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Abstract

Polygenic scores (PGS) are commonly evaluated in terms of their predictive accuracy at the
population level by the proportion of phenotypic variance they explain. To be useful for
precision medicine applications, they also need to be evaluated at the individual patient level
when phenotypes are not necessarily already known. Hence, we investigated the stability of
PGS in European-American (EUR)- and African-American (AFR)-ancestry individuals from the
Philadelphia Neurodevelopmental Cohort (PNC) and the Adolescent Brain Cognitive
Development (ABCD) cohort using different discovery GWAS for post-traumatic stress disorder
(PTSD), type-2 diabetes (T2D), and height. We found that pairs of EUR-ancestry GWAS for the
same trait had genetic correlations > 0.92. However, PGS calculated from pairs of same-
ancestry and different-ancestry GWAS had correlations that ranged from <0.01 to 0.74. PGS
stability was higher for GWAS that explained more of the trait variance, with height PGS being
more stable than PTSD or T2D PGS. Focusing on the upper end of the PGS distribution,
different discovery GWAS do not consistently identify the same individuals in the upper
quantiles, with the best case being 60% of individuals above the 80t percentile of PGS
overlapping from one height GWAS to another. The degree of overlap decreases sharply as
higher quantiles, less heritable traits, and different-ancestry GWAS are considered. PGS
computed from different discovery GWAS have only modest correlation at the level of the
individual patient, underscoring the need to proceed cautiously with integrating PGS into

precision medicine applications.
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Introduction

Polygenic scores (PGS) are increasingly being used to draw inferences regarding genetic
contributions to a variety of complex anthropometric and disease-related traits. Numerous
methods have been developed for computing PGS for a target population using summary
statistics from a discovery genome-wide association study (GWAS) run for an independent
population, with newer Bayesian-based techniques such as LDpred,* SBayesR,? and PRS-CS?
generally yielding more predictive PGS than those produced using older methodologies that
rely on a combination of linkage disequilibrium (LD) clumping and P-value thresholding.?

One goal is to utilize PGS in clinical settings to facilitate the diagnosis and treatment of a
wide range of heritable diseases,’ such as inflammatory bowel disease,® diabetes,’
cardiovascular disease,® ° cancer,'° Alzheimer's disease,*! attention-deficit/hyperactivity
disorder,'?2 major depressive disorder,*? bipolar disorder,'* and schizophrenia.'> While progress
has been made towards reaching this goal,*®®> numerous challenges remain to be solved.> 20-23
Given that the GWAS required for computing PGS have been disproportionately run for
European-ancestry populations,?*?® a fundamental challenge will be ensuring that diverse
populations have equitable access to medically beneficial PGS,?° as it has been demonstrated
that that PGS are less predictive when the target and discovery populations have differing
genetic ancestry or varying degrees of admixture.3%-34
Previous studies have evaluated PGS performance in terms of how well they predict

phenotypes at the population level. However, if PGS are going to be adopted in the precision-

medicine setting, it is also necessary to examine how well PGS perform at predicting the risk for
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individual patients.3> To this end, we examined the stability of PGS computed for individuals
across discovery GWAS. Specifically, we evaluated the correlations between the PGS computed
for EUR and AFR individuals from pairs of same- and different-ancestry discovery GWAS for

38-40 3nd height.*¥ 42 These specific traits

post-traumatic stress disorder,3% 37 type 2 diabetes,
were chosen because they had sufficiently powered, publicly available AFR-ancestry GWAS. We
also addressed the question of whether the same individuals were consistently identified as
belonging to the top PGS quantiles. For this work, we targeted European-American (EUR) and

African-American (AFR) youth from the Philadelphia Neurodevelopmental Cohort (PNC) and the

Adolescent Brain Cognitive Development Study (ABCD).

Subjects and Methods

Philadelphia Neurodevelopmental Cohort (PNC)

Genotype data for the PNC, a population-based sample of youth who were ages 8-21 at
the time of study enrollment,*® were obtained from dbGaP (phs000607.v2.p2). Biological
samples from PNC subjects were genotyped in fifteen batches (Table S1) using ten different
types of Affymetrix and lllumina arrays by the Center for Applied Genomics at the Children's
Hospital of Philadelphia.** Analysis was limited to the 5,239 EUR and 3,260 AFR ancestry
individuals for whom genotype data were available after the quality-control (QC) process
described below.

Adolescent Brain Cognitive Development Study (ABCD)

Results were replicated using post-QC genotype data for 5,815 EUR and 1,741 AFR

individuals in the independent ABCD cohort (NDA #2573, fix release 2.0.1). This cohort is
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comprised of adolescents who were ages 9-10 at the time that their saliva samples were
collected for genotyping.* The Rutgers University Cell and DNA Repository stored and
genotyped all samples using the Affymetrix NIDA SmokeScreen array.

Quality Control and Imputation

The PNC dataset was processed by array batch and merged after imputation, whereas
the ABCD dataset was processed as a single batch. For each batch, PLINK 1.9% was used to
remove single nucleotide polymorphisms (SNPs) with > 5% missingness, samples with more
than 10% missingness, and samples with a genotyped sex that did not match the reported sex
phenotype. As a final step, each batch was checked with a pre-imputation perl script that
compared SNP frequencies against the 1000 Genomes ALL reference panel.*” This script fixed
strand reversals and improper Ref/Alt assignments and also removed palindromic A/T and C/G
SNPs with minor allele frequency (MAF) > 0.4, SNPs with alleles that did not match the
reference panel, SNPs with allele frequencies differing by more than 0.2 from the reference,
and SNPs not present in the reference panel.

