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Highlights

Random error in amplicon sequencing method should be considered in diversity analysis
Clustering, amplification, and differential recovery distort sample diversity

The multinomial model for compositional count data is compromised by amplification
There are three types of zeros in amplicon sequencing data, including missing zeros

Source alpha diversity estimates are biased by unknown number of unique variants


https://doi.org/10.1101/2021.06.19.449110
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.19.449110; this version posted June 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Abstract

Diversity analysis of amplicon sequencing data is mainly limited to plug-in estimates calculated using
normalized data to obtain a single value of an alpha diversity metric or a single point on a beta diversity
ordination plot for each sample. As recognized for count data generated using classical microbiological
methods, read counts obtained from a sample are random data linked to source properties by a
probabilistic process. Thus, diversity analysis has focused on diversity of (normalized) samples rather
than probabilistic inference about source diversity. This study applies fundamentals of statistical analysis
for quantitative microbiology (e.g., microscopy, plating, most probable number methods) to sample
collection and processing procedures of amplicon sequencing methods to facilitate inference reflecting
the probabilistic nature of such data and evaluation of uncertainty in diversity metrics. Types of random
error are described and clustering of microorganisms in the source, differential analytical recovery
during sample processing, and amplification are found to invalidate a multinomial relative abundance
model. The zeros often abounding in amplicon sequencing data and their implications are addressed,
and Bayesian analysis is applied to estimate the source Shannon index given unnormalized data (both
simulated and real). Inference about source diversity is found to require knowledge of the exact number
of unique variants in the source, which is practically unknowable due to library size limitations and the
inability to differentiate zeros corresponding to variants that are actually absent in the source from
zeros corresponding to variants that were merely not detected. Given these problems with estimation of
diversity in the source even when the basic multinomial model is valid, sample-level diversity analysis

approaches are discussed.
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1.0 Introduction

Analysis of microbiological data using probabilistic methods has a rich history, with examination of both
microscopic and culture-based data considered by prominent statisticians a century ago (e.g., Student,
1907; Fisher et al., 1922). The most probable number method for estimating concentrations from suites
of presence-absence data is inherently probabilistic (e.g., McCrady, 1915), though routine use of tables
(or more recently software) obviates consideration of the probabilistic link between raw data and the
estimated values of practical interest. Both the analysis of microbiological data and the control of the
methods through which such data are obtained are grounded in statistical theory (e.g., Eisenhart &
Wilson, 1943). More recently, the issue of estimating microbial concentrations and quantifying the
uncertainty therein when some portion of microorganisms gathered in an environmental sample are not
observed by the analyst has added to the complexity of analyzing microscopic enumeration data
(e.g., Emelko et al., 2010). These examples share the common theme that the concentration of
microorganisms in some source of interest is indirectly and imprecisely estimated from the discrete data
produced by microbiological examination of samples (e.g., counts of cells/colonies or the number of
aliquots exhibiting bacterial growth). The burgeoning microbiological analyses grounded in polymerase
chain reactions (Huggett et al., 2015) likewise feature discrete objects (specific sequences of genetic
material) that are prone to losses in sample processing, but these methods are further complicated by

the variability introduced through amplification and reading (e.g., fluorescence signals or sequencing).

In next-generation amplicon sequencing, obtained data consist of a large library of nucleic acid
sequences extracted and amplified from environmental samples, which are then tabulated into a set of
counts associated with amplicon sequence variants (ASVs) or some grouping thereof (Callahan et al.,
2017). The resulting data are regarded as a quantitative representation of the relative abundance (i.e.,
proportions) of various organisms in the source rather than absolute abundance (i.e., concentrations),
thus leading to compositional data (Gloor et al.,, 2017). Among the many categories of analyses
performed on such data are (1) differential abundance analysis to compare proportions of particular
variants among samples and their relation to possible covariates and (2) diversity analysis that concerns
the number of unique variants detected, how the numbers of reads vary among them, and how these
characteristics vary among samples (Calle, 2019). Conventional analysis of these data is confronted with
several problems (McMurdie & Holmes, 2014; Kaul et al., 2017; McKnight et al., 2018): (1) a series of
samples can have diverse library sizes (i.e., numbers of sequence reads), motivating “normalization”, (2)

there are many normalization approaches from which to choose, and (3) many normalization and data
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analysis approaches are complicated by large numbers of zeros in ASV tables. These issues can be
overcome in differential abundance analysis through use of probabilistic approaches such as generalized
linear models (e.g., McMurdie and Holmes, 2014) that link raw ASV count data and corresponding
library sizes to a linear model without the need for normalization or special treatment of zeros. Diversity
analysis, however, is more complicated because the amount of diversity exhibited in a particular sample
(alpha diversity) or apparent similarity or dissimilarity among samples (beta diversity) is a function of

library size (Hughes and Hellmann, 2005), and methods to account for this are not standardized.

