
  

 

 

 

 

 

Stability of Polygenic Scores Across Discovery Genome-Wide Association Studies 

 

 

Laura M. Schultz,1,* Alison K. Merikangas,1,2,3 Kosha Ruparel,2,4  Sébastien Jacquemont,5  

David C. Glahn,6,7 Raquel E. Gur,2,4,8 Ran Barzilay,2,4,8 Laura Almasy1,2,3 

 

 

 

1 Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, 

Philadelphia, PA, 19104, USA 

 
2 Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, 

PA, 19104, USA  

 
3 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA, 19104, USA 
 

4 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, PA, 19104, USA 

 
5 Sainte Justine Research Center, University of Montréal, Montréal, QC, H3T 1C5, Canada 

 
6 Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children9s Hospital, 

Boston, MA, USA 

 
7 Department of Psychiatry, Harvard Medical School, Boston, MA, USA 

 
8 Department of Child Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of 

Philadelphia, Philadelphia, PA, 19104, USA 
 

* Correspondence: schultzl1@chop.edu 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.449060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449060
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 41 

Abstract 

Polygenic scores (PGS) are commonly evaluated in terms of their predictive accuracy at the 

population level by the proportion of phenotypic variance they explain.  To be useful for 

precision medicine applications, they also need to be evaluated at the individual patient level 

when phenotypes are not necessarily already known.  Hence, we investigated the stability of 

PGS in European-American (EUR)- and African-American (AFR)-ancestry individuals from  the 

Philadelphia Neurodevelopmental Cohort (PNC) and the Adolescent Brain Cognitive 

Development (ABCD) cohort using different discovery GWAS for post-traumatic stress disorder 

(PTSD), type-2 diabetes (T2D), and height.  We found that pairs of EUR-ancestry GWAS for the 

same trait had genetic correlations > 0.92.  However, PGS calculated from pairs of same-

ancestry and different-ancestry GWAS had correlations that ranged from <0.01 to 0.74.  PGS 

stability was higher for GWAS that explained more of the trait variance, with height PGS being 

more stable than PTSD or T2D PGS.  Focusing on the upper end of the PGS distribution, 

different discovery GWAS do not consistently identify the same individuals in the upper 

quantiles, with the best case being 60% of individuals above the 80th percentile of PGS 

overlapping from one height GWAS to another.  The degree of overlap decreases sharply as 

higher quantiles, less heritable traits, and different-ancestry GWAS are considered. PGS 

computed from different discovery GWAS have only modest correlation at the level of the 

individual patient, underscoring the need to proceed cautiously with integrating PGS into 

precision medicine applications. 
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Introduction 

Polygenic scores (PGS) are increasingly being used to draw inferences regarding genetic 

contributions to a variety of complex anthropometric and disease-related traits.  Numerous 

methods have been developed for computing PGS for a target population using summary 

statistics from a discovery genome-wide association study (GWAS) run for an independent 

population, with newer Bayesian-based techniques such as LDpred,1 SBayesR,2 and PRS-CS3 

generally yielding more predictive PGS than those produced using older methodologies that 

rely on a combination of linkage disequilibrium (LD) clumping and P-value thresholding.4   

One goal is to utilize PGS in clinical settings to facilitate the diagnosis and treatment of a 

wide range of heritable diseases,5 such as inflammatory bowel disease,6 diabetes,7 

cardiovascular disease,8; 9 cancer,10 Alzheimer's disease,11 attention-deficit/hyperactivity 

disorder,12 major depressive disorder,13 bipolar disorder,14 and schizophrenia.15  While progress 

has been made towards reaching this goal,16-19 numerous challenges remain to be solved.5; 20-23  

Given that the GWAS required for computing PGS have been disproportionately run for 

European-ancestry populations,24-28 a fundamental challenge will be ensuring that diverse 

populations have equitable access to medically beneficial PGS,29 as it has been demonstrated 

that that PGS are less predictive when the target and discovery populations have differing 

genetic ancestry or varying degrees of admixture.30-34  

Previous studies have evaluated PGS performance in terms of how well they predict 

phenotypes at the population level.  However, if PGS are going to be adopted in the precision-

medicine setting, it is also necessary to examine how well PGS perform at predicting the risk for 
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individual patients.35  To this end, we examined the stability of PGS computed for individuals 

across discovery GWAS.  Specifically, we evaluated the correlations between the PGS computed 

for EUR and AFR individuals from pairs of same- and different-ancestry discovery GWAS for 

post-traumatic stress disorder,36; 37 type 2 diabetes,38-40 and height.41; 42 These specific traits 

were chosen because they had sufficiently powered, publicly available AFR-ancestry GWAS.  We 

also addressed the question of whether the same individuals were consistently identified as 

belonging to the top PGS quantiles.  For this work, we targeted European-American (EUR) and 

African-American (AFR) youth from the Philadelphia Neurodevelopmental Cohort (PNC) and the 

Adolescent Brain Cognitive Development Study (ABCD).  

 

Subjects and Methods 

 

Philadelphia Neurodevelopmental Cohort (PNC) 

Genotype data for the PNC, a population-based sample of youth who were ages 8-21 at 

the time of study enrollment,43 were obtained from dbGaP (phs000607.v2.p2).  Biological 

samples from PNC subjects were genotyped in fifteen batches (Table S1) using ten different 

types of Affymetrix and Illumina arrays by the Center for Applied Genomics at the Children's 

Hospital of Philadelphia.44   Analysis was limited to the 5,239 EUR and 3,260 AFR ancestry 

individuals for whom genotype data were available after the quality-control (QC) process 

described below. 