Genotypes were phased (Eagle v.2.4) and imputed by chromosome to the 1000
Genomes Other/Mixed GRCh37/hg19 reference panel (Phase 3 v.5) using Minimac 4 via the
Michigan Imputation Server.?® The fifteen imputation batches for the PNC dataset were
merged by chromosome, and then post-imputation QC was run on the merged chromosome
files using bcftools.*® Only polymorphic sites with imputation quality R? > 0.7 and MAF > 0.01

were included in the final PLINK 1.9 hard-call PNC and ABCD post-imputation datasets.
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Ancestry and Kinship Analysis

Multi-dimensional scaling (MDS) was conducted using KING (v.2.2.4)*° to identify the
top ten ancestry principal components (PCs) for each sample. These PCs were projected onto
the 1000 Genomes PC space, and genetic ancestry was inferred using the e1071°! support
vector machines package in R>? (Figure 1). Based on these inferences, AFR- and EUR-ancestry
cohorts were created for the PNC and ABCD datasets; all other ancestry groups were excluded
from further analysis. A second round of unprojected MDS was then performed within the
EUR- and AFR-ancestry groups to produce ten PCs that were regressed out of the standardized
PGS to adjust for array batch effects and genetic ancestry (Figures S1-S5).

KING was also used to identify all pairwise relationships out to third degree relatives
based on estimated kinship coefficients and inferred IBD segments. Although the PNC was not
recruited as a family study, it does include some related individuals (i.e., siblings and cousins).
We ran a sensitivity analysis using a reduced PNC dataset that included only one individual from
each family (chosen as the lowest individual ID number for a given family ID number), which
reduced the size of the PNC EUR cohort from 5,239 to 4,928 and the AFR cohort from 3,260 to
2,954. After establishing that the PNC PTSD PGS correlation results obtained using only
unrelated individuals did not differ meaningfully from those obtained using the full dataset
(Tables S4 and S5), we performed all subsequent analyses using the complete EUR and AFR
cohorts.

Polygenic Score Computation with PRS-CS
PRS-CS3 was used to infer posterior effects by chromosome for the SNPs in a given

dataset that overlapped with both the discovery GWAS summary statistics and an external 1000
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Genomes LD panel that was matched to the ancestry group used for the discovery GWAS.
Posterior effects were only inferred for SNPs located on the 22 autosomal chromosomes. PGS
for the EUR and AFR subsets of PNC and ABCD were computed using both EUR and AFR
discovery GWAS for post-traumatic stress disorder (PTSD),3% 37 Type-2 diabetes (T2D),3%4° and
height*': 42 (Table 1). To ensure convergence of the underlying Gibbs sampler algorithm, we ran
25,000 Markov chain Monte Carlo (MCMC) iterations and designated the first 10,000 MCMC
iterations as burn-in. The PRS-CS global shrinkage parameter was set to 0.01 when the
discovery GWAS had a SNP sample size that was less than 200,000; otherwise, it was learned
from the data using a fully Bayesian approach. Default settings were used for all other PRS-CS
parameters. Given the stochastic nature of the Bayesian algorithm used by PRS-CS, PGS
replicability was confirmed by completing multiple PRS-CS runs using the same discovery
GWAS. Raw PGS were produced from the posterior effects using PLINK 1.9. R>2 was used to
standardize the PGS for a given cohort to mean =0 and SD = 1. Standardized PGS were then
adjusted by regressing out the first ten within-ancestry PCs.
SNP Heritability Estimation with LDSC

LD score regression (LDSC)®* >* was used to calculate SNP-based heritability (h2yp) on
the observed scale for each EUR-ancestry discovery GWAS that we used to generate PGS. We
also calculated hZyp on the liability scale for PTSD and T2D by incorporating the sample
prevalence and estimated population prevalence into the calculation (Table S14). The standard
error associated with a given h%,p calculation was estimated using a block jackknife over blocks

of adjacent SNPs. Given that LDSC may vyield biased estimates for admixed populations® and
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that we only had access to GWAS summary statistics, we did not calculate SNP heritability for
the AFR-ancestry discovery GWAS.
Statistical Analysis

All statistics and graphical displays were generated using R.>? Pearson correlation
coefficients were calculated to assess the strength of correlations between PC-adjusted
standardized PGS that were calculated for a given trait using different discovery GWAS.
Statistical significance was determined with two-tailed t-tests for linear association. For each
comparison, counts were also made of the number of samples in common at or above the 80t
percentile, the 90™ percentile, and the 95 percentile of the adjusted standardized PGS

distributions.

Results
Reproducibility of Bayesian Posterior Effects

Given that PRS-CS relies on Bayesian methodology to infer posterior effects for the SNPs
on each chromosome,? it was necessary to confirm that we had used enough Markov chain
Monte Carlo (MCMC) iterations and burn-in trials to ensure convergence of the underlying
Gibbs sampler algorithm. We checked for convergence indirectly by assessing the correlation
between the posterior effects calculated across multiple runs for a given chromosome (Figure
2). The PRS-CS default setting of 1000 MCMC iterations with the first 500 iterations serving as
burn-in produced relatively inconsistent posterior effects (r = 0.8), suggesting incomplete
convergence. The correlation between the posterior effects computed during multiple runs of

