed in which brain regions relevance is attributed as function of the diverging (or
delta) BA (DBA := Ypredicted-age - Yirue-age) iNdependent of chronological age. That is, we ran a
generalized linear model (GLM; FSL 5.0.8, randomize), with relevance maps as regressand,
and DBA as regressor, while controlling for age as covariate. Additionally, we explored the
role of a pathobiological biomarker (see the following section for more details), specifically
type 2 diabetes mellitus on the BA estimates within a wider, older age range (50-75 years),
contrasting diabetics to healthy controls (unpaired two-sample t-test on their signed
aggregated relevance maps). Lastly, to test whether the MLENS capture individual WM
lesions, we followed a two-step approach. First, we calculated for each individual a WM lesion
probability map using the Lesion segmentation toolbox (Schmidt et al. 2012), and applied a
threshold of 0.8. In a second step, we aligned these binarized WM lesion maps to our
relevance maps. For participants with more than 30 WM lesion voxels, we calculated the

average relevance per WM lesion voxel. If the MLENS were able to capture individual WM

12
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lesions and use them as an information source to predict higher age, the calculated average
relevance for these voxels should be positive. To increase the sample size for all tests, we

combined relevance maps from the validation and test set.

2.6. Brain-age as a biomarker

As an exploratory analysis, we correlated (Pearson’s R; scipy 1.4.1; Virtanen et al. 2020;

Bonferroni-corrected) DBA with a set of variables known to relate to accelerated brain aging.

These included cardiometabolic risk factors (BMI, waist-to-hip-ratio, hyperlipidemia,
hypertension, systolic blood pressure, type 2 diabetes, glycated hemoglobin), genetic factors
(apolipoprotein epsilon 4 risk-allele, APoE4, which has been associated with AD; Strittmatter
et al. 1993), gender, time of education, cognitive functioning (composite score of executive
functions, memory and processing speed, as reported in (Kharabian Masouleh et al. 2016;
Zhang et al. 2018), and neural integrity (here measured as the logarithm of the ratio between
number of lesions and white matter volume). For this, we applied an overlapping sliding
window approach over the full age range (width 10 years) to model age-related associations
between DBA and the above-mentioned variables, and to minimize the effect of age on the
prediction error itself. In each window we calculated R between DBA and the respective
continuous variable. For the remaining categorical variables, which are all binary, Pearsons R
is equivalent to the Phi coefficient or Kendall's Tau coefficient that are usually applied for
categorical variables. For simplicity, we report for both binary and continuous variables the
corresponding coefficient as R. To control for multiple comparisons, we applied Bonferroni

correction taking the number of variables into account (n=12).

3. Results

We implemented two types of multi-level ensembles (MLENS, Fig. 1) on three clinically

relevant MRI modalities (T1-weighted, fluid-attenuated inversion recovery, FLAIR, and
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Susceptibility Weighted Imaging, SWI) of a well-characterized population-based cohort study

(LIFE-Adult; Loeffler et al. 2015; age range 18-82 years, n=2016).

Briefly, MLENS type | was trained on whole brain MRI with a sub-ensemble for each sequence
with ten 3D-CNN models (base models, BM). Sub-ensembles served to extract information on
model certainty and to compute more robust BA estimates. To additionally explore the
contribution of three distinct brain regions (cortical, sub-cortical structures, and cerebellum) to
the BA estimate, MLENS type ii was trained on 32 combinations of the MRI sequences and

the brain regions, while employing 5 BMs for each combination.
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brain T1 sub-ensemble FLAIR sub-ensemble SWI sub-ensemble

Linear
Masking Base model  head Sub-
atlases (3D CNN) model ensemble
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T1 FLAIR SWI T1 FLAIR SWI T1 FLAIR SWI
Cerebellum sub-ensembles Subcortical sub-ensembles Cortical sub-ensembles

Fig. 1 Multi-level ensembles (MLENS) MLENS trained on the different MRI sequences (T1,
FLAIR, SWI; top: MLENS type i), and their combinations with 3 brain regions (bottom: MLENS
type ii). The predictions of the sub-ensembles of each MLENS on the test set were used to

train and evaluate the top-level linear head model.
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3.1. Model prediction performances

Ensembles Head model Base models
meanu:+SD MiNu.e maXue Nom, nens

Multi-level ensemble (type i) 3.86 - - - 30
T1 sub-ensemble 4.11 4.66+0.28 4.03 5.50 10
FLAIR sub-ensemble 4.16 4.64+0.24 3.97 5.27 10
SWI sub-ensemble 5.74 6.54+0.63 4.93 7.88 10
Multi-level ensemble (type ii) 3.37 - - - 45
Cortical-T1 sub-ensemble 4.64 5.33+0.31 4.67 6.09 5
Cortical-FLAIR sub-ensemble 4.27 4.91+0.35 4.05 5.81 5
Cortical-SWI sub-ensemble 5.87 6.70+0.54 5.52 7.88 5
Sub-Cortical-T1 sub-ensemble 4.53 5.46+0.46 4.28 6.65 5
Sub-Cortical-FLAIR sub-ensemble 3.89 4.66+0.44 3.94 5.97 5
Sub-Cortical-SWI sub-ensemble 4.79 5.73+0.52 4.64 7.02 5
Cerebellum-T1 sub-ensemble 5.27 6.17+0.40 5.50 7.40 5
Cerebellum-FLAIR sub-ensemble 4.83 5.49+0.40 4.76 6.62 5
Cerebellum-SWI sub-ensemble 7.21 8.22+0.74 6.75 10.55 5

Table 1 Prediction performances of both types of multi-level ensembles (MLENS type i,
ii) and their respective sub-ensembles and 3D-CNN base models (bm), measured in mean
absolute error (MAE). To receive an age estimate for each subject, MLENS were trained in a

10-fold cross-validation approach such that each subjects lies once in an unseen test set.

The MLENS type i had a MAE of 3.86 and performed slightly better than all its sub-ensembles
(MAET1 = 4.11, MAEFLAR = 4.16, MAEsw = 5.74; Table 1). The MLENS type ii had a smaller
MAE of 3.37 (see Fig. 2 for prediction accuracy and model uncertainty) and was again superior
to the performances of its sub-ensembles (Table 1). Between both MLENS, there were highly
significant correlations between their predictions (R = 0.97, p < 0.001) and their prediction
errors (R = 0.73, p < 0.001) on the test set. Note that these models were trained with leaky
rectified linear units (ReLUs), while models trained with standard ReLUs performed worse

(MLENS type i, MAE = 3.88; MLENS type ii, MAE = 3.69; see Appendix C Table A2).
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Fig. 2 Brain-age prediction performance and model certainty of deep learning-based
multi-level ensembles (MLENS) combining clinically relevant MRI sequences Left panel:
test set predictions of the MLENS type ii), trained on 32 combinations of MRI sequences (T1,
FLAIR, SWI) and brain regions (cortical, subcortical structures, and cerebellum). Right:
prediction error (in red) and model uncertainty (in blue) per participant. Model uncertainty is
measured as the standard deviation across the predictions of the sub-ensembles, and
visualized as the width of the corresponding 95%-confidence interval. The modulation of both
variables as function of age was modeled with a 3 order polynomial (red andblue lines). Both
plots are produced over the concatenated test sets of the 5-fold-cross-validation, which were

used to evaluate the top-level head models of the ensemble.

3.2. Relevance maps of model predictions

To verify the behavior of the LRP algorithm and its correct interpretation in a regression task,

we first performed a simulation study.