Adolescent Brain Cognitive Development Study (ABCD) 

Results were replicated using post-QC genotype data for 5,815 EUR and 1,741 AFR 

individuals in the independent ABCD cohort (NDA #2573, fix release 2.0.1).  This cohort is 
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comprised of adolescents who were ages 9-10 at the time that their saliva samples were 

collected for genotyping.45  The Rutgers University Cell and DNA Repository stored and 

genotyped all samples using the Affymetrix NIDA SmokeScreen array.   

Quality Control and Imputation 

 

The PNC dataset was processed by array batch and merged after imputation, whereas 

the ABCD dataset was processed as a single batch.  For each batch, PLINK 1.946 was used to 

remove single nucleotide polymorphisms (SNPs) with > 5% missingness, samples with more 

than 10% missingness, and samples with a genotyped sex that did not match the reported sex 

phenotype.  As a final step, each batch was checked with a pre-imputation perl script that 

compared SNP frequencies against the 1000 Genomes ALL reference panel.47  This script fixed 

strand reversals and improper Ref/Alt assignments and also removed palindromic A/T and C/G 

SNPs with minor allele frequency (MAF) >  0.4, SNPs with alleles that did not match the 

reference panel, SNPs with allele frequencies differing by more than 0.2 from the reference, 

and SNPs not present in the reference panel. 

Genotypes were phased (Eagle v.2.4) and imputed by chromosome to the 1000 

Genomes Other/Mixed GRCh37/hg19 reference panel (Phase 3 v.5) using Minimac 4 via the 

Michigan Imputation Server.48  The fifteen imputation batches for the PNC dataset were 

merged by chromosome, and then post-imputation QC was run on the merged chromosome 

files using bcftools.49  Only polymorphic sites with imputation quality R2 g 0.7 and MAF g 0.01 

were included in the final PLINK 1.9 hard-call PNC and ABCD post-imputation datasets. 
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Ancestry and Kinship Analysis 

Multi-dimensional scaling (MDS) was conducted using KING (v.2.2.4)50 to identify the 

top ten ancestry principal components (PCs) for each sample. These PCs were projected onto 

the 1000 Genomes PC space, and genetic ancestry was inferred using the e107151 support 

vector machines package in R52 (Figure 1).  Based on these inferences, AFR- and EUR-ancestry 

cohorts were created for the PNC and ABCD datasets; all other ancestry groups were excluded 

from further analysis.  A second round of unprojected MDS was then performed within the 

EUR- and AFR-ancestry groups to produce ten PCs that were regressed out of the standardized 

PGS to adjust for array batch effects and genetic ancestry (Figures S1-S5).    

KING was also used to identify all pairwise relationships out to third degree relatives 

based on estimated kinship coefficients and inferred IBD segments.  Although the PNC was not 

recruited as a family study, it does include some related individuals (i.e., siblings and cousins). 

We ran a sensitivity analysis using a reduced PNC dataset that included only one individual from 

each family (chosen as the lowest individual ID number for a given family ID number), which 

reduced the size of the PNC EUR cohort from 5,239 to 4,928 and the AFR cohort from 3,260 to 

2,954.  After establishing that the PNC PTSD PGS correlation results obtained using only 

unrelated individuals did not differ meaningfully from those obtained using the full dataset 

(Tables S4 and S5), we performed all subsequent analyses using the complete EUR and AFR 

cohorts. 

Polygenic Score Computation with PRS-CS 

PRS-CS3 was used to infer posterior effects by chromosome for the SNPs in a given 

dataset that overlapped with both the discovery GWAS summary statistics and an external 1000 
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Genomes LD panel that was matched to the ancestry group used for the discovery GWAS.  

Posterior effects were only inferred for SNPs located on the 22 autosomal chromosomes.  PGS 

for the EUR and AFR subsets of PNC and ABCD were computed using both EUR and AFR 

discovery GWAS for post-traumatic stress disorder (PTSD),36; 37 Type-2 diabetes (T2D),38-40 and 

height41; 42 (Table 1).  To ensure convergence of the underlying Gibbs sampler algorithm, we ran 

25,000 Markov chain Monte Carlo (MCMC) iterations and designated the first 10,000 MCMC 

iterations as burn-in.  The PRS-CS global shrinkage parameter was set to 0.01 when the 

discovery GWAS had a SNP sample size that was less than 200,000; otherwise, it was learned 

from the data using a fully Bayesian approach.  Default settings were used for all other PRS-CS 

parameters.   Given the stochastic nature of the Bayesian algorithm used by PRS-CS, PGS 

replicability was confirmed by completing multiple PRS-CS runs using the same discovery 

GWAS.  Raw PGS were produced from the posterior effects using PLINK 1.9.  R52 was used to 

standardize the PGS for a given cohort to mean = 0 and SD = 1.  Standardized PGS were then 

adjusted by regressing out the first ten within-ancestry PCs. 

SNP Heritability Estimation with LDSC 

LD score regression (LDSC)53; 54 was used to calculate SNP-based heritability (/!"#
$ ) on 

the observed scale for each EUR-ancestry discovery GWAS that we used to generate PGS.  We 

also calculated /!"#
$  on the liability scale for PTSD and T2D by incorporating the sample 

prevalence and estimated population prevalence into the calculation (Table S14).  The standard 

error associated with a given /!"#
$  calculation was estimated using a block jackknife over blocks 

of adjacent SNPs.  Given that LDSC may yield biased estimates for admixed populations55 and 
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that we only had access to GWAS summary statistics, we did not calculate SNP heritability for 

the AFR-ancestry discovery GWAS. 