PRS-CS improved to r = 0.98 when we increased the number of MCMC iterations to 10,000
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(5,000 burn-in) and further improved to r > 0.99 for both large and small chromosomes when
we used 25,000 MCMC iterations (10,000 burn-in). Given that the computational time
increases substantially as more MCMC iterations are run, we opted to use 25,000 MCMC
iterations with the first 10,000 as burn-in rather than pursuing even stronger correlations.
Reproducibility of PGS Computed from the Same Discovery GWAS

The next concern was whether the PGS calculated by PLINK 1.9 from the Bayesian
posterior effects would also be reproducible across PRS-CS runs. To address this question, we
ran PRS-CS twice using the Psychiatric Genomics Consortium (PGC) Freeze 2 PTSD discovery
GWAS?, and calculated PGS from both sets of posterior effects. For both the EUR and AFR PNC
cohorts, the correlation between the adjusted PGS was greater than 0.999 (Figure 3). Hence,
we are confident that PRS-CS yields reproducible PGS for a given discovery GWAS provided that
enough MCMC iterations are used.
Stability of PGS Computed from Different Same-Ancestry Discovery GWAS

Of the three traits that we analyzed, only PTSD had two publicly available AFR-ancestry
GWAS.?%37 We computed PGS using both GWAS for each AFR-ancestry individual and then
assessed the correlation between the two sets of PGS (Figure 4). We found a moderately
strong positive correlation between the PGS computed from the PGC Freeze 13% and Freeze 237
AFR-ancestry PTSD GWAS for the AFR-ancestry cohorts of both PNC (r = 0.696, t(3258) = 55.26,
P <2 x107%) and ABCD (r=0.657, t(1739) =36.34, P < 2 x 10°1¢),

The wider availability of EUR-ancestry GWAS allowed us to compute PGS for EUR-
ancestry individuals using pairs of EUR-ancestry discovery GWAS for PTSD,3% 37 T2D,3% 3% and

height*%: 42 (Figure 5). Statistically significant positive correlations between the pairs of PGS
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were observed for all three traits for both the PNC (Table S8) and ABCD (Table S9) EUR-ancestry
cohorts, with the strongest association observed between the height PGS (PNC: r = 0.736;
ABCD: r = 0.734) and the weakest observed for the PTSD PGS (PNC: r = 0.392; ABCD: r = 0.378).
Stability of PGS Computed from Different-Ancestry Discovery GWAS

Given the scarcity of AFR-ancestry GWAS, it is often tempting to compute PGS for AFR-
ancestry individuals using EUR-ancestry discovery GWAS. To assess the feasibility of this
approach, we computed PGS for AFR-ancestry individuals in PNC and ABCD using both AFR-
ancestry discovery GWAS and EUR-ancestry GWAS and then assessed the correlation between
the two sets of PGS (Figure 6).

For PTSD, there was no significant correlation between the PGS computed from the
newer Freeze 2 PGC AFR and EUR discovery GWAS?’ for AFR-ancestry individuals in either PNC
(r=0.00356, t(3258) =0.203, P = 0.839) or ABCD (r =0.00283, t(1739) = 0.118, P = 0.906). The
AFR PGS computed using the Freeze 1 PGC PTSD AFR and EUR discovery GWAS3® were
uncorrelated for ABCD (r =-0.00320, t(1739) =-0.133, P = 0.894), but we observed a weak
positive correlation for PNC (r = 0.0417, t(3258) = 2.379, P=0.0174).

We made the same different-ancestry GWAS comparisons for the EUR-ancestry
individuals in the PNC and ABCD study populations (Figure 7). As was the case for AFR-ancestry
individuals, we found no significant correlation between PGS computed from the PGC Freeze 2
EUR- and AFR-ancestry PTSD discovery GWAS.?” While we observed no significant correlation
between the PGS computed using the PGC Freeze 1 EUR- and AFR-ancestry PTSD discovery
GWAS for EUR-ancestry individuals in ABCD (r = -0.00109, t(5813), P = 0.934), we did observe a

weak positive correlation for the EUR cohort of PNC (r = 0.0379, t(5237) = 2.746, P = 0.0065).
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We compared T2D PGS computed from an AFR-ancestry discovery GWAS*® to those
computed using two EUR discovery GWAS3® 39 published by the Diabetes Genetics Replication
and Meta-Analysis (DIAGRAM) consortium. The newer EUR-ancestry T2D discovery GWAS*
yielded PGS that were uncorrelated with those computed from the AFR-ancestry discovery
GWAS? for the AFR-ancestry individuals in both PNC (r = 0.0185, t(3258) = 1.055, P = 0.292) and
ABCD (r=0.0219, t(1739) =0.912, P = 0.362). Similarly, there was no significant correlation
between the different-ancestry T2D PGS that we computed for the EUR-ancestry individuals in
PNC (r = 0.0240, t(5237) = 1.739, P = 0.082) and ABCD (r = 0.0224, t(5813) = 1.71, P = 0.0872).
We observed a weak positive correlation between the PGS computed from the older EUR-
ancestry T2D discovery GWAS3® and the PGS computed from the AFR-ancestry T2D discovery
GWAS? for the PNC AFR cohort (r = 0.0432, t(3258) = 2.469, P = 0.0136), but there were no
significant correlations between the two sets of PGS computed for the ABCD AFR cohort (r = -
0.0458, t(1739) =-1.911, P = 0.0562), the PNC EUR cohort (r = 0.00528, t(5237) =0.382, P =
0.703), or the ABCD EUR cohort (r=0.0188, t(5813) = 1.431, P = 0.152).