A variety of methods have been applied to prepare amplicon sequencing data for downstream diversity
analyses, most of which involve some form of normalization. Normalization options include (1) rarefying
that randomly subsamples from the observed sequences to reduce the library size of a sample to some
normalized library size shared by all samples in the analysis (Sanders, 1968), (2) simple proportions
(McKnight et al., 2019), and (3) a continually expanding set of data transformations such as centered-log
ratios (e.g., Gloor et al.,, 2017), geometric means pairwise ratio (e.g., Chen et al., 2018) or variance
stabilizing transformations (e.g., Love et al., 2014). Rarefying predates high throughput sequencing
methods (including applications beyond sequencing of the 16S rRNA gene such as RNA sequencing) and
originated in traditional ecology. Statistically, these approaches to estimation of sample diversity in the
source treat manipulated sample data as a population because the non-probabilistic analysis of a sample

(called a plug-in estimate) leads to a single diversity value or a single point on an ordination plot.

While it would increase computational complexity to do so, it is more theoretically sound to
acknowledge that the observed library of sequence reads in a sample is an imperfect representation of
the diversity of the source from which the sample was collected and that no one-size-fits-all
normalization of the data can remedy this. ASV counts would then be regarded as a suite of random
variables that are collectively dependent on the sampling depth (library size) and underlying simplex of
proportions that can only be imperfectly estimated from the available data. Analysis of election polls is
somewhat analogous in that it concerns inference about the relative composition (rather than absolute
abundance) of eligible voters who prefer various candidates. A key distinction is that such analysis does
not presume that the fraction of respondents favouring a particular candidate or party (or some
numerical transformation thereof) is an exact measurement of the composition of the electorate.
Habitual reporting of a margin of error with proportional results (Freedman et al., 1998) exemplifies that
such polls are acknowledged to be samples from a population in which the small number of eligible

voters surveyed is central to interpretation of the data. Willis (2019) applies this approach to thinking
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97 about amplicon sequencing data in the estimation of alpha diversity by estimating diversity in a source

98 from sample data using knowledge about random error to characterize uncertainty in source diversity.

99 Here, (1) the random process yielding amplicon sequencing data believed to be representative of
100 microbial community composition in the source and (2) how this theory contributes to estimating the
101 Shannon index alpha diversity metric using such data, particularly when library sizes differ and zero
102 counts abound, are examined in detail. Theory applied to estimate microbial concentrations in water
103 from data obtained using classical microbiological methods is extended to this type of microbiological
104  assay to describe both the types of error that must be considered and a series of mechanistic
105 assumptions that lead to a simple statistical model. The mechanisms leading to zeros in amplicon
106 sequencing data and common issues with how zeros are analyzed in all areas of microbiology are
107 discussed. Bayesian analysis is evaluated as an approach to drawing inference from a sample library
108 about alpha diversity in the source with particular attention to the meaning and handling of zeros. This
109 work addresses a path to evaluating microbial community diversity given the inherent randomness of
110  amplicon sequencing data. It is based on established fundamentals of quantitative microbiology and

111 provides a starting point for further investigation and development.
112 2.0 Describing and modelling errors in amplicon sequencing data

113 A theoretical model for the error structure in microbial data can be developed by contemplating the
114  series of mechanisms introducing variability to the number of a particular type of microorganism (or
115 gene sequence) that are present in a sample and eventually observed. This prioritizes understanding
116 how random data are generated from the population of interest (e.g., the source microbiome) over the
117 often more immediate problem of how to analyze a particular set of available data. Probabilistic
118 modelling is central to such approaches, not just a data analytics tool. Rather than reviewing and
119 attempting to synthesize the various probabilistic methods that have been applied to amplicon
120  sequencing, the approach herein builds on a foundation of knowledge surrounding random errors in
121 microscopic enumeration of waterborne pathogens (e.g., Nahrstedt & Gimbel, 1996; Emelko et al.,
122 2010) to address the inherently more complicated errors in amplicon sequencing data. This study
123 addresses the foundational matter of inferring a source microbiome alpha diversity metric from an
124  individual sample because dealing with more complex situations inherent to microcbiome analysis
125 requires a firm grasp of such simple scenarios. Accordingly, hierarchical models for alpha diversity
126 analyses that link samples to a hypothetical meta-community (e.g., McGregor et al., 2020) and

127  approaches for differential abundance analysis in which the covariation of counts of several variants
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128 among multiple samples may be a concern (e.g., Mandal et al., 2015) are beyond the scope of this work.
129 When random errors in the process linking observed data to the population characteristics of interest
130  are integrated into a probabilistic model, it is possible to apply the model in a forward direction to
131 simulate data given known parameter values or in a reverse direction to estimate model parameters
132 given observed data. This reversibility is harnessed later in this paper to simulate data from a
133 hypothetical source and evaluate how well Bayesian analysis of those data estimates the actual Shannon

134  index of the source.
135 21 Describing amplicon sequencing data as a random sample from an environmental source