Statistical Analysis 

All statistics and graphical displays were generated using R.52  Pearson correlation 

coefficients were calculated to assess the strength of correlations between PC-adjusted 

standardized PGS that were calculated for a given trait using different discovery GWAS.  

Statistical significance was determined with two-tailed t-tests for linear association.  For each 

comparison, counts were also made of the number of samples in common at or above the 80th 

percentile, the 90th percentile, and the 95th percentile of the adjusted standardized PGS 

distributions. 

 

Results 

 

Reproducibility of Bayesian Posterior Effects 

Given that PRS-CS relies on Bayesian methodology to infer posterior effects for the SNPs 

on each chromosome,3 it was necessary to confirm that we had used enough Markov chain 

Monte Carlo (MCMC) iterations and burn-in trials to ensure convergence of the underlying 

Gibbs sampler algorithm.  We checked for convergence indirectly by assessing the correlation 

between the posterior effects calculated across multiple runs for a given chromosome (Figure 

2). The PRS-CS default setting of 1000 MCMC iterations with the first 500 iterations serving as 

burn-in produced relatively inconsistent posterior effects (r j 0.8), suggesting incomplete 

convergence.  The correlation between the posterior effects computed during multiple runs of 

PRS-CS improved to r j 0.98 when we increased the number of MCMC iterations to 10,000 
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(5,000 burn-in) and further improved to r > 0.99 for both large and small chromosomes when 

we used 25,000 MCMC iterations (10,000 burn-in).  Given that the computational time 

increases substantially as more MCMC iterations are run, we opted to use 25,000 MCMC 

iterations with the first 10,000 as burn-in rather than pursuing even stronger correlations. 

Reproducibility of PGS Computed from the Same Discovery GWAS 

The next concern was whether the PGS calculated by PLINK 1.9 from the Bayesian 

posterior effects would also be reproducible across PRS-CS runs.  To address this question, we 

ran PRS-CS twice using the Psychiatric Genomics Consortium (PGC) Freeze 2 PTSD discovery 

GWAS37, and calculated PGS from both sets of posterior effects.  For both the EUR and AFR PNC 

cohorts, the correlation between the adjusted PGS was greater than 0.999 (Figure 3).  Hence, 

we are confident that PRS-CS yields reproducible PGS for a given discovery GWAS provided that 

enough MCMC iterations are used. 

Stability of PGS Computed from Different Same-Ancestry Discovery GWAS 

Of the three traits that we analyzed, only PTSD had two publicly available AFR-ancestry 

GWAS.36; 37  We computed PGS using both GWAS for each AFR-ancestry individual and then 

assessed the correlation between the two sets of PGS (Figure 4).  We found a moderately 

strong positive correlation between the PGS computed from the PGC Freeze 136 and Freeze 237 

AFR-ancestry PTSD GWAS for the AFR-ancestry cohorts of both PNC (r = 0.696, t(3258) = 55.26 , 

P < 2 x 10-16) and ABCD (r = 0.657, t(1739) =36.34, P < 2 x 10-16). 

The wider availability of EUR-ancestry GWAS allowed us to compute PGS for EUR-

ancestry individuals using pairs of EUR-ancestry discovery GWAS for PTSD,36; 37 T2D,38; 39 and 

height41; 42 (Figure 5).  Statistically significant positive correlations between the pairs of PGS 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.449060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449060
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 41 

were observed for all three traits for both the PNC (Table S8) and ABCD (Table S9) EUR-ancestry 

cohorts, with the strongest association observed between the height PGS (PNC: r = 0.736; 

ABCD: r = 0.734) and the weakest observed for the PTSD PGS (PNC: r = 0.392; ABCD: r = 0.378).   

Stability of PGS Computed from Different-Ancestry Discovery GWAS 

Given the scarcity of AFR-ancestry GWAS, it is often tempting to compute PGS for AFR-

ancestry individuals using EUR-ancestry discovery GWAS.  To assess the feasibility of this 

approach, we computed PGS for AFR-ancestry individuals in PNC and ABCD using both AFR-

ancestry discovery GWAS and EUR-ancestry GWAS and then assessed the correlation between 

the two sets of PGS (Figure 6).   

For PTSD, there was no significant correlation between the PGS computed from the 

newer Freeze 2 PGC AFR and EUR discovery GWAS37 for AFR-ancestry individuals in either PNC 

(r = 0.00356, t(3258) = 0.203, P = 0.839) or ABCD (r = 0.00283, t(1739) = 0.118, P = 0.906).  The 

AFR PGS computed using the Freeze 1 PGC PTSD AFR and EUR discovery GWAS36 were 

uncorrelated for ABCD (r = -0.00320, t(1739) = -0.133, P = 0.894), but we observed a weak 

positive correlation for PNC (r = 0.0417, t(3258) = 2.379, P = 0.0174). 

We made the same different-ancestry GWAS comparisons for the EUR-ancestry 

individuals in the PNC and ABCD study populations (Figure 7).  As was the case for AFR-ancestry 

individuals, we found no significant correlation between PGS computed from the PGC Freeze 2 

EUR- and AFR-ancestry PTSD discovery GWAS.37 While we observed no significant correlation 

between the PGS computed using the PGC Freeze 1 EUR- and AFR-ancestry PTSD discovery 

GWAS for EUR-ancestry individuals in ABCD (r = -0.00109, t(5813), P = 0.934), we did observe a 

weak positive correlation for the EUR cohort of PNC (r = 0.0379, t(5237) = 2.746, P = 0.0065). 
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We compared T2D PGS computed from an AFR-ancestry discovery GWAS40 to those 

computed using two EUR discovery GWAS38; 39 published by the Diabetes Genetics Replication 

and Meta-Analysis (DIAGRAM) consortium. The newer EUR-ancestry T2D discovery GWAS39 

yielded PGS that were uncorrelated with those computed from the AFR-ancestry discovery 

GWAS40 for the AFR-ancestry individuals in both PNC (r = 0.0185, t(3258) = 1.055, P = 0.292) and 

ABCD (r = 0.0219, t(1739) = 0.912, P = 0.362).  Similarly, there was no significant correlation 

between the different-ancestry T2D PGS that we computed for the EUR-ancestry individuals in 

PNC (r = 0.0240, t(5237) = 1.739, P = 0.082) and ABCD (r = 0.0224, t(5813) = 1.71, P = 0.0872).  

