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Abstract

Recent advances in sequencing and bioinformatics have expanded the tree of life by provid-
ing genomes for uncultured environmentally relevant clades, either through metagenome assembled
genomes (MAGs) or single-cell assembled genomes (SAGs). While this expanded diversity can pro-
vide novel insights about microbial population structure, most tools available for core-genome es-
timation are overly sensitive to genome completeness. Consequently a major portion of the huge
phylogenetic diversity uncovered by environmental genomics approaches remain excluded from such
analyses. We present mOTUpan, a novel iterative Bayesian method for computing the core-genome
for sets of genomes of highly diverse completeness range. The likelihood for each gene-cluster to be-
long to core- or accessory-genome is estimated by computing the probability of its presence/absence
pattern in the target set of genomes. The core-genome prediction is computationally efficient and
can be scaled up to thousands of genomes. It has shown comparable estimates as state-of-the-art
tools Roary and PPanGGoLiN for high-quality genomes and outperforms them at lower complete-
ness thresholds. mOTUpan wraps a bootstrapping procedure to estimate the quality of a specific
core-genome prediction, as the accuracy of each run will depend on the specific completeness distri-
bution and the number of genomes in the dataset under scrutiny. mOTUpan is implemented in the
mOTUlizer software package, and available at [github.com/moritzbuck/mOTUlizer| under GPL 3.0
license.

Introduction

The continuous advancements of high throughput sequencing technologies and bioinformatics tools over
the last two decades have fueled large-scale ecogenomics analyses leading up to a new view of the tree of
life[T, 2, [3]. This refined view enabled by metagenomics and single-cell genomics reveals that uncultured
bacteria and archaea exclusively represented by MAGs (metagenome assembled genome) and SAGs
(single-cell amplified genome) account for ca. 75% of the cataloged phylogenetic microbial diversity[2].
Despite their unequivocal potential to reveal diversity, the inherent incompleteness of MAGs and SAGs
has so far hindered attempts in the large-scale study of sub-population diversity, core-genome structure,
and genome evolution of these phylogenetically diverse species.

All non-redundant genes in genomes from a genome-set are part of its pangenome and can be cat-
egorized as either core or accessory[d]. The core-genome is a set of genes common among all genomes
of a species and are supposedly responsible for the basic aspects of the cell’s biology and phenotypic
traits[b]. The accessory part of the genome is underpinning the sub-species diversity and is defined as
genes present in two or more but not all representatives of a species. Accessory genes typically encode
for functions that provide cells with adaptive advantages (e.g., supplementary metabolic pathways, en-
zymatic activities, antibiotic resistance, phage and predation resistance, pathogenicity, etc.)[4, Bl 6], but
are often also relics or live selfish genetic elements [7].

A key prerequisite for the comparative analyses of the sub-species diversity and ecological adaptations
is to first have a robust estimation of the core-genome that will enable a better assessment of the accessory
counterparts. However, core-genome analyses are limited in taxonomic scope[8], @9, 10} 1Tl 12| T3], largely
because of the severe limitations in culturing microbes and obtaining high quality genomes, combined
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with existing bioinformatics methods being dependent on high quality genomes to scaffold such analyses.
Most methods used for core-genome analysis only work with sets of high quality and complete genomes
and are very sensitive to missing genes and fragmented genomes|[I4]. These methods often concentrate
on developing novel methods for computation of clusters of orthologous genes (COGs) in the population
of interest[I4] and use only simple binary presence/absence models for the core-genome estimation (e.g.
a COG is core if it is in all of the genomes of the clade). Such methods perform best when used on a
moderate number of high-quality genomes generated from cultured microbial isolates. Accordingly, these
methods are unable to deal with the rapidly growing database of incomplete and fragmented MAGs and
SAGs of the uncultured majority of earth’s microbiome[2]. Due to these methodological limitations,
our understanding of the size and structure of microbial core-genomes and pangenome dynamics remain
elusive and lag behind our growing appreciation of microbial phylogenetic diversity. The recently released
software, PPanGGoLiN, uses synteny networks to compute clusters of co-occurring gene-clusters instead
of presence/absence. This method is highly scalable, fast, and robust enough to deal with incomplete
genomes[I5]. However, this method could be sensitive to fragmentation which is a prominent feature
of most incomplete MAGs and SAGs, and is not explicitly tailored to find the core, but rather to find
clusters of synthenic genes.