We also computed different-ancestry PGS using EUR- and AFR-ancestry height discovery
GWAS that we obtained from the Genetic Investigation of Anthropometric Traits (GIANT)
consortium.*% 42 We observed significant positive correlations between the PGS computed
from the newer EUR- and AFR-ancestry height discovery GWAS?*? for the PNC AFR (r = 0.287,
t(3258) = 17.09, P < 2 x 10°%6), ABCD AFR (r =0.306, t(1739) = 13.42, P < 2 x 10°%6), PNC EUR (r =
0.403, t(5237) = 31.82, P < 2 x 10'16), and ABCD EUR (r = 0.404, t(5813) = 33.69, P < 2 x 10°%6)
cohorts. Likewise, we found significant positive correlations between the PGS computed from

the older EUR-ancestry height discovery GWAS?*! and the AFR-ancestry height discovery GWAS*
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for the PNC AFR (r = 0.258, t(3258) = 15.22, P < 2 x 10°"%6), ABCD AFR (r = 0.312, t(1739) = 13.68,
P <2 x10°%), PNC EUR(r = 0.335, (5239) = 25.25, P < 2 x 10'%6), and ABCD EUR (r = 0.327,
t(5813)=26.39, P < 2 x 10''%) cohorts. As was the case for T2D, there was only one AFR-ancestry
height discovery GWAS*? available to use for computing PGS.

The supplement includes complete statistical results for the comparisons between PGS
computed from different discovery GWAS for the PNC AFR (Table S6), ABCD AFR (Table S7), PNC
EUR (Table S8), and ABCD EUR (Table S9) cohorts.

Quantile-Based Comparisons

Given that there was little to no correlation between PGS computed from different
discovery GWAS, we considered the possibility that there would be more stability if we focused
on the individuals who had PGS located in the upper tail of the distribution, as those are the
individuals who would presumably be most at risk for a disease trait. Considering the top 20%,
10%, and 5% of PC-adjusted standardized PGS, we counted how many individuals were jointly
identified as being at or above a given percentile of the PGS computed from two different
discovery GWAS. See the supplement for complete results of these analyses for the PNC AFR
(Table S10), ABCD AFR (Table S11), PNC EUR (Table S12), and ABCD EUR (Table S13) cohorts.

As a baseline comparison, we determined the degree of overlap between the individuals
in the top quantiles of PGS computed from two PRS-CS runs using the Freeze 2 AFR- and EUR-
ancestry PTSD discovery GWAS?” for the AFR (Figure 8A) and EUR (Figure 9A) PNC cohorts,
respectively. Of the n =3260 individuals in the PNC AFR cohort, there are n = 652 individuals
with PGS at or above the 80t percentile, n = 326 with PGS at or above the 90" percentile, and n

=163 with PGS at or above the 95™ percentile of PGS. We found an overlap of 644 of the 652
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AFR-ancestry individuals who had PGS at or above the 80™ percentile from the two runs using
the same AFR-ancestry PTSD discovery GWAS, which is a 98.7% overlap. Comparable degrees
of overlap were observed between the PNC AFR-ancestry individuals with PTSD PGS at or above
the 90t (318/326 = 0.975) and 95 (161/163 = 0.988) percentiles. Similarly, the proportional
overlap between the PTSD PGS computed from two PRS-CS runs using the Freeze 2 EUR-
ancestry PTSD discovery GWAS?? for the EUR-ancestry cohort (n = 5239) was 1026/1048 = 0.979
at or above the 80 percentile, 513/524 = 0.979 at or above the 90" percentile, and 255/262 =
0.973 at or above the 95 percentile.

The proportional overlap decreases if we consider PGS computed from two different
same-ancestry discovery GWAS. For the PNC AFR-ancestry cohort (Figure 8B), adjusted
standardized PGS computed from the Freeze 136 and Freeze 237 PTSD AFR-ancestry discovery
GWAS (Figure 8B) had 53.6% of individuals in common at or above the 80" percentile, 47.5% at
or above the 90™ percentile, and 36.3% at or above the 95" percentile. The decrease in
proportional overlap was even more pronounced for PGS computed from two different EUR-
ancestry GWAS for the PNC EUR-ancestry cohort (Figure 9B). The proportion of overlap
became progressively smaller as we considered progressively higher percentiles for PTSD, T2D,
and height. Moreover, the amount of overlap was greatest for height and smallest for PTSD at
each of the percentiles that we considered.

Proportional overlap was even more dramatically decreased when we compared the top
guantiles of the PGS that had been computed from an AFR-ancestry discovery GWAS to those
that had been computed from a EUR-ancestry discovery GWAS (Figures 8C and 9C). Note that

Figures 8 and 9 only include comparisons for PNC between the PGS computed using the newer
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discovery GWAS if there was more than one comparison possible; full results are presented in
the supplement (Tables S10-S13). For the AFR cohort of PNC, the proportional overlap ranged
from a low of 4.91% for different-ancestry PTSD PGS at the 95 percentile to a high of 32.8% for
different-ancestry height PGS at the 80™ percentile, whereas the proportional overlap for the
PNC EUR cohort ranged from 3.82% for different-ancestry T2D PGS at the 95™ percentile to
38.1% for height PGS at the 80™ percentile. For both the EUR and AFR cohorts, the general
pattern is that proportional overlap is largest for different-ancestry PGS at the 80™ percentile
and smallest at the 95" percentile. Within a given percentile, the proportional overlap is
largest for height and smallest for either PTSD or T2D.
SNP Heritability