We observed a weak positive correlation between the PGS computed from the older EUR-

ancestry T2D discovery GWAS38 and the PGS computed from the AFR-ancestry T2D discovery 

GWAS40 for the PNC AFR cohort (r = 0.0432, t(3258) = 2.469, P = 0.0136), but there were no 

significant correlations between the two sets of PGS computed for the ABCD AFR cohort (r = -

0.0458, t(1739) = -1.911, P = 0.0562), the PNC EUR cohort (r = 0.00528, t(5237) = 0.382, P = 

0.703), or the ABCD EUR cohort (r = 0.0188, t(5813) = 1.431, P = 0.152). 

We also computed different-ancestry PGS using EUR- and AFR-ancestry height discovery 

GWAS that we obtained from the Genetic Investigation of Anthropometric Traits (GIANT) 

consortium.41; 42   We observed significant positive correlations between the PGS computed 

from the newer EUR- and AFR-ancestry height discovery GWAS42 for the PNC AFR (r = 0.287, 

t(3258) = 17.09, P < 2 x 10-16),  ABCD AFR (r = 0.306, t(1739) = 13.42, P < 2 x 10-16), PNC EUR (r = 

0.403, t(5237) = 31.82, P < 2 x 10-16), and ABCD EUR (r = 0.404, t(5813) = 33.69, P < 2 x 10-16) 

cohorts.  Likewise, we found significant positive correlations between the PGS computed from 

the older EUR-ancestry height discovery GWAS41 and the AFR-ancestry height discovery GWAS42 
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for the PNC AFR (r = 0.258, t(3258) = 15.22, P < 2 x 10-16), ABCD AFR (r = 0.312, t(1739) = 13.68, 

P < 2 x 10-16), PNC EUR(r = 0.335, t(5239) = 25.25, P < 2 x 10-16), and ABCD EUR (r = 0.327, 

t(5813)= 26.39, P < 2 x 10-16) cohorts.  As was the case for T2D, there was only one AFR-ancestry 

height discovery GWAS42 available to use for computing PGS.   

The supplement includes complete statistical results for the comparisons between PGS 

computed from different discovery GWAS for the PNC AFR (Table S6), ABCD AFR (Table S7), PNC 

EUR (Table S8), and ABCD EUR (Table S9) cohorts. 

Quantile-Based Comparisons 

Given that there was little to no correlation between PGS computed from different 

discovery GWAS, we considered the possibility that there would be more stability if we focused 

on the individuals who had PGS located in the upper tail of the distribution, as those are the 

individuals who would presumably be most at risk for a disease trait.  Considering the top 20%, 

10%, and 5% of PC-adjusted standardized PGS, we counted how many individuals were jointly 

identified as being at or above a given percentile of the PGS computed from two different 

discovery GWAS.  See the supplement for complete results of these analyses for the PNC AFR 

(Table S10), ABCD AFR (Table S11), PNC EUR (Table S12), and ABCD EUR (Table S13) cohorts.    

As a baseline comparison, we determined the degree of overlap between the individuals 

in the top quantiles of PGS computed from two PRS-CS runs using the Freeze 2 AFR- and EUR-

ancestry PTSD discovery GWAS37 for the AFR (Figure 8A) and EUR (Figure 9A) PNC cohorts, 

respectively.  Of the n = 3260 individuals in the PNC AFR cohort, there are n = 652 individuals 

with PGS at or above the 80th percentile, n = 326 with PGS at or above the 90th percentile, and n 

= 163 with PGS at or above the 95th percentile of PGS.  We found an overlap of 644 of the 652 
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AFR-ancestry individuals who had PGS at or above the 80th percentile from the two runs using 

the same AFR-ancestry PTSD discovery GWAS, which is a 98.7% overlap.  Comparable degrees 

of overlap were observed between the PNC AFR-ancestry individuals with PTSD PGS at or above 

the 90th (318/326 = 0.975) and 95th (161/163 = 0.988) percentiles.  Similarly, the proportional 

overlap between the PTSD PGS computed from two PRS-CS runs using the Freeze 2 EUR-

ancestry PTSD discovery GWAS37 for the EUR-ancestry cohort (n = 5239) was 1026/1048 = 0.979 

at or above the 80th percentile, 513/524 = 0.979 at or above the 90th percentile, and  255/262 = 

0.973 at or above the 95th percentile. 

The proportional overlap decreases if we consider PGS computed from two different 

same-ancestry discovery GWAS.  For the PNC AFR-ancestry cohort (Figure 8B), adjusted 

standardized PGS computed from the Freeze 136 and Freeze 237 PTSD AFR-ancestry discovery 

GWAS (Figure 8B) had 53.6% of individuals in common at or above the 80th percentile, 47.5% at 

or above the 90th percentile, and 36.3% at or above the 95th percentile.  The decrease in 

proportional overlap was even more pronounced for PGS computed from two different EUR-

ancestry GWAS for the PNC EUR-ancestry cohort (Figure 9B).  The proportion of overlap 

became progressively smaller as we considered progressively higher percentiles for PTSD, T2D, 

and height.  Moreover, the amount of overlap was greatest for height and smallest for PTSD at 

each of the percentiles that we considered. 