Here we present a novel approach for computing core-genomes relying on a Bayesian estimator of the
observed presence/absence patterns of discrete genome-encoded traits (any trait that can be encoded in
a genome, e.g. gene-cluster, COG, functional annotations, etc.) in sets of incomplete MAGs/SAGs and
complete genomes. We wrote a software tool, mOTUpan, that can estimate if any genome-encoded trait
is more likely to be present in all genomes of a genome-set or only in a subset. mOTUpan can compute
the core-genome partitioning for genome-sets of a wide range of qualities, and is computationally efficient,
agnostic to the genome-encoded traits used, and very robust to incompleteness.

Methods

Bayesian approach for core-genome estimation

mOTUpan can use any set of genomes that is suspected to share a certain number of genome-encoded
traits. We typically use clusters where all genomes are within compact clusters defined by a 95% average
nucleotide identity (ANT) threshold. We call such clusters mOTUs (metagenomic Operational Taxonomic
Units), that can be seen as an operational definition of species. However, genomes clustered at any other
taxonomic level, or any other way one can imagine (by niche, predator, host, etc.), are valid too. We
will use the term genome as a shorthand for any set of nucleotide sequences originating from the same
organism. This could be draft genomes, complete genomes, MAGs, or SAGs. Each genome is first
described as a set of genome-encoded traits. Here we will use gene-clusters, but it should be mentioned
that mOTUpan is agnostic to the specific form of such traits, one could use genes, COGs, functional
annotations, or any other discrete trait that is encoded by a genome. mOTUpan then uses an iterative
Bayesian approach to classify each trait of the genome in a genome-cluster as a core- or accessory-trait
based on a likelihood ratio. For each of the two hypotheses (core- or accessory-trait) a probability is
computed using a genome completeness prior inferred for each genome (genome completeness can be
calculated using CheckM[I6], or a fixed value used). The most likely trait category (core or accessory)
is then picked as class for that trait. Using this new classification, we compute posterior completeness
estimates, which can be used as a prior for a second iteration and then repeat this entire process until
convergence.

Probability models

To compute the probability of a distribution of a specific trait in the genome-set mOTU under the
assumption that it is in the core, we multiply the propability piyaiteg|core Of any genome g (g is treated
as a set of traits) that has that gene-cluster, with the inverse probability 1 — piaiteg|core for the genomes
that do not have that trait. Where the probability piaiteg|core 18 actually directly the prior completeness
estimate ¢, of g, e.g. equations [I] and [2}

Ptrait|core = H Dtraiteg|core H (1 - ptraitEg\core) (1)
gemOTU gemOTU
if traiteg if trait ¢g

Ptraiteg|core = Cg (2)
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For the probability under the assumption that it is in the accessory fraction of the genome, we
will have to make some further assumptions with regards to the structure of the pangenome. We have
assumed that the traits in the pangenome that are not in the core, are independent, and each trait has

a frequency Itlr;ilt‘ where |trait| is the number of genomes in mOTU that have that trait, and |T| the

total size of the traits-pool, e.g. > . . [trait|. To “fill” the accessory fraction of a genome, we draw
“lg| — cg|coremoTu|”’-times, which is the number of spots in the accessory part of the genome assuming
a genome with |g| traits, core size |coremoru| and completeness ¢,. Resulting in equations [3| and

Dtrait|access = H (1 - ﬁtrait€g|access) H ﬁtraiteg\access (3)
gemOTU gemOTU
if traiteg if trait ¢g
Do =(1- M)W\—Cq\wremon"u\ (4)
Dtraiteglaccess ‘T|

For practical reasons, these computations are all done in log-space, resulting in a log-likelihood ratio:

LLHR = lOg (ptrait|corc) - IOg (ptrait\acccss) (5)

If the LLHR of equation [f]is positive, the trait is considered core, if negative, it is considered accessory.
Using this classification, we recompute an updated completeness estimate for each genome:

¢ |coremoTu N g| (©)
|coremoTu]
, where core,ou is the set of all traits classified as core.
After this step, we rerun the likelihood computation. This is repeated until convergence, to obtain a
final set of core-traits and accessory-traits, and posterior completeness estimates.