The CNN model for the simulation task corresponded to a 2D-version of one base model in a
MLENS. It was trained on a simulation dataset of abstracted head models (tori; Fig. 3), in
which aging was simulated as the accumulation of atrophies and lesions. The model had a
MAE of 2.80 on the hold-out test set. The prediction model captured the simulated aging

process in both its facets well, which is revealed by the LRP relevance maps (i.e., heatmaps)
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highlighting the inner and outer borders (atrophies), and the added lesions within the older tori
(30+ years; Fig. 3). Areas, where atrophies can occur were considered as information bearing,
i.e., they received both positive and negative relevance. Moreover, the model seemed to
cluster information w.r.t. its regression task, which is represented in the unique sign of
relevance over larger areas (see both tori on the right, Fig. 3). That is, while there were
accumulations of atrophies at the border of some tori, the CNN also took adjacent lesions into
account to aggregate the overall information in a specific region. Note that in some occasions
this could lead to inversely weighted relevance in single pixels or small areas (see upper left
part of green box in Fig. 3). The sum over all distributed relevance ris a proxy for the final
model prediction (). If it is positive, the prediction p is greater than the initiated model target
bias (bs; here, set to the mean age of the sample: b; = 51.1 years), and vice versa for the
negative case. Hence, the summed relevance represented the evidence over the whole image

that the model accumulated to make its prediction.
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Fig. 3 Analysis of simulated aging in artificial tori Top left: Summed relevance per
predicted sample in the test dataset, reflecting the model prediction relative to the sample
mean (i.e., target bias = 51.1 years). That is, this global conversation property entails that all
distributed relevance R in the input space of a given image x reflects the model prediction: ,
where R; is the relevance at pixel i (Montavon et al., 2019). Bottom left and right column: three
image samples of tori (T[age]) with their corresponding LRP relevance maps overlaid. Gray
boxes: Details of relevance maps of tori T41 (green) and T63 (blue), respectively. Here, arrows
indicate added lesions, while mint-green pixels at the inner and outer borders of the tori
indicate ground-truth atrophies. Note that intact matter is predominantly attributed with
negative (blue-turquois) relevance, indicating a younger age, while lesioned or atrophied
matter is attributed with positive (red-yellow) relevance pointing to an older age. Color coding:

relevance values were symmetrically clipped around zero at the 0.99-percentile, then
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normalized (rmorm ) @nd the corresponding colormap was multiplied by a factor of 5 for better
contrasts. Note, while the model predictions are continuous, we deliberately decided for a
binary color scaling to better contrasts the lower (young) and upper (old) bound of the

regression.

3.2.1. Relevance maps of the aging brain in individuals

Qualitative LRP analysis revealed individual relevance maps highlighting brain areas that
voted for higher or lower BA predictions. Overall, we detected strong contributions from voxels
in and around the ventricles and at the border from the brain to meningeal areas, independent
of MRI sequence, while white-matter (WM) areas appeared to be less informative, except WM
lesions in FLAIR images (Fig. 4a). In older participants, voxels covering cortical sulcal
structures were often more relevant than in younger participants and voted more often in favor
of older BA. Also, the corpus callosum, the brain stem and areas in and around the cerebellum
appeared to be relevant structures, from which the models gained information for both younger
and older participants. Overall, in all three major brain components (GM, WM, and cortical
spinal fluids, CSF), there was a linear increase of relevance scores as function of age, being

strongest in GM, and weakest in CSF (see Fig. A4 and Table A5 in Appendix E).

Both types of MLENS (whole-brain type i and region-based type ii) found similar brain
structures important for their prediction (Fig. 4b). Visually most recognizable are areas around

the ventricles, and subject specific sulci, e.g., in the cortex and cerebellum.
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Fig. 4 Exemplary individual LRP heatmaps (a) of multi-level ensemble (MLENS) type i.
trained on whole brain data. Rows: three participants (S1-S3) drawn from different age groups.
Columns: three MRI sequences (T1, FLAIR, SWI), individually sliced in all three axes to
highlight crucial areas that are unique to each participants’ age estimate. Next, to more global
intact (mostly in young S3) or atrophied tissue (S1, S2), e.g., at the cortical surface, LRP also
reveals smaller structures such as white-matter lesions (S1, FLAIR; which the model
associates with higher age; see Section 3.2.2.), vessel expansions and putative small iron
depositions, e.g., in the form of cerebral microbleeds (S1, SWI; see Discussion) driving the
BA estimation. Relevance maps per subject were aggregated over the base models of each
sub-ensemble. (b) LRP heatmaps of regional (top row, type ii) and whole-brain (bottom
row, type i) MLENS in elderly subject (S1). Here, models were trained on FLAIR data of
cerebellum (left), subcortical structures (mid), and cortex (right), or of the whole-brain,
respectively. For comparison, we warped the heatmap of whole-brain MLENS type i from
subject space to MNI152 space (cf. top row ina). Note, that the average age of the cohort that
was used to compute the MNI152 brain-space was 25.02+4.9 years (Fonov et al. 2011).
Hence, the elderly subject S1 is warped to an aggregated young brain, which might lead to
the impression that atrophies are less pronounced. Color coding: as in Fig. 3. Negative
relevance scores (blue-turquois) represent model evidence in the input towards a younger

age, and positive relevance (red-yellow) shows evidence towards a higher age.

3.2.2. Statistical relevance maps over the adult lifespan

Quantitively, permutation-based one-sample t-tests (5000 permutations, threshold-free cluster
enhancement, TFCE, and family wise error, FWE-corrected p < 0.05) on combined relevance
maps of the validation and test set (nt1 = nrLair = 402, nswi = 314) of one MLENS type i revealed
that on average, in all 3 MRI sequences, nearly the full brain contains meaningful information
about BA (Fig. 5). The base models trained within the T1 sub-ensemble, gained most

information in the lateral ventricle areas, corpus callosum, pre- and postcentral gyri in the
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motor and sensorimotor cortex, operculum, and all grey matter (GM) border areas including
the frontal pole, temporal and visual poles and brainstem, and cerebellar borders. In the FLAIR
sub-ensemble, most relevance was found around lateral ventricles, anterior temporal gyri, the
pre- and postcentral gyri, and WM areas including cingulate gyrus, corpus callosum and fornix.
Base models of the SWI sub-ensemble had a stronger focus on GM areas in the visual pole
and occipital lobe, limbic areas, corpus callosum, WM fornix, internal capsule and on
subcortical nuclei and brainstem areas, including striatum, subthalamic nucleus, raphe and

substantia nigra. For an analysis of the differences between modalities see Appendix F.
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Fig. 5 Relevant areas for brain-age predictions across adult lifespan T-maps of one-

sample t-test over aggregated, absolute relevance maps shown in several brain slices. Left
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column: t(2,16); MNI152 z-axis range: 3-74. The wider range of t-values shows that the model
uses information from the whole brain for its age estimates. Right column: 3D-projection of t-
maps focusing on higher t-values narrowly clipped for each MRI sequence, separately. These
narrower t-maps highlight areas which dominate the model estimates. Top row: tested on the
T1 sub-ensemble (lype i; n = 402, tmax = 23.61). Mid row: FLAIR sub-ensemble (n = 402, tnax
= 25.82). Bottom row: SWI sub-ensemble (n = 314, tnax= 16.07). The relevance scores were

drawn from one of the MLENS type i models.

Next, we compared the LRP heatmaps of the young (age < 40 years, n = 61) versus older
cohort (age = 60 years, n = 243). Areas showing greater relevance in older compared to
younger brains (TFCE, FWE-corrected p < 0.5) were found in the T1 sub-ensemble of MLENS
type iin lateral ventricles, corpus callosum, amygdala, cerebral WM, particularly paracingulate
gyrus, opercular cortex, and (secondary) somatosensory cortex. For FLAIR, there were
increased relevance values found in cerebellum (specifically, left and right crus I-11), caudate,
inferior frontal gyrus, pars triangularis, insular cortex, and inferior parietal lobule. For the SWI
sub-ensemble, frontal pole, frontal orbital cortex, Inferior frontal gyrus, pars triangularis,
precuneus, basal nuclei including putamen and caudate, and occipital pole showed higher

(i.e., positive) relevance on average (Fig. 6a).
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Fig. 6 (a) Contrastive relevance maps of young vs. elderly participants T-maps of two-
sample t-test over relevance maps in the young and elderly group. Here, testing shows in
which areas the relevance is greater in elderly (age = 60 years) than in the young (age <40

years) group. Relevance maps were aggregated within each sub-ensemble of one of the
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MLENS type i models trained on T1 (top), FLAIR (mid), and SWI (bottom) data, respectively.
(b) Contrastive relevance maps of healthy vs. diabetic participants T-maps (2, 6) of two-
sample t-test show in which areas the relevance is greater in participants with type 2 diabetes
than in healthy controls of the older cohort (60-75 years). Relevance maps were aggregated
within each sub-ensemble of one of the MLENS type i models trained on T1 (top), and FLAIR
(bottom). Note, only for T1 significant regional differences were found between the groups
(see TFCE FWE-corrected maps in Fig. A7 in the Appendix G). However, t-maps of T1 and
FLAIR sub-ensembles show high correspondence (sliced in all three axes at x=-18., y=18.1,

2=28.1).