Proportional overlap was even more dramatically decreased when we compared the top 

quantiles of the PGS that had been computed from an AFR-ancestry discovery GWAS to those 

that had been computed from a EUR-ancestry discovery GWAS (Figures 8C and 9C).   Note that 

Figures 8 and 9 only include comparisons for PNC between the PGS computed using the newer 
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discovery GWAS if there was more than one comparison possible; full results are presented in 

the supplement (Tables S10-S13).  For the AFR cohort of PNC, the proportional overlap ranged 

from a low of 4.91% for different-ancestry PTSD PGS at the 95th percentile to a high of 32.8% for 

different-ancestry height PGS at the 80th percentile, whereas the  proportional overlap for the 

PNC EUR cohort ranged from 3.82% for different-ancestry T2D PGS at the 95th percentile to 

38.1% for height PGS at the 80th percentile.  For both the EUR and AFR cohorts, the general 

pattern is that proportional overlap is largest for different-ancestry PGS at the 80th percentile 

and smallest at the 95th percentile.  Within a given percentile, the proportional overlap is 

largest for height and smallest for either PTSD or T2D. 

SNP Heritability  

We hypothesized that PGS would be more stable for traits with discovery GWAS that 

explain more of the genomic variance.  As such, we used LDSC to compute the SNP heritability 

for each of the EUR-ancestry discovery GWAS that we used to compute PGS (Figure 10).  The 

genetic correlation calculated by LDSC for each pair of GWAS essentially perfect, with the 

lowest rg = 0.9225 ± 0.1807 for PTSD.  We found that SNP heritability on the observed scale was 

highest for height42 (/!"#
$ = 0.697 ± 0.067) and lowest for PTSD37 (/!"#

$ = 0.017 ± 0.003).  

On the liability scale (which is only relevant for the two disease traits), SNP heritability was 

substantially higher for T2D than for PTSD (Table S14).  On both the observed and liability 

scales, there was a clear difference between the SNP heritability of the two discovery GWAS 

that were used to compute PGS for each trait.  For height and T2D, the SNPs included in the 

newer GWAS explained more phenotypic variance than did those in the older GWAS, but the 

opposite was true for PTSD.   
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Discussion 

 

We have demonstrated that the PGS computed from different discovery GWAS have 

little to no correlation at the level of the individual patient.   While the correlation is better for 

highly heritable anthropometric traits (e.g., height), the lack of correlation for medical and 

psychiatric disorders like T2D and PTSD underscores the need to proceed cautiously with 

integrating PGS into precision medicine applications.  

This lack of correlation is especially noteworthy given that it was observed for PGS 

computed using meta-GWAS that were produced by the PGC,36; 37  DIAGRAM,38; 39 and GIANT39; 

41 consortia.  The fact that even same-ancestry meta-GWAS computed by the same consortia 

using overlapping samples and SNPs (Table 1) would yield PGS that lack meaningful correlation 

at the individual level raises serious concerns.  If PGS are going to be used clinically, then they 

need to be reproducible.  Furthermore, judging PGS quality based primarily on population-level 

analytics, such as the area under the receiver operator characteristic curve (AUC), that depend 

on known case-control status will not be an effective approach for judging the validity of PGS 

computed for individual patients who do not necessarily have known phenotypes.35; 56  

Even if stand-alone PGS are not yet useful clinically, they could still be used to help 

identify those patients at highest disease risk.57  For instance, PGS for psychiatric traits could be 

used in conjunction with environmental factors to identify adolescents most at risk for 

developing psychosis and other mental health disorders.16  We are actively pursuing such 

applications with the PNC and ABCD cohorts and have found that ancestry-specific PTSD PGS do 

indeed add predictive value to models that include other non-genetic factors.58  Nonetheless, 
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we caution that it is dangerous to rely solely on PGS quantiles to identify at-risk patients.  

Different discovery GWAS yielded PGS that did not identify the same patients at the top 

quantiles of the distribution, and the amount of overlap decreased as higher quantiles were 

considered (Figures 8 and 9; Tables S10-S13).  Hence, the instinctive decision to focus only on 

the upper tail of the PGS distribution will not mitigate the lack of PGS stability across different 

discovery GWAS.   

We chose to use the Bayesian PRS-CS Python package to compute PGS for this study.  It 

has been demonstrated4 that Bayesian methods generally yield more predictive PGS than those 

produced via traditional P-value thresholding approaches. The advantage of PRS-CS over other 

Bayesian methods is that it employs a very robust Strawderman-Berger continuous shrinkage 

prior rather than a discrete mixture prior, which allows for more accurate multivariate 

modeling of local LD in the polygenic prediction.3  When enough MCMC iterations are used to 

ensure convergence of the underlying Gibbs sampler algorithm, PRS-CS yields very consistent 

posterior effects (Figure 2).  PGS computed using the same discovery GWAS are highly 

correlated when computed using multiple PRS-CS runs (Figure 3), and others have previously 

shown that PGS computed from the same discovery GWAS are strongly correlated when 

computed using PRS-CS and other Bayesian and non-Bayesian approaches.4  Hence, the lack of 

PGS stability across discovery GWAS that we report here cannot be attributed to the stochastic 

nature of Bayesian methods; there must be differences between the discovery GWAS. 