Bootstrapped false-discovery rate and sensitivity

In addition to the likelihood ratio between the two probabilities, a bootstrapping approach has been
integrated in mOTUpan to estimate the false-discovery rate and sensitivity of a specific partitioning.
Synthetic genomes are built by drawing gene-clusters from the original genome-set according to the
partitioning (e.g. every synthetic genome has all of the core genes-clusters, and the accessory gene-
clusters are drawn randomly from the other gene-clusters according to their frequency). These synthetic
genomes are then rarefied according to the genome-set’s posterior completeness estimate. This synthetic
set of genomes are then run through mOTUpan again and these results are used to estimate the false-
positive rate and sensitivity. Multiple synthetic data-sets can be analyzed to obtain a better estimate.

Benchmarking mOTUpan for core-genome estimation

To benchmark the core-genomes computed by mOTUpan against other commonly used core-genome
analysis tools, we calculated the core-genomes for 301 species containing a total of 11570 genomes
(species were rarefied to 50 genomes to make the runs tractable with Roary) from the genome taxonomy
database (GTDB)[3] and 258 mOTUs containing 8955 genomes in total from the StratFreshDB[I7]. The
MAGs were reclustered with mOTUlize[I8] with less stringent parameters (“--MAG-completeness 30
--MAG-contamination 10”) to have more low quality mOTUs and compare the performance of mO-
TUpan to Roary[14] and PPanGGOLIN[I5]. Genome statistics, accession numbers and taxonomy are
available in the Supplementary Table S1. This step aims to highlight and compare the performance of
mOTUpan with Roary and PPanGGOLIN with regards to the ability to handle incomplete and frag-
mented genomes.

For more detailed benchmarking of mOTUpan performance, we selected a dataset of genomes af-
filiated with the Prochlorococcus_A genus from the GTDB. All genomes classified as Prochlorococcus_A
according to GTDBtk[I9] found in RefSeq as well as GORGJ[20], were clustered into mOTUs (using
mOTUlize[18] with standard parameters), the mOTU with the largest number of genomes was used
(Supplementary Table S2 for genome statistics and accession numbers). This Prochlorococcus mOTU
consists of 388 genomes whereof 3 are closed genomes and 16 genomes are estimated to be more than
95% complete according to CheckM[I6] results. Genomes assigned to this mOTU range in complete-
ness from 8.59% to 99.52% (median=69.05%) (Supplementary Table S2). mOTUpan’s performance for
core-genome estimates for this Prochlorococcus mOTU was benchmarked against PPanGGOLIN using
the gene-clusters generated by it (PPanGGOLIN uses mmseqs[21] internally for gene-clustering).
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Results and Discussion

Overview of the mOTUpan’s Bayesian approach

The Bayesian approach adopted in this tool allows us to leverage the genomic diversity uncovered by
incomplete and fragmented MAGs and SAGs for exploring the core-genome and pangenome structure of
bacterial and archaeal species (or any other set of genomic traits). Most available tools such as Roary
rely on a hard presence/absence threshold for defining the core-genome. This limitation renders such
tools largely unusable when dealing with incomplete and fragmented MAGs and SAGs. Comparing the
performance of Roary and mOTUpan for core-genome estimation with the gene-clusters computed by
Roary is equivalent to comparing mOTUpan to a hard threshold approach.

The network nature of PPanGGOLiN makes it relatively robust to deal with some degree of incom-
pleteness, however as it is looking for patterns of synteny to determine the persistent fraction of the
genomes, too much fragmentation (that is common in MAGs and SAGs) could cause problems in calcu-
lations of the persistent fraction of the genomes. In the case of species represented by MAGs and SAGs,
the genes that are classified by PPanGGOLIN as “persistent” are very likely to be a part of the core,
but the approach will likely overlook some core genes. The genes classified as “shell” will thus contain
part of the core-genome as well as highly prevalent genes often organized as operons. mOTUpan on the
other hand, bypasses both incompleteness and fragmentation limitations and offers a robust estimation
of the core-genome and pangenome for sets of incomplete and fragmented MAGs and SAGs. mOTU-
pan also calculates bootstrapped false-discovery rate and sensitivity for the core-genome/pan-genome
partitioning.

There are widespread and valid concerns that MAGs are contaminated by contigs that might not
be a genuine part of their genome, as binning tools may mistakenly cluster them together with the rest
of the MAG. MAGs are usually screened for putative contamination with tools such as CheckM that
relies on a limited dataset of high-quality genomes to compute a set of markers. mOTUpan can however
address this known problem in a different way, as genes annotated as core have a very low likelihood of
being contaminants and can thus be used for prediction of genome quality. Thus, mOTUpan allows users
to refine the completeness values estimated by CheckM. Additionally, for other genome-sets, viruses or
plasmids, mOTUpan can still obtain a completeness estimate.