3.2.3. Lastly, based on our binarized WML probability maps, 654
participants had more than 30 WML voxels. The average
relevance in WML voxels was significantly higher (i.e., 319
times) than the expected relevance per brain voxel (Maiit =
0.001, d = 0.9, t(653) = 22.95, p < 0.001).Relevance maps in

diabetes and accelerated brain aging

To explore the role of health-related risk factors on BA, we contrasted the LRP relevance
maps of subjects with type 2 diabetes (n=29) with healthy subjects (n=217) in the age range
of 50 to 75 years (meanag = 65.61). For the T1 sub-ensemble (MLENS, type i), clusters of
higher positive relevance (non-healthy > healthy) were found to be significant in the pre- and
postcentral gyrus near the cortico-spinal tract in the primary motor cortex (TFCE, FWE-
corrected p <0.011), corpus callosum and cingulum (TFCE, FWE-corrected p <0.02; see Fig.
A7 in Appendix G). For the other two sub-ensembles (FLAIR, SWI), there were no clusters
indicating significant regional differences. However, there was a high spatial correspondence

between t-maps of the T1 and FLAIR sub-ensembles (Fig. 6b).
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We further estimated the change in relevance maps as function of DBA, i.e., the signed
prediction error, in an older cohort (age = 50, meanage = 67.07, n = 134), while controlling for
age (as 2™ order polynomial regression; cf. Fig. 2). Accordingly, all clusters indicating a
significant association spatially corresponded to areas found in the BA analysis, however,
accelerated aging (DBA) was more strongly related to higher relevance values in specific
regions (see Fig. A8 in Appendix G): for the T1 sub-ensembles (MLENS type i) this
difference was found in frontal pole, brain stem, outer cerebellar boarders, WM including the
cortical spinal tract, putamen, caudate, amygdala, pre- and post-central gyri, and cingulate
gyri. For the FLAIR sub-ensemble, primarily posterior region showed significant associations,
including occipital and parietal pole, lingual gyrus, and cerebellum (crus | and Il, V, VI). Finally,
for the SWI sub-ensembles, posterior and anterior regions showed significant associations,
including the frontal pole, frontal orbital cortex, occipital pole, cerebellum (crus | and Il, vermis
VIII), but also some more left-lateral parieto-temporal WM structures close to putamen and

operculum (for all sub-ensembles; TFCE, FWE-corrected p < 0.05).

3.3. Diverging brain-age and its relationship to other
biomarkers

We found in the younger cohort (age < 45 years) that higher DBA correlated with
cardiovascular risk factors such as hypertension and hyperlipidemia according to exploratory
correlation analyses, which were run on the hold-out test sets (Fig. 7). In older subjects (age
> 60 years) the most prevalent positive association of DBA was found with type 2 diabetes
and accordingly, but weaker with glycated hemoglobin levels (HbA1c). BMI, waist-to-hip ratio
and WM lesion load showed positive associations with DBA in participants almost across the
full age range. Weak but relatively consistent trends appeared for the effect of gender (age >
30 years, where men had a higher BA on average) and the cognitive composite score, which
showed a negative relationship with DBA. There was nearly no evident association between

DBA and the presence or absence of an Apolipoprotein E epsilon 4 gene allele (APoE4),
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systolic blood pleasure or for higher education. Note, bivariate correlations were run in a
sliding-age-window approach without adjusting for possible confounders; for multiple
comparison a Bonferroni-correction was applied. While the here applied sliding-window
approach aims to reduce the age-bias in DBA (Fig. 2), in a further analysis, we regressed this

effect out over the full age range, before running the same correlation analysis (see Appendix

H).
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Fig. 7 Relationship of diverging brain-age to biomarkers and lifestyle factors
Correlations (R) in overlapping sliding windows (width 10 years) between prediction errors

(DBA) of both models (blue: type i; orange: type ii MLENS) and LIFE variables. Note, Kendall’s
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Tau for binary variables is equivalent to Pearson’s R that is used for the correlation analysis
of continuous variables; we therefore name all correlations R for simplicity. Inverse width of
the purple confidence band represents the number of participants per bin. Red rhombus:
Bonferroni-corrected (n=12) p-value < 0.05 per bin. Variables: education: time of education in
years. bmi: body-mass-index. waist2hip: waist-to-hip-ratio. systolic BP: systolic blood
pressure. APoE4: apolipoprotein epsilon 4 risk-allele carrier status. HbA1c: glycated
hemoglobin. Log lesionload-WM-ratio: logarithmized ratio between number of lesions and
white matter volume. Binary variables: hypertension, diabetes, hyperlipidemia, APoE4: no =

0, yes = 1. gender: female = 0, male = 1.

4. Discussion

The estimation of age and deviance from expected aging trajectories from brain images is a
difficult task that has been solved to a surprisingly high accuracy using various DL
architectures (Cole et al. 2017; Cole and Franke 2017, Jonsson et al. 2019; Feng et al. 2020;
Kolbeinsson et al. 2020; Dinsdale et al. 2021; Peng et al. 2021, Levakov et al. 2020; Bashyam
et al. 2020). We provide a further dimension to this challenge, namely, the means to extract
insight from the trained neural networks, such that neurobiological theories can be validated
and novel hypotheses can be generated. Specifically, we demonstrate that our accurate
estimates of continuous brain aging can be related back to neurostructural features, by
employing interpretable (here using LRP) DL-ensemble models on multi-modal 3D-MRls that
are trained end-to-end (i.e., no prior knowledge on brain features is induced to the model).
Our analysis demonstrates that grey matter changes and atrophies detectable in the cortex,
subcortex, cerebellum and brainstem, but also white matter lesions, as well as more global
brain shrinkage represented in the larger size of ventricles and sulci drove the age estimates
of the models. In further studies, this list of brain features should be validated further, for
instance, by exploring the role of iron accumulations, cerebral microbleeds, or calcium

depositions for the model estimates, which are associated with age and neural pathologies
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(Haller et al. 2010; Du et al. 2018; Thomas et al. 2020). This happens to a degree that even
parts of the brain and single MRI modalities (including SWI) led to accurate and comparable
BA predictions. While voxels around the ventricular system and subarachnoid spaces were
most informative for our model, the progression of aging and its pace (i.e., BA and DBA,
respectively) could be related back nearly to the whole brain. Our simulation model
furthermore revealed — as to be expected — that undamaged tissue (i.e., absence of atrophies
and lesions) is associated with (young) age. From a methodological perspective, this
demonstrated how the LRP algorithm can be integrated into a complex regression task on
continuous aging, and how resulting relevance maps carry information about age-related
changes. Moreover, we found that accelerated aging (DBA), which is associated with
pathologies (here type 2 diabetes), shows relevant indicators in distinct brain areas, which
could be differentiated by the complementary information from different MRI sequences and
brain regions which we fed to the MLENS models, leading to overall better prediction results.
With this, we established a novel DL-based pipeline for MRI analysis, which leverages the
predictive advantages of this model class while at the same time making its estimates

interpretable for research and clinical applications.