By choosing to use multiple generations of GWAS produced by the same consortia, we 

hoped to minimize potential methodological differences between the same-trait meta-GWAS.  

As expected, the genetic correlation between each pair of same-trait GWAS was nearly perfect, 
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no doubt due to the large overlap between SNPs and samples within each pair (Table 1).  

Initially, we had assumed that the newer GWAS in each pair would be the "better" GWAS since 

we thought that the larger sample size would yield more explanatory power.  We cannot rule 

out this possibility for the T2D and height GWAS; in both cases, the newer EUR GWAS had 

higher SNP heritability than the older one (Figure 10).  However, given that the opposite was 

true for the two PTSD GWAS, we have come to believe that bigger GWAS are not necessarily 

better. 

Phenotyping quality should not be overlooked when choosing a discovery GWAS.  

Consortia have developed QC pipelines, such as RICOPILI,59 to harmonize genomic data from 

multiple cohorts prior to meta-analyzing.  However, ensuring consistent phenotyping poses a 

continuing challenge, especially for case-control meta-GWAS analyses of non-continuous 

psychiatric traits like PTSD.  The PGC Freeze 2 EUR-ancestry PTSD GWAS37 had a large increase 

in sample size due to the addition of samples from the UK Biobank, yet the SNP heritability 

went down compared to the Freeze 1 GWAS.36   One explanation could be that the UK Biobank 

PTSD phenotypes were derived from self-reported questionnaires, which are less reliable than 

the ascertainment procedures used by the smaller studies that comprised the original meta-

analysis.60      

It is not surprising that the two height GWAS had higher SNP heritability than the PTSD 

and T2D GWAS (Figure 10; Table S14).  Height is an easily measured quantitative trait that is 

less susceptible to ascertainment bias than qualitative disease traits.  Furthermore, 

environmental factors make substantial contributions to the development of both PTSD61 and 

T2D.62  Even so, LDSC gave an unusually high estimate of SNP heritability (/!"#
$ = 0.6967 ±
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0.0674) for the newer height GWAS.42  While it is possible that the LDSC calculations could 

have been biased due to the small number of SNPs, we believe that a plausible explanation lies 

in the design of this GWAS.  Specifically, the newer height GWAS included a small number of 

targeted rare and low-frequency SNPs (MAF between 0.1% and 4.8%) on a specially designed 

exome array rather than casting the same wide net as the earlier GWAS.  This modification 

coupled with a substantially increased sample size and an easily ascertained quantitative trait 

could have yielded this improvement in explanatory power.  It is tantalizing to speculate that a 

new class of genomic association studies that incorporate a smaller number of low-frequency 

and rare variants with large effects could improve our understanding of the genetic basis of 

complex traits beyond what can be inferred from large-scale GWAS alone.63  Such studies will 

be facilitated by the recent release of the Trans-Omics for Precision Medicine (TOPMed)64 

Imputation Server, which should yield improved imputation accuracy for low-frequency and 

rare variants.  Given that SNP heritability for psychiatric disorders generally underestimates the 

heritability calculated from family studies,65 it could be worthwhile to adopt this type of 

targeted approach coupled with more closely harmonized phenotyping for future genomic 

association studies of PTSD and other neuropsychiatric traits. 

The previous heritability discussion is limited to the EUR-ancestry discovery GWAS.  We 

chose not to use LDSC to compute SNP heritability for the AFR-ancestry GWAS due to evidence 

that it yields biased estimates for admixed populations.55 Given the relatively smaller sample 

sizes of the AFR GWAS (Table 1), you might expect that they explained less trait variance than 

the corresponding EUR GWAS.  However, this was not necessarily the case.  Using individual-

level data, the Freeze 2 PTSD GWAS authors37 demonstrated that SNP heritability was 
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comparable for EUR- and AFR-ancestry males on the liability scale, and it was higher for AFR-

ancestry females than for EUR-ancestry females and both groups of males. Likewise, the 

relatively stronger correlation between pairs of same-ancestry AFR PTSD PGS (Figure 4) and the 

higher degree of overlap between individuals at upper end of the PGS distribution (Figure 8B; 

Tables S10 and S11) as compared to same-ancestry EUR PTSD PGS (Figures 5 and 9B; Tables S12 

and S13) is consistent with the possibility that the smaller AFR-ancestry PTSD GWAS (neither of 

which included UK Biobank samples) explained more variance than the EUR-ancestry GWAS did.  

Ideally, future work will be directed towards developing methodology to calculate unbiased 

estimates of SNP heritability for AFR-ancestry and other admixed populations from GWAS 

summary statistics.  Popcorn,66 a Python package for calculating trans-ethnic genetic correlation 

from GWAS summary statistics, provides a preliminary step in this direction, as does cov-

LDSC.55 

Our results add to the growing body of evidence that PGS should be computed from an 

ancestrally matched discovery GWAS.  It is well established that EUR-ancestry GWAS typically 

yield PGS that are less predictive for AFR and other non-EUR ancestry groups.19; 21; 25; 30; 31; 34; 67-71  

We have further demonstrated that PGS computed from same-ancestry GWAS for PTSD and 

T2D are uncorrelated with those computed from different-ancestry GWAS for both AFR- and 

EUR-ancestry study participants (Figures 6 and 7), and we also found that there is very little 

overlap between the individuals in the upper tails of the PGS distributions computed using EUR-

ancestry GWAS as compared to those computed using AFR-ancestry GWAS (Figures 8c and 9c; 

Tables S10-S13).  Given the dearth of AFR-ancestry and other non-EUR-ancestry discovery 
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GWAS, our results underscore the urgent need for more high-powered GWAS analyses to be 

run for non-EUR ancestry populations.  