136 Microbial community analysis involves the collection of samples from a source such as environmental
137 waters or the human gut (Shokralla et al., 2012). This study addresses the context of water samples
138 because the plausibility that some sources could be homogeneous provides a comparatively simple and
139 well understood statistical starting point for modelling—many other microbiomes are inherently not
140  well mixed. When a sample is collected, it is presumed to be representative of some spatiotemporal
141 portion of a water source such as a particular geographic location and depth in a water body and time of
142 sampling. A degree of local homogeneity surrounding the location and time of the collected sample is
143 often presumed so that randomness in the number of a particular type of microorganism contained in
144  the sample (random sampling error) would be Poisson-distributed with mean equal to the product of
145 concentration and volume. There are many reasons for which a series of samples presumed to be
146 replicates from a particular source may yield microorganism counts that are over-dispersed relative to
147  such a Poisson distribution (Schmidt et al., 2014), including (1) clustering of microorganisms to each
148  other or on suspended particles, (2) spatiotemporally variable concentration, (3) variable volume
149 analyzed, and (4) errors in sample processing and counting of microorganisms. Variable concentration
150  and inconsistent sample volumes are not considered herein because the focus is on relative abundance
151 (i.e., not estimation of concentrations) and samples that are not presumed to be replicates (i.e., analysis
152  focuses on individual samples). Non-random dispersion could be a concern affecting estimates of
153 diversity and relative abundance because clustering may inflate variability in the counts of a particular
154 microorganism. For example, clustering could polarize results between unusually large numbers if a
155 large cluster is captured and absence otherwise rather than yielding a number that varies minimally

156 around the average.

157  The remainder of this analysis focuses on errors in sample handling and processing, nucleic acid

158 amplification, and gene sequence counting. To be representative of relative abundance of
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159 microorganisms in the source, it is presumed that a sample is handled so that the community in the
160  analyzed sample is compositionally equivalent to the community in the sample when it was collected
161 (Fricker et al., 2019). Any differential growth or decay among types of microorganisms will bias diversity
162 analysis. A series of sample processing steps is then needed to extract and purify the nucleic material so
163 that the sample is reduced to a size and condition ready for PCR (polymerase chain reactions). Losses
164 may occur throughout this process, such as adhesion to glassware, residuals not transferred, failure to
165 extract nucleic material from cells, and sample partitioning during concentration and/or purification
166  steps. These introduce random analytical error (because a method with 50% analytical recovery cannot
167 recover 50% of one discrete microorganism, for example), and likely also non-constant analytical
168 recovery if the capacity of the method to recover a particular type of microorganism varies randomly
169 from sample to sample (e.g., 60% in one sample and 40% in the next). Any differential analytical
170 recovery among types of microorganisms (e.g., if one type of microorganism is more likely to be
171  successfully observed than another) will bias diversity analysis of the source. Varying copy numbers of
172 genes among types of microorganisms as well as genes associated with non-viable organisms can also
173 bias diversity analysis. PCR amplification is then performed with specific primers to amplify targeted
174  genes, which may not perfectly double the number of gene copies in each cycle due to various factors
175 including primer match. Any differential amplification efficiency among types of microorganisms will
176 bias diversity analysis of the source, as will amplification errors that produce and amplify variants that
177  do not exist in the source (unless these are readily identified and removed from sequencing data).
178 Finally, the generated library of sequence reads is only a subsample of the sequences present in the
179  amplified sample. Production of sequences that are not present in the original sample (e.g., chimeric
180  sequences, misreads) is a form of loss if they detract from sequences that ought to have been read
181 instead, and the resulting sequences may not be perfectly removed from the data (either failing to
182 remove invalid sequences or erroneously removing valid sequences). Any differential losses at this stage
183  will once again bias diversity analysis of the source, as will inadvertent inclusion of false sequences.
184  Thus, the number of microorganisms gathered in a sample, the number of genes successfully reaching
185  amplification, the number of genes after amplification, and the number of genes successfully sequenced
186  are all random. Due to this collection of unavoidable random errors, the validity of diversity analysis
187  approaches that regard samples (or normalized transformations of them) as exact compositional

188 representations of the source requires further examination.

189 2.2 Modelling random error in amplicon sequencing data
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190 For all of the reasons described above, it is impractical to regard libraries of sequence reads as indicative
191 of absolute abundance in the source. We suggest that it is also impossible to regard them as indicative
192 of relative abundance in the source without acknowledging a suite of assumptions and carefully
193 considering what effect departure from those assumptions might have. By presuming that sequence
194 reads are generated independently based on proportions identical to the proportional occurrence of
195 those sequences in the source from which the sample was collected, the randomness in the set of
196  sequence reads will yield a multinomial distribution. [For large random samples from small populations,
197 a multivariate hypergeometric model without replacement may be more appropriate]. This is analogous
198  to election poll data (if the poll surveys a small random sample of voters from a large electorate),
199 repeatedly rolling a die, or repeatedly drawing random lettered tiles from a bag with replacement. The
200 binary equivalent is a binomial model, which may form the basis of logistic regression to describe the
201 proportion of sequences of a particular type as a function of possible covariates, recognizing how count

202 data are random variables depending on respective library sizes and underlying proportions of interest.