4.1. Opening the black-box of deep learning predictions

To understand the estimates of our DL models, we applied the LRP algorithm, which provides
directed, i.e., sign-specific, relevance maps in the input space. Since, at the point of model
inference a classification problem is mathematically similar to a regression problem, LRP
could be straight-forwardly adapted to the purpose of our study (see Methods). We
successfully validated this approach in the regression domain according to a simulation study
with a 2D-version of the model architecture that we employed in the main study. We found
that the DL model captures the simulated aging processes well by identifying the
corresponding features. Explanations maps have to be interpretated carefully, avoiding

potential confirmation biases of the researcher (Adebayo et al. 2020). To validate the
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approach further, we ran additional simulations, where age is not modeled with strong image
contrasts as in lesions and atrophies, but as function of shape and gradual local intensity
shifts, respectively (for details see Appendix B). Also these analyses showed that the model
captures the relevant information in the image, namely at the border of the torus for age
estimations based on shape, and at the local area which was subject to age-related intensity
shifts (Fig. A1). In the MRIs, we compared WM lesion maps with the relevance maps and
found that also here, the model detects the WM lesions and associates higher age with them.
LRP comes with the advantage of being directional, i.e., it indicates not only that a certain
input area is relevant for a given prediction, but also whether it provides information in direction
to the upper (here old age) or lower bound (young age) of the regression problem (Fig. 3, 4).
The sign of the sum of relevance (SoR) is arbitrary in this case, essential is the magnitude of
the value. Here, we chose to set the bias at the output layer of the CNNs to the mean of the
target variable (age). As a consequence, the SoR becomes negative for predictions lower,
and positive for estimates higher than the bias. The model does not only capture the features
that represent the aging process (atrophies and lesions), but also the absence of them. That
is, for the young torus it attributes (here negative) relevance also to its intact surface and
borders. Moreover, LRP shows that the CNN finds irregular occurring features (here lesions)
which were randomly placed. However, the interpretation of the local attribution of relevance
needs to be taken with caution, as we observed that the model often generalizes relevance
over larger areas of the simulated tori. One possible explanation for this is that relevance might
be clustered over bigger areas after being passed through the intermediate pooling and
convolutional layers in the network, which aggregate information over increasingly larger
areas in the computed feature maps. Then, later layers (usually fully connected layers) make
decisions over these pooled regions by attributing relevance towards one of the main

directions in the regression (Kohlbrenner et al. 2020).
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4.2. Normal and accelerated brain aging

Applying LRP in the BA case shows that the DL models integrate information from the whole
brain (Fig. 5). However, we see also that neurostructural properties specific to individual
participants are detected, specifically in the cortical surface areas, around ventricles, the
corpus callosum, at the surface of the brain stem, and cerebellum, and distinct smaller regions
in WM areas of the cortex. Ventricles are known to increase in size with age due to regional
or global brain shrinkage (Earnest et al. 1979). Also, cortical surface (LeMay 1984; Kochunov
et al. 2005; Jin et al. 2018), the corpus callosum (Doraiswamy et al. 1991), cerebellum and
basal ganglia (Raz et al. 2005; Raz et al. 2010) among others are subject to alterations. While
Raz et al. (2005, 2010) found no age-related volume changes in, e.g., primary visual cortices
and putamen, our model showed that both areas were relevant for the BA estimation across
the full life-span, and age-independent rate-of-aging (DBA) in the older cohort (age = 50
years). This may have several reasons: in contrast to linear feature selective models (such as
those using regional volume in Raz et al. 2005; Raz et al. 2010), our DL-architectures are
trained end-to-end, and thus can incorporate information from diverse neural features,
including volume, but also region-specific sizes and shapes, tissue structures etc. Within our
model those features can be non-linearly related and weighted, and lastly, our multi-modal

MLENS leverage this capacity by incorporating complementary image-contrasts.

Similarly, in contrastive relevance maps, we found that heightened DBA values for subjects
with type 2 diabetes displayed regions that corresponds to findings of recent animal models
(Muramatsu et al. 2018) and known diabetes-associated degenerations in the sensorimotor
areas in humans (Ferris et al. 2020). Moreover, our results support previous findings in
diffusion imaging studies of changes in fiber bundles of the cingulum (Hoogenboom et al.
2014, Cui et al. 2020) and neighboring corpus callosum (Yu et al. 2019). That these findings
appeared only significant in T1-weighted images, and not, as expected in FLAIR, might be

due to the small sample size in the hold-out subset in combination with the less specific
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contrast of FLAIR in the absence of lesions. However, we found a strong spatial

correspondence between the t-maps of both modalities.

We conclude that normal and pathologically driven aging is not exclusively represented in
selective features (e.g., in the decline of regional volume) but also in diverse neurostructural
properties accentuated by different MRI sequences, throughout the whole brain. More
specifically, our analysis pipeline revealed that an individual's structural MRI carries not only
global, macrostructural hints towards its age trajectory, but also reliable information on age-
related, subtle grey and white matter changes, including WM lesions that occur all over the
brain. While the limited image resolution does not offer explanations at the cellular level, those
ubiquitous, rather subtle changes stem most likely from micro-changes, including oxidative
stress, DNA damage, cell death and inflammation, in neuronal, vascular and glial
compartments of the brain (Cole and Franke 2017; Pluvinage and Wyss-Coray 2020) that
eventually alter the magnetic properties and thus image contrasts of the respective
sequences. We can further infer that all brain regions and different neural properties that are
highlighted with the different MRI sequences are predictive w.r.t. age, i.e., the aging process
emerges in all these modalities. This calls for a multi-modal approach towards brain-aging
rather than restricting this foundational phenomenon to selective neural variables such as grey
matter volume, and acknowledges the capability of common structural MRI to reveal not only

gross anatomical changes but also subtle microstructural changes with advancing age.

4.3. The benefit of multi-level ensemble models

Both types of MLENS performed close to the state-of-the-art in the domain of BA prediction.
Note that small performance differences might stem from our smaller dataset with a large age-
range in comparison to studies that used, e.g., UK Biobank data (n > 14,000 MRIs, age range
44-81 years; e.g., the state-of-the-art model of Peng et al., 2021, for brain-age predictions
achieved a MAE of 2.14 years. In Fig.2 of their publication, we can estimate a MAE of 3.1

years for a similar amount of training data, as we used in our study. This performance is almost
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on par with our model, MLENS type 2: MAE = 3.37. The difference is most likely explained by
the smaller age-range in the UK Biobank). With our MLENS we demonstrated that i)
ensembles are performing better than their base models, and ii) MLENS integrating diverse
input features, here MRI sequences and brain regions, perform even better than ensembles

that are only trained on one of these features.

On a methodological side, this shows that due to the feature selective training the model is
prone to specialize on properties inherent to the respective feature (e.g., a brain region).
Splitting the brain in sub-regions and feeding them to different models seems to push the
respective models (here MLENS type ii) to specialize on the characteristics of each brain
region rather than learning filters that are generally usable across the whole brain, however,

this needs to be tested systematically.

The variability of predictions between different DL models (here defined as the uncertainty
between base models, which was higher for age groups with less MRI data) with an identical
architecture and training on the same data, underlines the importance of the aggregation over
a set of models (i.e., an ensemble) to reduce both the variance and biases of single networks.
In summary, MLENS can not only compensate for the stochasticity of single DL models, but
also provide estimates of model certainty and insights on the relationship of input features and

prediction.