We hypothesized that PGS would be more stable for traits with discovery GWAS that
explain more of the genomic variance. As such, we used LDSC to compute the SNP heritability
for each of the EUR-ancestry discovery GWAS that we used to compute PGS (Figure 10). The
genetic correlation calculated by LDSC for each pair of GWAS essentially perfect, with the
lowest rg =0.9225 + 0.1807 for PTSD. We found that SNP heritability on the observed scale was
highest for height*? (hZyp = 0.697 + 0.067) and lowest for PTSD?’ (hZy, = 0.017 + 0.003).
On the liability scale (which is only relevant for the two disease traits), SNP heritability was
substantially higher for T2D than for PTSD (Table S14). On both the observed and liability
scales, there was a clear difference between the SNP heritability of the two discovery GWAS
that were used to compute PGS for each trait. For height and T2D, the SNPs included in the
newer GWAS explained more phenotypic variance than did those in the older GWAS, but the

opposite was true for PTSD.
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Discussion

We have demonstrated that the PGS computed from different discovery GWAS have
little to no correlation at the level of the individual patient. While the correlation is better for
highly heritable anthropometric traits (e.g., height), the lack of correlation for medical and
psychiatric disorders like T2D and PTSD underscores the need to proceed cautiously with
integrating PGS into precision medicine applications.

This lack of correlation is especially noteworthy given that it was observed for PGS
computed using meta-GWAS that were produced by the PGC,3% 37 DIAGRAM,3% 3° and GIANT3%
41 consortia. The fact that even same-ancestry meta-GWAS computed by the same consortia
using overlapping samples and SNPs (Table 1) would yield PGS that lack meaningful correlation
at the individual level raises serious concerns. If PGS are going to be used clinically, then they
need to be reproducible. Furthermore, judging PGS quality based primarily on population-level
analytics, such as the area under the receiver operator characteristic curve (AUC), that depend
on known case-control status will not be an effective approach for judging the validity of PGS
computed for individual patients who do not necessarily have known phenotypes.3> >6

Even if stand-alone PGS are not yet useful clinically, they could still be used to help
identify those patients at highest disease risk.>’ For instance, PGS for psychiatric traits could be
used in conjunction with environmental factors to identify adolescents most at risk for
developing psychosis and other mental health disorders.'® We are actively pursuing such

applications with the PNC and ABCD cohorts and have found that ancestry-specific PTSD PGS do

indeed add predictive value to models that include other non-genetic factors.”® Nonetheless,
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we caution that it is dangerous to rely solely on PGS quantiles to identify at-risk patients.
Different discovery GWAS yielded PGS that did not identify the same patients at the top
guantiles of the distribution, and the amount of overlap decreased as higher quantiles were
considered (Figures 8 and 9; Tables S10-S13). Hence, the instinctive decision to focus only on
the upper tail of the PGS distribution will not mitigate the lack of PGS stability across different
discovery GWAS.

We chose to use the Bayesian PRS-CS Python package to compute PGS for this study. It
has been demonstrated* that Bayesian methods generally yield more predictive PGS than those
produced via traditional P-value thresholding approaches. The advantage of PRS-CS over other
Bayesian methods is that it employs a very robust Strawderman-Berger continuous shrinkage
prior rather than a discrete mixture prior, which allows for more accurate multivariate
modeling of local LD in the polygenic prediction.®> When enough MCMC iterations are used to
ensure convergence of the underlying Gibbs sampler algorithm, PRS-CS yields very consistent
posterior effects (Figure 2). PGS computed using the same discovery GWAS are highly
correlated when computed using multiple PRS-CS runs (Figure 3), and others have previously
shown that PGS computed from the same discovery GWAS are strongly correlated when
computed using PRS-CS and other Bayesian and non-Bayesian approaches.* Hence, the lack of
PGS stability across discovery GWAS that we report here cannot be attributed to the stochastic
nature of Bayesian methods; there must be differences between the discovery GWAS.

By choosing to use multiple generations of GWAS produced by the same consortia, we
hoped to minimize potential methodological differences between the same-trait meta-GWAS.

As expected, the genetic correlation between each pair of same-trait GWAS was nearly perfect,
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no doubt due to the large overlap between SNPs and samples within each pair (Table 1).
Initially, we had assumed that the newer GWAS in each pair would be the "better" GWAS since
we thought that the larger sample size would yield more explanatory power. We cannot rule
out this possibility for the T2D and height GWAS; in both cases, the newer EUR GWAS had
higher SNP heritability than the older one (Figure 10). However, given that the opposite was
true for the two PTSD GWAS, we have come to believe that bigger GWAS are not necessarily
better.

Phenotyping quality should not be overlooked when choosing a discovery GWAS.
Consortia have developed QC pipelines, such as RICOPILI,>® to harmonize genomic data from
multiple cohorts prior to meta-analyzing. However, ensuring consistent phenotyping poses a
continuing challenge, especially for case-control meta-GWAS analyses of non-continuous
psychiatric traits like PTSD. The PGC Freeze 2 EUR-ancestry PTSD GWAS?’ had a large increase
in sample size due to the addition of samples from the UK Biobank, yet the SNP heritability
went down compared to the Freeze 1 GWAS.?® One explanation could be that the UK Biobank
PTSD phenotypes were derived from self-reported questionnaires, which are less reliable than
the ascertainment procedures used by the smaller studies that comprised the original meta-
analysis.®°

It is not surprising that the two height GWAS had higher SNP heritability than the PTSD
and T2D GWAS (Figure 10; Table S14). Height is an easily measured quantitative trait that is
less susceptible to ascertainment bias than qualitative disease traits. Furthermore,
environmental factors make substantial contributions to the development of both PTSD®! and