203 Multinomial models are foundational to probabilistic analysis of count-based compositional data
204 (e.g., McGregor et al., 2020), but mechanisms through which natural variability arises in the source (such
205 as microorganism dispersion) and the sample collection and processing methodology (such as losses,
206 amplification, and subsampling) must be considered because they may invalidate such a model for
207  amplicon sequencing data—these need to be considered. Table 1 summarizes the random errors
208  discussed above, contextualizes them in terms of compatibility with the multinomial relative abundance

209 model, and summarizes the assumptions that must be made to use a multinomial model.
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210  Table 1: Summary of random errors in amplicon sequencing and associated assumptions in the multinomial relative abundance model

Error source

Description of error and compatibility with multinomial model

Assumptions

Sample
collection

Sample
handling

Sample
processing

Amplification

Amplicon
sequencing

The random sampling error describing variability in the number of discrete
objects captured in a sample yields a Poisson distribution if microorganisms
are randomly dispersed in a large source. This error is compatible with a
multinomial model for proportional abundance of variants. Clustering,
including multiple gene copies per organism, leads to excess variability that is
incompatible with a multinomial model.

The number of a particular type of microorganism may increase or decrease
between sample collection and sample processing. Growth inflates the
number of microorganisms at the level of diversity represented before
growth occurred and is incompatible with a multinomial model. Decay is a
form of random analytical error that is compatible with a multinomial model
if it is consistent among variants.

The number of gene sequences subjected to amplification may be lower than
the number in the sample prior to processing due to losses (e.g., adherence
to apparatus, not all genes extracted, sample partitioning). This is compatible
with a multinomial model if analytical recovery is constant among variants.

The number of gene sequences is purposefully increased using polymerase
chain reactions, inflating the number of gene sequences at the level of
diversity represented before amplification occurred, and is incompatible with
a multinomial model. Copy errors are a form of loss for the original sequences
that were incorrectly copied and produces erroneous sequences that may
then be further amplified. Erroneous sequences are incompatible with a
multinomial model unless all of them are removed from the data.

Only a subsample of sequences are read, and all variants must be equally
likely to be read. Sequence reading errors are a form of loss for the original
sequences that were incorrectly read and also produces erroneous sequence
reads. Sequence reading errors are incompatible with a multinomial model
unless all resultant erroneous sequences are removed from the data.

e All microorganisms are randomly dispersed
(i.e., not clustered) with only one gene copy
each’

* No growth
¢ No differential decay (analytical recovery)
among variants

¢ No differential losses (analytical recovery)
among variants

e Pre-amplification variant diversity is fully
identical to source diversity and sequences
are perfectly duplicated in each PCR cycle*

e No differential amplification efficiency or
potential for copy errors among variants

e Data denoising must remove all erroneous
sequence reads and no legitimate reads

¢ No differential sequence reading errors
among variants or differential losses

e Data denoising must remove all erroneous
sequence reads and no legitimate reads

211 "Without these difficult assumptions, the multinomial model describes post-amplification variant diversity rather than source microbial diversity

10
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212 Based on some simulations (see R code in Supplementary Material), it was determined that random
213 sampling error consistent with a Poisson model is compatible with the multinomial relative abundance
214  model (using the binomial model as a two-variant special case). Specifically, this featured
215 Poisson-distributed counts of two variants with means following a 2:1 ratio and graphical evidence that
216 this process is consistent with a binomial model (also with a 2:1 ratio of the two variants) when the
217 result was conditioned on a particular library size. It must be noted that this is not a formal proof, as
218  “proof by example” is a logical fallacy (unlike “disproof by counter-example”). Critically, clustering of
219 gene copies in the source causes the randomness in sequence counts to depart from a multinomial
220 model, as proven by simulation in the Supplementary Material (following a disproof by counter-example
221 approach). When the above process was repeated with counts following a negative binomial model that
222 is over-dispersed with respect to the Poisson model, the variation in counts conditional on a particular
223 library size was no longer consistent with the binomial model. Microorganisms having multiple gene

224  copies is a form of clustering that invalidates the model.

225  Any form of loss or subsampling is compatible with the multinomial model so long as it affects all
226 sequence variants equally. If each of a set of original proportions is multiplied by the same weight
227 (analytical recovery), then the set of proportions adjusted by this weighting is identical to the original

228 proportions (e.g., a 2:1 ratio is equal to a 1:0.5 ratio if all variants have 50% analytical recovery).

229  Growth and amplification must also not involve differential error among variants, but even in absence of
230  differential error they have an important effect on the data and evaluation of microbiome diversity.
231  These processes inflate the number of sequences present, but only with the potentially reduced or
232 atypical diversity represented in the sample before such inflation. For example, a hypothetical sample
233 with 100 variants amplified to 1000 will have the diversity of a 100-variant sample in 1000 reads, which
234 may inherently be less than the diversity of a 1000-variant sample directly from the source.
235 Amplification fabricates additional data in a process roughly opposite to discarding sequences in
236 rarefaction; it resamples from a small pool of genetic material to make more whereas rarefaction
237  subsamples from a larger pool of gene sequences to yield less (i.e., a smaller library size). Based on some
238  simulations (see R code in Supplementary Material), it was proven that amplification is incompatible
239  with the multinomial relative abundance model (following a disproof by counter-example approach).
240  Specifically, the distribution of counts when two variants with a 2:1 ratio are amplified from a library size
241 of four to a library size of six, the results differ from the distribution of counts obtained from a binomial

242 model.