4.4. Brain-age predictions and their association with other
biomarkers

To investigate biological determinants of BA, we showed in an additional exploratory analysis
that DBA was associated with cardiovascular risk factors such as BMI, waist-to-hip-ratio and
type 2 diabetes. Notably, we found that many of these associations depend on the age of
participants. For instance, despite the smaller sample size in our younger (healthy) cohort, we

discovered a high correlation between BMI and the estimated BA (age < 40 years), which was
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also reported in (Kolenic et al. 2018) for younger participants with first-episode psychosis (18-
35 years). Also in mid-aged participants (40-60 years) we saw a significant correlation, for
whom previous studies found higher BMI to be associated with cortical thinning (Shaw et al.
2018). Similar to previous findings (Kharabian Masouleh et al. 2016), also in the older cohort
(60-80 years), a positive relationship appeared. Overall, with age the association between BA
and BMI becomes weaker. Also, we found the positive correlation between DBA and type 2
diabetes, which was reported in Franke et al. (2013), and the corresponding relevance map
analysis showed overlapping evidence w.r.t. GM changes as discussed above. Blood glucose
levels (here HbA1c) showed relative consistent association across the cohort. With the
estimates of MLENS type i this association could also be seen in the 20-35 years old, a result
that corresponds to recent findings showing a negative relationship HbA1c and WM integrity
in young, non-diabetic (i.e., healthy) adults (mean age 28.8 years, HbA1c < 5.7%; Repple et
al. 2021), motivating further investigations. Overall, we found similar relationships of DBA and
various clinical markers as summarized in (Franke and Gaser 2019), but not regarding ApoE-
4 (cf. Raz et al. 2010). The found association between DBA and gender should be taken with
caution, since demographic factors might have influenced the cohort composition in different
age groups. Also, the gender difference is typically most pronounced in younger ages (Gur et
al. 2002), while with menopause it appears to become smaller, brain-region specific (e.g.,
Ritchie et al. 2018; Raz et al. 2010) or is even absent (Jédncke et al. 2015). While we found a
consistent, slightly negative trend (age > 25 years) between DBA and cognitive performance,
the correlation was not significant for most age strata; however, this association has been
reported to be more pronounced in patients with AD or mild cognitive impairments (Gaser et
al. 2013; Liem et al. 2017). Note that we excluded participants with AD and other
neurodegenerative diseases from this study, in which the relationship of DBA to cognitive
performance, but also to associated biomarkers such as ApoE14 (see above) might be more
pronounced. A very robust positive correlation, nearly across the full age range was found
between the WM lesion-load and DBA. The typical accumulation of WM lesions with higher

age as well as their pathological consequences are widely known (Beck et al. 2021; Dinsdale
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etal. 2021), and consequently and conversely, validates the BA models, while in parallel, this
highlights the possibility that typical and pathological aging share similar fundamental

mechanisms.

Clearly, these results indicate that BA is a reliable imaging marker reflecting biological
plausible age-related neural changes. As deviations from the chronological age correlate with
known risk factors for brain damage, BA can be considered as a biomarker of the brain health

status of a person.

4.5. Limitations and future research

Several limitations need to be considered. First, despite the local information we receive with
the LRP heatmaps, they do not explain per se what the biological mechanisms are that made
the respective highlighted area relevant to the model. For instance, when considering relevant
voxels around ventricles, we do not know whether a model tracks the size of a ventricle or
potentially alterations at the tissue around it, or both. Further developments in interpretation
algorithms, such as LRP could allow the detection of interactions between local and global
relevance structures and in addition reveal causal relationships beyond correlation. Second,
similar to Levakov et al. (2020), we found that aggregating relevance maps compensated for
the observed variability between heatmaps of single base models (for a discussion see
Levakov et al., 2020). However, aggregation techniques can also cause information loss, for
instance, not all of the base models within an ensemble might detect all WM lesions in an
image. Third, the age distribution in the LIFE MRI dataset is non-uniform, with a majority of
participants being 65 to 75 years of age. This introduces a bias in the training dataset.
Moreover, many papers on brain-age estimation reported a corresponding prediction bias
towards the mean age in the data (Cole et al. 2017; Beheshti et al. 2019; Smith et al. 2019;
Peng et al. 2021). This bias we also observed in our stimulation. Although our ensemble
architectures compensate for the prediction bias towards the distribution mean, this tendency

could not be fully eliminated. Therefore, we used a sliding-window approach in the correlation
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analysis with other biological markers, which attenuated this bias further. The assessment of
the covariate shift (e.g., Sugiyama et al. 2007), nonlinear head-models, and over- or
undersampling techniques, combined with data augmentation could be further means to tackle
this bias. Moreover, it is to be expected that age-related structural changes systematically
effect MRI intensity distributions that models can exploit for their predictions; however, our
analysis of relevance maps has shown that the models integrate biologically meaningful brain
features across all age groups. Fourth, in future research one could run several cluster
analyses to find common relevance patterns within, for instance, participants with certain
pathologies or between different age groups. These could then be related to interpretable
structural properties, such as cortical thickness (Frangou et al. 2021). Finally, the majority of
studies cannot afford to scan thousands of participants. To make the presented explanation
pipeline more sustainable, one could explore transfer learning techniques to adapt the pre-
trained models to smaller datasets and different (target) variables. Since our approach makes
it possible to combine information from different modalities and single out regions which show
alterations in these modalities, one might also extend it to incorporating further imaging

measures, e.g., diffusion imaging or resting-state studies in fMRI or EEG.

5. Conclusion

While certain brain areas shrink in volume more dramatically with older age than others, aging
processes emerge in the whole brain. Their progress and pace can now be accurately
captured and interpreted by DL ensembles from various brain regions and structural MRI
modalities (T1, FLAIR, SWI), proposing that higher age and the presence of cardiovascular
risk factors contributes to regionally pronounced yet ubiquitous changes in the brain.
Employing the LRP interpretation algorithm, estimates of brain-aging can thus be related back
to established, gross but also subtle, most likely microstructural biological markers of the aging
process. This bias-free computational approach yields insights into the global nature of brain

aging as well as pathomechanisms. Finally, due to its generalizability, this approach can be
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broadly applied across clinical neuroscience, galvanizing the generation of data-driven
hypotheses and boosting its applications in personalized medicine (Esteva et al. 2021;

Stenzinger et al. 2021; Binder et al. 2021).

Acknowledgements

This work is supported by the European Union, European Regional Development Fund as part
of the LIFE-LIFT project, and the Free State of Saxony within the framework of the excellence
initiative, and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig
(project numbers 713-241202, 14505/2470), and by the German Research Foundation
(project numbers 209933838 CRC1052 Obesity mechanisms A1 and WI 3342/3-1). Further
support was provided by the German Ministry for Education and Research (BMBF) through
Berlin Institute for the Foundations of Learning and Data (BIFOLD; refs. 011S18025A and
011S18037A), MALT lll (ref. 011S17058), Patho234 (ref. 031L0207D) and Transparent Medical
Expert Companion (TraMeExCo, ref. 011S18056A), European Union's Horizon 2020 research
and innovation programme through Intelligent Total Body Scanner for Early Detection of
Melanoma (iToBoS, grant agreement No 965221), as well as the Grants 01GQ1115 and
01GQ0850; and by Deutsche Forschungsgemeinschaft (DFG) under Grant Math+, EXC
2046/1, Project ID 390685689; by the Institute of Information & Communications Technology
Planning & Evaluation (lITP) grant funded by the Korea Government (No. 2019-0-00079,

Artificial Intelligence Graduate School Program, Korea University).

Author Contributions

S.M.H,, K.R.M., AV, W.S., and A.V.W. designed and discussed the project.
Responsible for data acquisition M.L., A.V., and A.V.W.

Data analysis was done by S.M.H., O.G. and F.B.

Writing and editing were done by S.M.H., F.B., S.L., KR.M., AV, and A.V.W.

S.M.H. made the figures and tables.

39


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Competing Interests Statement

The authors declare no competing interests.

References

Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. 2020. Sanity Checks for
Saliency Maps. [accessed 2022 Feb 4]. http://arxiv.org/abs/1810.03292.

Agarwal R, Frosst N, Zhang X, Caruana R, Hinton GE. 2020 Apr 28. Neural Additive Models:
Interpretable Machine Learning with Neural Nets. arXiv:200413912 [cs, stat].
[accessed 2020 Jul 22]. http://arxiv.org/abs/2004.13912.

Alber M, Lapuschkin S, Seegerer P, Hagele M, Schitt KT, Montavon G, Samek W, Mller K-
R, Dahne S, Kindermans P-J. 2019. iNNvestigate Neural Networks! Journal of
Machine Learning Research. 20(93):1-8.