We chose to study PTSD, T2D, and height because all three traits had publicly available 

GWAS for both EUR- and AFR-ancestry populations.  Of these three, PTSD was the only trait 

that had two AFR-ancestry GWAS available for comparison purposes.  While we focused our 

current work on the EUR- and AFR-ancestry individuals in the PNC and ABCD cohorts, we hope 

that methodology and GWAS data will soon exist to make it possible expand our analyses to the 

admixed American (AMR) and other ancestral groups that are also included in these cohorts 

(Figure 1).  The recent release of PRS-CSx72 will make it possible to use discovery GWAS that 

include a combination of EAS-, AFR-, and EUR-ancestry samples.  Although it offers an 

improvement over the current requirement that the discovery GWAS be limited to only one of 

these three ancestry groups, PRS-CSx still does not enable analyses of admixed samples from 

other genetic backgrounds. 

Ultimately, we envision a future where genetic ancestry will not be a necessary 

consideration before computing PGS.  Given that genetic ancestry is continuous, it is rather 

artificial to assign samples to discrete ancestry groups.26  Within the AFR-ancestry group alone, 

there is an enormous degree of genetic diversity.31; 73  We controlled for such diversity by 

calculating PGS separately for each ancestry group and then regressing out within-ancestry 

principal components from the standardized PGS.  We are optimistic that new methods that 

incorporate local ancestry33; 74 will eventually allow us to embrace this diversity and compute 

stable, accurate PGS for admixed populations.   Increasingly economical whole-genome 

sequencing75 coupled with expanded (i.e., less Eurocentric) genotyping arrays71 and improved 
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imputation to diverse reference panels from TOPMed64 should also facilitate the further 

development of inclusive approaches, such as BOLT-LMM,76; 77 trans-ethnic GWAS,78 and multi-

ethnic PGS.32   While it certainly would be easier to continue to focus PGS development on EUR-

ancestry populations, we do so at the grave risk of further exacerbating the inequities in 

medical care between EUR-ancestry populations and the rest of the world.29; 79    
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Web Resources 

 

McCarthy Group imputation checking perl script 

(https://www.well.ox.ac.uk/~wrayner/tools/index.html#Checking) 

 

McCarthy Group genotyping chip strand and build files 

(https://www.well.ox.ac.uk/~wrayner/strand/) 

 

Plink 1.9 

(https://www.cog-genomics.org/plink/1.9/) 

 

Bcftools 

(https://github.com/samtools/bcftools) 

 

Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html) 

 

KING: Kinship-based Inference for GWAS 

(http://people.virginia.edu/~wc9c/KING/index.html) 

 

The R Project for Statistical Computing 

(https://www.r-project.org) 

 

R package 'e1071' 

(https://cran.r-project.org/web/packages/e1071/e1071.pdf) 

 

R package 'qqman' 

(https://cran.r-project.org/web/packages/qqman/vignettes/qqman.html) 

 

PRS-CS 

(https://github.com/getian107/PRScs) 

 

LDSC 

(https://github.com/bulik/ldsc) 

 

DIAGRAM GWAS summary statistics 

(http://diagram-consortium.org/downloads.html) 

 

GIANT GWAS summary statistics 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_file

s) 

 

Psychiatric Genomics Consortium GWAS summary statistics 

(https://www.med.unc.edu/pgc/data-index/) 
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Data and Code Availability 

The PNC and ABCD genomic datasets used in this study are available by application from 

dbGaP (phs00060) and NDAR (NDA #2573), respectively.  All discovery GWAS summary 

statistics and software used in this study are publicly available; see Web Resources for access 

information.  
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Figures 

 

Figure 1.  First and second principal components (PCs) of cohort genotypes.  PCs were 

computed and projected to a 1000 Genomes reference using KING.50  Colors indicate inferred 

genetic ancestry for the (A) 9,206 Philadelphia Neurodevelopmental Cohort (PNC) and (B) 

10,318 Adolescent Brain Cognitive Development (ABCD) genotyped samples.   
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Figure 2.  Reproducibility of Bayesian posterior effects computed by PRS-CS.  As illustrated for 

chromosome 3 (76,064 SNPs) and chromosome 21 (15,447 SNPs) using the Nievergelt et al. 

(2019)37 EUR PTSD discovery GWAS with the PNC EUR dataset, posterior effects were more 

strongly correlated between PRS-CS runs as the number of MCMC iterations (and burn-in 

iterations) increased.  
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Figure 3.  Reproducibility of PGS across multiple runs of PRS-CS.  PC-adjusted standardized PGS 

computed from posterior effects generated by two runs of PRS-CS using the same PTSD 

discovery GWAS from Nievergelt et al. (2019)37 had correlations greater than r = 0.999 for both 

the EUR (n = 5239) and AFR (n = 3260) cohorts of PNC.  

 

 

Figure 4.  Correlation between PGS computed from two different AFR-ancestry PTSD 

discovery GWAS for AFR-ancestry individuals.  Significant positive correlations were observed 

between the AFR PGS computed from the PGC Freeze136 and Freeze237 AFR PTSD GWAS for 

both the PNC (r = 0.696, t(3258) = 55.26 , P < 2 x 10-16) and ABCD (r = 0.657, t(1739) =36.34, P < 

2 x 10-16) AFR cohorts. 
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Figure 5. Correlation between PGS computed from two different EUR-ancestry discovery 

GWAS for EUR-ancestry individuals.  Pairs of PGS computed for the EUR samples of PNC (n = 

5239) and ABCD (n = 5815) using two different EUR discovery GWAS for PTSD,36; 37 T2D,38; 39 and 

height41; 42 all showed significant positive correlations. 