11
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243 Representativeness of source diversity and compatibility with the multinomial relative abundance model
244  can only be assured if the post-amplification diversity happens to be fully identical to the
245 pre-amplification diversity and the observed library is a small random sample of the amplified genetic
246 material. Such an assumption may presume random happenstance more so than a plausible
247 probabilistic process, though it would be valid in the extreme special case where pre-amplification
248 diversity is fully identical to source diversity and every sequence is perfectly duplicated in each cycle
249 (with no erroneous sequences produced). Without making relatively implausible assumptions or having
250  detailed understanding and modelling of the random error in amplification, observed libraries are only
251 representative of post-amplification diversity and indirectly representative of source diversity. This calls
252 into question the theoretical validity of multinomial models as a starting point for inference about the
253 proportional composition of microbial communities using amplification-based data. Nonetheless, the
254 multinomial model was used as part of this study in some illustrative simulation-based diversity analysis

255 experiments.
256 3.0 The many zeros of amplicon sequencing data

257  Asin other fields (Helsel, 2010), zeros in microbiology have led to much ado about nothing (Chik et al.,
258 2018). They are (1) commonly regarded with skepticism that is hypocritical of non-zero counts
259 (e.g., assuming that counts of zero result from error while counts of two are infallible), (2) often
260  substituted with non-zero values or omitted from analysis altogether, and (3) a continued subject of
261 statistical debate and special attention (such as detection limits and allegedly censored microbial data).
262 Careful consideration of zeros is particularly relevant to diversity analysis of amplicon sequencing data
263 because they often constitute a large portion of ASV tables. They may or may not appear in
264  sample-specific ASV data, but they often appear when the ASV table of several samples is filled out
265 (e.g., when an ASV that appears in some samples does not appear in others, zeros are assigned to that
266  ASV in all samples in which it was not observed). They may also be created by zeroing singleton reads
267  (Callahan et al., 2016), but this issue (and the bias arising if some singletons are legitimate read counts)
268 is not specifically addressed in this study. Zeros often receive special treatment during the normalization
269 step of compositional microbiome analysis (Thorsen et al., 2016; Tsilimigras and Fodor, 2016; Kaul et al.,
270  2017), including removal of rows of zeros and fabrication of pseudo-counts with which zeros are

271 substituted (to enable logarithmic transformations among other reasons).

272  We propose a classification of three types of zeros: (1) non-detected sequences (also caused sampling

273  zeros), (2) truly absent sequences (also called structural zeros), and (3) missing zeros. This differs from

12
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274  the three types of zeros discussed by Kaul et al. (2017) because the issue of missing zeros (which is
275 shown to be critically important in diversity analysis) was not noted in that study and zeros that appear
276  to be outliers from empirical patterns are not considered in this study (because all random read counts

277  are presumed to be correct).

278 It is typically presumed that zeros correspond to non-detected sequences, meaning that the variant is
279 present in some quantity in the source but happened to not be included in the library and is represented
280 by a zero. A legitimate singleton that is replaced with a zero would be a special case of a non-detect
281 zero. Bias would result if non-detect zeros were omitted or included in the diversity analysis
282 inappropriately (e.g., substitution with pseudo-counts or treating them as definitively absent variants). It
283 is conceptually possible that a particular type of microorganism may be truly absent from certain
284  sources so that the corresponding read count and proportion should definitively be zero. If false
285 sequences due to errors in amplification and sequencing are filtered from the ASV table but left as zeros,
286  then they are a special case of truly absent sequences. Bias would result if such zeros were included in
287  diversity analysis in a way that manipulates them to non-zero values or allows the corresponding variant
288  to have a plausibly non-zero proportion. Missing zeros are variants that are truly present in the source
289 and not represented in the data—they are not acknowledged to be part of the community, even with a
290  zero in the ASV table. Bias would result from exclusion of these zeros from diversity analysis rather than
291 recognizing them as non-detected variants. Thus, there are three types of zeros, two of which appear
292  indistinguishably in the data and must be handled differently and the third of which is important but
293  does not even appear in the data. In this study, simulation-based experiments are used to illustrate
294 implications of the dilemma of not knowing how many zeros should appear in the data to be analyzed as

295 non-detects.
296 4.0 Probabilistic inference of source Shannon index using Bayesian methods

297  The Shannon index (Equation 1; Shannon, 1948; Washington, 1984) is used as a measure of alpha
298 diversity that reflects both the richness and evenness of variants present (number of unique variants
299  and similarity of their respective proportions). When calculated from a sample, the Shannon index (S)
300 depends only on the proportions of the observed variants (p; for the i of n variants) and not on their
301 read counts. Critically, the Shannon index of a sample is not an unbiased estimate of the Shannon index
302  of the source (even in scenarios without amplification); it is expected to increase with library size as
303 more rare variants are observed until it converges asymptotically on the Shannon index of the source