Arras L, Osman A, Samek W. 2022. CLEVR-XAI: A benchmark dataset for the ground truth
evaluation of neural network explanations. Information Fusion. 81:14—-40.
doi:10.1016/j.inffus.2021.11.008.

Bach S, Binder A, Montavon G, Klauschen F, Muller K-R, Samek W. 2015. On Pixel-Wise
Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance
Propagation. PLOS ONE. 10(7):e0130140. doi:10.1371/journal.pone.0130140.

Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Muller K-R. 2010. How to
Explain Individual Classification Decisions. The Journal of Machine Learning
Research. 11:1803—-1831.

Bashyam VM, Erus G, Doshi J, Habes M, Nasralah I, Truelove-Hill M, Srinivasan D,
Mamourian L, Pomponio R, Fan Y, et al. 2020 Jun 27. MRI signatures of brain age
and disease over the lifespan based on a deep brain network and 14 468 individuals
worldwide. Brain.:awaa160. doi:10.1093/brain/awaa160.

Beck D, de Lange A-MG, Maximov I, Richard G, Andreassen OA, Nordvik JE, Westlye LT.
2021. White matter microstructure across the adult lifespan: A mixed longitudinal and
cross-sectional study using advanced diffusion models and brain-age prediction.
Neurolmage. 224:117441. doi:10.1016/j.neuroimage.2020.117441.

Beheshti I, Nugent S, Potvin O, Duchesne S. 2019. Bias-adjustment in neuroimaging-based
brain age frameworks: A robust scheme. Neurolmage: Clinical. 24:102063.
doi:10.1016/}.nicl.2019.102063.

Bekiesinska-Figatowska M, Mierzewska H, Jurkiewicz E. 2013. Basal ganglia lesions in
children and adults. European Journal of Radiology. 82(5):837-849.
doi:10.1016/j.ejrad.2012.12.006.

Binder A, Bockmayr M, Hagele M, Wienert S, Heim D, Hellweg K, Ishii M, Stenzinger A,
Hocke A, Denkert C, et al. 2021 Mar 8. Morphological and molecular breast cancer
profiling through explainable machine learning. Nat Mach Intell. doi:10.1038/s42256-
021-00303-4. [accessed 2021 Apr 13]. hitp://www.nature.com/articles/s42256-021-
00303-4.

Béhle M, Eitel F, Weygandt M, Ritter K. 2019. Layer-Wise Relevance Propagation for
Explaining Deep Neural Network Decisions in MRI-Based Alzheimer\textquotesingles
Disease Classification. Frontiers in Aging Neuroscience. 11.
doi:10.3389/fnagi.2019.00194.

Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer
P, Gramfort A, Grobler J, et al. 2013 Sep 1. API design for machine learning
software: experiences from the scikit-learn project. arXiv:13090238 [cs]. [accessed
2020 Jul 31]. http://arxiv.org/abs/1309.0238.

Chollet F. 2015. keras. https://keras.io/.

Cole JH, Franke K. 2017. Predicting Age Using Neuroimaging: Innovative Brain Ageing

40


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Biomarkers. Trends in Neurosciences. 40(12):681-690.
doi:10.1016/}.tins.2017.10.001.

Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, Montana G.
2017. Predicting brain age with deep learning from raw imaging data results in a
reliable and heritable biomarker. Neurolmage. 163:115-124.
doi:10.1016/j.neuroimage.2017.07.059.

Couvy-Duchesne B, Faouzi J, Martin B, Thibeau—Sutre E, Wild A, Ansart M, Durrleman S,
Dormont D, Burgos N, Colliot O. 2020. Ensemble Learning of Convolutional Neural
Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age
Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019
Challenge. Front Psychiatry. 11:593336. doi:10.3389/fpsyt.2020.593336.

CuiY, Tang T-Y, Lu C-Q, Cai Y, Lu T, Wang Y-C, Teng G-J, Ju S. 2020. Abnormal
Cingulum Bundle Induced by Type 2 Diabetes Mellitus: A Diffusion Tensor
Tractography Study. Front Aging Neurosci. 12:594198.
doi:10.3389/fnagi.2020.594198.

Dadi K, Varoquaux G, Houenou J, Bzdok D, Thirion B, Engemann D. 2020. Beyond brain
age: Empirically-derived proxy measures of mental health.

Dietterich TG. 2000. Ensemble Methods in Machine Learning. In: Multiple Classifier
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1-15.

Dinsdale NK, Bluemke E, Smith SM, Arya Z, Vidaurre D, Jenkinson M, Namburete AlL.
2021. Learning patterns of the ageing brain in MRI using deep convolutional
networks. Neurolmage. 224:117401. doi:10.1016/j.neuroimage.2020.117401.

Doraiswamy M, Figiel GS, Husain MM, McDonald WM, Shah SA, Boyko OB, Ellinwood EH
Jr, Krishnan KRR. 1991. Aging of the human corpus callosum: magnetic resonance
imaging in normal volunteers. JNP. 3(4):392-397. doi:10.1176/jnp.3.4.392.

Du L, Zhao Z, Cui A, Zhu Y, Zhang L, Liu J, Shi S, Fu C, Han X, Gao W, et al. 2018.
Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates
with Decreased Cognitive Function in Alzheimer’s Disease. ACS Chem Neurosci.
9(7):1849-1857. doi:10.1021/acschemneuro.8b00194.

Earnest MP, Heaton RK, Wilkinson WE, Manke WF. 1979. Cortical atrophy, ventricular
enlargement and intellectual impairment in the aged. Neurology. 29(8):1138—1138.
doi:10.1212/wnl.29.8.1138.

Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J,
Asseyer S, Weygandt M, Haynes J-D, et al. 2019. Uncovering convolutional neural
network decisions for diagnosing multiple sclerosis on conventional MRI using layer-
wise relevance propagation. Neurolmage: Clinical. 24:102003.
doi:10.1016/j.nicl.2019.102003.

Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, Liu Y, Topol E, Dean J, Socher
R. 2021. Deep learning-enabled medical computer vision. npj Digit Med. 4(1):5.
doi:10.1038/s41746-020-00376-2.

Fazekas F, Chawluk J, Alavi A, Hurtig H, Zimmerman R. 1987. MR signal abnormalities at
1.5 T in Alzheimer’s dementia and normal aging. American Journal of
Roentgenology. 149(2):351-356. doi:10.2214/ajr.149.2.351.

Feng X, Lipton ZC, Yang J, Small SA, Provenzano FA. 2020. Estimating brain age based on
a uniform healthy population with deep learning and structural magnetic resonance
imaging. Neurobiology of Aging. 91:15-25.
doi:10.1016/j.neurobiolaging.2020.02.009.

Ferris JK, Inglis JT, Madden KM, Boyd LA. 2020. Brain and Body: A Review of Central
Nervous System Contributions to Movement Impairments in Diabetes. Diabetes.
69(1):3—11. doi:10.2337/db19-0321.

Fischl B. 2012. FreeSurfer. Neurolmage. 62(2):774-781.
doi:10.1016/j.neuroimage.2012.01.021.

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. 2011. Unbiased
average age-appropriate atlases for pediatric studies. Neurolmage. 54(1):313-327.
doi:10.1016/j.neuroimage.2010.07.033.

41


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Frangou S, Modabbernia A, Williams SCR, Papachristou E, Doucet GE, Agartz |, Aghajani
M, Akudjedu TN, Albajes-Eizagirre A, Alnzes D, et al. 2021 Feb 17. Cortical thickness
across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. Hum
Brain Mapp.:hbm.25364. doi:10.1002/hbm.25364.

Franke K, Gaser C. 2019. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain
Aging: What Insights Have We Gained? Frontiers in Neurology. 10.
doi:10.3389/fneur.2019.00789.

Franke K, Gaser C, Manor B, Novak V. 2013. Advanced BrainAGE in older adults with type
2 diabetes mellitus. Frontiers in Aging Neuroscience. 5.
doi:10.3389/fnagi.2013.00090.