T2D.52 Even so, LDSC gave an unusually high estimate of SNP heritability (h2y, = 0.6967 +
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0.0674) for the newer height GWAS.*? While it is possible that the LDSC calculations could
have been biased due to the small number of SNPs, we believe that a plausible explanation lies
in the design of this GWAS. Specifically, the newer height GWAS included a small number of
targeted rare and low-frequency SNPs (MAF between 0.1% and 4.8%) on a specially designed
exome array rather than casting the same wide net as the earlier GWAS. This modification
coupled with a substantially increased sample size and an easily ascertained quantitative trait
could have yielded this improvement in explanatory power. It is tantalizing to speculate that a
new class of genomic association studies that incorporate a smaller number of low-frequency
and rare variants with large effects could improve our understanding of the genetic basis of
complex traits beyond what can be inferred from large-scale GWAS alone.®® Such studies will
be facilitated by the recent release of the Trans-Omics for Precision Medicine (TOPMed)%*
Imputation Server, which should yield improved imputation accuracy for low-frequency and
rare variants. Given that SNP heritability for psychiatric disorders generally underestimates the
heritability calculated from family studies,® it could be worthwhile to adopt this type of
targeted approach coupled with more closely harmonized phenotyping for future genomic
association studies of PTSD and other neuropsychiatric traits.

The previous heritability discussion is limited to the EUR-ancestry discovery GWAS. We
chose not to use LDSC to compute SNP heritability for the AFR-ancestry GWAS due to evidence
that it yields biased estimates for admixed populations.>> Given the relatively smaller sample
sizes of the AFR GWAS (Table 1), you might expect that they explained less trait variance than
the corresponding EUR GWAS. However, this was not necessarily the case. Using individual-

level data, the Freeze 2 PTSD GWAS authors3” demonstrated that SNP heritability was
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comparable for EUR- and AFR-ancestry males on the liability scale, and it was higher for AFR-
ancestry females than for EUR-ancestry females and both groups of males. Likewise, the
relatively stronger correlation between pairs of same-ancestry AFR PTSD PGS (Figure 4) and the
higher degree of overlap between individuals at upper end of the PGS distribution (Figure 8B;
Tables S10 and S11) as compared to same-ancestry EUR PTSD PGS (Figures 5 and 9B; Tables S12
and S13) is consistent with the possibility that the smaller AFR-ancestry PTSD GWAS (neither of
which included UK Biobank samples) explained more variance than the EUR-ancestry GWAS did.
Ideally, future work will be directed towards developing methodology to calculate unbiased
estimates of SNP heritability for AFR-ancestry and other admixed populations from GWAS
summary statistics. Popcorn,®® a Python package for calculating trans-ethnic genetic correlation
from GWAS summary statistics, provides a preliminary step in this direction, as does cov-
LDSC.>>

Our results add to the growing body of evidence that PGS should be computed from an
ancestrally matched discovery GWAS. It is well established that EUR-ancestry GWAS typically
yield PGS that are less predictive for AFR and other non-EUR ancestry groups.t®: 21 25;30;31;34; 67-71
We have further demonstrated that PGS computed from same-ancestry GWAS for PTSD and
T2D are uncorrelated with those computed from different-ancestry GWAS for both AFR- and
EUR-ancestry study participants (Figures 6 and 7), and we also found that there is very little
overlap between the individuals in the upper tails of the PGS distributions computed using EUR-
ancestry GWAS as compared to those computed using AFR-ancestry GWAS (Figures 8c and 9c;

Tables S10-S13). Given the dearth of AFR-ancestry and other non-EUR-ancestry discovery
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GWAS, our results underscore the urgent need for more high-powered GWAS analyses to be
run for non-EUR ancestry populations.

We chose to study PTSD, T2D, and height because all three traits had publicly available
GWAS for both EUR- and AFR-ancestry populations. Of these three, PTSD was the only trait
that had two AFR-ancestry GWAS available for comparison purposes. While we focused our
current work on the EUR- and AFR-ancestry individuals in the PNC and ABCD cohorts, we hope
that methodology and GWAS data will soon exist to make it possible expand our analyses to the
admixed American (AMR) and other ancestral groups that are also included in these cohorts
(Figure 1). The recent release of PRS-CSx”? will make it possible to use discovery GWAS that
include a combination of EAS-, AFR-, and EUR-ancestry samples. Although it offers an
improvement over the current requirement that the discovery GWAS be limited to only one of
these three ancestry groups, PRS-CSx still does not enable analyses of admixed samples from
other genetic backgrounds.

Ultimately, we envision a future where genetic ancestry will not be a necessary
consideration before computing PGS. Given that genetic ancestry is continuous, it is rather
artificial to assigh samples to discrete ancestry groups.?® Within the AFR-ancestry group alone,
there is an enormous degree of genetic diversity.3% 73> We controlled for such diversity by
calculating PGS separately for each ancestry group and then regressing out within-ancestry
principal components from the standardized PGS. We are optimistic that new methods that
incorporate local ancestry3® 74 will eventually allow us to embrace this diversity and compute
stable, accurate PGS for admixed populations. Increasingly economical whole-genome

sequencing’ coupled with expanded (i.e., less Eurocentric) genotyping arrays’! and improved
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imputation to diverse reference panels from TOPMed®* should also facilitate the further
development of inclusive approaches, such as BOLT-LMM,’% 77 trans-ethnic GWAS,’® and multi-
ethnic PGS.32 While it certainly would be easier to continue to focus PGS development on EUR-
ancestry populations, we do so at the grave risk of further exacerbating the inequities in

medical care between EUR-ancestry populations and the rest of the world.?* 7°
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Supplemental data include six figures and fourteen tables.
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Web Resources