304 (Willis, 2019). Even if all variants in the source are reflected in the data, the precision of the estimated
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305 Shannon index will improve with increasing library size. Building on existing work applying Bayesian
306 methods to characterize the uncertainty in enumeration-based microbial concentration estimates (e.g.,
307 Emelko et al., 2010) and inspired by the need to consider random error in evaluation of alpha diversity
308 that was noted by Willis (2019), a Bayesian approach is explored here for the simplified scenario of
309 multinomially distributed data. It evaluates uncertainty in the source Shannon index given sample data,
310  the multinomial model, and a relatively uninformative Dirichlet prior that gives equal prior weight to all
311 variants (using a vector of ones). Hierarchical modelling that may describe how the proportional
312 composition varies among samples is beyond the scope of this analysis. Such modelling can be beneficial
313  when strong information in the lower tier of the hierarchy can be used to probe the fit of the upper tier;
314 however, it can be biased if limited information in the lower tier is bolstered with flawed assumptions

315 introduced via the upper tier.
316 S==-2r p XInp; (1)

317 Here, a simulation study is employed that is analogous to compositional microbiome data with small
318 library sizes and small numbers of variants and that does follow a multinomial relative abundance
319 model. The simulation uses specified proportions for a set of variants; for illustrative purposes, the
320  simulation represents random draws with replacement from a bag of lettered tiles based on the game
321 Scrabble™. Randomized multinomial data (Table S1, Supplementary Content) were generated in R using
322  varying library sizes and the proportions of the 100 tiles (including 26 letters and blanks), which
323 correspond to a population-level Shannon index of 3.03. Markov chain Monte Carlo (MCMC) was carried
324  out using OpenBUGS (version 3.2.3), with randomized initialization and 10,000 iterations following a
325 1,000-iteration burn-in. The model specification code and a small sample dataset are included in the
326 Supplementary Content. Due to the mathematical simplicity of a multinomial model with a Dirichlet
327 prior, this number of iterations can be completed in seconds with rapid convergence and good mixing of
328 the Markov chain. Each iteration generates an estimate of each variant proportion, and the set of
329 variant proportions is used to compute an estimate of the Shannon index for the source inferred from
330 the sample data. The Markov chain of Shannon index values generated in this way is collectively
331 representative of a sample from the posterior distribution that characterizes uncertainty in the source
332 Shannon index given the sample data and prior. The simulated data were analyzed in several ways, as
333 illustrated using box and whisker plots in Figure 1: (1) with all non-detected tile variants removed, (2)
334  with zeros as needed to reach the correct number of tile variants used to simulate the data (i.e., 27), and

335 (3) with extraneous zeros (a total of 50 tile variants of which 23 do not actually exist in the source).
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Figure 1: Box and whisker plot of MCMC samples from posterior distributions of the Shannon index
based on analysis of simulated data. Data with various library sizes (Table S1) were analyzed in each of 3
ways: with zeros excluded (not applicable in some cases), with zeros included for non-detected variants,
and with extraneous zeros corresponding to variants that do not exist in the source. The true Shannon

index of the source from which the data were simulated is 3.03.

The disparity in results between the three ways in which the data were analyzed exemplifies the
importance of zeros in estimating the Shannon index of the source from which samples were gathered.
Omitting non-detect zeros in this Bayesian analysis characteristically underestimates diversity, while
including zeros for variants that do not exist in the source characteristically overestimates diversity. In
each case, the effect diminishes as the library size is increased. Notably, the approach that included
zeros for variants present in the source that were not detected in the sample allowed accurate
estimation of the source Shannon index, with improving precision as the library size increases
(exemplifying statistical consistency of the estimation process). Additional analysis (not shown)
indicated that using a prior with a vector of 0.1’s leads to underestimation of the source Shannon index
by all three methods. Given these results, the proposed Bayesian process appears to be theoretically

valid to estimate the source Shannon index from samples (for which the multinomial relative abundance
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353 model applies), and it does so without the need to normalize data with differing library sizes. Practically,
354 however, it is not possible to know how many zeros should be included in the analysis estimating the
355 Shannon index because the number of unique variants actually present in the source is unknown. This is
356 a peculiar scenario that must be emphasized here because accurate statistical inference about the
357 source is not possible: although the model form (multinomial) is known, the number of unique variants
358  that should be included in the model is practically unknowable. Model-based supposition is not applied
359 in this study to introduce information that is lacking; this can be a biased approach to compensating for
360 deficiencies in observed data or flawed experiments in which “control variables” are not controlled (e.g.,
361 it is not possible to estimate concentration from a count without a measured volume) unless the

362 supposition happens to be correct.

363 Because the extent to which zeros compromised accurate estimation waned with increasing library size
364 (Figure 1), a similar analysis was performed on amplicon sequencing data for six water samples from
365 lakes. The samples (Cameron et al., 2020) featured library sizes between 10,000 and 30,000 and
366 observation of 1,142 unique variants among the samples. All singleton counts had been zeroed and the
367 completed ASV table had 3,342 rows (2,200 of which are all zeros associated with variants detected in
368 other samples from the same study area). Each sample was analyzed three ways: (1) with all non-
369 detected sequence variants removed, (2) with zeros as needed to fill out the 1,142-row ASV table, and
370  (3) with zeros as needed to fill out the 3,342-row ASV table. The appropriate number of zeros to be
371 included for each sample cannot be known, but the Shannon index estimated with all non-detected
372 sequence variants removed is very likely underestimated. The results (Figure 2) show that the number of
373 zeros included in the analysis can have a substantial effect on the estimated Shannon index of the
374  source, even with library sizes nearing 30,000 sequences. It is thus concluded that it is not statistically
375 possible to estimate the Shannon index of the source (even if all the assumptions are met that enable
376  use of the multinomial relative abundance model) unless the number of unique variants present in the

377 source is precisely known a priori.