Benchmarking mOTUpan against Roary and PPanGGOLiIN along the com-
pleteness scale

To benchmark the performance of mOTUpan against Roary, we used the gene-clusters generated by
Roary. Comparing the performance along the completeness scale shows that Roary is highly sensitive to
genome completeness, as Roary’s core-genome estimate drop away considerably from that of mOTUpan
when completeness decreases (Fig. —B). Some of these limitations can be bypassed by manually
adjusting thresholds in Roary, but while this can be done at a small scale, it is not tractable for the
larger scales where mOTUpan can still function (as is stated on its Web—pageﬂ “Roary is not intended
for meta-genomics or for comparing extremely diverse sets of genomes”’).

Running mOTUpan using the COGs generated by PPanGGOLIN (which internally uses the mmseq2[15]
clustering tool), we obtain similar core-genome estimates for the GTDB data-set (the more complete
genome-sets) (Figl2A). Looking more specifically at the deviation from the first bisector along the com-
pleteness scale (Fig{2B), we can see that in general PPanGGOLIN’s core-genome estimates are larger than
those obtained with mOTUpan for the more complete genome-sets. This tendency changes drastically
once the average completeness drops below 70% where the mOTUpan estimates become larger. This
increase could be due to an inflation of predicted core gene-clusters for the more incomplete genome-sets.
We accounted for this possibility by inspecting the fraction of the genome classified as core (Fig).
While this estimate is expected to be independent of completeness, we can see that output from both
PPanGGOLiIN and mOTUpan drop away from the expected value with lower completeness, but the
output from PPanGGOLIN drops faster, demonstrating mOTUpan’s robustness to incomplete and noisy
genomes.

Uhttps:/ /sanger-pathogens.github.io/Roary/
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Benchmarking mOTUpan against PPanGGOLiN for a Prochlorococcus_A genome-
set

For a more detailed benchmarking of mOTUpan against PPanGGOLIN, we used a set of 388 genomes
from the Prochlorococcus_A genus, ranging in completeness from 8.59% to 99.52% (median=69.05%)
according to CheckM (Supplementary Table S2). For this analysis we used the gene-clusters generated
by PPanGGOLiN.

PPanGGOLIN splits the set of gene-clusters by default into three subsets: persistent, shell and
cloud. For very complete genomes, the persistent set of gene-clusters is close to the core-genome, but
for more noisy genomes, such as those included in this Prochlorococcus_A genome-set, the approach is
not capturing the entire core-genome (Fig. It is notable that gene-clusters identified as “persistent”
(316 gene-clusters) very likelily belong to the core-genome while the “shell”-set of genes will normally
correspond to frequently co-occurring genes. PPanGGOLIN estimates a total of 1537 gene-clusters to
be a part of the “shell” category for the Prochlorococcus_A gene-set. For the same gene-set, mOTUpan
estimates 1637 gene-clusters to be part of the core-genome. The core estimate of mOTUpan seems
to be close to the sum of “persistent” and “shell” (1853 gene-clusters). The three closed genomes have
1883 gene-clusters, making the “persistent+shell” estimate probably an overestimate of the core-genome.
The “shell” set of gene-clusters is picking up genes that are probably not all from the core but rather
frequently occurring accessory operons. This is shown in the heatmap in Figld] Conversely, it also shows
the robustness of mOTUpan to estimate the true core-genome from more noisy mOTUs.

Calculations of the core-genome using mOTUpan with the 3 closed genomes and 16 genomes with
completeness higher than 95% of the Prochlorococcus_A cluster estimates 1644 gene-clusters in the core
(1714 “persistent” gene-clusters with PPanGGOLIN). This is probably an upper-bound to the size of the
core of this Prochlorococcus-A mOTU, as additional micro-diversity and noise would only remove genes
from this, making the 1637 gene-clusters predicted to make up the core in mOTUpan for the full set
a better estimate than either PPanGGOLIN’s “shell”-set (316 clusters) or “persistent+shell”-set (1853
clusters).