McCarthy Group imputation checking perl script
(https://www.well.ox.ac.uk/~wrayner/tools/index.html#Checking)

McCarthy Group genotyping chip strand and build files
(https://www.well.ox.ac.uk/~wrayner/strand/)

Plink 1.9
(https://www.cog-genomics.org/plink/1.9/)

Bcftools
(https://github.com/samtools/bcftools)

Michigan Imputation Server
(https://imputationserver.sph.umich.edu/index.html)

KING: Kinship-based Inference for GWAS
(http://people.virginia.edu/~wc9c/KING/index.html)

The R Project for Statistical Computing
(https://www.r-project.org)

R package 'e1071'
(https://cran.r-project.org/web/packages/e1071/e1071.pdf)

R package 'qgman’
(https://cran.r-project.org/web/packages/ggman/vignettes/qgman.html)

PRS-CS
(https://github.com/getian107/PRScs)

LDSC
(https://github.com/bulik/Idsc)

DIAGRAM GWAS summary statistics
(http://diagram-consortium.org/downloads.html)

GIANT GWAS summary statistics
(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data file

s)

Psychiatric Genomics Consortium GWAS summary statistics
(https://www.med.unc.edu/pgc/data-index/)

Page 23 of 41


https://doi.org/10.1101/2021.06.18.449060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449060; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data and Code Availability

The PNC and ABCD genomic datasets used in this study are available by application from
dbGaP (phs00060) and NDAR (NDA #2573), respectively. All discovery GWAS summary
statistics and software used in this study are publicly available; see Web Resources for access

information.
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Figure 1. First and second principal components (PCs) of cohort genotypes. PCs were
computed and projected to a 1000 Genomes reference using KING.>® Colors indicate inferred
genetic ancestry for the (A) 9,206 Philadelphia Neurodevelopmental Cohort (PNC) and (B)
10,318 Adolescent Brain Cognitive Development (ABCD) genotyped samples.

Page 33 of 41


https://doi.org/10.1101/2021.06.18.449060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449060; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Chromosome 3 (76,064 SNPs) and Chromosome 21 (15,447 SNPs)

Chromosome 3 (1,000 MCMC iterations, 500 burn-in) Chromosome 21 (1,000 MCMC iterations, 500 burn-in)
0.010
. ° .
..
8 0.01 § 0008 A
(5 (5
= =
w w
g g
g':: g':: 0.000
7 @ 0.
& 0.00 &
o~ o~
- 5 :
4 4 ®
-0.005 )
° . . .
™ .
-0.01 f= 0814 = r=0.830
Ll .
-0.02 -0.01 0.00 0.01 0.02 -0.004 0.000 0.004 0.008
Run 1 Posterior Effects Run 1 Posterior Effects
Chromosome 3 (10,000 MCMC iterations, 5,000 burn-in) Chromosome 21 (10,000 MCMC iterations, 5,000 burn-in)
. .
.
.
Ll
g 001 Wt £ 0.005
L 00 %3 ° L
w » w
ke ke
5 5
3 3
a 0.00 a 0.000
~N ~N
] . ]
4 : 4
L
.
-0.01 -0.0051
3 r=0.977 r=0.979
-0.01 0.00 0.01 -0.005 0.000 0.005 0.010
Run 1 Posterior Effects Run 1 Posterior Effects
Chromosome 3 (25,000 MCMC iterations, 10,000 burn-in) Chromosome 21 (25,000 MCMC iterations, 10,000 burn-in)
L] L]
.
L] L
(W g *
o Ll .
& e 2 0.005 ae?
2 ' 2 :
] ]
ke ke
8 8
S 0.00 8
o = A 0.000
N N
(= (=
3 3
4 4
. [
-0.01 2°
r=0.992 -0.005 5 r=0.993
. P
-0.01 0.00 0.01 -0.005 0.000 0.005 0.01(
Run 1 Posterior Effects Run 1 Posterior Effects