16


https://doi.org/10.1101/2021.06.19.449110
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.19.449110; this version posted June 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

P o
b.U
o
I e s - TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTETTTTTTT
_re -
2 -
S6 F=-====-== A - m-ssmsme s smmsssmssEmmmssSmmssSSmsmsSmSEmSmsmSmSmsmssssmmsssmssssmsmssssm======= == - - -
B S =
T A
)&} f==================s====s==s=s==s============s=s=S====================================-=
-
i .
- =
= = -
o e I e —— i o m m e e Em em o e o e e e e En e e e e e e e Em e e e e o a mam o oam
= 3.7 ==
= .
— =2 g L2
= 50 F===== e i e i e e i
o 20 =
| = il
= ==
[ o = 2
- T
e a == =
A ] £
R = S,
i
=
= =y
A A e e — e ——— L L . T
4.4 ] ==
s
o
=
==
_ o
A J e o e o e o e e e e e e e e e e e e e =
4.4
=
=
5
A
&
fi 0 i M = =
o L Ls [N ]
SamnlalD
sampie 10
M forne MA forn Dane Bl Ll AGY 1okl yith forn Dogere
1 Mo feros & No ferc Hows = Hun ASY Laoie wiln Zero Rows

378

379 Figure 2: Box and whisker plot of MCMC samples from posterior distributions of the Shannon index
380 based on analysis of amplicon sequencing data. Data with various library sizes between 10,000 and
381 30,000 were analyzed 3 ways: with zeros excluded, with zeros included in a 1,142-row ASV table (no
382 zero rows), and with additional zeros from the full 3,342-row ASV table including variants with rows of

383  zeros (detected in other samples from the same study area).
384 5.0 Diversity Analysis in Absence of a Model to Infer Source Diversity

385 Recognizing that amplicon sequencing of a sample provides only partial and indirect representation of
386  the diversity in the source (specifically partial representation of post-amplification diversity) and that
387  statistical inference about source diversity is compromised by clustering, amplification, and not knowing
388 how many zeros should be included in the data, the question of how to perform diversity analysis
389  remains. The approach should recognize the random nature of amplicon sequencing data, reflect the
390 importance of the library size in progressively revealing information about diversity, avoid normalization
391  that distorts the proportional composition of samples, and provide some measure of uncertainty or
392  error. Inference about source diversity is the ideal, but it is not possible with a multinomial relative
393  abundance model unless the number of unique variants in the source is precisely known and there are

394 many types of error in amplicon sequencing that are likely to invalidate this foundational model as
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395 discussed above. Rarefying repeatedly, a subsampling process to normalize library sizes among samples
396 that is performed many times in order to characterize the variability introduced by rarefying (Cameron
397 et al., 2020), satisfies these goals. When a sample is rarefied repeatedly down to a smaller library size
398 (using sampling without replacement), it describes what data might have been obtained if only the
399 smaller library size of sequence variants had been observed. It also does not throw out valid sequences
400 because all sequences are represented with a sufficiently large number of repetitions. A value of the
401 sample Shannon index may than be computed for each of the repetitions to quantify the diversity in

402 samples of a particular library size.

403 Figure 3 schematically illustrates the relationship between repeatedly rarefying to smaller library sizes
404  and statistical inference about the source from which the sample was taken. Rarefying adds random
405 variability by subsampling without replacement while statistical inference includes parametric
406 uncertainty that is often ignored in contemporary diversity analyses. Because the extent to which
407 diversity is exhibited by a sample depends on the library size, such sample-level analysis must be
408 performed at the same level (analogous to converting 1 mm, 1 cm, and 1 km to a common unit before
409 comparing numerical values) and any observations obtained about patterns in sample-level diversity are
410  conditional on the shared library size at which the analysis was performed. On the other hand, current
411 methods (including rarefying once), distort the data to facilitate use of compositional analysis methods
412 that presume the data are a perfect representation of the microbial composition in the source; it is
413 important to recognize that the detected library is only a random sample that is imperfectly

414 representative of source diversity.
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416 Figure 3: Schematic diagram relating library size and diversity quantified therefrom to uncertainty in
417 statistical inference about source diversity and variability introduced by repeatedly rarefying to the
418 smallest obtained library size. In this case, rarefying repeatedly evaluates the extent of the diversity
419 (after amplification) exhibited if a library size of only n=5000 had been obtained from each sample.