Gaser C, Franke K, Kléppel S, Koutsouleris N, and HS. 2013. BrainAGE in Mild Cognitive
Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. Ginsberg SD,
editor. PLoS ONE. 8(6):e67346. doi:10.1371/journal.pone.0067346.

Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. 2002. Age-Related Total
Gray Matter and White Matter Changes in Normal Adult Brain. Part I: Volumetric MR
Imaging Analysis. American Journal of Neuroradiology. 23(8):1327—-1333.

Gur RC, Gunning-Dixon FM, Turetsky BlI, Bilker WB, Gur RE. 2002. Brain Region and Sex
Differences in Age Association With Brain Volume: A Quantitative MRI Study of
Healthy Young Adults. The American Journal of Geriatric Psychiatry. 10(1):72-80.
doi:10.1097/00019442-200201000-00009.

Haller S, Bartsch A, Nguyen D, Rodriguez C, Emch J, Gold G, Lovblad KO, Giannakopoulos
P. 2010. Cerebral Microhemorrhage and Iron Deposition in Mild Cognitive
Impairment: Susceptibility-weighted MR Imaging Assessment. Radiology.
257(3):764—773. doi:10.1148/radiol.10100612.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E,
Taylor J, Berg S, Smith NJ, et al. 2020. Array programming with NumPy. Nature.
585(7825):357-362. doi:10.1038/s41586-020-2649-2.

Hastie T, Tibshirani R. 1990. Generalized additive models. :10.

Hoogenboom WS, Marder TJ, Flores VL, Huisman S, Eaton HP, Schneiderman JS, Bolo
NR, Simonson DC, Jacobson AM, Kubicki M, et al. 2014. Cerebral White Matter
Integrity and Resting-State Functional Connectivity in Middle-aged Patients With
Type 2 Diabetes. Diabetes. 63(2):728-738. doi:10.2337/db13-1219.

Jancke L, Mérillat S, Liem F, Hanggi J. 2015. Brain size, sex, and the aging brain. Human
Brain Mapping. 36(1):150-169. doi:10.1002/hbm.22619.

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. 2012. FSL.
Neurolmage. 62(2):782—790. doi:10.1016/j.neuroimage.2011.09.015.

Ji S, Xu W, Yang M, Yu K. 2013. 3D Convolutional Neural Networks for Human Action
Recognition. IEEE Trans Pattern Anal Mach Intell. 35(1):221-231.
doi:10.1109/TPAMI.2012.59.

Jin K, Zhang T, Shaw M, Sachdev P, Cherbuin N. 2018. Relationship Between Sulcal
Characteristics and Brain Aging. Front Aging Neurosci. 10:339.
doi:10.3389/fnagi.2018.00339.

Jonsson BA, Bjornsdottir G, Thorgeirsson TE, Ellingsen LM, Walters GB, Gudbjartsson DF,
Stefansson H, Stefansson K, Ulfarsson MO. 2019. Brain age prediction using deep
learning uncovers associated sequence variants. Nature Communications. 10(1).
doi:10.1038/s41467-019-13163-9.

Kharabian Masouleh S, Arélin K, Horstmann A, Lampe L, Kipping JA, Luck T, Riedel-Heller
SG, Schroeter ML, Stumvoll M, Villringer A, et al. 2016. Higher body mass index in
older adults is associated with lower gray matter volume: implications for memory
performance. Neurobiology of Aging. 40:1-10.
doi:10.1016/j.neurobiolaging.2015.12.020.

Kingma DP, Ba JL. 2015. Adam: A Method for Stochastic Optimization. In: ICLR. p. 1-15.

Kochunov P, Mangin J-F, Coyle T, Lancaster J, Thompson P, Riviere D, Cointepas Y, Régis
J, Schlosser A, Royall DR, et al. 2005. Age-related morphology trends of cortical
sulci. Hum Brain Mapp. 26(3):210-220. doi:10.1002/hbm.20198.

42


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Kohlbrenner M, Bauer A, Nakajima S, Binder A, Samek W, Lapuschkin S. 2020. Towards
best practice in explaining neural network decisions with LRP. In: 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE. p. 1-7.

Kolbeinsson A, Filippi S, Panagakis Y, Matthews PM, Elliott P, Dehghan A, Tzoulaki I. 2020.
Accelerated MRI-predicted brain ageing and its associations with cardiometabolic
and brain disorders. Sci Rep. 10(1):19940. doi:10.1038/s41598-020-76518-z.

Kolenic M, Franke K, Hlinka J, Matejka M, Capkova J, Pausova Z, Uher R, Alda M, Spaniel
F, Hajek T. 2018. Obesity, dyslipidemia and brain age in first-episode psychosis.
Journal of Psychiatric Research. 99:151-158. doi:10.1016/j.jpsychires.2018.02.012.

Lapuschkin S, Waldchen S, Binder A, Montavon G, Samek W, Miller K-R. 2019. Unmasking
Clever Hans predictors and assessing what machines really learn. Nature
Communications. 10(1):1096. doi:10.1038/s41467-019-08987-4.

LeCun 'Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. 1989.
Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation.
1(4):541-551. doi:10.1162/neco.1989.1.4.541.

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proc IEEE. 86(11):2278—2324. doi:10.1109/5.726791.

LeMay M. 1984. Radiologic changes of the aging brain and skull. American Journal of
Roentgenology. 143(2):383-389. doi:10.2214/ajr.143.2.383.

Letzgus S, Wagner P, Lederer J, Samek W, Muller K-R, Montavon G. 2022. Toward
Explainable Al for Regression Models. Signal Processing Magazine.:17.

Levakov G, Rosenthal G, Shelef I, Raviv TR, Avidan G. 2020 Apr 22. From a deep learning
model back to the brain—Identifying regional predictors and their relation to aging.
Hum Brain Mapp.:hbm.25011. doi:10.1002/hbm.25011.

Liem F, Varoquaux G, Kynast J, Beyer F, Masouleh SK, Huntenburg JM, Lampe L, Rahim
M, Abraham A, Craddock RC, et al. 2017. Predicting brain-age from multimodal
imaging data captures cognitive impairment. Neurolmage. 148:179-188.
doi:10.1016/j.neuroimage.2016.11.005.

Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, Beutner F, Binder H, Brahler
E, Burkhardt R, et al. 2015. The LIFE-Adult-Study: objectives and design of a
population-based cohort study with 10,000 deeply phenotyped adults in Germany.
BMC Public Health. 15(1). doi:10.1186/s12889-015-1983-z.

Maas AL, Hannun AY, Ng AY. 2013. Rectifier Nonlinearities Improve Neural Network
Acoustic Models. in Proceedings of ICML 2013.:6.

Montavon G, Binder A, Lapuschkin S, Samek W, Miller K-R. 2019. Layer-Wise Relevance
Propagation: An Overview. In: Explainable Al: Interpreting, Explaining and
Visualizing Deep Learning. Springer International Publishing. p. 193—209.

Montavon G, Samek W, Miiller K-R. 2018. Methods for interpreting and understanding deep
neural networks. Digital Signal Processing. 73:1-15. doi:10.1016/j.dsp.2017.10.011.

Muramatsu K, lkutomo M, Tamaki T, Shimo S, Niwa M. 2018. Effect of streptozotocin-
induced diabetes on motor representations in the motor cortex and corticospinal tract
in rats. Brain Research. 1680:115-126. doi:10.1016/j.brainres.2017.12.016.

Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM. 2021. Accurate brain age prediction
with lightweight deep neural networks. Medical Image Analysis. 68:101871.
doi:10.1016/j.media.2020.101871.

Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. 2009. MRI estimates of brain iron
concentration in normal aging: Comparison of field-dependent (FDRI) and phase
(SWI) methods. Neurolmage. 47(2):493-500.
doi:10.1016/j.neuroimage.2009.05.006.

Pluvinage JV, Wyss-Coray T. 2020. Systemic factors as mediators of brain homeostasis,
ageing and neurodegeneration. Nat Rev Neurosci. 21(2):93-102.
doi:10.1038/s41583-019-0255-9.

Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. 2010. Trajectories of brain
aging in middle-aged and older adults: Regional and individual differences. :11.

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C,

43


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Gerstorf D, Acker JD. 2005. Regional Brain Changes in Aging Healthy Adults:
General Trends, Individual Differences and Modifiers. Cerebral Cortex. 15(11):1676—
1689. doi:10.1093/cercor/bhi044.

Repple J, Karliczek G, Meinert S, Férster K, Grotegerd D, Goltermann J, Redlich R, Arolt V,
Baune BT, Dannlowski U, et al. 2021. Variation of HbA1c affects cognition and white
matter microstructure in healthy, young adults. Mol Psychiatry. 26(4):1399-1408.
doi:10.1038/s41380-019-0504-3.

Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, Harris MA, Alderson HL,
Hunter S, Neilson E, et al. 2018. Sex Differences in the Adult Human Brain: Evidence
from 5216 UK Biobank Participants. Cerebral Cortex. 28(8):2959-2975.
doi:10.1093/cercor/bhy109.

Samek W, Montavon G, Lapuschkin S, Anders CJ, Muller K-R. 2021. Explaining Deep
Neural Networks and Beyond: A Review of Methods and Applications. Proc IEEE.
109(3):247-278. doi:10.1109/JPROC.2021.3060483.

Samek W, Montavon G, Vedaldi A, Hansen LK, Miiller K-R. 2019. Explainable Al:
interpreting, explaining and visualizing deep learning. Springer Nature.

Schmidt P, Gaser C, Arsic M, Buck D, Férschler A, Berthele A, Hoshi M, lig R, Schmid VJ,
Zimmer C, et al. 2012. An automated tool for detection of FLAIR-hyperintense white-
matter lesions in Multiple Sclerosis. Neurolmage. 59(4):3774-3783.
doi:10.1016/j.neuroimage.2011.11.032.

Shaw ME, Sachdev PS, Abhayaratna W, Anstey KJ, Cherbuin N. 2018. Body mass index is
associated with cortical thinning with different patterns in mid- and late-life. Int J
Obes. 42(3):455—-461. doi:10.1038/ijo.2017.254.

Simonyan K, Vedaldi A, Zisserman A. 2014. Deep inside convolutional networks: visualising
image classification models and saliency maps. In: ICLR. p. 1-8.

Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. 2017 Jun 12. SmoothGrad: removing
noise by adding noise. arXiv:170603825 [cs, stat]. [accessed 2020 Jul 13].
http://arxiv.org/abs/1706.03825.

Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. 2019. Estimation of brain
age delta from brain imaging. Neurolmage. 200:528-539.
doi:https://doi.org/10.1016/j.neuroimage.2019.06.017.

Stenzinger A, Alber M, Allgauer M, Jurmeister P, Bockmayr M, Budczies J, Lennerz J,
Eschrich J, Kazdal D, Schirmacher P, et al. 2021 Feb. Atrtificial intelligence and
pathology: From principles to practice and future applications in histomorphology and
molecular profiling. Seminars in Cancer Biology.:S1044579X21000341.
doi:10.1016/j.semcancer.2021.02.011.

Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M,
Schmechel D, Saunders AM, Goldgaber D, Roses AD. 1993. Binding of human
apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and
implications for late-onset Alzheimer disease. PNAS. 90(17):8098-8102.
doi:10.1073/pnas.90.17.8098.

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J,
Landray M, et al. 2015. UK Biobank: An Open Access Resource for Identifying the
Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS
Medicine. 12(3):e1001779. doi:10.1371/journal.pmed.1001779.

Sugiyama M, Krauledat M, Miller K-R. 2007. Covariate shift adaptation by importance
weighted cross validation. Journal of Machine Learning Research. 8(5):2.

Sundararajan M, Taly A, Yan Q. 2017. Axiomatic Attribution for Deep Networks. In: Precup
D, Teh YW, editors. Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Vol. 70. PMLR.
(Proceedings of Machine Learning Research). p. 3319-3328.
http://proceedings.mlir.press/v70/sundararajani7a.htmi.

Tang Y, Nyengaard JR, Pakkenberg B, Gundersen HJG. 1997. Age-Induced White Matter
Changes in the Human Brain: A Stereological Investigation. Neurobiology of Aging.
18(6):609-615. doi:10.1016/S0197-4580(97)00155-3.

44


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449906; this version posted June 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Thomas AW, Heekeren HR, Miller K-R, Samek W. 2019. Analyzing neuroimaging data
through recurrent deep learning models. Frontiers in neuroscience. 13:1321.
Thomas GEC, Leyland LA, Schrag A-E, Lees AJ, Acosta-Cabronero J, Weil RS. 2020. Brain
iron deposition is linked with cognitive severity in Parkinson’s disease. J Neurol

Neurosurg Psychiatry. 91(4):418—425. doi:10.1136/jnnp-2019-322042.

Tustison NJ, Cook PA, Holbrook AJ, Johnson HJ, Muschelli J, Devenyi GA, Duda JT, Das
SR, Cullen NC, Gillen DL, et al. 2020. ANTsX: A dynamic ecosystem for quantitative
biological and medical imaging. Radiology and Imaging. [accessed 2021 Feb 17].
http://medrxiv.org/lookup/doi/10.1101/2020.10.19.20215392.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, et al. 2020. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nat Methods. 17(3):261-272. doi:10.1038/s41592-
019-0686-2.

Yu X, Jiaerken Y, Xu X, Jackson A, Huang P, Yang L, Yuan L, Lou M, Jiang Q, Zhang M.
2019. Abnormal corpus callosum induced by diabetes impairs sensorimotor
connectivity in patients after acute stroke. Eur Radiol. 29(1):115-123.
doi:10.1007/s00330-018-5576-y.

Zeiler MD, Fergus R. 2014. Visualizing and Understanding Convolutional Networks. In: Proc.
of European Conference on Computer Vision (ECCV). Springer. p. 818-833.

Zhang R, Beyer F, Lampe L, Luck T, Riedel-Heller SG, Loeffler M, Schroeter ML, Stumvoll
M, Villringer A, Witte AV. 2018. White matter microstructural variability mediates the
relation between obesity and cognition in healthy adults. Neurolmage. 172:239-249.
doi:10.1016/j.neuroimage.2018.01.028.

Zintgraf LM, Cohen TS, Adel T, Welling M. 2017. Visualizing Deep Neural Network
Decisions: Prediction Difference Analysis. In: International Conference on Learning
Representations (ICLR), 2017.

45


https://doi.org/10.1101/2021.06.25.449906
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Data acquisition
	2.1.1. Study sample and exclusion criteria
	2.1.2. MRI data

	2.2. MRI preprocessing
	2.3. Prediction model architecture (MRI data)
	2.3.1. Base model
	2.3.2. Model ensembles

	2.4. Estimation of model uncertainty
	2.5. Prediction analyzer: Layer-wise Relevance Propagation
	2.5.1. Simulation study on LRP for regression
	2.5.2. LRP for the MRI-based multi-level ensembles

	2.6. Brain-age as a biomarker

	3. Results
	3.1. Model prediction performances
	3.2. Relevance maps of model predictions
	3.2.1. Relevance maps of the aging brain in individuals
	3.2.2. Statistical relevance maps over the adult lifespan
	3.2.3. Lastly, based on our binarized WML probability maps, 654 participants had more than 30 WML voxels. The average relevance in WML voxels was significantly higher (i.e., 319 times) than the expected relevance per brain voxel (Mdiff = 0.001, d = 0....

	3.3. Diverging brain-age and its relationship to other biomarkers

	4. Discussion
	4.1. Opening the black-box of deep learning predictions
	4.2. Normal and accelerated brain aging
	4.3. The benefit of multi-level ensemble models
	4.4. Brain-age predictions and their association with other biomarkers
	4.5. Limitations and future research

	5. Conclusion
	Acknowledgements
	Author Contributions
	Competing Interests Statement
	The authors declare no competing interests.
	References