This generally shows that mOTUpan can predict a core-genome very similar to other state-of-the-
art tools, while at the same time being more robust over broader ranges of genome completeness in
comparison to those tools.

mOTUpan can be used in a number of ways. It can obviously be used to study pan-genome structure
at large scale and with noisier data. This comes with some caveats, i.e. the method is highly dependent
on the gene-clustering method used and it is very hard to evaluate the correctness of these at a larger
scale. Additionally, mOTUpan can only classify genes that actually are in the genomes that are analyzed.
Accordingly, genes that are hard to assemble or bin (due to different k-mer or abundance profiles) will
be overlooked, leading to an inevitable underestimate of the accessory genomes. Nevertheless, it is the
only tool available that can do this type of analysis, and should hence be an invaluable resource for
biodiversity exploration and comparative genomics. While PPanGGoLiN is performing very well with
noisy data, the specific purpose and scope of this tool is different. PPanGGoLiN can be leveraged if
one needs to select and identify core genes to e.g. make a core phylogeny, but mOTUpan is a better
choice for estimating and exploring the core- and/or accessory genome structure. Another important use
envisioned for mOTUpan is to strengthen functional predictions for metagenomic projects. Rather than
relying on single MAGs where the presence of specific genes can be questioned, mOTUpan can robustly
quantify this presence as long as highly similar MAGs are available (which is often the case in medium-
to-large scale metagenomic project). Notably, it can be used with a variety of genome-encoded traits,
and the currently available version has parsers available for: Roary, PPanGGoLiN, eggNOGmapper[22],
and mmseqs2[21]], with possibly more to be included later.

Ultimately, mOTUpan introduces and enables a new type of analysis within the field of microbial
genomics, i.e. the usage of presence-absence of genome-encoded traits combined with some Bayesian
computation to predict gene-content in a genome-set. This approach can be expanded into a number of
different directions. We can for example move from presence-absence to gene-count, or use this approach
for gene-linkage assessment to estimate if some traits co-occur more often than by chance.
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Data and code availability

The mOTUpan software is written in Python 3 and is freely available under GPL 3.0 license via GitHub
in the mOTUlizer package at [github.com/moritzbuck/mOTUlizerl A conda recipe and pip package for
user friendly installation are also available in the appropriate repository. Scripts used for the analyses
in this paper can be found at |github.com/moritzbuck/mOTUlizer /tree/master /mOT Ulizer /scripts| The
data used for benchmarking is from the GTDBJ[3](release 95), available at gtdb.ecogenomic.org (with
actual genomes at RefSeq and Genbank); GORG-Tropics[2(], available under GenBank at PRJEB33281;
and the StratFreshDB[I7]
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Figure 1: Benchmarking the performance of mOTUpan against Roary along the completeness scale.
301 species containing 11570 genomes from the genome taxonomy database (GTDB) and 258 mOTUs
containing 8955 genomes in total from the StratfreshDB are used for this comparison. Gene-clusters used
are the ones computed by Roary. A) Predicted core sizes. B) normalized residues, fold change between
core size predicted by mOTUpan and roary, if the number is larger than one, mOTUpan’s prediction is
larger. C) Fraction of genome made of gene-clusters in the core.
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Figure 2: Benchmarking the performance of mOTUpan against PPanGGOLiIN along the completeness
scale. 301 mOTUs containing 11570 genomes from the genome taxonomy database (GTDB) and 258
mOTUs containing 8955 genomes in total from the StratfreshDB were used for this comparison. Gene-
clusters used are the ones computed by PpanGGOLIN (based on mmseqs2). A) Predicted core sizes. B)
normalized residues, fold change between core size predicted by mOTUpan and Roary, if the number is
larger than one, mOTUpan’s prediction is larger. C) Fraction of genome made of gene-clusters in the
core.
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Figure 3: Rarefaction analysis of mOTUpan’s and PPanGGOLin’s core-genome prediction on the
Prochlorococcus-A mOTU. The same analysis was performed on random subsets of the available 388
genomes.
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Figure 4: Distribution of 5985 generated gene-clusters in 388 genomes of a Prochlorococcus.A mOTU.
Columns are genomes, and rows represent gene-clusters. Gene-clusters are assigned to different partitions
using mOTUpan and PPanGGOLIN estimations (colored columns on the left). The gene-clusters, that
mOTUpan called as accessory and PPanGGOLIN called as shell, seem to belong to blocks of gene-
clusters absent in sets of highly complete genomes, hinting at very prevalent operons of accessory genes.
Conversely gene-clusters in mOTUpan’s accessory and PPanGGoLiN’s shell, seem to be very prevalent
gene-clusters that have only a diffuse pattern hinting at single mobile genes, for example.
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