420 A simulation experiment was performed using the hypothetical population based on Scrabble™ and
421  samples with varying library sizes (see R code in Supplementary Content) to explore rarefying repeatedly
422  and plug-in estimation of the Shannon index (Figure 4). A thousand simulated datasets with a library size
423  of 25 yielded Shannon index values between 1.86 and 2.87 (with a mean of 2.49), illustrating that the
424 source diversity (with a Shannon index of 3.03) is only partially exhibited by a sample with a library size
425 of 25. Five samples were generated with library sizes of 50, 100, 200, 500, and 1000, and corresponding
426  Shannon index values are shown in red (deteriorating markedly at library sizes of 100 or less). Each
427  sample was then rarefied repeatedly (1000 times) to a library size of 25, resulting in the box and whisker
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428 plots of the calculated Shannon index values. Although samples with larger library sizes exhibit more
429 diversity, samples repeatedly rarefied down to the minimum library size of 25 exhibit very comparable
430  diversity. The Shannon index at a library size of 25 is similar for all samples, as it should be given that
431 they were generated from the same population. If rarefying had been completed only once without
432 guantification of the error introduced, it may erroneously have been concluded that the samples

433 exhibited different Shannon index values.
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435 Figure 4: Demonstration of normalization by rarefying repeatedly using simulated data. The box and
436  whisker plot for the library size of 25 (*) illustrates how the Shannon index varies among simulated
437  samples and is consistently below the actual Shannon index of 3.03 (red line). The Shannon index
438  calculated from the samples with larger library sizes (red dots) deteriorates at small library sizes. The
439 box and whisker plots for these library sizes illustrate what Shannon index might have been calculated if
440  only a library size of 25 had been obtained (rarefying 1000 times to this level). In all cases, a Shannon

441 index of about 2.5 is expected with a library size of 25.
442 6.0 Discussion

443 Diversity analysis of amplicon sequencing data has grown rapidly, adopting tools from other disciplines
444  but largely differing from the statistical approaches applied to classical microbiology data. Most analyses
445  feature a deterministic set of procedures to transform the data from each sample and yield a single
446  value of an alpha diversity metric or a single point on an ordination plot. Such procedures should not be
447  viewed as statistical analysis because the data are not a population (i.e., perfect measurements of the
448 proportional composition of the community in the source); they are a random sample representing only

449 a portion of that population. Acknowledging that the data are random and that the goal is to understand
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450  the alpha and beta diversity of the sources from which samples were collected, it is important to
451 describe and explore the error mechanisms leading to variability in the data and uncertainty in

452  estimated diversity.

453  This study provides a step toward such methods by describing mechanistic random errors and their
454 potential effects, proposing a probabilistic model and listing the assumptions that facilitate its use,
455  discussing various types of zeros that may appear (or fail to) in ASV tables, and performing illustrative
456 analyses using simulated data. Several sources of random error were found to invalidate the
457 multinomial relative abundance model that is foundational to probabilistic modelling of compositional
458 sequence count data, notably including clustering of microorganisms in the source and amplification of
459 genes in this sequencing technology. Future simulation studies could explore the effect of non-random
460 microorganism dispersion, sample volume (relative to a hypothetical representative elementary volume
461  of the source), differential analytical recovery in sample processing, amplification errors, and sequencing
462 errors on diversity analysis more thoroughly and evaluate the potential for current normalization and

463 point-estimation approaches to misrepresent diversity.

464  This study also presents a simple Bayesian approach to drawing inference about diversity in the sources
465 from which samples were collected (rather than just diversity in the sample or some transformation of
466  it). Even under idealized circumstances in which the multinomial relative abundance model is valid, it
467 was unfortunately found to be biased unless the number of unique variants present in the source was
468 known a priori. This may have implications on analysis of any type of multinomial data, beyond
469 microbiome data, in which the number of possible outcomes (or the number of outcomes with zero
470  observations that should be included in the analysis) is unknown. It is plausible that a probabilistic
471 model could be developed to account for errors that invalidate the multinomial model, though this
472  would require many assumptions that would be difficult to validate and that could substantially bias
473 inferences. In summary, probabilistic modelling should be used to draw inferences about source
474  diversity and quantify uncertainty therein, but the simple multinomial model is invalidated by some
475 types of error that are inherent to the method and inference is not possible even with the multinomial

476 model unless the practically unknowable number of unique variants in the source is known.

477 For lack of a reliable and readily available probabilistic approach to draw inferences about source
478 diversity, an approach to evaluate and contrast sample-level diversity at a particular library size is
479 needed. Rarefying once manipulates the data in a way that adds variability and discards data (McMurdie

480 & Holmes, 2014), and (like other transformations proposed to normalize data) the manipulated data are
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481 generally only used to obtain a plug-in estimate of diversity. Rarefying repeatedly, on the other hand,
482 allows comparison of sample-level diversity estimates conditional on a library size that is common
483 among all analyzed samples, does not discard data, and characterizes variability in what the diversity
484 measure might have been if only the smaller library size had been observed. This approach is by no
485 means statistically ideal, but it may be a distant second best relative to the Bayesian approach (or
486 analogous frequentist approaches based on the likelihood function) presented in this study that cannot
487 practically be applied in an unbiased way in many scenarios, especially due to the unknowable number
488 of unique variants that are actually present in the source and complex error structures inherent to

489 amplicon sequencing.
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