 

 

 

Figure 6. Correlation between PGS computed from AFR-ancestry and EUR-ancestry discovery 

GWAS for AFR-ancestry individuals.  Pairs of PGS computed for the AFR samples of PNC and 

ABCD from the newer EUR and AFR discovery GWAS were not significantly correlated for either 

PTSD36; 37 or T2D,39; 40 but there was a significant positive correlation for height.42 
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Figure 7. Correlation between PGS computed from EUR-ancestry and AFR-ancestry discovery 

GWAS for EUR-ancestry individuals.  Pairs of PGS computed for the EUR samples of PNC and 

ABCD from the newer EUR and AFR discovery GWAS were not significantly correlated for either 

PTSD36; 37 or T2D,39; 40 but there was a significant positive correlation for height.42 
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Figure 8.  Comparison of the samples comprising the top PGS quantiles for the PNC AFR 

cohort.  A.  The samples located at the top 20%, 10%, and 5% of the PTSD PGS distribution were 

virtually the same when PGS were computed twice using the same discovery GWAS.  For 

example, 644 out of the 652 samples (98.7%) at or above the 80th percentile were the same 

between the two batches of PGS.  B.  The overlap between samples at all three quantiles 

dropped substantially when the PGS computed from the AFR PGC Freeze1 PTSD discovery 

GWAS36  were compared to those computed from the AFR Freeze2 PTSD discovery GWAS,37 

with the degree of overlap being reduced at higher quantiles.  C.  The degree of overlap was 

further reduced when comparing PGS computed from an AFR-ancestry discovery GWAS to 

those computed from an EUR-ancestry GWAS for PTSD,37 T2D,39; 40 and height.42  For context, 

the green bars depict the number of samples included at or above the 80th percentile (n = 652), 

90th percentile (n = 326), and 95th percentile (n = 163).  Full results can be found in Table S6. 
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Figure 9.  Comparison of the samples comprising the top PGS quantiles for the PNC EUR 

cohort.  A.  The EUR samples located within the top 20%, 10%, and 5% of the PTSD PGS 

distribution were nearly the same when PGS were computed twice using the same EUR 

discovery GWAS.37  For example, 1026 out of the 1048 samples (97.9%) at or above the 80th 

percentile were the same between the two runs of PRS-CS.  B.  The overlap between samples at 

all three quantiles dropped substantially when the PGS computed from two different EUR 

discovery GWAS were compared for PTSD,36; 37 T2D,38; 39 and height.41; 42  C. The degree of 

overlap was dramatically reduced when comparing PGS computed from an AFR-ancestry 

discovery GWAS to those computed from an EUR-ancestry GWAS for PTSD,37 T2D,39; 40 and 

height.41; 42 Green bars depict the number of samples included at or above the 80th percentile (n 

= 1048), 90th percentile (n = 524), and 95th percentile (n = 262).  Full results can be found in 

Table S8. 
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Figure 10.  SNP heritability (�
���

� ) observed-scale estimates calculated using LDSC for the 

European-ancestry height, PTSD, and T2D discovery GWAS that were used to compute PGS.  

Error bars denote standard error computed via a block-jackknife procedure.  Heritability was 

highest for height, with the newer discovery GWAS by Marouli et al. (2017)42 showing greater 

heritability than the GWAS by Wood et al. (2014)41.  The newer T2D discovery GWAS by 

Mahajan et al. (2018)39 likewise showed greater heritability than the older GWAS by Scott et al. 

(2017).38  PTSD showed the lowest heritability, with the older discovery GWAS by Duncan et al. 

(2018)36 having greater heritability than the GWAS by Nievergelt et al. (2019).37 
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Tables 

Table 1.  Discovery GWAS used to compute polygenic scores with PRS-CS 

Trait Discovery GWAS 
GWAS 

Ancestry 

SNP Sample 

Sizea  

(for PRS-CS) 

SNP Countb for 

PNC PGS 

Calculations 

SNP Count for 

ABCD PGS 

Calculations 

PTSD Nievergelt et al. (2019)37 

(Freeze 2 PGC) 

AFR   11,321 1,162,502 1,064,574 

EUR   70,237 1,087,435 1,016,161 

Duncan et al. (2018)36 

(Freeze 1 PGC) 

AFR     9,691 1,157,302 1,059,197 

EUR     9,954 1,086,644 1,015,369 

T2D Chen et al. (2019)40 AFR     4,146 1,114,936 1,020,579 

Scott et al. (2017)38 

(DIAGRAM) 
EUR 152,599 1,087,724 1,016,440 

Mahajan et al. (2018)39  

(DIAGRAM) 
EUR 231,420 1,089,613 1,018,372 

Height Marouli et al. (2017)42 

(GIANT) 

AFR   27,494      18,580     15,720 

EUR 381,625      18,035     15,767 

Wood et al. (2014)41 

(GIANT) 
EUR 252,048   987,760   920,889 

PTSD, post-traumatic stress disorder; T2D, type 2 diabetes; PNC, Philadelphia 

Neurodevelopmental Cohort; PGS, polygenic score; ABCD, Adolescent Brain Cognitive 

Development Study; PGC, Psychiatric Genomics Consortium; DIAGRAM, Diabetes Genetics 

Replication and Meta-Analysis Consortium; GIANT, Genetic Investigation of Anthropometric 

Traits Consortium. 
aPRS-CS requires a single SNP sample size; see Supplemental Methods for details. 
bThe "SNP count" is the number of SNPs in common between the discovery GWAS, the PRS-CS LD 

panel, and the genomic dataset. 
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