Figure 2. Reproducibility of Bayesian posterior effects computed by PRS-CS. As illustrated for
chromosome 3 (76,064 SNPs) and chromosome 21 (15,447 SNPs) using the Nievergelt et al.
(2019)37 EUR PTSD discovery GWAS with the PNC EUR dataset, posterior effects were more
strongly correlated between PRS-CS runs as the number of MCMC iterations (and burn-in
iterations) increased.
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Figure 3. Reproducibility of PGS across multiple runs of PRS-CS. PC-adjusted standardized PGS
computed from posterior effects generated by two runs of PRS-CS using the same PTSD
discovery GWAS from Nievergelt et al. (2019)37 had correlations greater than r = 0.999 for both
the EUR (n =5239) and AFR (n = 3260) cohorts of PNC.
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Figure 4. Correlation between PGS computed from two different AFR-ancestry PTSD
discovery GWAS for AFR-ancestry individuals. Significant positive correlations were observed
between the AFR PGS computed from the PGC Freeze13® and Freeze23’ AFR PTSD GWAS for
both the PNC (r = 0.696, t(3258) = 55.26 , P < 2 x 107'6) and ABCD (r = 0.657, t(1739) =36.34, P <
2 x 101%) AFR cohorts.
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Figure 5. Correlation between PGS computed from two different EUR-ancestry discovery
GWAS for EUR-ancestry individuals. Pairs of PGS computed for the EUR samples of PNC (n =
5239) and ABCD (n = 5815) using two different EUR discovery GWAS for PTSD,3¢ 37 T2D,3% 3% and
height*% 42 all showed significant positive correlations.
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Figure 6. Correlation between PGS computed from AFR-ancestry and EUR-ancestry discovery
GWAS for AFR-ancestry individuals. Pairs of PGS computed for the AFR samples of PNC and
ABCD from the newer EUR and AFR discovery GWAS were not significantly correlated for either
PTSD3® 37 or T2D,3% 40 but there was a significant positive correlation for height.*?
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Figure 7. Correlation between PGS computed from EUR-ancestry and AFR-ancestry discovery
GWAS for EUR-ancestry individuals. Pairs of PGS computed for the EUR samples of PNC and
ABCD from the newer EUR and AFR discovery GWAS were not significantly correlated for either
PTSD3® 37 or T2D,3% 40 but there was a significant positive correlation for height.*?
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Figure 8. Comparison of the samples comprising the top PGS quantiles for the PNC AFR
cohort. A. The samples located at the top 20%, 10%, and 5% of the PTSD PGS distribution were
virtually the same when PGS were computed twice using the same discovery GWAS. For
example, 644 out of the 652 samples (98.7%) at or above the 80" percentile were the same
between the two batches of PGS. B. The overlap between samples at all three quantiles
dropped substantially when the PGS computed from the AFR PGC Freezel PTSD discovery
GWAS3® were compared to those computed from the AFR Freeze2 PTSD discovery GWAS,3’
with the degree of overlap being reduced at higher quantiles. C. The degree of overlap was
further reduced when comparing PGS computed from an AFR-ancestry discovery GWAS to
those computed from an EUR-ancestry GWAS for PTSD,3” T2D,3% %% and height.*> For context,
the green bars depict the number of samples included at or above the 80t percentile (n = 652),
90t™ percentile (n = 326), and 95 percentile (n = 163). Full results can be found in Table S6.
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Figure 9. Comparison of the samples comprising the top PGS quantiles for the PNC EUR
cohort. A. The EUR samples located within the top 20%, 10%, and 5% of the PTSD PGS
distribution were nearly the same when PGS were computed twice using the same EUR
discovery GWAS.3” For example, 1026 out of the 1048 samples (97.9%) at or above the 80"
percentile were the same between the two runs of PRS-CS. B. The overlap between samples at
all three quantiles dropped substantially when the PGS computed from two different EUR
discovery GWAS were compared for PTSD,3% 37 T2D,3% 3% and height.** 42 C. The degree of
overlap was dramatically reduced when comparing PGS computed from an AFR-ancestry
discovery GWAS to those computed from an EUR-ancestry GWAS for PTSD,3” T2D,3% 4% and
height.*% %2 Green bars depict the number of samples included at or above the 80t percentile (n
=1048), 90™" percentile (n = 524), and 95 percentile (n = 262). Full results can be found in
Table S8.
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Figure 10. SNP heritability (hZ) p) observed-scale estimates calculated using LDSC for the
European-ancestry height, PTSD, and T2D discovery GWAS that were used to compute PGS.
Error bars denote standard error computed via a block-jackknife procedure. Heritability was
highest for height, with the newer discovery GWAS by Marouli et al. (2017)*? showing greater
heritability than the GWAS by Wood et al. (2014)*!. The newer T2D discovery GWAS by
Mahajan et al. (2018)*° likewise showed greater heritability than the older GWAS by Scott et al.
(2017).3® PTSD showed the lowest heritability, with the older discovery GWAS by Duncan et al.
(2018)3¢ having greater heritability than the GWAS by Nievergelt et al. (2019).%’

Page 40 of 41


https://doi.org/10.1101/2021.06.18.449060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449060; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Tables

Table 1. Discovery GWAS used to compute polygenic scores with PRS-CS
SNP Sample SNP Count® for SNP Count for

Trait Discovery GWAS A?ctfti Size® PNC PGS ABCD PGS
v (for PRS-CS) Calculations Calculations
PTSD Nievergelt et al. (2019)%’ AFR 11,321 1,162,502 1,064,574
(Freeze 2 PGC) EUR 70,237 1,087,435 1,016,161
Duncan et al. (2018)3¢ AFR 9,691 1,157,302 1,059,197
(Freeze 1 PGC) EUR 9,954 1,086,644 1,015,369
T2D Chen et al. (2019)%° AFR 4,146 1,114,936 1,020,579
Scott et al. (2017)3®
(DIAGRAM) EUR 152,599 1,087,724 1,016,440
Mahajan et al. (2018)3°
(DIAGRAM) EUR 231,420 1,089,613 1,018,372
Height Marouli et al. (2017)*? AFR 27,494 18,580 15,720
(GIANT) EUR 381,625 18,035 15,767
Wood et al. (2014)*
(GIANT) EUR 252,048 987,760 920,889

PTSD, post-traumatic stress disorder; T2D, type 2 diabetes; PNC, Philadelphia
Neurodevelopmental Cohort; PGS, polygenic score; ABCD, Adolescent Brain Cognitive
Development Study; PGC, Psychiatric Genomics Consortium; DIAGRAM, Diabetes Genetics
Replication and Meta-Analysis Consortium; GIANT, Genetic Investigation of Anthropometric
Traits Consortium.

a3PRS-CS requires a single SNP sample size; see Supplemental Methods for details.

bThe "SNP count" is the number of SNPs in common between the discovery GWAS, the PRS-CS LD
panel, and the genomic dataset.
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